Inferences regarding a single event rate parameter: i.e. rate of events per N [=10^x] units of experience

<u>data:</u> **c** "events" counted in sample of n units of "experience"; or Binomial(c,n) if c << n.

[can use c to calculate a rate i.e. empirical rate = $\frac{c}{n} \times N$ events per N units of experience; N usually 10³ or 10⁴ or the like]

See "Modern Epidemiology" (Rothman 1986); Observation & Inference (Walker) or Epidemiology: An introduction (Rothman, 2002, 133-134).

	Small no. of events	Large no. of events
CI for $\mu = E[C]$ E[C] is a parameter: the theoretical (unobservable) <u>average</u> number of events per n units; c refers to the realization in the observed sample Example : If observe y=2 cases of leukemia in a certain amount of experience ('n'=P-Y) in a single "exposed" community, what is the 95% CI for the average number of cases (μ scaled to the same amount of experience) that (would) occur in (all such) exposed communities ?	 Use tabulated CI's e.g. p 20 in this material, the CRC handbook, Documenta Geigy scientific tables, Biometrika Tables for Statisticians, (<i>Most end at c=30 or c=50</i>) If have to, can use (a) trial and error on spreadsheet, or (b) the link between the Poisson tail areas and the tail area of the chi-square distribution. 	 Same as for small numbers, or One of 4 approximations on p 23 Wilson/Hilferty approxn. to Chi-square quantiles (X²<>Poisson). Square-root transformation of Poisson variable. 1st Principles Cl from c ~ Gaussian(μ, SD = μ) (A) (Naive) Cl based on c ~ Gaussian(μ, SD = c). X² and Likelihood Ratio (LR) methods (Miettinen Ch 10, pp 137-9)
CI for rate: $\frac{\mathbf{E}[\mathbf{c}]}{\mathbf{n}} \times \mathbf{N}$	$\frac{\mathbf{CI \text{ for }}\mu}{n} \times \mathbf{N}$	$\frac{\mathbf{CI \text{ for }}\mu}{n} \times \mathbf{N}$

See Liddell, FDK. Simple exact analysis of the standardized mortality ratio. Journal of Epidemiology and Community Health, March 1984, Vol 38, No. 1, pages 85-88.... on 626 website. This paper deals with SMR's but since the numerator of an SMR is treated as arising from a Poisson distribution, and the denominator as a constant, the results dealing with CI's for an SMR are also relevant just for the CI for a single Poisson parameter.

Inferences regarding a single event rate parameter: i.e. rate of events per N [=10^x] units of experience

<u>data:</u> c "events" counted in sample of n units of "experience"; or Binomial(c,n) if c << n. (See again "Rothman and Walker).

	Small no. of events	Large no. of events
Test E[c] = E ₀	P-Value obtained by adding the individual Poisson probabilities to obtain a tail area	- nomogram by Bailar & Ederer 1964*
	-	 2 Gaussian approximations (from page 23)
<i>Example</i> : Is the O=2 cases of leukemia at Douglas Point statistically	(as done for Binomial and hypergeometric probabilities). These individual probabilities are tabulated, for various 'round' values of E_0 , on page 17 and in the sources listed above.	(2) square root transformation of Poisson distribution i.e.
significantly higher than the E=0.57 cases "expected" under the null for this many person years of observation?		$z = (c - E_0)/(0.5).$
	E or μ = 0.57 is not tabulated but μ =0.5 and μ =0.6 are.	=(78 - 85.9)/(0.5) =- 0.87
	P[2 or more events μ =0.5] = (76+13+2)/1000 = 0.091 . P[2 or more events μ =0.6] = (99+20+3)/1000 = 0.122 . So,	(4) asymptotic normality of c ·
probability of getting 6 or	P[2 or more events $ \mu = 0.57$] 0, 11 (upper tail p-value only)	(4) asymptotic normanty of c.
more sets of twins in one		$z = (c - E_0) / E_0$
school when the expected number, for schools of this size, is $\mu = 1.3$?	Instead of interpolation for non-round values of E ₀ , use a calculator/ spreadsheet / statistical package. Excel and SAS have Poisson probability and cumulative probability functions	= (78 - 85.9) / 85.9 = - 0.85
Example Where does	built in.	Squaring (4) gives X ² form (1 df)
the O=78 cases of cancer in the "Sour Gas"	E.g., the Excel Poisson(x, mean, cumulative) function returns a value of 0.89 when ones puts x=1, mean=0.57, cumulative = TRUE). This is the sum of the 2 tail probabilities $P(0 E=0.57)=$ 0.57 and $P(1 E=0.57) = 0.32$. The complement, 0.11, of the 0.89 is the upper tail p-value $P(2) + P(3) + P(4) +$	$X^2 = (c - E_0)^2 / E_0$
relative to E= 85.9 "expected" for "non-sour		$= (78 - 85.9)^2 / 85.9 = 0.72$
same person years of experience and at Alberta cancer rates?	So the interpolation above is quite accurate.	- Miettinen Chapter 10
	Same procedure for c=6 vs. E=1.3 in twins data.	
	If one sets cumulative=FALSE, the Excel function calculates the probability at the integer x only, and does not sum all of the probabilities from 0 to x. For example, setting x=9, mean=16.0 and cumulative = FALSE (or 0) yields the P(9 μ = 16.0) = 0.21 shown in the Figure on page 18 and in row 9 of the μ =16.0 column on p 17.	

* Bailar, J.C. & Ederer, F. Significance factors for the ratio of a Poisson variable to its expectation. Biometrics, Vol 20, pages 639-643, 1964.

Inference concerning comparative parameters: Rate Difference (RD) and Rate Ratio (RR)

Rate Parameters R_1 and R_0 ; Rate <u>Difference</u> Parameter $RD = R_1 - R_0$

<u>data:</u> c_1 and c_0 "events" (total $c = c_1 + c_0$) in n_1 and n_0 (total=n) units of experience"; empirical rates $r_1 = \frac{c_1}{n_1}$ and $r_0 = \frac{c_0}{n_0}$;

[e.g.Rothman & Boice compare $c_1=41$ in $n_1=28,010$ person years (PY) with $c_0=15$ in $n_0=19,017$ person years (PY)]

	Small no. of events	Large no. of events
CI for	"Exact" methods are difficult, since t he presence of a nuisance parameter complicates matters.	$r_1 - r_0 \pm z \sqrt{\{SE[r_1]\}^2 + \{SE[r_0]\}^2}$
RD	See papers by Suissa and by Nurminen and Miettinen.	in our example <u>41</u> - <u>15</u> <u>19017</u>
	Note however that even if numerators $(c_1 \text{ and } c_0)$ are small (or even zero!) one may still have considerable precision for a rate difference: if statistical uncertainty about each rate is small, the uncertainty concerning	$\pm 1.96 \sqrt{\frac{\frac{41}{28010} (1 - \frac{41}{28010})}{28010} + \frac{\frac{15}{19017} (1 - \frac{15}{19017})}{19017}}$
	their difference must also be small. Contrast this with situation for RR, where small numerators make RR estimates unstable. (see report by J Caro on mortality following use of low and high osmolar contrast media in radiology)	Can dispense with the "1 minus small rate" term in each (binomial) variance, so the standard error of the rd simplifies to $\sqrt{\frac{c_1}{n_1^2} + \frac{c_0}{n_0^2}}$

(see Walker; or Rothman 2002, pp 137-138)

<u>Conditioning on the total no. of cases</u>, c, gets rid of one (nuisance) parameter, and lets us focus on the observed "proportion of exposed cases " (c_1/c) and its theoretical (parameter) counterpart.

data: c_1 and c_0 "events" (total $c = c_1 + c_0$) in n_1 and n_0 (total=n) units of experience": empirical rates $r_1 = c_1/n_1 \& r_0 = c_0/n_0$:

Inference concerning comparative parameters: Rate Difference (RD) and Rate Ratio (RR)

RR In e.g., proportion of "exposed" PY =
$$\frac{28010}{28010 + 19017}$$
 = 0.596 = 59.6%

Small no. of events

Use distribution of c_1 conditional on $c = c_1 + c_0$ [56 in e.g. -- not that small !]

Rate Parameters R_1 and R_2 Rate Ratio Parameter $RR = R_1 / R_0$

There is a 1:1 correspondence between the <u>expected</u> proportion of exposed cases (call it for short) and the RR <u>parameter</u>, and correspondingly between the <u>observed</u> proportion (p) of exposed cases and the <u>point estimate</u>, rr,of the rate ratio.

Under the null (RR=1), clearly equals the proportion 0.596;

If RR > 1, this expected proportion is higher; for example if RR=2, so that each exposed PY generates 2 times as many cases as an unexposed PY,

 $=\frac{n_1 \times RR}{n_1 \times RR + n_0})$

$$=\frac{28010 \times 2}{28010 \times 2 + 19017} = 74.7\% = 0.747.$$

Thus, in our example... (and in general,

CI

for

(proportion of exposed cases) 0.269 0.424 0.596 0.747 0.855 0.922

The <u>observed</u> proportion of exposed cases is p = 41/56 = 0.732; in our table, the 0.732 corresponds to an RR point estimate just below 2.

We can reverse the general formula to get RR = { /(1-)} / {n₁/n₀} = { /(1-)} {n₀/n₁} So, in our e.g., the point estimate of RR is rr = (0.732/0.268) / (28010/19017) = 1.86.

To obtain a CI, we treat the proportion of exposed cases, 0.732, as a <u>binomial proportion</u>, based on 41 "positives" out of a total of 56 cases (obviously, if the proportion were based on 8 exposed cases out of 11 cases, or 410 out of 560, the precision would be very different!)

From table/other source of CI's for proportions (see e.g. table on 607 web page), can determine that 95% CI for is $_{L}$ =0.596 to $_{U}$ =0.842. Substitute these for the point estimate to get

Large no. of events

See Rothman 2002, pp 137-138)

• Use same <u>conditional</u> (binomialbased) formula as for small no. of events, but use Gaussian approxn. to get Binomial CI for

• Test-based CI (Miettinen)

Uses fact that in vicinity of RR=1, can obtain SE for ln(rr) indirectly from null X^2 test statistic

 X^2 statistic = square of Zstatistic = 4.33 = 2.08² in e.g.

Xstatistic = Zstatistic =
$$\frac{\ln(rr) - 0}{SE[\ln(rr)]}$$

so SE[ln(rr)] = $\frac{\Pi(\Pi)}{X \text{statistic}}$

CI for
$$ln(RR) = ln(rr) \pm z \frac{ln(rr)}{Xstatistic}$$

CI for RR: If to power
$$[1 \pm \frac{z}{X \text{ statistic}}]$$

= 1.86 to power of $[1 \pm 1.96/2.08]$
= 1.04 to 3.32 in e.g.

• Var [ln(rr)] =
$$\frac{1}{c_1} + \frac{1}{c_0} + \frac{1}{c_1} + \frac{1}{c_0}$$
 (Woolf)

CI for **RR** = rr exp[
$$\pm z \sqrt{\frac{1}{c_1} + \frac{1}{c_0}}$$
]

1.96 $(1/41+1/15)^{1/2} = 0.59$ in e.g.; so exp[0.59]=1.81; So <u>CI for RR</u> =.86 / 1.81 to 1.86*1.81 = (<u>1.02,3.35</u>) Precision for In(RR) estimate depends on numbers of events c_1 and c_0 .

• Null distribution of c4 conditional on c • Use same "c4 conditional on c" test but use

<u>data:</u> c_1 and c_0 "events" (total $c = c_1 + c_0$) in n_1 and n_0 (total=n) units of experience"; empirical rates $r_1 = c_1/n_1$ & $r_0 = c_0/n_0$;

Large no. of events

test of	 Null distribution of c₁ <u>conditional</u> on c 	• Use same "c ₁ <u>conditional</u> on c" test but use
RD=0	$c_1 c \sim Binomial$, with c "trials", (see above)	[41/56 - 10.732 - 0.596]
or	each with null probability $=\frac{\mathbf{RR} \times n_1}{\mathbf{RR} \times n_1}$.	e.g. $z = \frac{141/30 - 10.1/32 - 0.030}{\sqrt{0.596 \times 0.404/56}} = 2.08$
RR=1		P(Z > z) = 0.019 (upper tail area). Double for 2-sided test.
	e.g.	
	If RR =1 (RD=0) would expect the 56 cases to split into "exposed" and "unexposed" in the proportions $27010/(27010+19017) = 0.596$ and 1.0.506=0.404 respectively.	• $z = \frac{[r_1 - r_2] - RD_0}{\sqrt{\{SE[r_1 H_0\}^2 + \{SE[r_2 H_0\}^2\}}}$
	and 1-0.090–0.404 respectively.	<pre>{*SE's use r = c/ n [pooled data]}</pre>
	Can test if the observed proportion 41/56 = 0.732 is significantly different from this null expectation using a Binomial distribution with "n"=56 and =0.596.	• $X^2 = \frac{\{c_1 - E[c_1 H_0]\}^2}{E[c_1 H_0]} + \frac{\{c_0 - E[c_0 H_0]\}^2}{E[c_0 H_0]}$
	Can use the Excel Binomial function with x=40,mean=0.596,cumulative=TRUE, to get the sum of all the probabilities up to and including 40. Subtract this quantity 0.976 from 1 to get the probability <u>0.024</u> of 41 or more (upper tail area). Double this for a 2-sided test.	$= \frac{\{c_1 - E[c_1 H_0]\}^2}{Var[c_1 H_0]}$ (Mantel-Haenszel version) See my notes on Chi-square tests in on chapter 8 in 607 course
	 Unconditional test for proportions / rates (Suissa) 	

Inference concerning comparative parameters: Rate Difference (RD) and Rate Ratio (RR)

Rate Parameters R_1 and R_2 Rate <u>Difference</u> Parameter $RD = R_1 - R_0$ Rate <u>Ratio</u> Parameter $RR = R_1 / R_0$

Small no. of events