
Inferences regarding a single event rate parameter:  i.e. rate of  events per N [ =10x  ] units of experience

data: c  "events" counted in sample of n units of "experience"; or Binomial(c,n) if c << n.

[can use c to calculate a rate i.e. empirical rate = 
c
n × N events per N units of experience; N usually 103 or 104 or the like]

See "Modern Epidemiology"(Rothman 1986) ; Observation & Inference (Walker)   or Epidemiology: An introduction  (Rothman, 2002, 133-134).

                        Small no. of events               Large no. of events

CI for  = E[c]

E[c] is a parameter:  the
theoretical  (unobservable)
average number of events
per  n units; c refers to the
realization in the observed
sample

Example: If observe  y=2
cases of leukemia in a
certain amount of
experience ('n'=P-Y) in a
single "exposed"
community , what is the
95% CI for the average
number of cases (   scaled
to  the same amount of
experience) that (would)
occur in (all such) exposed
communities ?

•  Use tabulated CI's  e.g. p 20  in this material,

   the CRC handbook,

   Documenta Geigy scientific tables,

   Biometrika Tables for Statisticians, ...

    ( Most end at c=30 or c=50)

• If have to, can use

   (a)  trial and error on spreadsheet, or ..

   (b)  the link between the Poisson tail areas

           and the tail area of the chi-square distribution.

• Same as for small numbers, or...

• One of 4 approximations on p 23

   (1)  Wilson/Hilferty approxn.
          to Chi-square quantiles (X2<-->Poisson).

   (2) Square-root transformation
          of Poisson variable.

   (3) 1st Principles CI from
          c ~ Gaussian(µ , SD = √µ )

    (4) (Naive) CI based on

          c ~ Gaussian(µ , SD
^

 = √ c ).

•  X2 and Likelihood Ratio (LR) methods

     (Miettinen Ch 10, pp 137-9)

CI for rate: 
E[c]
n  × N CI for µ

n   × N CI for µ
n   × N

See Liddell, FDK. Simple exact analysis of the standardized mortality ratio. Journal of Epidemiology and Community Health, March 1984, Vol 38, No. 1, pages
85-88.... on 626 website. This paper deals with SMR's but since the numerator of an SMR is treated as arising from a Poisson distribution, and the denominator
as a constant, the results dealing with CI's for an SMR are also relevant just for the CI for a single Poisson parameter.
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Inferences regarding a single event rate parameter:  i.e. rate of  events per N [ =10x  ] units of experience

data: c  "events" counted in sample of n units of "experience"; or Binomial(c,n) if c << n. (See  again "Rothman and  Walker).

                    Small no. of events             Large no. of events

Test E[c] = E0

Example: Is the O=2
cases of leukemia at
Douglas Point statistically
significantly higher than the
E=0.57 cases "expected"
under the null for this many
person years of
observation?

Example  What is the
probability of getting 6 or
more sets of twins in one
school when the expected
number, for schools of this
size, is µ = 1.3?

Example  Where does
the O=78 cases of cancer
in the "Sour Gas"
community of Alberta fall
relative to E= 85.9
"expected" for "non-sour
-gas" communities with the
same person years of
experience and at Alberta
cancer rates?

P-Value obtained by adding the individual Poisson
probabilities to obtain a tail area

(as done for Binomial and hypergeometric probabilities).

These individual  probabilities are tabulated, for various 'round'
values of E0, on page 17 and in the sources listed above.

E or µ = 0.57 is not tabulated but µ=0.5 and µ=0.6 are.

P[2 or more events |  µ=0.5   ] = (76+13+2)/1000 = 0 . 0 9 1 .
P[2 or more events |  µ=0.6   ] = (99+20+3)/1000 = 0 . 1 2 2 . So,

P[2 or more events |  µ=0.57 ]  ≈ 0. 11  (upper tail p-value only)

Instead of interpolation for non-round values of E0,  use a
calculator/ spreadsheet / statistical package. Excel and SAS
have Poisson probability and cumulative probability functions
built in.

E.g.,  the Excel Poisson(x, mean, cumulative) function returns
a value of 0.89 when ones puts x=1, mean=0.57, cumulative =
TRUE). This is the sum of the 2 tail probabilities P(0|E=0.57)=
0.57 andP(1|E=0.57) =0.32. The complement, 0.11, of the
0.89 is the upper tail p-value P(2) + P(3) + P(4) + ... .

So the interpolation above is quite accurate.

Same procedure for c=6 vs. E=1.3 in twins data.

If one sets cumulative=FALSE, the Excel function calculates
the probability at the integer x only, and does not sum all of the
probabilities from 0 to x. For example, setting x=9, mean=16.0
and cumulative = FALSE (or 0) yields the P(9 | µ = 16.0) = 0.21
shown in the Figure on page 18 and in row 9 of the µ=16.0
column on p 17.

- nomogram by Bailar & Ederer 1964*

- 2 Gaussian approximations (from page 23)

       (2) square root transformation of
         Poisson distribution  i.e.

                 z = (√c - √E0 )/(0.5).

                    = (√78 - √85.9 )/(0.5)  = -  0 .87

        (4)  asymptotic normality of c :

               z = (c - E0 ) / √E0

                  = (78 - 85.9 ) / √85.9  =   -  0.85

                Squaring (4) gives  X2 form (1 df)

                   X2  = (c - E0 )2 / E0

                         = (78 - 85.9)2 / 85.9 =   0 .72

- Miettinen Chapter 10

* Bailar, J.C. & Ederer, F. Significance factors for the ratio of a Poisson variable to its expectation. Biometrics, Vol 20, pages 639-643, 1964.
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Inference concerning comparative parameters: Rate Difference (RD) and Rate Ratio (RR)

Rate Parameters R1 and R0  ;   Rate Difference Parameter RD = R1 – R0

data: c1 and c0 "events" (total c = c1 + c0) in n1 and n0 (total=n) units of experience"; empirical rates r1 = 
c1
n1

   and  r0 = 
c0
n0

  ;

[ e.g.Rothman & Boice compare c1=41 in n1 =28,010 person years (PY) with c0=15 in n0 =19,017 person years (PY)]

       Small no. of events                         Large no. of events

CI

for

RD

"Exact" methods are difficult, since t he presence of a

nuisance parameter complicates matters.

See papers by Suissa and by Nurminen and

Miettinen.

Note however that even if numerators (c1 and c0) are

small (or even zero!) one may still have considerable

precision for a rate difference: if statistical uncertainty

about each rate is small, the uncertainty concerning

their difference must also be small. Contrast this with

situation for RR, where small numerators make RR

estimates unstable. (see report by J Caro on

mortality following use of low and high osmolar

contrast media in radiology)

r1 - r0  ±  z {SE[r1]}2 + {SE[r0]}2

in our example...

  41
28010    -   

15
19017

        ±  1.96 

41
28010

 (1  - -  
41

28010
 )

28010
 + 

15
19017

 (1  - -  
15

19017
 )

19017

Can dispense with the "1 minus small rate" term in each

(binomial) variance, so the standard error of the rd simplifies to

          c1
n12 +  c0

n02

(see Walker   ; or Rothman 2002, pp 137-138 )
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Inference concerning comparative parameters: Rate Difference (RD) and Rate Ratio (RR)

Rate Parameters R1 and R2  Rate Ratio Parameter RR = R1 / R0       See  Rothman 2002, pp 137-138 )

data: c1 and c0 "events" (total c = c1 + c0) in n1 and n0 (total=n) units of experience"; empirical rates r1 = c1/n1  &  r0 = c0/n0;

                          Small no. of events                                 Large no. of events

CI

for

RR

Use distribution of c1 conditional on c = c1 + c0  [56 in e.g.  -- not that small !  ]

Conditioning on the total no. of cases, c, gets rid of one (nuisance) parameter, and lets us focus
on the observed "proportion of exposed  cases " (c1/ c) and its theoretical (parameter) counterpart.

In e.g., proportion of "exposed"  PY  = 
28010

28010 +19017
  = 0.596 = 59.6%

There is a 1:1 correspondence between the expected proportion of exposed cases (call it π for
short) and the RR parameter, and correspondingly between the observed proportion (p) of
exposed cases and the point estimate,  rr,of the rate ratio.

Under the null (RR=1),  π  clearly equals the proportion 0.596;

If RR > 1, this expected proportion π  is higher;  for example if RR=2, so that each exposed PY
generates 2 times as many cases as an unexposed PY,

    π  =  
28010 × 2

28010 × 2    +   1 9 0 1 7
   = 74.7% = 0.747.

Thus,  in our example...   (and in general,  π  =  
n1 × RR

n1 × R R   +   n o
  )

RR                               0.25  0.50  1.00  2.00  4.00  8.00

π (proportion of  exposed cases)     0.269 0.424 0.596 0.747 0.855 0.922
The observed proportion of exposed cases is p = 41/56 = 0.732;  in our table, the 0.732
corresponds to an RR point estimate just below 2.

We can reverse the general formula to get RR =  {π/(1-π)}  /  {n1/n0}   =   {π/(1-π)} {n0/n1}

So, in our e.g.,  the point estimate of RR is rr = (0.732/0.268)   /   (28010/19017)   = 1.86 .

To obtain a CI, we treat the proportion of exposed cases, 0.732,  as a binomial proportion, based
on 41 "positives" out of a total of 56 cases  (obviously, if the proportion were based on 8 exposed
cases out of 11 cases, or 410 out of 560, the precision would be very different!)

From  table/other source of CI's for proportions (see e.g. table on 607 web page), can determine
that 95% CI for π is πL=0.596 to πU=0.842. Substitute these for the point estimate to get

RRL  =  (0.596 / 0.404)  /  (28010/19017)  = 1.00      RRU =  (0.842/0.158)  /  (28010/19017)  = 3.61

Rothman & Walker emphasize formula RRL,U  =  {π
L/U 

/ (1-π
L/U

) }  /  {n1 / n0}  over basis for it.

SEE EXAMPLE IN 626 EXAM IN 2002 (0 and 41 seroconversions following vaccination vs HPV)

• Use same conditional (binomial-
based) formula as for small no. of
events, but use Gaussian approxn. to
get Binomial CI for π
• Test-based  CI (Miettinen)

Uses fact that in vicinity of RR=1, can
obtain SE for ln(rr) indirectly from null
X2 test statistic

X2 statistic = square of Zstatistic
 = 4.33 = 2.082 in e.g.

Xstatistic = Zstatistic = 
ln(rr) - 0

SE[ ln(rr) ]

so SE[ ln(rr) ] = 
ln(rr)

Xstatistic

CI for ln(RR) = ln(rr) ± z 
ln(rr)

Xstatistic

CI for RR: rr to power [1±  
z

Xstatistic ]

  = 1.86 to power  of [1 ± 1.96/2.08]
    = 1.04 to 3.32 in e.g.

• Var [ ln(rr) ] =  1
c

1

 + 
1
c

0

 + 
1
∞ + 

1
∞  (Woolf)

CI  for RR  = rr exp[  ±  z 1
c

1

 +  
1
c

0

   ]

1.96 (1/41+1/15)1/2 =0.59  in e.g. ;

so exp[0.59]=1.81; So CI for RR

=.86 / 1.81 to 1.86*1.81 = (1.02,3.35)

Precision for ln(RR) estimate depends
on numbers of events c1 and c0.
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Inference concerning comparative parameters: Rate Difference (RD) and Rate Ratio (RR)

Rate Parameters R1 and R2  Rate Difference Parameter RD = R1 – R0      Rate Ratio Parameter RR = R1 / R0

data: c1 and c0 "events" (total c = c1 + c0) in n1 and n0 (total=n) units of experience"; empirical rates r1 = c1/n1  &  r0 = c0/n0;

                          Small no. of events            Large no. of events

test of

RD=0

or

RR=1

• Null distribution of c1 conditional on c

c1| c  ~ Binomial, with c "trials", (see above)

  each with null probability  π = 
RR × n1

RR × n1  + n0
 .

e.g.

If RR =1 (RD=0) would expect the 56 cases to
split into "exposed" and "unexposed" in the
proportions  27010/(27010+19017) = 0.596
and 1-0.596=0.404 respectively.

Can test if the observed proportion 41/56 =
0.732  is significantly different from this null
expectation using a Binomial distribution with
"n"=56 and π =0.596.

Can use the Excel Binomial function with
x=40,mean=0.596,cumulative=TRUE,  to get
the sum of all the probabilities up to and
including 40.  Subtract this quantity 0.976 from
1 to get the probability 0.024 of 41 or more
(upper tail area). Double this for a 2-sided test.

• Unconditional test for proportions /
rates (Suissa)

• Use same "c1 conditional on c" test but use
Gaussian approxn to Binomial (c,  π)

e.g. z = 
[41/56 = ]0.732  -  0.596

 0.596 x 0.404/56
 = 2.08

   P(Z > z) = 0.019 (upper tail area). Double for 2-sided test.

• z = 
[ r1 - r2 ] - RD0

{SE[r1|H0}2+ {SE[r2|H0}2

                    {*SE's use r = Σc/Σn [pooled data]}

• X2 = 
{c1-E[ c1| H0]}2

E[ c1 | H0]  +  {c0-E[ c0 | H0]}2
E[ c0 | H0]

        = {c1-E[c1| H0]}2
Var[ c1 | H0]   (Mantel-Haenszel version)

See my notes on Chi-square tests in on chapter 8 in 607 course
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