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ON THE ER'ROR OF COUNTING WITH 

A HAEMACYTOMETER. 


WHENcounting yeast cells or blood corpuscles with a haemacytometer there 
are two main sources of error: (1) the drop taken may not be representative of 
the bulk of the liquid ; (2) the distribution of the cells or corpuscles over the area 
which is examined is never absolutely uniform, so that there is an "error of 
random sampling." 

With the first source of error we are concerned only to this extent ; that when 
the probable error of random sampling is known we can tell whether the various 
drops taken show significant differences. What follows is concerned with the 
distribution of particles throughout a liquid, as shewn by spreading i t  in a thin 
layer over a measured surface and counting the particles per unit area. 

Theoretical Consideration. 

Suppose the whole liquid to have been well mixed and spread out i n  a thin 
layer over N units of area (in the haemacytometer the usual thickness is .01 min. 
and the unit of area &sq. mm.). 

Let the particles subside and let there be on an average rn particles per unit 
area, that is Nm altogether. Then assuming the liquid has been properly mixed 
a given particle will have an equal chance of falling on any unit area. 

i.e. the chance of its falling in a given unit area is 1/Nand of its not doing so 
1- 1/N. 

Consequently considering all the mN particles the chances of 0, 1, 2, 3 ... 
particles falling on a given area are given by the terms of the binomial 

$) + $ I r n N ,{(1- and if M unit areas be considered the distribution of unit 

areas containing 0, 1, 2, 3 ... particles is given by M {(I -i)+ ir. 
Now in practice N is to be measured in millions and may be taken as 

infinite. 
45-2 
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Let us find the limit when N is infinite of the general term of this expansion. 

The (r.+ 1)th term is : 

1 2 r -1  r r + l  r + s - 1
But when we proceed to the l in~i t  N, ... -N and z, ... ---N 

are all negligeably small compared to m so that the expression reduces to 

That is to say that the expansion is equal to 

Hence it is this distribution with which we are concerned. 


The 1st moment about the origin, 0, taken a t  zero number of particles is 


= m x total frequency. 


Hence the mean is a t  m. 


The 2nd mornent about the point 0 is 


= (m + ma) x total frequency. 



Hence the second moment-coefficient about the mean 

By similar* methods the moment-coefficients up to p, were obt,ained, as 
follows : 

p1I = m. 

p3 =m. 

p4 = 3m2+m. 

p6 = 10nh2 + rn. 
p, = 1 5m3+ 25nz2 + m. 

Hence 

and 

I t  will be observed that the limit to which this distribution approaches as m 
becomes infinite is the normal curve with its p , ,  P 3 ,  P 6 ,  etc., all equal to 0 ,  and 
p, = 3 ,  p4= 1 5 ,  etc. 

Further, any binomial (p + q)n can be put into tho form (p + q)nqlq, and 
if q be small and nq not large i t  approaches the distribution just given. 

Thus if 1 0 0 0  (& + d6)500be expanded the greatest difference between any 
5'

of its terms and the corresponding term of 1 0 0 0  c6 + . . . + a+ ...) 
* The evaluation of the moments about the point 0 will be found to depend on the expansion of rn 

in the form 
( r - I ) !  ( - 1  ( T - I ) !

rn=r  / m + % m l + a s m ! + * . . + a n + l  

= r  1' + +,..+a,+,.+a,.
( r - - 2  ( n - 1  ( n )  ( r - I ) !  

Then if we form the series for l a + l  from this it will be found that the following relations hold 
between a, ,  a,, a, etc. and the corresponding coefficients for n +  1, A,, A,,  Ag etc. 

Al = a l + n ,  

A 2 = a 2 + ( n - l ) a l ,  

A,=a,-t (n- p + l )  a,-,. 

From these equations we can write down any number of moments about the point 0 in turn, and 
from these may be foond the moments about the mean by the ordinsry formulae. 

The moments may also be deduced from the point binomial (p+q)*q/qwhen q is small and n large 
and nq=m, i.e. p = l ,  q = 0 ,  nq=m. We have 

k l = n q = m ,  

p2 =npq =ni, 

~1~ =npq ( p - q ) = m ,  
p4 =npq { 1 + 3 ( n - 2 ) p q ) = m ( 1 + 3 m ) = 3 m 2 + r n .  
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5" 
is never as much as I ,  being about .8 for the term 1000 e-6 -5 !  which is 175.5 

against 176'3 from the binomial. -
! 

Diagram I coipares 1000 eb(1 + 5 + with the binomial 

1000 (@+ $)1(JO which of course differ, but not by very much. 

DIAGRAMI. Comparison of the exponential and binomial expansions. 

Firm line represents 1000e-5 Ii+ 5 t ...t 

Broken line represents 1000 

I n  applying this to actual cases i t  must be noted that we have not taken into 
account any " interference " between the particles ; there has been supposed the 
same chance of a particle falling on an area which already has several particles as 
on one altogether unoccupied. Clearly if m be large this will not be the case, but 
with the dilutions usually employed this is not of any importance. 

I t  will be shewn that the actual distributions which were tested do not diverge 
widely from this law, so we will consider the probable error of random sampling on 
the supposition that they follow it. 

We have seen that p, =m. 

Hence the standard deviation =Jm. 



So that if we have counted M unit areas the probable error of our mean (m) is 

If we arsworking with a haemacytometer in which the volume over each square 
is daanlm. there will be 40,000,000 m particles per C.C. and the probable error 

will be 40,000,000 x '6'7449 x 

Suppose now that we dilute the liquid to q times its bulk, we shall then have 
m- particles per square, and if we coullt M squares as before, our probable error 
!I 
for the number of par'ticles per C.C. in the original solution will be 40,000,000 

x e6'7449 x q 2 / ~  That is 40,000,000 x .6'7449 fl3x 

That is we shall have to count qM squares in order to be as accurate as before. 

So that the same accuracy is obtained by counting the satne number of 
particles whatever the dilution, or, to look at  it from a slightly different point of 
view, whatever be the size of the unit of area adopted. 

Hence the most accurate way is to dilute the solution to the point at  which 
the particles may be counted most rapidly, and to count as many as time permits: 

then the probable error of the mean is .6744Y ,/;where m is the mean and M 

is the number of unit areas counted over, squares, columns of squares, microscope 
fields, or whatever unit be selected. 

But owing to the difficulty of obtaining a drop representative of the bulk of 
the liquid the larger errors will probably be due to this cause, and it is usual to 
take several drops : if two of these differ in their rneans by a significant amount 

compared with the probable error (whioh is .67449 dm* where m,, 7n, are 

the means and M the number of unit areas counted), i t  is probable that one at  
least of the drops does not represent the bulk of the solution. 

Rxperimental Work. 

This theoretical work was tested on four distributions * which had been counted 
over the whole 400 squares of the hemacytometer. The particles counted were 
yeast cells which were killed by adding a little mercuric chloride to the water in 
which they had been shaken up. A small quantity of this was tnixed with a 
10 "1, solution of gelatine, and after being well stirred up drops were put on the 
hzemacytometer. This was then put on a plate of glass kept at  a temperature just 
above the setting point of gelatine and allowed to cool slowly till the gelatine had 
set. Four different concentrations were used. 

* One of these is given in Table I. 
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In  this way it was possible to count at  leisure without fear of the cells straying 
from one square to another owing to accidental vibrations. A few cells stuck here 
and there to the cover glass, but as they appeared to be fairly uniformly distributed 
and were very few compared with those that sank to the bottom they were 
neglected: had the object of the experiment been to find the number of cells 
present they would have been counted by microscope fields, and correction made 
for them ; but in our case they were considered to belong to a different "population " 
to those which sank. 

Those cells which touched the botto~n and right-hand lines of a square were 
considered to belong to the square ; a convention of this kind is necessary as the 
cells have a tendency to settle on the lines. 

There was some difficulty owing to the buds of some cells remaining undetached 
in spite of much shaking. I n  such cases an obvious bud was not counted, but 
sometimes, no doubt, a bud was counted as a separate cell, which slightly increases 
the number of squares with large numbers in them. 

In order to test whether there was any local lack of homogeneity the correlation 
was determined between the number of cells on a square and the number of cells 
on each of the four squares nearest it ; if from any cause there had been a tendency 
to lie closer together in some parts than in others this correlation would have been 
significantly positive. 

Distributions 3 and 4 were tested in this way (Table 11), with the result that 
the correlation coefficients were + .016 + -037 and a015 rf: .037. This is satisfactory 
as shewing that there is no very great difficulty in putting the drop on to the 
slide so as to be able to count at  any point and in any order; as good a result may 
be expected from counting a column as from counting the same number of squares 
at  ratldon~. 

The actual distributions of cells are given below, and compared with those 
calculated on the supposition that they are random samples from a population 
followitlg the law which we have investigated: the probability P of a worse fit 
occurring by chance is the11 found. 

I. 	 Mean =.6825 : r2='8117 : p3=1.0876. 


Containing 0 1 2 3 4 5 cells 

Actual 213 128 37 18 3 1 

Calculated 202 138 47 11 1-84 '24 
-

2 

Whence XJ=9'92 and P=.04. 


Best fitting binomial (1.1893- '1893)-3'Q64x 400 for which P=.52.  


11. Mean =1.3225 : p2= 1'2835 p3 : =1.3574. 
0 1 2 3 4 5 6 

Actual 103 143 98 42 8 4 2 
Calculated 106 141 93 41 14 4 1 

Whence x2=3'98 and P=.68.  . 

Best fitting binomial (-97051 +.02949)46.2084 x 400 for which P= .72. 




111. Mean =1%0 : p2=lm96:p3=2-529. 

0 ,  1 2 3 4 5 6 7 8 9 
Actual 75 103 121 54 30 13 2 1 0 1 

Calculated 66 119 107 64 29 10 3 i 
Whence X2=9.03 and P=.25.  
Best fitting binomial (1.0889-.0889)-20.2473~400for which P=.37. 

IV. 	 Mean =4.68 :p2=4'46 : ~ , = 4 . 9 8 .  

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 
Actual 0 20 43 53 86 7 0  54 37 18 10 5 2 2 
Calculated 4 17 41 63 74 70  64 36 21 11 5 2 1 

Whence X2=9,72 and P=.64.  

Best fitting binomial ('9526+ .0476)9s.63x 400 for which P= .68. 


These results are given graphically in Diagram 11. on the next page. 

It is possible to fit a point binomial frorn the mean and the 2nd moment 
according to the two equations h' = nq, = npq and these point binomials fit 
the observations better than the exponential series, but the constants have no 
physical meaning except that nq = nz. And since the exponential series is a 
particular form of the point binomial and is fitted from one constant, while two 
are used for the "ad hoc" binomial, this better fit was only to be expected. 

It will be noticed that in both I and 111 the 2nd moment is greater than the 
mean, due to an excess over the calculated among the high numbers in the tail of 
the distribution. As was pointed out before, the budding of the yeast cell increases 
these high numbers, and there is also probably a tendency to stick together in 
groups which was not altogether abolished even by vigorous shaking. 

In any case, the probabilities .04,.68, .25 and $4, though not particularly high, 
are not a t  all unlikely in four trials, supposing our theoretical law to hold, and we 
are not likely to be very far wrong in assuming it to do so. 

Let us now apply i t  to a practical problem : for some purposes i t  is customary 
to estimate the concentration of cells and then dilute so that each two drops of the 
liquid contain on an average one cell. Different flasks are then seeded w,ith one 
drop of the liquid in each, and then " most of those flasks which show growths are 
pure cultures." 

The exact distribution is given by 

1 (&>"(9)"e - + ( I + - + - + - +2 2 !  3 !  ...), 
which is 

No. of Yeast cellw 	 2 3 4 

.16Percentage Frequency 3,3 7.58 1.264 

or approximately three-quarters of those which show growth are pure cultures. 
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Conclusions. 

We have seen that the distribution of small particles in a liquid follows the law 

where m is the mean number of particles per unit volume * and the various terms 
in the series give the chances that a given unit volume contains 0, 1, 2, . .. r ,  . . . 
particles. We have also seen that this series represents the limit to which 
any point binomial (p +q)ll approaches when q is small, insomuch that even 

(48+ &pWx 1000 is represented by e-5 (1 + 5 + -5" + . . . +-+... x 1000 with 
2 !  r !" ' 

a maximum error of about 4.5 in 180. 
1For the rough calculation of odds with ?z small compared to - the exponential 
Q


series may be used instead of the binomial as being less laborious. 

Finally, we have found that the standard deviation of the mean number of 

particles per unit volume is 2 / ~where m is the mean number and M the number 

of unit volumes counted, so that the criterion of whether'two solutions contain 
different numbers of cells is whether m,-m, is significant compared with 

TABLE I. 


Distribution o f  Yeast Cells over 1 sq. mm. divided into 400 squares. 


" The prism standing on unit area. 
46-2 
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It must be noted, however, that the probable error will always be greater 
than that calccrlated on this formula when for any reason the organisms occur 
as aggregates of varying size. 

I n  conclusion', I should like to thank Prof. Adrian J. Brown, of Birmingham 
University, for his valuable advice and assistance in carrying out the experimental 
part of the enquiry. 

TABLE 11. 

" Centre " Squares. 

Mean of '<Centren Sqnares, 4.6821 ; S. D., 2.139. 

Mean of "Adjacent" Squares, 4,7014 ; 5. D., 2.116. 

v= +9 16 f '037. 

Correlation table between the number of cells in a square and the numbers of cells in the 
four adjacent squares taken all over Table I. 


