
1 1. ANALYSIS OF CRUDE DATA 

The simplest type of epidemiologic analysis, which is based on crude (i.e., 
unstratified) data, applies when it is not necessary to take into account any 
factors beyond the exposure and the disease of interest. Although it is not 
unusual to see data presented solely in crude form, typically the investi- 
gator needs first to explore more complicated analyses using stratification 
or multivariate methods to evaluate the role of other factors. Vigorous 
restriction by covariates in subject selection (so as to prevent confound- 
ing) will often lead to a simple or crude analysis. Clinical trials using ran- 
dom allocation of subjects also can often be analyzed satisfactorily in crude 
form if the investigators are persuaded that the randomization has suc- 
cessfully prevented confounding. A crude analysis, because of its simplic- 
ity, possesses an appealing cogency that is lacking in more complicated 
analyses. 

HYPOTHESIS TESTING WITH CRUDE DATA 
The epidemiologist, in conceptualizing types of epidemiologic data, tends 
to separate follow-up data from case-control data. For statistical hypothesis 
testing, however, statistical modeling leads to a different kind of separation 
according to whether the data consist of person-time units or persons as 
the basic observations. Whereas the units of observation are measured as 
person-time only in follow-up studies, not all follow-up studies are pre- 
sented with the data expressed as incidence rates with person-time de- 
nominators. If all subjects are followed for a constant period, it may be 
convenient to express the incidence rates as risk estimates, that is, cumu- 
lative incidence data, in which the number of cases is related not to an 
amount of person-time experience but to the total number of people who 
were followed. Clinical trials are often presented in this manner. When the 
denominators of incidence measures are presented as counts of persons 
rather than as measures of person-time experience, the statistical model 
that applies for hypothesis testing is the same one that applies to case- 
control data, in which all observations also are counts of persons. 

Hypothesis Testing with Person-Time Data 
Crude incidence-rate data consist of the total number of cases and person- 
time units for both exposed and unexposed categories. We shall use the 
notation in Table 11-1. The apparent simplicity of this table may mask an- 
alytic subtleties that must be considered. Specifically, the person-time ex- 
perience in the "exposed" column should be defined according to a plau- 
sible or tentative model for induction time. Before an individual becomes 
exposed, all of that individual's person-time experience is, naturally, unex- 
posed person-time (though it is often not included as such in an analysis). 
If exposure occurs at a point in time and the induction-time model being 
evaluated calls for a minimum induction time of 5 years, then the 5 years 
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Table 11-1. Notation for h e  incidence- 
rate data with person-timeaknominators . - : . 

Exposed' . . . unexposed Total 

Cases ' b  ' MI a .  . 
Person-titrie N; . .  N, . . T 

. . 

. . ' . .  
. . 

. ,  . . 
after the .point of exposure for each. individual is likewise unexposed per- 
son-tim-e experience rathe; than exposed, because according to the induc- 
tion-time model it relates. back to a period of time when exposure was 
absent. Tallying the peison-time units i n t o h i  afiprobriate exposure cate- 
gories is a taskthat musi be done subject by subject and may involve com- 
plicated ruJes if the'expqsure is chronic.'Incident cases are tallied into the 
same czregory to which the concurtent person-time units are being 
added-f6i. example, &.'incident case ,occurring 4 years after exposure 
would be'tallied in thc "unexposed category'if the induction-time model 
specified a minimum induction time of 5 years. . 

The statisti.ca1 model used for hypothesis testing of person-time data is 
 he binomial distn'bution'[Shore et a]., i376]. A random event that has only 
two possible outco~mes,'X and Y, that occur with fixed probabilities is re- 
ferred to ai a Bernoulli triul. Flipping a c o h  is an example. Let the prob- 
ability of one of the tw6 outcomes, say X., be p: The probability distribution 
of the ton1 number o f ~ s  .occurring in N independent Bernoulli trials with 
p constant .is referred to as a binomial distribution. Mathematically, the 
probability is expressed as .. . 

N ., . , . :, N! 
h e r e  ' .. . . x! (N - x)! 

The mean of the blnamial distribution. is Np, and the variance is Np(1 - 
P> . . 

In applying the binomid model to crude person-time data, each case is 
considered to be independent Berfloulli trial, having as its "outcome" 
the two ijosslbilities of exposed or. unexposed. According to the null hy- 
pothesis that 6irp;osure is 6nrelate.d to disease, the probability that a given 
case will be c1assified.a.s ,gposed or unexposed 'depends only on the pro- 
portion of the total person-time experience that is allocated to the exposed 
category; that is, each case has a probability equal to Nl/T of being classi- 
fied as exposed under the. null hypothesis. 

The MI cases are thus considered to be M, independent Bernoulli trials, 

ANALYSIS OF CRUDE DATA 

and the distribution of exposed cases has a binomial distribution under 
the null hypothesis, with p = N,/T. The probability of the observed data 
under the null hypothesis can be written as 

Pr(number of exposed cases = a) = 
(:I) (?)= (?) 

An exact one-tail Fisher P-value can be obtained as 

MI 

Pr(nurnber of exposed cases = k) 
k=a 

The above summation gives the upper tail of the distribution; the lower 
tail can be obtained by summing k over the range from 0 to a. To obtain 
the mid-P value instead of the traditional Fisher P-value, only one-half the 
probability of the observed data should be added to the summation for 
each tail. When the mid-P values are calculated, the lower and upper tails 
of the distribution have the desirable property of summing to unity. 

With large numbers, these exact calculations are unnecessary because 
an asymptotic test statistic will give accurate approximations for the P- 
value. The test statistic is computed from formula 11-1, using the number 
of exposed cases as the random variate. Based on the formulas for the 
mean and variance of the number of successes in a binomial distribution, 
the null expectation fort the number of exposed cases is N,M,/T, and the 
variance is M,N,N@, which gives 

The x values can then be translated into P-values from tables of the stan- 
dard normal distribution. 

For Example 11-1, the probability of the observed data under the null 
hypothesis may be calculated as 

Pr(41 exposed cases) = (2:) (28,0lO)~' - (19,0l7)" - 
47,027 47,027 = 0.0122 

An exact upper-tail Fisher P-value may be calculated by repeating the cal- 
culation for the more extreme positive outcomes up through 56 exposed 
cases. For 42 exposed cases, the calculation gives 

Pr(42 exposed cases) = (56) (w) 42 (-)I4 = 0.0064 
42 47,027 



Example 11-1, Breast caw&- cases andpersonzyears of observation for 
women with tuberculosis repeatedly exposed to multiple x-ray fluoroscopies, 
and women with tuberculosis not so eqosed [Boice and Monson, 19771 

Radiation exposure. 

' . "Yes: N O .  . Total 
~~. . 

Breast cancer. ' . . ' , 41 15 56 
person-years . 28,010 19,017. 47,027 

. . . . 

.' . 
similarly, pr(43.exposed cases) = 0.0.031, ~ ; (44  exposed cases) = 0.0013, 
and Pr(45 exposed cases) = 0.0005. The small magnitude of this last prob- 
ability indicates that it should not be necessary to 'calculate the additional 
terms in the:summation, 'sitlce their contribution .would be evenismaller 
and therefore would not affect the sum materially. The one-tail P-value 
thus equals 0.0122 + 0:0064 + 0.0031 $ 0.0013 + 0.0005 = 0.024. The 
one-tail mid-P would,hak +(0.0122) as the first term, giving 0.017 as the 
P-value (it is actually 0.0!74 and would be rounded to 0.018 if the sum- 
mation were carried a fey.terms more). Two:mil P-values can be obtained 
simply by doubling the corresponding'one~tail P-values. 

The numbers in the .example ark large enough to use the normal ap- 
proximation in forinula 11-1, which is a simpler calculation: 

From tables of the kmdard normal disfribution, a x value of 2.08 corre- 
sponds to a 'one-tail P-value . . of 0.019, which . . agrees closely with the exact 
one-tail mid-P value., . . . . . . . . 

. . 

Hypothesis T& With C& ~ a t a  
Follow-up dah .or prevalence data with 'denominators consisting of the 
number of persons at risk can be 'tr+ted llke case-control data for statis- 
tical hypothesis testing. For each of these'types of data, the basic infor- 
mation c m  .be displayed in. a 2 x 2 hble in which all four cells of the 
table are frequenciks'of subjects classified according to the presence or 
absence of exposureand disease. The no'ktion we shall use is given in 
Table 11-2. 

~ u ~ e t f i c i a l l ~ ;  Table 11-2 rksembles Table '11-1 except for the addition of 
an added row for nonckes..The denominators in Table 11-2, however, are 
frequencies;'or counts, of subjects rather than person-time accumulations. 

. . .  
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Table 11-2. Notation for crude 2 x 2 table 

Exposed Unexposed Total 

Cases a b 
MI 

Noncases c d M, 

Total N, No T 

Again, the apparent simplicity of the table may mask some subtleties in 
determining the classification of subjects. 

For case-control data, classification according to exposure depends on 
an appropriate and meaningful definition of exposure according to a bio- 
logic model of induction time that specifies the timing of exposure in 
relation to disease. In a study of oral cavity cancer, for example, patients 
with cancer may tend to use mouthwash regularly more frequently than 
controls, but such use may occur as a consequence of early symptoms of 
the disease or of its subsequent treatment (radiotherapy in the region of 
the oropharynx tends to shrink the salivary glands and cause foul breath). 
A meaninghl model for induction time should classify as unexposed only 
those individuals who were exposed to the agent outside the time window 
during which exposure might have been etiologically related to the dis- 
ease. 

For follow-up data analyzed with a 2 x 2 table, presumably all subjects 
were free of disease at the beginning of the follow-up period; the classifi- 
cation of exposure refers to the time of initiation of follow-up, and the 
classification of disease refers to the time of completion of follow-up. Dis- 
ease occurrence should not count as such unless it occurs during the time 
window specified by a meaningful induction-time model. An instance of 
the illness of interest occurring before o r  after the hypothesized induction 
time window should be ignored; if illness occurs before the time window, 
it may be reasonable to exclude the subject as not being free of disease at 
the start of the relevant period of follow-up. If the follow-up period has 
been so long that a substantial proportion of subjects have been lost or  
have died from causes unrelated to the outcome of interest, it is preferable 
to use person-time denominators rather than to analyze the data with a 2 
x 2 table. 

The 2 x 2 table can be considered as representing two independent 
series of observations: For case-control studies the observations are ex- 
posure observations and the two ihdependent series of subjects are the 
cases and the controls; for follow-up studies the observations are disease 
observations* and the two independent series are the exposed and unex- 
posed groups. The observations made on each of the two independent 
series can be considered as conforming to the model of a binomial distri- 
bution; under the null hypothesis, the probability of a "positive" observa- 



tion in each of the:two. independentIy observed binomial series is the 
same. . . .  . . 

Consider a follow-up stbdy of N, exbdsed subjects and No unexposed 
subjects. In the exposed series, "a" subjects develop disease, and in the 
unexposed series, "b': subjects develop disease. The probability that ex- 
actly a and:b subjects'will develop disease among the exposed and unex- 
posed, respecyively, is, according to the binomial model, 

Pr(a exposed cases arid b unexposed cases) 

which is the p r o d ~ t  df the bindmial probabilities for each of the two 
independent groups, .exposed and unexpdsed. The probability of devel- 
oping disease:among the exposed is p,; among the unexposed, it is p,. 
Under the nuil hypothesis, these two pobabilities are equal: p, = p, = 
p, which gives 

Pr(a exposed cases and b unexposed cases) 

To calculate the value 'of expressiqn 1 1-3. for a particular 2 x 2 table, it is 
necessary, to have estiinate of p. usually.p is estimated directly from the 
data, using.the overall disease proportionfrom the margins of the table, 
M,/T. substituting M1/T for gives. : . .  . 

. . .. . 

Pr(a exposed cases and'b .unexposed cases) ,: ' 

From expression 1f-4 it .is possibk fo . o b ~ i n  a P-value that represents an 
exact test,'b&ed on two independent binomial djstributions, provided that 
it is clezr how the deEjartures from thi null state that are more extreme 
than those observed q e  calculated..Let us assume that a positive associa- 
tion is observed between exposure and disease., ~ s s u m e  that a and b are 
the number of exposed and unexposed rases actually observed. For other 
possible realizations 6f .the data in ,wUch.'the number of exposed cases 
exceeds a while the number of unexposed cases is b or less, the overdl 
departuyre from the,null'condition is. rno&extreme than that actually ob- 
served. S&iilaily, if the pumber of exposed cases is a but the number of 
unexposed cases is less thin b, again the departure from the null would 
be more extreme than that'actudly observed. The preceding possibilities 
are easy to classify, but what if the number of exposed cases were a + 1 
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and the number of unexposed cases were b + I? What about other com- 
binations such as a + 1 and b + 2? It is difficult to say whether these' 
possibilities represent situations that depart from the null to a greater ex- 
tent than the actual observations. To decide definitively if a departure is 
more extreme, it would be necessary to evaluate an effect measure for 
each hypothetical outcome of the data and compare that measure with the 
effect measure calculated from the actual observations. Interestingly, the 
decision about which outcomes are more extreme would depend on 
which effect measure was used. 

To illustrate, consider example 11-2. The "observed data indicate an 
estimated risk difference of 0.05, a risk ratio of 1.11, and an odds ratio of 
1.22. Variations 1 and 2 are two other possible outcomes for the data, 
presuming that the same number of exposed and unexposed subjects are 
studied. Using the risk difference measure to determine departures from 
the null, variation 2, but not variation 1, is a more extreme departure from 
the null. Using the risk ratio measure, neither variation 1 nor variation 2 
is more extreme. For the odds ratio measure, both variations are more 
extreme. 

The different measures each designate a distinct set of outcomes as 
more extreme. This ambiguity makes it problematic to use two indepen- 
dent binomial distributions as a model for hypothesis testing for a 2 X 2 
table. Another problem with the use of two binomials is the large number 
of possible outcomes. For example, if N, = No = 25, there are 676 pos- 
sible outcomes for the data [(N, + 1) - (No + I)]. To simpllfy the calcu- 
lation, an assumption can be made that addresses both of these problems. 
The assumption, for follow-up or prevalence data, is that the total number 
of cases actually observed is taken to be a constant [Mantel and Hankey, 
19711. For case-control data, the two binomial distributions refer not to the 
exposed and unexposed series but to the case and control series, and the 
corresponding assumption is that the total number of exposed subjects is 
constant. These assumptions essentially fix all the marginal totals of the 2 
x 2 table; therefore, if the a cell increases, the b and c cells must each 
decrease an equivalent amount, and the d cell increases by the same 
amount. With all rhe margins held constant, there is only one random 
variable to describe: variation in any cell of the 2 x 2 table with fixed 
marginal totals is locked together with concomitant variation in each of 
the other cells. Usually, then, the focus becomes simply the a cell of the 
table, which is taken to be the random variable. 

The assumption that all the marginal totals are fixed in a 2 X 2 table 
can be justified methodologically & a means of focusing the problem (of 
hypothesis testing) directly on the association between exposure and dis- 
ease. In the jargon of statistics, the "nuisance parameter" is removed by 
fixing the marginal totals: Testing the null hypothesis using a model of two 
independent binomials requires assessing the values for two parameters, 
the proportions p, and p,, whereas the analytic problem can be reduced 
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Example 11-3. History of chlordiazopoxide use in early 
pregnancy for mothers of children born with congenital heart 
defec~ and motbm of normal children [Rothrnan et al., 19791 

Chlordiazopoxide use 
- -  - 

Yes No Total 

Case mothers 4 386 390 
Control mothers 4 1250 1254 

Totals 8 1636 1G44 

to assessing the value of a single measure. That measure is the odds ratio, 
equal to p,(l - po)/[po(l - p,)], which is completely determined by the 
value of the a cell if the marginal totals are taken as fixed. Testing a depar- 
ture of the odds ratio from unity is equivalent to testing a departure of p, 
from pa, since the null condition of p, = p, is equivalent to an odds ratio 
of unity, but fixing the margins of the 2 x 2 table greatly simplifies the 
calculations by reducing the number of parameters in the model from two 
to one. 

The statistical model that describes the variability of the a cell in a 2 x 
2 table with fixed marginal totals is the hypergeometric distribution. The 
probability of a exposed cases occurring under the assumption that the 
null hypothesis is correct can be expressed simply as follows [Fisher, 
19351: 

Pr(a exposed cases) = ; ; [ll-51 

For the data in example 11-3, the hypergeometric probability for four 
exposed cases is 

- - 390! 1254! 8! 1636! 
Pr(4 exposed cases) = 

1644! 4! 4! 386! 1250! 

The probability for an outcome more extreme, five exposed cases, under 
the hypergeometric model, would be 
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.. , ~r(i.exposed cases) = . = 0.0185 
, . 

. - . . 
. . . . 

The probability for sjx exposed cases woi~ld be 0.0028; for seven exposed 
cases, 0.0002; .and for':the' most extreine' 'outcome, eight exposed cases, 
0.000009. The total one-tail P-value calculated according to Fisher would 
be 0.0748 + '0.0185. + 0.0028 + 0:0002. + 0.000009 = 0.096. The one- 
tail mid-P. would be 0.0374. + 0.0185 + 0.0028 + 0.0002 + 0.000009 = 

0.059. The two-tail pivalue, either 'Fisher.or mid-P, could be obtained by 
doubling the one-tail P-value. 

For this example,.the hypergeometric model requires the calculation of 
only five probabiiitiei,-'~ad:d. the model of'two independent binomial dis- 
tributioirs', 'with 390 cases and 1,254 controls as the tyo  independent se- 
ries, beed'used instead, thousands .of c&lculations would be necessary to 
determine which outcomes were .equally or more extreme, and then the 
probabili,tyof each ofthese outcomes would have to be  calculated as well. 
The simplifying assumption of the hypergeometric distribution, which 
fixes all the marginal totals, reduces the complexity of the calculations 
enormously. ..- , .  . 

The reasoriableness .of the hypergeometric assumption, even for data 
such as those give0 in example 11-3. in which t&o of the four cell frequen- 
cies are small, is evident by comparing the.results with the results obtained 
by using the two-binoAial model. LJsiog'the 'twb-binomial model and us- 
ing the miagn,itude of ':the odds ratio to determinelwhich outcomes are 
equally.or more extreme ,aepartures from the null, the Fisher P-value was 
found to'be,0.094, and the mid-P, 0.07'l. (This calculation took several 
hours using a BASIC .program on a microcomputer.) The agreement be- 
tween the two aPpra&hes is striking when one considers that only five 
sepai-ate. ate included in the. .hypergeometric calculation, 
whereas thousands are, included .in the two-binomial model. With larger 
cell frequencies, the ,agreement between the results obtained from the 
different models improves. Whatever disigreement exists between the re- 
sults frb-rn . h e  two.approaches does not -indicate any inaccuracy with the 
hypergeqhetric appi-oach; since the assumption of fixed marginal totals 
yields a valid test, even if the margjns.were.not actually fixed by the study 
design, a test of the null hypothesis based on  the hypergeometric model 
is just a;s valid as test based on the two-binomial model. Since the hy- 
pergeom&ic appi-oach ii extraordinarily, simpler, it is clearly the pre- 

. .. ' ferred model, 
.Unfo.rtunitely, &en' the hypergedme&ic model can require an onerous 

number of calculations if all the cell frequencies are sizable. In most ap- 
plications, therefore;an asymptotic test statistic' is used to calculate the P- 
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value. The asymptotic test statistic can be derived starting from either the 
two-binomial model or  the hypergeometric model. With the hypergeo- 
metric model, the random variable would be the a cell, the number of 
exposed cases. The null expectation for the number of exposed cases is 
NIM,/T, and the hypergeometric variance for the number of exposed cases 
is M,M,N,Nd[P(T - 1)). The x statistic is 

which appears similar to equation 11-1 for person-time data. If an asymp- 
totic test statistic were derived from the two-binomial model rather than 
from the hypergeometric, one would compare the two observed binomial 
proportions, a/Nl and b/N,. Under the null hypothesis, the expectation of 
the difference between these proportions is zero. The variance might be 
estimated in several ways; the usual way is to use a pooled commo vari- 
ance for the two binomial proportions, since under the null hypo hesis P 
the binomial probabilities for the two binomial distributions are equal. 
Thus, M,/T is taken to be an estimate of the pooled binomial probability, 
and the variance of the difference in proportions can be expressed as 

which gives 

Algebraic manipulation of equation 11-7 gives an expression nearly iden- 
tical to equation 11-6: 

The only difference between the two formulas is the T - 1 in the denom- 
inator expression in equation 11-6, which is replaced by T in equation 11- 
8. Since neither formula is applicable unless T is large, for practical pur- 
poses these formulas are identical. 
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If an asymptotic test stiristic had been used to calculate the P-value for 
the data in exxahple 113, we would have'o.btaine'd, using equation 11-6, 

which gives a one-tail P-value of 0.040. As one would expect, the P-value 
resulting from the asymptotic test is closer to the mid? exact value than 
to the Fisher exact value (see Chap lo), but the approximation is not very 
good. Notice that under the hypergeometric model there are only nine 
possible outcomes for the a cell, evidently the number of outcomes is too 
few for the normal approximation to be valid. A rule of thumb that 1s often 
used is that the asymptotic test statistic should be applled only when the 
smallest null expectation of any cell in the 2 x 2 table, based on the 
marginal totals, is greater than about 3. If there is any doubt, however, 
about the adequacy of the asymptotic approximation, it is best to evaluate 
the P-value exactly. 

ESTIMATION OF EFFECTS WITH CRUDE DATA 
Estzmatzon with Follow-up Data 

POINT ESTIMATION 

Point estimation of either difference or ratio measures of effect involves 
taking the difference or ratio of the observed values of incidence or risk. 
Thus, the point estimate of incidence rate' difference (IRD) would be 

and the point estimate of incidence rate . .. ratio (IRR) would be 

Similarly; for risk (cumulative incidence) data, in which denominators are 
counrs rather than measures of person-time, the point estimate of risk 
difference (RD) would b e  
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and the point estimate of risk ratio (RR) would be 

If the object of inference is the ratio of incidence rates rather than risk 
ratio, then the ratio of risks that is directly calculable from risk data using 
the above formula leads to an underestimate of the effect. The degree of 
underestimation depends on the level of the risks, being slight for small 
risks and greater for large risks (see Chap. 4 and Table 6-1). An alternative 
approach to point estimation with count denominators is to use the odds- 
ratio formula 

ad 
IRR = - 

bc 

which overestimates the effect to roughly the same extent that the risk ratio 
underestimates it (Table 6-1) but has the advantage of being the same es- 
timator used in case-control studies (formula 6-1). 

INTERVAL ESTIMATION 
Exact Interval Estimation with Follow-up Data. Interval estimation can be 
exact or approximate. For exact interval estimation, like the calculation of 
an exact P-value, an appropriate statistical model must be used to describe 
the probability distribution of the data. The model will generally be an 
extension of the model used for calculation of an exact P-value. For testing 
the null hypothesis, an effect of zero is assumed and incorporated into the 
statistical model; for calculation of exact confidence limits, the statistical 
model must be able to accommodate nonzero effects. 

INCIDENCE RATE (PERSON-TIME) DATA. For incidence rate dfierence, a dif- 
ficulty arises in attempting to postulate a statistical model from which an 
exact confidence interval can be calculated. For hypothesis testing, the 
binomial model rests on the assumption that MI, the total number of cases, 
is a constant. This assumption is analogous to the assumption of fixed 
marginal totals in the hypergeometric model for 2 X 2 tables. For interval 
estimation, the problem with assuming MI to be constant is that, with re- 
spect to incidence rate difference, the value of MI is not simply a "nuisance 
parameter" that statistically has no bearing on the effect measure; the value 
of MI imposes a limit on the magnitude of the incidence rate difference (a 
small value of MI is compatible only with small values of the rate dfier- 
ence), therefore requiring the sampling variability of MI to be taken into 
account in estimating the incidence rate difference. Thus, the single-bi- 
nomial model with a fixed MI cannot be used to calculate exact co&dence 
limits for incidence rate difference with person-time data. The counterpart 



for person-time data of the more general two-binomial model for 2 X 2 
tables would be a model of two independent Poisson distributions, in 
which exposed and unexposed cases each occurred independently with 
frequencies described.by a Poisson distribution The Poisson distribution, 
however, has no upper limit for the number of events (i.e., cases) that can 
occur, so it cannot be used for the above calculations without arbitrary 
truncation. For these reasons, exact interval estimation for incidence rate 
difference is not easily possible. 

It is appropriate, however, to fix MI for estimation of incidence rate ratio 
because the ratio measure depends on the ratio of exposed to unexposed 
cases, not on the absolute magnitude of the frequencies. Therefore, MI can 
be considered a nuisance parameter that is statistically independent of the 
rate ratio measure. Par estimation, the simple single binomial model used 
for hypothesis testing must be modified to accommodate a nonzero effect. 
This can be accomplished by noting that the probability that a case is ex- 
posed, given MI, is related to incidence rate ratio as follows: 

N,.Pr(case is exposed) 
IRR = 

N,.Pr(case is unexposed) 

Exact confidence limits" for IRR can be obtained by setting the tail proba- 
bility of the binomial distribution equal to d 2  and 1 - d2,  where 1 - a 
equals the desired level of confidence. If we denote u as the lower confi- 
dence bound for the probability that a case is exposed, and u as the exact 
upper colifidence bound,. then 

uN, ' . 
IRR ,= - :. (1 - u)I\JI 

and . 

where u and u are the solutions, to the following equations (for Fisher 
limits):- 

. , 

and. ' , ' 

The p re~ed ing .~~ba t igns  assume that I& > 1, and consequently cal- 
. . .  
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culate the upper tail of the distribution. If I& < 1, then the lower end of 
the distribution could be used to calculate the tail probabilities: 

and 

If calculations are performed based on the mid9  exact P-value, then the 
tail probabilities are calculable as 

and 

These equations must be solved iteratively, by choosing trial values for u 
and u and calculating the tail probability repeatedly until it is equal to ol/ 
2 or 1 - d 2 .  Notice the similarity to the calculation of an exact P-value, 
which involves taking u = N,/T and calculating the tail probability once. 
For exact confidence limits, the value of u is adjusted until the tail proba- 
bility equals the predefined values, d 2  or 1 - 1x12. 

Consider again the person-time data in example 11-1. Exact Fisher-type 
90 percent confidence limits for the IRR would be calculated kom equa- 
tions 11-9 and 11-10 as follows: 

These calculations are best done by computer or by a shortcut method 
that involves the F-distribution [Rothman and Boice, 1982; Brownlee, 
19651. A trial and error solution of the preceding equations gives u = - 
0.618 and u = 0.827, which gives,IRR = 1.10 and = 3.25. 

If the limits are calculated b a s e d n  the mid-P exact P-value, then the 
equations to be solved are 



. . and 

. . . . 

The upper ind  lokey '90 percent confidence limits determined by the 
above mid-P based eq'uations' . A are u .= 0,626 and u = q.8205, correspond- 

. . 
ing to - .  IRR =, l . i 4  and tRR =..3.10-. . 

C U M U L A ~  INCIDENCE D*TA; If the dendminators are counts rather than 
persod-time units, an. exact .confidence interval fbr risk difference could 
theoretically be; calculated from the two-binmial model. The calculation, 
however, kobld involve iterative determination of the exact tail probability 
based on two independent binomials and is therefore not readily feasible. 

Confidence limits for the. risk ratio measure are also subject to the same 
computational 'difficu'lty because the value of the measure is dependent on 
the total nuin'ber of cases and requires the use of two independent binomi- 
als. If, however, the ?dds ratio measure is uJed for es'timation, both mar- 
gins of the 2: x .2  table may be considered fixed, and the calculations can 
be greatly simplified'bkcause the odds, ratio measure. is independent of 
the total number of e e s  Because the odds ratio is only an approximation 
of the risk raFio, the calculatim of exact .limits for the odds ratio does not 
produce exact confidence limits for the. risk ratio. The approximation is 
good orily.if the risks are small, in which case the exact confidence interval 
for the odds'rat'io can be used as a reasonable surrogate confidence inter- 
val for the risk r.atio. " . 

The statistical model 'that'describes the variation of the a cell in a 2 x 
2 table with fixed is the hypergeometric, but for the n6njnull 
situation the,"noncentral" form of the hypergeometric distribution must 
be used. The noncentral hypergeometric, is more complicated than the 
null .form .6f the hypergeometric distribution given in formula 11-5 be- 
cause.it ~ciominoQfes. the Strength of &sociation between exposure and 
disease. mequi-ed by the odds ratio. ~iven"the value of the odds ratio, R, 
the probability of obsewing a exposed cases.is [Fisher, 1935; Gart, 19711 

. . . . 

When R =, 1, the above formula reduces to expression 11-5. Exact confi- 
dence limits for R with a confidence level' of 1 - a can be calculated from 
the fot'mul& .' .. . . 

. . .  . 
. . ., 

and 

for the Fisher limits and 

for mid-P limits. The solution of the foregoing equations can be time- 
consuming, since each iteration in the process calls for calculating a com- 
plicated sum, but it is not nearly as complicated as the calculations that 
would be required using a statistical model of two independent binomials. 

The data in example 11-4 describe partial results from a follow-up study 
evaluating risk of diarrhea in breast-fed infants in-Bangladesh during an 

Example 11 -4. Diarrhea during a 10-day follow-up period in 
30 breast-fed infants colonized with Vibrio cholerae 01, according to 
antilipopolysacchm'de antibody titers in motherk breast milk [Glass et al., 1983 1 

Antibody level 

High I Low 

Diarrhea 7 12 
No diarrhea 9 2 

Totals 16 14 



. . 

11-day period fo1lowirig:the determination of various antibody titers in the 
mothers' breast milk. An exact P-value of the null hypothesis of no asso- 
ciation P(,, = 0.02 for the  ish her P-value and PC,, = 0.01 for the mid- 
P value. The esdmate of relative risk from these data comparing the group 
exposed to high titers with the group exposed to low titers is [7/161/[12/ 
141 = 0.51. The odds ratio estimate differs considerably from the relative 
risk estimace because the risks are'so high;-the odds ratio estimate is [7 X 

2]/[12 x 91 = 0.13. .h.exact confidence interval can be calculated for the 
odds rario'uding formulas 31-11 and 11,1.2 to set the Fisher limits. The 90 
percent confidenCe- liinits are 0.017 arid .O.751, obtained by the trial-and- 
error solution of equations 11-1 1 and 11-12. If the wid-P exact limits were 
desired insiead, these could be obtained from equations 11-13 and 11-14 
as 0.025 and 0.608. These exact limits for .the -odds ratio, however, cannot 
be used aS confidence.limits for ,the 'risk ratio,.since the odds ratio is a 
poor ipproximation to the risk ratio with Ihege data.' 

. . 

Approximate Interval Estirization with Follow-up Data. Approximate inter- 
val estimation. from.crude follow-up data is straightforward. 

M C ~ ~ ~ E N C E  RATE (PE.&ON- ME) DATA. ,consider first., incidence rate data 
with person-time den~minators. Two. e&ect-measures can be estimated, 
rate difference and'rate.~atio. Because'the rate-difference measure has a 
symnierric smpling distribution, no'.scale trqsformation is needed to ob- 
tain accurate apprbximafe' confidence limits. The number of exposed and 
unexpqsed cases can each be assumed to have a Poisson distribution, from 
which the,variance far .each rate can be estimated as and b/N; for 
exposed i n d  unexposed gfoups, respectively. The standard 'deviation of 
the rate ddference,' theri, is the square root of the sum of the variances of . . 
each rate,. . ' 

. . . .  , . , 

. . 

From the data in exarnple.11-1, we. can estimate the rate difference as 

with a standard deviation for the ra& differeice-of 
. . . . .  

. . 

ANALYSIS OF CRUDE DATA 

To obtain an approximate 90 percent confidence interval, the standard 
deviation is multiplied by 1.645 to get the limits as follows: 

Another approach would be. to use formula 10-6 for test-based limits, 

Earlier we calculated x to be 2.08. Using that value in the above formula 
with Z = 1.645 yields an approximate 90 percent confidence interval of 
1.4/(10,000 yr), 12.1/(10,000 yr), which compares well with the other ap- 
proximation. 

For the estimation of rate ratio, it is desirable to use a logarithmic trans- 
formation to compensate for the asymmetric sampling distribution. By tak- 
ing confidence limits that are symmetric about the logarithm of the rate 
ratio and then reversing the transformation by talung antilogarithms, much 
greater accuracy can be achieved than by taking limits calculated symmet- 
rically around the rate ratio itself. Thus, we calculate 

The standard deviation of the incidence rate ratio can be approximated 
by 

Again using the data from example 11-1, we can estimate the incidence 
rate ratio to be 

and ln(1.86) = 0.618. The standard deviation of the log-transformed point 
estimate is 

A 90 percent confidence interval for the In(RR) would then be 



which, after taking ankloga;ithms to, 'reverse the transformation, gives a 
confid.ence:interval of 1..1 to 3.0. The,whole process can be summarized 
as follows: .- , 

These limits agree well,wia, the exact mid-P 90 percent limits calculated 
previou.sly: + 1 .I and.3:T: 

An alternative approach would be to use the test-based formula 
. . , , .  

60% U X )  
, , . . 

. . 
in which.>( has, the value of 2.08 for the data in example 11-1. Using Z = 
1.645 for 90'percent limits, the test-based approach gives an interval of 1.1 
to 3.0,.which is also in excellent agreement.with the exact mid-P limits. 
C U M U L A ~  INCIDENCE'DATA. TO get approximate limits for follow-up data 

with denominators consisting of persons rather than person-time, slightly 
different fqrrnulas ark.'needed to estimate the Standard deviations. For the 
risk difference, the standard deviation is .derived from the sum of two bi- 
nomial variances and is .estimated as ' ,' 

I 

a(Nl - a) + b(No - b) 
SD(Risk difference) ' [ll-171 

N2 
. . 

the data'in example 11-4, the point estimate of rate difference is 
. . 

with an .approximate 3Cpercent confidence interval of 

= -0.42 * 1.645.(0.155) 
. . 

. . = -0.68, -0.16 
. . .  . . . 

. . 

Alternatively, the tesvbased 'calculation gives'. 
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Considering the small numbers involved in these calculations, the agree- 
ment between these two approaches seems good. 

For the risk ratio, it is again desirable to use a logarithmic transforma- 
tion, that is, to apply formula 11-16. The standard deviation, however, is 
estimated as 

For example 11-4, the risk ratio estimate is [7/163/[12/14] = 0.51, and 

ln(6)  = - 0.673 

The estimated standard deviation of In(&) is 

and the 90 percent confidence interval is 

Alternatively, test-based limits could be calculated as 

Once again the two approximate methods for confidence interval estima- 
tion are in good agreement. 

If the inference from follow-up data with count denominators is to be 
based on the odds ratio rather than on the risk ratio, then the formula for 
standard deviation is [Woolf, 19551 

SD[ln(odds ratio)] = 

For example 11-4, the odds ratio is [7.23/[9.12] = 0.13 and the logarithm 
is ln(0.13) = - 2.04. The standard deviation is 

J 1 1 1 1  SD[ln(odds ratio)] = - + - + - + - = 0.915 
7 9 1 2 2  



. . 

and the approximate !96pefcent . . confidence interval is' 

The tkst-based confidence 'limits are calculated as 

considering the very smiil numbers involved .in the calculations, the 
above !woapproximite interval estimates for the odds ratio agree tolera- 
bly well not only with one. another but also with the exact mid-P confi- 
dence interval for the oddsratio, calculated previously to be 0.025 to 0.608. 

The Cornfield I19561 approach, which is described in greater detail in 
Chapter 12, 'is a theotetically preferable'.'approximate technique since it 
involves. recalculatirig;the standard error using fitted.cel1 frequencies that 
correspond to the value of the confidence limit. Thus, the procedure is 
iterative and involves ,substantially more calculation than the other ap- 
proximate methods.,~or .the data of example 11-4, the Cornfield approach 
gives a 90 percent confidence interval of 0.03 to 0.55, agreeing in this 
instance with the rest-based approach. 

. . . . 
Case-Control Data .' ' . . 

For case-conti01 data, the &pid,emiologic measure of .central interest is the 
odds ratio, the point estimator for which is , 

. . # .  . . 
a d '  R = -  

.. . 
. .  . bc . . 
. . . . . . . . 

ExaCt confidence interval esti*ation f i r  the odds ratio is identical for case- 
colitrol and follow:.up ;data,.and is based on fdrmulas.11-11 through 1 1-14. 
~pproxtmic6 coddence intervals forthe odds ratio from case-control data 
are detefmined useg  the same method used for follow-up data, using the 
logarithmic transformation . . with one of the following formulas: 

. . 

k (~  = zi)  
. . 0r k$(ln(c) k, z . sD[~~(~) ] )  . . 

where . . - . . 

. . .  . . 
I . . 

. . 
Consider example 11-3. Exact 90 percent. confidence limits for the odds 
ratio, using e,quations 11-I1 and 11-12 for the Fisher limits, are 0.77, 13.6; 
using equatibns 11-13; and 11-14 for the mid-P limits, the results are 0.94, 

11.1. Approximate 90 percent confidence limits can be determined as fol- 
lows: 

or, using the test-based approach, 

As expected, these results agree better with the mid-P exact limits than 
with the Fisher exact limits. The approximation is not perfect, but neither 
is it very poor considering that two of the four cells of the 2 x 2 table 
have observed frequencies of only four. The Cornfield method gives a 90 
percent interval of 1.1 to 9.8, identical to that given by the test-based ap- 
proach. 
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Two different analytic concerns motivate the division of data into strata: 
one is the need to evaluate and remove confounding; the other is to eval- 
uate and describe effect modification. Because stratification is the pre- 
ferred means of dealing with both of these analytic issues, the beginning 
student is apt to become bewildered in the attempt to distinguish between 
the aims and procedures involved in considering these two aspects of ep- 
idemiologic data analysis. 

Effect modification refers to a change in the magnitude of an effect 
measure according to the value of some third variable (after exposure and 
disease), which is called an effect modifier Effect modification differs from 
confounding in several ways. The most central difference is that, whereas 
confounding is a bias that the investigator hopes to prevent or, if necessary, 
to remove from the data, effect modification is an elaborated description 
of the effect itself. Effect modification is thus a finding to be reported 
rather than a bias to be avoided. Epidemiologic analysis is generally aimed 
at eliminating confounding and discovering and describing effect modifi- 
cation. 

It is a useful contrast to think of confounding as a nuisance that may or 
may not be present depending on the study design. Of course, confound- 
ing originates from the interrelation of the confounding factors and study 
variables in the source population from which the study subjects are se- 
lected. Nevertheless, restriction in subject selection, for example, can pre- 
vent a variable from becoming a confounding factor in a situation in which 
it otherwise would be confounding. Effect modification, on the other 
hand, rather than being a nuisance the presence of which depends on the 
specifics of the study design, is a natural phenomenon that exists indepen- 
dently of the study. It is a phenomenon that the study is intended to divulge 
and describe if at all possible. Whereas the existence of confounding with 
respect to a given factor depends on the design of a study, effect modifi- 
cation has a conceptual constancy that transcends the study design. 

Although effect modification is a constant of nature, in its most general 
sense it cannot correspond to any biologic property because there is one 
aspect of the concept that is not absolute: Effect modification in its most 
general context includes modification of an effect without specifying 
which effect measure is modified. Since there are two effect measures, the 
difference and ratio measures, that are commonly used in epidemiology 
as well as others that are used less often, the concept of effect modification 
without further specification is too ambiguous to be useful as a description 
of nature. 

In Figure 12-1, age can be considered a modifier of the effect of expo- 
sure, since the incidence rate difference between exposed and unexposed 
increases with increasing age. On the other hand, the ratio of incidence 
among exposed to incidence among unexposed is constant over age. Thus, 
age modifies the effect of exposure with regard to the difference measure 


