
EPIB634 Notes on, and Assignment on Describing Patterns in Rates. version 2001.01.14

1 Sex-Age-CalendarTime Patterns in popula-
tion mortality rates in Denmark

See the examples in Clayton and Hills Chapter 22. Using an informal (‘by
eye’) approach, we can fit the following (overly-?) simple (multiplicative) rate
ratio model to the patterns of mortality rates for 1980-1984 and 2000-2004.
The reference cell is females 70-74, 1980-84.

Yrs Age Female (F) Male (M)
70- RF RF ×MM

’80- 75- RF ×M75 RF ×M75 ×MM

’84 80- RF ×M80 RF ×M80 ×MM

85- RF ×M85 RF ×M85 ×MM

70- RF ×M20y RF ×MM ×M20y

’00- 75- RF ×M75 ×M20y RF ×M75 ×MM ×M20y

’04 80- RF ×M80 ×M20y RF ×M80 ×MM ×M20y

85- RF ×M85 ×M20y RF ×M85 ×MM ×M20y

R = rate. M = multiplier. The array called ‘r’ in the R code ( which fits
additive models to the rates and logs of the rates) can be used to calculate
ratios.

...Year.......Age...Female...Male.....Total... Observed rates

1980-1984 70-74 0.02725 0.05213 0.03814
1980-1984 75-79 0.04592 0.08235 0.06042
1980-1984 80-84 0.08098 0.12163 0.09561
1980-1984 85-89 0.13680 0.18202 0.15193

2000-2004 70-74 0.02666 0.03972 0.03261
2000-2004 75-79 0.04179 0.06586 0.05189
2000-2004 80-84 0.06923 0.10584 0.08279
2000-2004 85-89 0.11970 0.16773 0.13480

2005-2007 70-74 0.02359 0.03468 0.02874
2005-2007 75-79 0.03934 0.05815 0.04750
2005-2007 80-84 0.06559 0.09622 0.07730
2005-2007 85-89 0.11462 0.15808 0.12860

Age multipliers:

The rate in the (females 70-74, 1980-84) cell is 0.02725, while that in the cell
one below it (75-79) is 0.04592, yielding an empirical rate ratio of 1.69 for the
pure 75-79 vs 70-74 contrast. We can repeat the same 75-79 vs 70-74 contrast

for each of the other 3 sex-calendar year combinations, to obtain in all four
75-79 vs 70-74 ratios:

Years Age Female (F) Male (M)
70-74 1 1

1980-1984
75-79 1.69 1.57
70-74 1 1

2000-2004
75-79 1.58 1.66

One way, without even using a calculator, to arrive at a best estimate of the
M75− multiplier is to make the median, 1.62, of these 4 estimates.

Moving on to the the pure 80-84 versus 70-74 contrast, we obtain 4 rate ratio
estimates: 2.97, 2.60, 2.33 and 2.66; their median is 2.63.

For the 85-89 versus 70-74 contrast, the median of the 4 estimates is 4.36.

These three multipliers can be used to derive multiplicative rate (i.e., in-
surance premium) increases for the higher age categories, using the rates in
the 70-74 group as the reference or ‘starter’ or ‘corner’ category (‘corner’ is
Clayton and Hills terminology in their chapter 22).

It seems that rates double about every 7 years or so. Note also that the
estimated 10 year increase of 2.63 is virtually the same as 1.622, so in fact we
could use two 62% 5-year increases, 1 each per 5 years of age, and avoid having
(to memorize/estimate) a separate multiplier for the 10 years of age increase.
Note also that 1.623 = 4.25 which is quite close to the fitted 4.36. So, in fact
we could save having to memorize not just 1 but 2 multipliers, and simply
say the rates in those ages 75-79, 80-84 and 85-89 are 1.62, 1.622, and 1.623

times the rates in those aged 70-74.

Another way to say this is that the logs of the mortality rates are linear in
age. This finding is not new: The actuary Benjamin Gompertz described this
pattern as a Law of Mortality (that now bears his name) in a paper in 1825.
And William Farr and Thomas R Edmonds, and Gompertz, used this smooth
functions relationship to save a lot of steps in the otherwise tedious lifetable
calculations used in actuarial and population-lifetable analyses. When we
come to formally fitting multiplicative rate (ie log linear) models for rates,
the fact that the log rates seem to be close to linear over this age range
means that we do not have to model age as a ‘categorical’ variable with 3
indicator variables (3 separate coefficients) but instead can be parsimonious
(economical, even frugal) and use just 1 linear age term and its 1 associated
regression coefficient.
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Male multiplier:

The rate in the (females 70-74, 1980-84) cell is 0.02725, while that in the cell
to the right of it (Males) is 0.05213, yielding an empirical rate ratio of 1.91
for the pure M vs F contrast. We can repeat the same M vs F contrast for
each of the other 7 age-calendar year combinations, to obtain in all eight M
vs F ratios:

Yrs Age Female (F) Male (M)
70-74 1 1.91

’80- 75-79 1 1.79
’84 80-85 1 1.50

85-90 1 1.33
70-74 1 1.49

’00- 75-79 1 1.58
’04 80-84 1 1.53

85- 1 1.40

The median of these 8 estimates is 1.52; one interpretation is that males should
pay 52% higher life insurance premiums!

20-year multiplier:

The rate in the (females 70-74, 1980-84) cell is 0.02725, while that in the cell
4 cells below it (also females-70-74, but 20 years later) is 0.02666, yielding
an empirical rate ratio of 0.98 for the pure ‘20 calendar years’ contrast. We
can repeat the same M vs F contrast for each of the other 7 age-sex year
combinations, to obtain in all eight 2000-2004 vs 1980-1984 ratios:

Age Female (F) Male (M)
70-74 0.98 0.76
75-79 0.91 0.80
80-84 0.85 0.87
85-89 0.88 0.92

The median of these 8 estimates is 0.88 representing a reduction of 12% in
mortality in the 20 years between 198-1984 and 2000-2004.

corner term (a.k.a. the ‘intercept’:

Whereas all of the other estimates used a synthesis of several estimates, it is
not immediately obvious whether we are forced to use the one observed value
in the ‘corner’ cell as the best fitted value for that cell. But for now, lets use
it as the corner estimate, so that we can write a master equation for all 16

rates

The equation is for the rate in any given age-group in a given gender in a
given calendar period:

Rate = 0.02725 ×1.62 ×2.63 ×4.36 ×1.52 ×0.88
if if if if if

75-79 80-84 85-89 male 2000-04

log[Rate] = -3.603 +0.482 +0.967 +1.472 +0.419 −0.128
if if if if if

75-79 80-84 85-89 male 2000-04

log[Rate] = β0 +β‘75′ +β‘80′ +β‘84′ +βM +β‘20y′

× × × × ×
I75−79 I80−84 I85−89 Imale I2000−04

where each ‘I ′ is a (0/1) indicator of the category in question.

By using both the 0 and 1 values of each I, this 6-parameter equation produces
a fitted value for each of the 4× 2× 2 = 16 cells.

You can also think of I75−79, I80−84, and I85−89 as ‘radio buttons’: at most 1
of them can be ‘on’ at the same time, since there are 4 age levels in all.

1.1 More formal fitting of 6 parameter values

It shouldn’t have to be, in the model fitting above, that the intercept was
forced to go through an observed value, when we know that that value (like
each of the 15 others) is subject to sampling variation. A fitted regression
line or curve that goes between the dots [as opposed to one that actually joins
the (error-containing!) dots] recognizes the fact that none of the observed
data-points is ‘perfect.’ Also the purpose of the line is as a ‘line of means’ or
‘line of centres.’

One option to avoid the arbitrariness in fitting an intercept is to apply a
median polish to the log-rates. You can look up this procedure on the web,
and the c634 course website provides some code for carrying it out (It seems
that the medpolish function in R just handles 2 dimensional arrays, whereas
the homemade R function is designed for ≥ 2 dimensions.

The fitted values from the median polish
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1.0000 1.5154
1.6122 2.4431
2.6306 3.9862
4.3233 6.5514

0.8626 1.3071
1.3906 2.1073
2.2690 3.4384
3.7291 5.6510

’

Scaling them all so that the corner is 1, we get the following fitted rate ratio
model:-

RateRatio = 1 ×1.61 ×2.63 ×4.32 ×1.52 ×0.86
if if if if if

75-79 80-84 85-89 male 2000-04

log[Rate] = -3.603 +0.476 +0.967 +1.463 +0.419 −0.151
if if if if if

75-79 80-84 85-89 male 2000-04

log[Rate] = β0 +β‘75′ +β‘80′ +β‘84′ +βM +β‘20y′

× × × × ×
I75−79 I80−84 I85−89 Imale I2000−04

Another option is to use a generalized linear model, with the numbers of
deaths (rather than the rates) as the ‘y’s, a log-link, and treating the 16
numerators as realizations of 16 different Poisson distributions (Poisson re-
gression). The 16 means (or expected values) are tied together by a linear
model. Unless people feel ready to do so earlier, we will come back to this
option after course 621 has introduced the generalized linear model for logistic
regression.

Exercise 1: Use the same informal approach as above (OR – only if
interested– a median polish), to fit a multiplicative model to the slightly larger
dataset consisting of the 24 rates for all 3 periods i.e., to the data involving
the 3 periods 1980-84, 2000-2004 and 2005-2007.

2 Comparison of ≥ 2 Rates - via regression

Refer again to the data in Tables 1 and 2 in the Perceived-Age article.

Exercise 2

i. Within each of the 6 sex-age strata, there are has 3 rates – one for each
‘third’ of the perceived-age distribution. Plot these 18 rates on a single
graph, with ‘third’ (1 2 3) on the horizontal axis, the rate on the vertical
axis, and using different symbols for the 6 strata.1

ii. Re-plot these 18 rates on a new graph, but using a log scale for the rates.

iii. By eye, fit 6 parallel lines to the 18 (6 sets of) log(rate)’s.

iv. Using the multiple regression package of your choice, fit an additive model
to the 18 log(rate)’s. Then convert it to a ‘multiplicative rates’ model.
Ignore for the moment the fact that each log-rate is measured with a
different precision.

v. Try to find a structured 2 or 3 dimensional dataset where the (even
approx.) additivity of log rates (multiplicative pattern of rates) does not
hold..

1The rates resources on the c634 website has R code that can create the plots. Or you
might wish to use Stata.
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