
Approximate CI's for mean,  µ , of a Poisson distribution, based on 5 different approximations to Poisson tail areas

(3) 1st Principles CI from c ~ Gaussian(  , SD =  )(1)  Wilson/Hilferty approxn. to Chi-square quantiles.
[helpful when appropriate Chi-square quantiles not readily available]

Obtained by solving the two equations:

c = µLOWER + z  µLOWER  ;  c = µUPPER  -  z   µUPPER

to give

µLOWER,UPPER =  ( c + z2/4  -/+  z/2  )2

This approximation , which has high accuracy for c > 10,

uses z , the normal standardized variate corresponding
to α, e.g.. z = 1.645 for α = 0.05,1.96 for α = 0.025,

etc.

    µLOWER = (c) { 1 - (9c)-1 -  z  (9c)-1/2 }3 "First Principles" : it recognizes that Poisson variance is
different (smaller) at µ = µLOWER than at µ = µ

UPPER
.

   µUPPER = (c+1) { 1 - (9[c+1] )-1 +  z  (9[c+1])-1/2 }3

(4) (Naive) CI based on c ~ Gaussian(  , SD̂ =  c ).

If really lazy, or don't care about principles or accuracy, or if c

is large (3 digits) might solve

Note1: Rothman[2002], page 134, provides an adaptation from "D.
Byar, unpublished" in which he makes a further approximation, using
the average (c+0.5) for both the lower an upper limits, rather than the
more accurate c for the lower and c+1 for the upper limit. This is called
method 1' below. JH is surprised at Rothman's eagerness to save a
few keystrokes on his calculator, and at his reference to an
unpublished source, rather than the 1931 publication of Wilson &
Hilferty. Full W-H citation, and evaluation of the above equation, in
Liddell's "Simple exact analysis of the standardized mortality ratio" in J
Epi and Comm. Health 37 85-88, 1984 available on 626 website.

c = µLOWER + z  c ;  c = µUPPER  -  z   c

to  give

µLOWER,UPPER  = c  -/+  z √c
Note2: Rothman uses the CI for the expected numerator of a Rate.
{e.g.s below focus on number in same sized study, not rate per se. Accuracy of 5 approximations (95% CI's) in 5 eg's

Method c = 3* c = 6 c = 33** c=78*** c=100

(2) Square-root transformation of Poisson variable.
Exact (2.48,35.1) (2.20,13.1) (22.7,46.3) (61.7,97.3) (81,122)

With    large enough, √c is approximately Gaussian

with mean √   and variance 1/4 or SD 1/2 (the variance

and SD are thus independent of √ ) .

This  leads to (see ref. (3)):

(1) (2.41,35.1) (2.19,13.1) (22.7,46.3) (61.7,97.3) (81,121)

(1') (3.32,32.0) (2.49,13.4) (23.1,45.8) (62.1,96.8) (82,121)

(2) (2.26,29.4) (2.16,11.8) (22.7,45.2) (61.7,96.3) (81,121)

(3) (4.08,35.3) (2.75,13.1) (23.5,46.3) (62.5,97.3) (82,122)

(4) (–1.6,25.6) (1.20,10.8) (21.7,44.3) (60.7,95.3) (80,120)

* Rothman2002 p134 "3 cases in 2500 PY; pt. est. of Rate:12 per 10 000PY
  Focus:  No.  per 10000PY (Rate)   rather than on ave. No.  in 2500PY
  Focus  for c=6, 33, 78 & 100: ave. No in same-size study (no den. given)

     µLOWER,UPPER  =  c  -/+  z (c)1/2  +  1/4(z )2

This simpler formula is accurate when c > 100 or so. ** No. of cancers among females and ***overall in Alberta SourGas study
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