Theoretical: $\quad S(t), \&$ complement Cum. Inc./Risk : $C I(t)=\operatorname{Risk}(t)=1-S(t)$
(1) Empirical: $\quad\left\{\widehat{I D_{1}}, \widehat{I D_{2}}, \ldots, \widehat{I D_{K}}\right\}$ in K sub-intervals spanning time interval $[0, t]$. The (not necessarily equal) widths of the K sub-intervals are $\Delta T_{1}, \ldots, \Delta T_{K}$.

Target: Approximation to smooth function $S(t)=\exp \left\{-\int_{0}^{t} I D(u) d u\right\}$
Point Est.:
$\widehat{S(t)}=\exp \left\{-\sum_{k} \widehat{I D_{k}} \times \Delta T_{k}\right\}=\exp \{-$ integral $\} ; \quad \widehat{C I(t)}=1-\widehat{S(t)}$
Variance \quad of the integral: $V=\sum \operatorname{Var}\left[\widehat{I D_{k}}\right] \times\left(\Delta T_{k}\right)^{2}$
IE for $S(t)$
(2) Empirical: J narrow event-containing intervals spanning portion of $[0, t]$. n_{j} at risk just before the event(s) [death(s)] in interval j. s_{j} survive event-containing interval j. Remaining d_{j} do not.
(2a):
conditional probabilities: $\widehat{S_{1}}=\frac{s_{1}}{n_{1}}, \widehat{S_{2}}=\frac{s_{2}}{n_{2}}, \ldots, \widehat{S_{J}}=\frac{s_{J}}{n_{J}}$
$\widehat{S_{j}} \sim \operatorname{Binomial}\left(n_{j}, S_{j}\right)$
Point Est.: $\quad \widehat{S_{K M}(t)}=\widehat{S_{1}} \times \widehat{S_{2}} \cdots \times \widehat{S_{J}}$ Kaplan-Meier Product Limit Estimator
Variance

IE for $S(t)$
(2b):
Point Est.:

$$
\widehat{\log \widehat{S_{K M}(t)}}=\sum \log \widehat{S_{k}} \rightarrow \operatorname{Var}\left[\log \widehat{S_{K M}(t)}\right]=\sum \frac{d_{j}}{s_{j} \times n_{j}}=V(\text { say })
$$

$\bullet \exp \left\{\log \widehat{S_{K M}(t)} \pm z_{\alpha / 2} \times V^{1 / 2}=\log \widehat{S_{K M}(t)} \pm z_{\alpha / 2} \times S E\right.$ of log $\}$.

- $\widehat{S_{K M}(t)} \pm z_{\alpha / 2} \times \widetilde{S_{K M}(t)} \times V^{1 / 2}$
- others, based on other transformations; $t()=$ c-log-log recommended
"counting process"; $\widehat{d_{j}} \sim \operatorname{Poisson}()$ - only for variance calculations below

Variance

$$
\widehat{S_{N A}(t)}=\exp \{- \text { integral }\}=\exp \left\{-\sum \frac{d_{j}}{n_{j}}\right\} \quad \text { Nelson-Aalen Estimator }
$$

$$
\operatorname{Var}[\text { integral }]=\sum \frac{d_{j}}{n_{j}^{2}}=V(\text { say })
$$

CI for $S(t) \quad \exp \left\{-\left[\right.\right.$ integral $\left.\left.\pm z_{\alpha / 2} \times V^{1 / 2}\right]\right\}$

* CI curves easier to read; make more use of white space, than (decreasing from 1) "survival" curves.

N O T E S [see also: Armitage \& Berry, and Collett Ch 2]
Also called "rates" /"intensities". Statisticians call them $\left\{\hat{\lambda}_{1}, \hat{\lambda}_{2}, \ldots, \hat{\lambda}_{K}\right\}$. [Stata has a helpful function stptime that does such calculations.] This general formula links the $S(t)$ with the $I D(t)$ or $\lambda(t)$ function. Integral $=$ expected no. (μ) of events in $(0, t)$ if always 1 person at risk. (Poisson) $\operatorname{Pr}[0$ events in $(0, t)]=\exp [-\mu]=\operatorname{Pr}[$ (initial) person 'survives' to $t]$. For simplicity, subscript omitted for now on.

IE: interval-estimate; used to avoid using 'CI' with 2 different meanings

Interval j defined by distinct event-time t_{j}. Intervals in $[0, t]$ that don't contain events can be ignored. 'Riskset' $=$ the 'candidates'. The letter d is used because 'transition' in many studies is death; desirable transitions OK too!

Binomial model is only used in variance calculations

Fraction of a fraction... Intervals with $d=0$ would contribute multipliers of 1 .
$\operatorname{Var}\left[\underline{\log }\right.$ of a product of $\widehat{S_{K M}(t)}$'s $]=\underline{\text { sum }}$ of variances of individual logs.
ie in $\log S$ scale \rightarrow IE in S scale. SE of $\log S$: "Greenwood's formula"
This version avoids logs, but can more easily yield limits beyond the $(0,1)$ scale The only transform guaranteed to say in the $(0,1)$ scale is the logit transform.

This uses the same formula that links the $S(t)$ and $I D(t)$ or $\lambda(t)$ functions.
Think of a fitted $I D$ function $I D(t)$ with $\widehat{I D(t)}=0$ everywhere on $(0, t)$
except within the small event-containing intervals of width δt,
where $\widehat{I D(t)}=d_{j} /\left(n_{j} \times \delta t\right)$. Thus, integral $=\sum_{j}\{\widehat{I D(t)} \times \delta t\}=\sum_{j} d_{j} / n_{j}$.
(symmetric) ie in $\log S$ scale \rightarrow (asymmetric) IE in S scale.
Interval estimate for cum. incidence: $C I(t)=1$ - interval estimate for $S(t)$ cf Pocock. Survival plots in clinical trials: good practice \& pitfalls. Lancet. 2002.

Comparison of 2 Survival or Cumulative Incidence curves: index (1) vs. ref. (0) categories $======$

In words Survival or Risk (i.e., Cum. Inc., CI) Difference at a specific timepoint t

In symbols $S_{1}(t)-S_{0}(t) ; C I(t)_{1}-C I(t)_{0} ;$ or $\operatorname{Risk}_{1[0 \rightarrow t]}-$ Risk $_{0[0 \rightarrow t]} ;$ $N N T=1 \div$ Risk Δ

Empirical: $\quad \widehat{S_{1}(t)}-\widehat{S_{0}(t)}$, along with $S E_{1}$ and $S E_{0}$ (Greenwood $S E$'s)
Test Statistic: \quad ratio $=\left\{\widehat{S_{1}(t)}-\widehat{S_{0}(t)}\right\} /\left\{S E_{1}^{2}+S E_{0}^{2}\right\}^{1 / 2} \sim N(0,1)$ under $H_{0} \rightarrow Z$-statistic
Conf. Int:

$$
\widehat{S_{1}(t)}-\widehat{S_{0}(t)} \mp z_{\alpha} \times\left\{S E_{1}^{2}+S E_{0}^{2}\right\}^{1 / 2}
$$

\qquad $==1$

Test of equality $\left(H_{0}\right)$ of 2 entire Survival or Cumulative Incidence curves

Empirical: $\quad J$ narrow event-containing intervals in $\left[0, t_{\max }\right]$.
n_{j} at risk just before event(s) in interval j (n_{j} persons comprise 'riskset' j)
s_{j} avoid event in ('survive') interval j (stay in initial state). Remaining d_{j} don't.
2×2 table for $j^{\text {th }}$ riskset, along with $E\left[d_{1 j} \mid H_{0}\right]$ and $\operatorname{Var}\left[d_{1 j} \mid H_{0}\right]$
$d_{1 j} \quad s_{1 j} \quad \mid n_{1 j} \quad E\left[d_{1 j} \mid H_{0}\right]=\left(n_{1 j} / n_{j}\right) \times d_{j}$
$d_{2 j} \quad s_{2 j} \mid n_{2 j} \quad \operatorname{Var}\left[d_{1 j} \mid H_{0}\right]=n_{1 j} n_{2 j} d_{j} s_{j} /\left\{n_{j}^{2}\left(n_{j}-1\right)\right\}$
$\left.\begin{gathered}------ \\ d_{j} \\ s_{j}\end{gathered} \right\rvert\, n_{j}$
Test Statistic: $\quad X^{2}=\frac{\left\{\sum_{j} d_{1 j}-\sum_{j} E\left[d_{1 j} \mid H_{0}\right]\right\}^{2}}{\sum_{j} \operatorname{Var}\left[d_{1 j} \mid H_{0}\right]} \sim \chi_{1}^{2}$

Terminology: This is called the "Log-rank" test
Has same structure as Mantel \& Haenszel's test: $H_{0}: O R_{1}=\cdots=O R_{J}=1$.
In M and H's application, each 2×2 table refers to distinct persons.
Here, each table is for a 'riskset'; each riskset is a subset of the one before.
Note:
For valid use of χ_{1}^{2}, good if $\sum_{j} E\left[d_{1 j} \mid H_{0}\right]>5$; do not need each $E\left[d_{1 j}\right]>5$.

Interval est. for $N N T=1 \div$ Interval est. for Risk Δ $S E=V a r^{1 / 2}$.

Cf. worked e.g., Statistics at Square One - c634.

Mantel Haenszel 1df Chi-Sq. Test Statistic
Article has summary OR estimator and test statistic

Worked e.g. in M-H 1959 classic - c634-stratified.

EPIB 634 Survival Analysis \& Related Topics

Survival Analysis / Follow-up Studies

Example: Kaplan-Meier survival curves, log-rank test, and illustration of Risksets

from Statistics at Square One: Survival analysis [http://bmj.bmjjournals.com/collections/statsbk/12.shtml]
"Mclllmurray and Turkie (2) describe a clinical trial of 69 patients for the treatment of Dukes' C colorectal cancer. The data for the two treatments, linoleic acid $(t x=1, n=25)$ or control $(t x=0, n=24)$ are given in Table 12.1 (3) .. "

1. Order all the survival times from smallest to largest; identify the distinct death-times; concentrate on those at risk just before each distinct death-time - this is the "Risk-Set' (i.e. the 'candidates") for the failure time. Subjects remain. in successive Risk Sets until removed by censoring, or event of interest
2. Kaplan-Meier curve for each separate group: Multiply the successive fractions that make it out of (past) each risk set to yield successively lower "estimated fractions still alive". [Skip risk set if no event in that group] eg tx $1: S[6]=(21 / 23) ; S[10]=S[6] \times(18 / 20)$, etc.
Nelson-Aalen curve: "Integrated hazard" estimated as Σ (deaths/At Risk) summed to t of interest.: $S[t]=\exp [-$ Integrated hazard]: $S[6]=\exp (-2 / 23) ; S[10]=\exp [-\{2 / 23+2 / 20\}]$, etc.
3. Log-Rank Test: Form 2×2 table for the outcome in each risk set, and carry out MantelHaenszel test, summing the excesses or deficits (the values of $\left\{\mathrm{a}-\mathrm{E}\left[\mathrm{a} \mid \mathrm{H}_{0}\right]\right\}$) in the target (usually "a") cell over the tables. Compare the overall deficit/excess with its sampling variation 2 versions of log-rank test: (i) M-H 'focus only on "a"-cell' version, with appropriate variance (ii) traditional chi-square version $\left(\mathrm{O}_{1}-\mathrm{E}_{1}\right)^{2} / \mathrm{E}_{1}+\left(\mathrm{O}_{2}-\mathrm{E}_{2}\right)^{2} / \mathrm{E}_{2}$ (avoid calculating variance)

Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial

Elvin Kedhi, Kaiyum Sheik Joesoef, Eugene McFadden, Jochem Wassing, Carlos van Mieghem, Dick Goedhart, Pieter Cornelis Smits
Summary
Background Everolimus-eluting and paclitaxel-eluting stents, compared with bare metal stents, reduced the risk of Lancet 2010; 375:201-09
restenosis in clinical trials with strict inclusion and exclusion criteria. We compared the safety and efficacy of the second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice

```
Published Online
Jaluary 8,2010 January8, 2010
DOOIT101015/501 Dolini.1016/50140
\(6736(099) 62127-9\)
```

Methods We randomly assigned 1800 consecutive patients (aged 18-85 years) undergoing percutaneous coronary intervention at one centre to treatment with everolimus-eluting or paclitaxel-eluting stents. The primary endpoint within 12 months. Patients were not told which stent they had been allocated. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT01016041.

Findings Follow-up was completed in 1797 patients. The primary endpoint occurred in 56 (6%) of 897 patients in the everolimus-eluting stent group versus $82(9 \%)$ of 903 in the paclitaxel-eluting stent group (relative risk $0.69[95 \% \mathrm{Cl}$ $0.50-0.95]$, p value for superiority $=0.02$). The difference was attributable to a lower rate of stent thrombosis $(6[<1 \%]$ target vessel revascularisation (21 [$2 \%]$ vs $54[6 \%], 0.39[0 \cdot 24-0 \cdot 64], \mathrm{p}=0.0001)$. Cardiac death, non-fatal myocardial infarction, or target lesion revascularisation occurred in 44 [5%] patients in the everolimus-eluting stent group versus 74 [8\%] patients in the paclitaxel-eluting stent group, p value for superiority was 0.005 .

Interpretation The everolimus-eluting stent is better than the second generation paclitaxel-eluting stent in unselected patients in terms of safety and efficacy. On the basis of our results, we suggest that paclitaxel-eluting stents should no longer be used in everyday clinical practice.

Funding Unrestricted grants from Abbott Vascular and Boston Scientific

Figure 1: Trial profile

*We have no reliable data for patients assessed for eligibility.

Statistical analysis
On the basis of results from the T-SEARCH registry, and SIRTAX ${ }^{11}$ and SPIRIT II trials, ${ }^{12}$ we assumed an incidence of the primary endpoint of 9% in the evero limus-eluting stent group and 14% in the paclitaxel eluting stent group. Enrolment of 1800 patients would provide the study with a statistical power of 85% to detect this difference with a two-sided significance level of $0 \cdot 05$, allowing for $3-4 \%$ of patients lost to follow-up All analyses were done according to the intention-to treat principle. Patients were censored from th Kaplan-Meier plots when they reached any componen of the composite endpoint. Categorical variables were assessed with use of χ^{2} or Fisher's exact tests, wherea continuous variables were assessed with the Wilcoxon rank-sum test.
The time to the primary endpoint was assessed according to the method of Kaplan-Meier, and th log-rank test was applied to compare the incidence of the endpoint between groups. Relative risks with 95% CIs, were calculated with the log-binomial method. The Kaplan-Meier curves were drawn with the guidelines provided by Pocock and colleagues. ${ }^{14}$ All p values were two-sided, and a p value of less than 0.05
was regarded as significant. Analyses were done with SAS (version 8.02)
The trial is registered with ClinicalTrials.gov, numbe NCT01016041.

Role of the funding source

The sponsors had no involvement in the design, conduct or analysis of the study. The corresponding author had full access to all the data in the study, and had ful responsibility for the decision to submit for publication.

Results
Figure 1 shows the trial profile. 1800 patients were enrolled between February, 2007, and September, 2008. Five $(<1 \%)$ were not given the designated stent. Staged procedure were done in 191 (21%) patients in the everolimus-eluting stent group and in $172(19 \%)$ patients in the paclitaxel-eluting stent group ($\mathrm{p}=0.23$). Three were lost to follow-up. The groups had similar baseline clinical (table 1), angiographic (table 2), and procedural characteristics (table 3).
Most patients presented with an acute coronary syndrome (table 1); the subtype of acute coronary syndrome was equally distributed in the two groups; 74% of lesions were complex (type B2 or C; table 2). The

Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein

Paul M Ridker, M.D., Eleanor Danielson, M.I.A., Francisco A.H. Fonseca, M.D., Jacques Genest, M.D., Antonio M. Gotto, Jr., M.D., John J.P. Kastelein, M.D., Wolfgang Koenig, M.D., Peter Libby, M.D., Alberto J. Lorenzatti, M.D., Jean G. MacFadyen, B.A., Børge G. Nordestgaard, M.D., James Shepherd, M.D., James T. Willerson, M.D., and Robert J. Glynn, Sc.D., for the JUPITER Study Group*
\square ABSTRACT

background

Increased levels of the inflammatory biomarker high-sensitivity C-reactive protein predict cardiovascular events. Since statins lower levels of high-sensitivity C-reactive protein as well as cholesterol, we hypothesized that people with elevated high-sensi tivity C-reactive protein levels but without hyperlipidemia might benefit from statin treatment.

Ethods

We randomly assigned 17,802 apparently healthy men and women with low-density lipoprotein (LDL) cholesterol levels of less than 130 mg per deciliter (3.4 mmol per liter) and high-sensitivity C-reactive protein levels of 2.0 mg per liter or higher to rosuvastatin, 20 mg daily, or placebo and followed them for the occurrence of the combined primary end point of myocardial infarction, stroke, arterial revascularization, hospitalization for unstable angina, or death from cardiovascular causes. RESULTS
The trial was stopped after a median follow-up of 1.9 years (maximum, 5.0). Rosuvastatin reduced LDL cholesterol levels by 50% and high-sensitivity C-reactive protein levels by 37%. The rates of the primary end point were 0.77 and 1.36 per 100 per-son-years of follow-up in the rosuvastatin and placebo groups, respectively (hazard ratio for rosuvastatin, $0.56 ; 95 \%$ confidence interval [CI], 0.46 to $0.69 ; \mathrm{P}<0.00001$), with corresponding rates of 0.17 and 0.37 for myocardial infarction (hazard ratio, $0.46 ; 95 \%$ CI, 0.30 to $0.70 ; \mathrm{P}=0.0002$), 0.18 and 0.34 for stroke (hazard ratio, $0.52 ; 95 \% \mathrm{CI}, 0.34$ to $0.79 ; \mathrm{P}=0.002$), 0.41 and 0.77 for revascularization or unstable angina (hazard ratio, 0.53 ; $95 \% \mathrm{CI}, 0.40$ to 070 . $\mathrm{P}<0.00001$) 0.45 and 0.85 for the combined end point of .53; $95 \% \mathrm{Cl}, 0.40$ to $0.70 ; \mathrm{P}<0.00001$), 0.45 and 0.85 for the combined end point of 5 yocardial infarction, D<0.0001) an 1.00 and 1.25 for death fres (hazard ratio, 0.53 , $0.80,95 \% \mathrm{CI} 0.67$ to 0.97, D 0.02). Cons tatio, 0.8 , The groups evaluated. The rosuvastatin group did not have a significant increase in my
thy or cancer but did have a higher incidence of physician-reported diabetes. onclusions
In this trial of apparently healthy persons without hyperlipidemia but with elevated high-sensitivity C-reactive protein levels, rosuvastatin significantly reduced the in cidence of major cardiovascular events. (ClinicalTrials.gov number, NCT00239681.)

From the Center for Cardiovascular Dis ease Prevention (P.M.R., E.D., J.G.M R.J.G.) and Division of Cardiovascular MediHospe (Pital. H.,. P.L.L.), Brigham and Women's Hospital, Harvard Medical School, Bos Ion; Universidade Federal de São Paulo,
São Paulo (F.A.H.F.); McGill University Health Center, Montreal (J.G.); Weill Cornell Medical College of Cornell University, New York (A.M.G.); Department of Vas ular Medicine, Academic Medical Cen dam (J.J.P.K.); University of UIm Medical Center, Ulm, Germany (W.K.); Hospita Cordoba, Cordoba, Argentina (A.J.L.); Her lev Hospital, Copenhagen University Hos
pital, Herlev, Denmark (B.G.N.) Univer sity of Glasgow, Glasgow, Scotland (J.S.), nd St. Luke's Episcopal Hospital-Texas eprint requests to Dr. Ridker at the Cen er for Cardiovascular Disease Prevention Brigham and Women's Hospital, Boston

Members of the Use of Statins in Prevention: an Intervention rimal study croup are listed in the Appendix and in the Supplementary Appendix, available with the full text of this article at www.nejm.org
This article (10.1056/NEJMoa0807646) was published at www.nejm.org on Novem ber $9,2008$.
N EnglJ Med 2008;359:2195-207. Copyright © 2008 Massachusetts Medial

$\begin{array}{llllllllllll}\text { No. at Risk } \\ \text { Rosuvastatin } & 8901 & 8631 & 8412 & 6500 & 3893 & 1958 & 1353 & 983 & 538 & 157 \\ \text { Placebo } & 8901 & 8621 & 8353 & 6508 & 3872 & 1963 & 1333 & 955 & 531 & 174\end{array}$
C Revascularization or Hospitalization for Unstable Angina
$\begin{array}{lllllllllll}\text { No. at Risk } & 801 & 8640 & 8426 & 6550 & 3995 & 1966 & 1359 & 989 & 541 & 158 \\ \text { Rosuastatin } & 8900 & 6648 & \\ \text { Placebo } & 8901 & 8641 & 8390 & 6542 & 8895 & 1977 & 1346 & 963 & 535 & 176\end{array}$

No. at Risk
$\begin{array}{llllllllllll}\begin{array}{l}\text { Rosuvastatin } \\ \text { Placebo }\end{array} & \begin{array}{lllllll}8901 & 8643 & 8437 & 6571 & 3921 & 1979 & 1370 \\ 8901 & 8633 & 8381 & 6542 & 3918 & 1992 & 1365\end{array} & 979 & 547 & 159 & 181\end{array}$

No. at Risk
Rosuvastatin
$\begin{array}{llllllllll}\text { Rosuvastatin } & 8901 & 8847 & 8787 & 6999 & 4312 & 2268 & 1602 & 1192 & 676 \\ \text { Placebo } & 8901 & 8852 & 8775 & 6987 & 4319 & 2295 & 1614 & 1196 & 681 \\ 246\end{array}$

Figure 1. Cumulative Incidence of Cardiovascular Events According to Study Group.

Panel A shows the cumulative incidence of the primary end point (nonfatal myocardial infarction, nonfatal stroke, arterial revasculariza tion, hospitalization for unstable angina, or confirmed death from cardiovascular causes). The hazard ratio for rosuvastatin, as compared with placebo, was 0.56 (95% confidence interval [CI], 0.46 to $0.69 ; \mathrm{P}<0.00001$). Panel B shows the cumulative incidence of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes, for which the hazard ratio in the rosuvastatin group was 0.53 $(95 \% \mathrm{Cl}, 0.40$ to $0.69 ; \mathrm{P}<0.00001$). Panel C shows the cumulative incidence of arterial revascularization or hospitalization for unstable angina, for which the hazard ratio in the rosuvastatin group was 0.53 ($95 \% \mathrm{Cl}, 0.40$ to $0 . \%, \mathrm{P}<0.00001$). Panel D shows the cumulative incidence of death from any cause, for which the hazard ratio in the rosuvastatin group was $0.80(95 \% \mathrm{Cl}, 0.67$ to $0.97 ; \mathrm{P}=0.02)$. In each
panel, the inset shows the same data on an enlarged y axis and on a condensed x axis. panel, the inset shows the same data on an enlarged y axis and on a condensed x axis.

A Randomized Trial of Rosuvastatin in the Prevention of Venous Thromboembolism

Robert J. Glynn, Sc.D., Eleanor Danielson, M.I.A., Francisco A.H. Fonseca, M.D., Jacques Genest, M.D., Antonio M. Gotto, Jr., M.D., John J.P. Kastelein, M.D.,

Wolfgang Koenig, M.D., Peter Libby, M.D., Alberto J. Lorenzatti, M.D., Jean G. MacFadyen, B.A., Børge G. Nordestgaard, M.D., James Shepherd, M.D., James T. Willerson, M.D., and Paul M Ridker, M.D.

ABSTRACT

background
Controversy persists regarding the extent of shared pathways between arterial and venous thrombosis and whether treatments of known efficacy for one disease process have consistent benefits for the other. Observational studies have yielded variable estimates of the effect of statin therapy on the risk of venous thromboembolism, and evidence from randomized trials is lacking.
methods
We randomly assigned 17,802 apparently healthy men and women with both low-density lipoprotein (LDL) cholesterol levels of less than 130 mg per deciliter (3.4 mmol per liter) and high-sensitivity C-reactive protein levels of 2.0 mg per liter or higher to receive rosuvastatin, 20 mg per day, or placebo. We followed participants for the first occurrence of pulmonary embolism or deep-vein thrombosis and performed analyses of the data on an intention-to-treat basis.
results
During a median follow-up period of 1.9 years (maximum, 5.0), symptomatic venous thromboembolism occurred in 94 participants: 34 in the rosuvastatin group and 60 in the placebo group. The rates of venous thromboembolism were 0.18 and 0.32 event per 100 person-years of follow-up in the rosuvastatin and placebo groups, respectively (hazard ratio with rosuvastatin, 0.57 ; 95% confidence interval [CI], 0.37 to 0.86 ; $\mathrm{P}=0.007$); the corresponding rates for unprovoked venous thromboembolism (i.e., occurring in the absence of a known malignant condition, trauma, hospitalization, or surgery) were 0.10 and 0.17 (hazard ratio, $0.61 ; 95 \% \mathrm{CI}, 0.35$ to $1.09 ; \mathrm{P}=0.09$) and for provoked venous thromboembolism (i.e., occurring in patients with cancer or during or shortly after trauma, hospitalization, or surgery), 0.08 and 0.16 (hazard ratio, 0.52; 95% CI, 0.28 to $0.96 ; \mathrm{P}=0.03$). The rates of pulmonary embolism were 0.09 in the rosuvastatin group and 0.12 in the placebo group (hazard ratio, $0.77 ; 95 \% \mathrm{CI}, 0.41$ to 1.45; $\mathrm{P}=0.42$), whereas the rates of deep-vein thrombosis only were 0.09 and 0.20 , respectively (hazard ratio, $0.45 ; 95 \% \mathrm{CI}, 0.25$ to $0.79 ; \mathrm{P}=0.004$). Consistent effects were observed in all the subgroups examined. No significant differences were seen between treatment groups in the rates of bleeding episodes.
conclusions
In this trial of apparently healthy persons, rosuvastatin significantly reduced the occurrence of symptomatic venous thromboembolism. (ClinicalTrials.gov number, NCT00239681.)

Table 2. Occurrence of Venous Thromboembolism According to Study Group.

End Point	Rosuvastatin ($\mathrm{N}=8901$)		Placebo ($\mathrm{N}=8901$)		Hazard Ratio (95\% CI)	P Value
	no. of patients	no. of events/ 100 person- y r	no. of patients	no. of events/ 100 person-yr		
Primary efficacy analysis*						
Venous thromboembolism						
Total	34	0.18	60	0.32	0.57 (0.37-0.86)	0.007
Unprovoked	19	0.10	31	0.17	0.61 (0.35-1.09)	0.09
Provoked	15	0.08	29	0.16	0.52 (0.28-0.96)	0.03
Pulmonary embolism	17	0.09	22	0.12	0.77 (0.41-1.45)	0.42
Deep-vein thrombosis only	17	0.09	38	0.20	0.45 (0.25-0.79)	0.004
Safety analysisi†						
Venous thromboembolism						
Total	35	0.18	64	0.33	0.55 (0.36-0.82)	0.003
Unprovoked	20	0.10	34	0.18	0.59 (0.34-1.02)	0.06
Provoked	15	0.08	30	0.16	0.50 (0.27-0.93)	0.02
Pulmonary embolism	17	0.09	24	0.12	0.71 (0.38-1.32)	0.27
Deep-vein thrombosis only	18	0.09	40	0.21	0.45 (0.26-0.78)	0.003

*The primary efficacy analysis was performed on the basis of 94 cases identified by March 30, 2008
\dagger The safety analysis was performed on the basis of 99 cases that were identified before the study was unblinded.

Figure 1. Cumulative Incidence of Venous Thromboembolism in the Rosuvastatin and Placebo Groups. Panel A shows the incidence of any venous thrombo embolism, Panel B the incidence of unprovoked venous thromboembolism (i.e., occurring in the absence of a known malignant condition, trauma, hospitaliza tion, or surgery), and Panel C the incidence of provoked venous thromboembolism (..e., occurring in p fients with cancer or during or shortly after trauma, hospitalization, or surgery). The P values were calculat dosuval. model.
venous thromboembolism ($\mathrm{P}>0.10$ for each inter action) (Fig. 2). Subgroups with the highest rate of venous thromboembolism in the placebo group included participants who were 70 years of age or older, those who had a body-mass index of

	Intervention group	Control group	Incidence rate ratio ($95 \% \mathrm{Cl}$)	p value
0-6 months follow-up interval				
Number of participants	2263	2319		
Incident events	14	19		
Person-years	$1172 \cdot 1$	$1206 \cdot 7$		
Incidence per 100 person-years	$1 \cdot 19$	1.58	0.76 (0.35-1.60)	0.439
6-12 months follow-up interval				
Number of participants	2235	2229		
Incident events	5	14		
Person-years	$1190 \cdot 7$	$1176 \cdot 3$		
Incidence per 100 person-years	0.42	$1 \cdot 19$	$0 \cdot 35$ (0.10-1.04)	0.0389
12-24 months follow-up interval				
Number of participants	964	980		
Incident events	3	12		
Person-years	989.7	1008.7		
Incidence per 100 person-years	$0 \cdot 30$	1.19	0.25 (0.05-0.94)	0.0233
Total 0-24 months follow-up				
Cumulative number of participants	2387	2430		
Cumulative incident events	22	45		
Cumulative person-years	3352.4	3391.8		
Cumulative incidence per 100 person-years	0.66	1.33	0.49 (0.28-0.84)	0.0057

Cases of HIV/total participants			
Intervention	$0 / 2474$	$14 / 2387$	$5 / 2274$
Control	$0 / 2522$	$19 / 2430$	$14 / 2279$

Figure 2: Kaplan-Meier cumulative probabilities of HIV detection by study group
Actual visits grouped by the three scheduled visits at 6 months, 12 months, and 24 months after enrolment. The cumulative probabilities of HIV infection were 1.1% in the intervention group and 2.6% in the control group over 24 months.

LEFT: From "Male circumcision for HIV prevention in men in Rakai,
Uganda: a randomised trial," Lancet 2007; 369: 657-666.

BELOW: From Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet 2007; 369: 643-56.

Figure 2: Cumulative HIV seroincidence across follow-up visits by treatment
Time to HIV-positive status is taken as the first visit when a positive HIV test result is noted. Time is credited as the follow-up visit month. Participants without HIV-positive status are censored at the last regular follow-up visit completed where HIV testing was done, credited specifically as months $1,3,6,12,18$, and 24.

Weekend versus Weekday Admission and Mortality from Myocardial Infarction

William J. Kostis, Ph.D., Kitaw Demissie, M.D., Ph.D., Stephen W. Marcella, M.D., M.P.H.,
Yu-Hsuan Shao, M.H.S., Alan C. Wilson, Ph.D., and Abel E. Moreyra, M.D.,
for the Myocardial Infarction Data Acquisition System (MIDAS 10) Study Group

ABSTRACT

ackground

Management of acute myocardial infarction requires urgent diagnostic and therapeutic procedures, which may not be uniformly available throughout the week.

methods

We examined differences in mortality between patients admitted on weekends and hose admitted on weekdays for a first acute myocardial infarction, using the Myo cardial Infarction Data Acquisition System. All such admissions in New Jersey from 1987 to $2002(231,164)$ were included and grouped in 4 -year intervals.

ESULTS
There were no significant differences in demographic characteristics, coexisting conditions, or infarction site between patients admitted on weekends and those admitted on weekdays. However, patients admitted on weekends were less likely to undergo nvasive cardiac procedures, especially on the first and second days of hospitaliza ion ($\mathrm{P}<0.001$). In the interval from 1999 to 2002 (59,786 admissions), mortality at 30 days was significantly higher for patients admitted on weekends (12.9% vs. 12.0%, $=0.006$). The difference became significant the day after admission (3.3% vs. 2.7\%, < 0.01) and persisted at 1 year (1% absolute difference in mortality). The differ ace 95% confidence interval [CI], 1.022 to $1.076 ; \mathrm{P}<0.001$), but it became nonsignifican after additional adjustment for invasive cardiac procedures (hazard ratio, $1.023 ; 95 \% \mathrm{CI}$ 0.997 to $1.049 ; \mathrm{P}=0.09$).

conciusions

For patients with myocardial infarction, admission on weekends is associated with higher mortality and lower use of invasive cardiac procedures. Our findings suggest that the higher mortality on weekends is mediated in part by the lower rate of invasive procedures, and we speculate that better access to care on weekends could improve the outcome for patients with acute myocardial infarction.

ble 3. Mortality among Patients Admitted on Weekends and Patients Admitted on Weekdays.*												
No. of Daysfrom Admission	1987-1990			1991-1994			1995-1998			1999-2002		
	Weekdays percent	Weekends (mortality)	PValue	Weekdays percent	Weekends (mortality)	PValue	Weekdays percent	$\begin{aligned} & \text { Weekends } \\ & \text { it (mortality) } \end{aligned}$	PValue	Weekdays percent	Weekends (mortality)	PValue
Day of admission	2.2	2.5	0.04	1.8	1.8	0.94	1.6	1.6	0.34	1.1	1.3	0.09
Day 2	4.5	5.2	0.001	3.8	4.0	0.35	3.6	3.5	0.71	2.7	3.3	<0.001
Day 3	6.0	6.7	0.005	5.0	5.2	0.24	4.9	4.8	0.80	3.8	4.7	<0.001
Day 4	7.2	7.9	0.007	5.9	6.2	0.16	5.8	5.6	0.39	4.7	5.8	<0.001
Day 5	8.1	8.8	0.01	6.7	7.0	0.20	6.5	6.4	0.48	5.4	6.4	<0.001
Day 6	8.8	9.5	0.02	7.3	7.7	0.16	7.1	7.0	0.73	6.0	7.0	<0.001
Day 7	9.4	10.1	0.03	7.8	8.3	0.04	7.6	7.7	0.87	6.6	7.5	<0.001
In-hospital	14.5	15.1	0.11	11.8	12.2	0.20	10.4	10.2	0.41	9.3	9.9	0.03
Day 14	12.5	13.2	0.03	10.4	10.9	0.09	10.2	10.2	0.86	9.4	10.4	<0.001
Day 21	13.9	14.7	0.01	11.6	12.2	0.08	11.5	11.4	0.72	10.9	11.8	0.002
Day 30	15.1	16.0	0.009	12.6	13.1	0.10	12.6	12.4	0.69	12.0	12.9	0.006
Day 180	20.5	21.5	0.01	18.0	18.5	0.14	18.1	17.8	0.38	18.9	20.0	0.005
Day 365	23.7	24.6	0.02	21.0	21.7	0.09	21.4	21.2	0.61	22.9	23.9	0.01
Hazard ratio for day 2		$\begin{gathered} 1.075 \\ (1.032-1.121) \end{gathered}$			$\begin{gathered} 1.033 \\ (0.985-1.083) \end{gathered}$			$\begin{gathered} 1.007 \\ (0.958-1.057) \end{gathered}$			$\begin{aligned} & 1.121 \\ & (1.064-1.180) \end{aligned}$	
Hazard ratio for day 7		$\begin{gathered} 1.033 \\ (1.004-1.063) \end{gathered}$			$\begin{gathered} 1.044 \\ (1.011-1.078) \end{gathered}$			$\begin{gathered} 1.014 \\ (0.982-1.048) \end{gathered}$			$\begin{gathered} 1.080 \\ (1.045-1.116) \end{gathered}$	
Hazard ratio for tota in-hospital mortality (95\% CI)		$\begin{gathered} 1.034 \\ (1.009-1.059) \end{gathered}$			$\begin{gathered} 1.025 \\ (0.997-1.054) \end{gathered}$			$\begin{gathered} 1.015 \\ (0.986-1.045) \end{gathered}$			$\begin{aligned} & 1.055 \\ & (1.024-1.086) \end{aligned}$	
Hazard ratiof for day 30 mortality $(95 \%$ Cl)		$\begin{gathered} 1.040 \\ (1.016-1.065) \end{gathered}$			${ }_{(1.011-1.1066)}^{1.068)}$			$\begin{gathered} 1.007 \\ (0.981-1.034) \end{gathered}$			$\begin{gathered} 1.048 \\ (1.022-1.076) \end{gathered}$	
Hazard ratio for day 365 mortality ($95 \% \mathrm{CI}$)		$\begin{gathered} 1.032 \\ (1.013-1.052) \end{gathered}$			$\begin{gathered} 1.033 \\ (1.012-1.054) \end{gathered}$			$\begin{gathered} 1.005 \\ (0.985-1.026) \end{gathered}$			${ }_{(1.017-1.056)}^{1.037}$	

Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand

Supachai Rerks-Ngarm, M.D., Punnee Pitisuttithum, M.D., D.T.M.H., Sorachai Nitayaphan, M.D., Ph.D., laranit Kaewkungwal, Ph.D., Joseph Chiu, M.D., Robert Paris, M.D., Nakorn Premsri, M.D., Chawetsan Namwat, M.D., Mark de Souza, Ph.D., Elizabeth Adams, M.D., Michael Benenson, M.D., Sanjay Gurunathan, M.D., Jim Tartaglia, Ph.D.,

John G. McNeil, M.D., Donald P. Francis, M.D., D.Sc., Donald Stablein, Ph.D., Deborah L. Birx, M.D.,
Supamit Chunsuttiwat, M.D., Chirasak Khamboonruang, M.D., Prasert Thongcharoen, M.D., Ph.D.,
Merlin L. Robb, M.D., Nelson L. Michael, M.D., Ph.D., Prayura Kunasol, M.D., and Jerome H. Kim, M.D.,
for the MOPH-TAVEG Investigators**

ABSTRACT

The development of a safe and effective vaccine against the human immunodeficiency virus type 1 (HIV-1) is critical to pandemic control.
methods
In a community-based, randomized, multicenter, double-blind, placebo-controlled efficacy trial, we evaluated four priming injections of a recombinant canarypox vector vaccine (ALVAC-HIV [vCP1521]) plus two booster injections of a recombinant glycoprotein 120 subunit vaccine (AIDSVAX B/E). The vaccine and placebo injections were administered to 16,402 healthy men and women between the ages of 18 and 30 years in Rayong and Chon Buri provinces in Thailand. The volunteers, primarily at heterosexual risk for HIV infection, were monitored for the coprimary end points: HIV-1 infection and early HIV-1 viremia, at the end of the 6 -month vaccination series and every 6 months thereafter for 3 years.
results
In the intention-to-treat analysis involving 16,402 subjects, there was a trend toward ficacy of 26.4% (95% infection among the vaccine recipients, with a vaccine ef protocol analysis involving 12,542 subjects, the vaccine efficacy was $26.2 \%(05 \% \mathrm{CI}$, -13.3 to $51.9 \mathrm{P}=0.16$). In the modified intention-to-treat analysis involving 16,395 subjects (with the exclusion of 7 subjects who were found to have had HIV-1 infection at baseline), the vaccine efficacy was $31.2 \%(95 \% \mathrm{CI}, 1.1$ to $52.1 ; \mathrm{P}=0.04)$. Vaction at baseline), the vaccine efficacy was 31.2% (95% CI, 1.1 to 52.1 ; $\mathrm{P}=0.04$). Vac-
cination did not affect the degree of viremia or the CD4+ T-cell count in subjects in cination did not affect the degree of viremia or the CD
whom HIV-1 infection was subsequently diagnosed.
conclusions
This ALVAC-HIV and AIDSVAX B/E vaccine regimen may reduce the risk of HIV infection in a community-based population with largely heterosexual risk. Vaccination did not affect the viral load or CD4+ count in subjects with HIV infection. Although the results show only a modest benefit, they offer insight for future research. (ClinicalTrials.gov number, NCT00223080.)

From the Department of Disease Control Ministry of Public Health, Nonthaburi
(S.R.-N., R.P., C.N., S.C., C.K.,. P.T., P.K.). Vaccine Trials Center (P.P.) and Data Management Unit (J.K.), Faculty of Tropical
Medicine, Mahidol University, Bangkok; Medicine, Mahidol University, Bangkok;
Thai Component (S.N.) and U.S. Army Thai Col ionent (S.N.) and U.S. Army
Medical Component (I.C., R.P., M.S., M.B.), Armed Forces Research Institute of Medical Sciences, Bangkok - all in Thailand;
the Division of AIDS, National Institutes of Allergy and Infectious Diseases, Na-
of tional Institutes of Health, Bethesda, MD (E.A.); S.anofi Pasteur, Swiftwater, PA (S.G.,
J. I. J. . M.) G Gobal Solutions for Infectios. J.T.J.J.G.M.); Global Solutions for Infectious
Diseases, South San Francisco, CA (D.P.F.). the Emmes Corporation, Rockville, MD (D.S.); the Global AIDS Program, Centers for Disease Control and Prevention, Atlanta
(D.L.B.); U.S. Military HIV Research Pro (D.L.B.). U.S. Military HIV Research Pro
gram, Walter Reed Army Institute of Re. search, Rockville, MD (M.L.R., N.L.M., J.H.K.).; and U.S. Army Medical Materiel
Development Activity, Ft. Detrick, MD (..H.K..). Address reprint requests to Dr.
Kim at the U.S Military HiV tesearcher Program, Walter Reed Army Institute of Research, 1600 E. Gude Dr., Rockville,
MD 20850, or at jkim@hivresearch MD 20850, or at jkim@ hivresearch.org. The names and affiliations of the Minis
try of Pubblic Health-Thai AIDS Vaccine Evaluation Group (MOPH-TAVEG) inves. tigators are listed in the Appendix.
his article ($10.1056 / \mathrm{NE}$ Moa0908492) was published on October 20, 2009, and was last updated on November 19, 2009, NEJM.org.
N Engl J Med 2009;361:2209-20.

No. at Risk	Years				
Placebo	6366	6283	6220	6089	6002
Vaccine	6176	6140	6068	5958	5874
Cumulative No. of Infections					
Placebo		16	31	44	50
Vaccine		5	22	32	36

igure 2. Kaplan-Meier C ulative Rates of Infection, According to Type of Analysis.
The vaccination regimen was completed approximately months after the first dose was administed the vaccine efficacy was 26.4% (95% confidence inter val [CI], -4.0 to $47.9 ; \mathrm{P}=0.08$) (Panel A). In the per-protocol analysis involving 12,542 subjects, the vaccine ef ficacy was $26.2 \%(95 \% \mathrm{Cl},-13.3$ to $51.9 ; \mathrm{P}=0.16$) (Panel B). In the modified intention-to-treat analysis involving 16,395 subjects (excluding 7 subjects who were found to have had HIV infection at baseline), the vaccine efficacy was 31.2% ($95 \% \mathrm{CI}, 1.1$ to 51.2 ; $\mathrm{P}=0.04$) (Panel C).
be seropositive for HIV-1 on the first test after vaccination were determined by RNA testing to have been infected at enrollment and were not included in the modified intention-to-treat anal ysis, leaving 16,395 volunteers: 8197 in the vaccine group and 8198 in the placebo group. This group consisted of 10,064 men (61.4% of the sub jects) and 6331 women (38.6%). Baseline charac teristics were similar for selected variables, and there was no imbalance between the two groups in self-described risk behavior (Table 1).

There were no substantive changes in serial self-reports of risk behavior during the trial. No data were collected on the status of male circumcision or on serologic analyses for adenovirus type 5 or herpes simplex virus type 2.

There were 52,985 person-years of follow-up (15% more than planned). At 42 months, 14,672 of the volunteers (89.5%) had completed the trial and were HIV-seronegative.

adverse events

Most local and systemic reactions to the vaccine were mild to moderate and reflected the finding of studies on the safety of these products that have been reported previously ${ }^{12,17,27-29}$ (Fig. 1 in the Supplementary Appendix). Most reactions wer mild to moderate and resolved within 3 days after vaccination. At least one adverse event was reported in 69.4% of subjects in the two study groups. The number of deaths and the frequency and severity of adverse events and serious advers events were similar in the two groups (Table 1 in the Supplementary Appendix).

PRIMARY END POINTS

HIV-1 Infection
HIV-1 infection was diagnosed in 132 subjects (56 in the vaccine group and 76 in the placebo

TABLE 1
ANNEALED CASE ($\lambda=0.183, \mu=1.60$)

Week	$\begin{gathered} \text { Exposed } \\ N \end{gathered}$	Broken n	n / N	F_{i}	$P_{i}{ }^{\text {c }}$	σ	δ	$8 / \sigma$
1	549	23	. 042	. 0410	. 041	. 0086	. 001	. 12
2	521	38	. 073	. 1127	. 075	. 0115	-. 002	$-.17$
3	470	48	. 102	. 1934	. 091	. 0133	. 011	. 83
4	415	40	. 096	. 2763	. 103	. 0149	-. 007	-. 47
5	371	36	. 097	. 3564	. 111	. 0163	-. 014	-. 86
6	331	42	. 127	. 4317	. 117	. 0177	. 010	. 56
7	285	35	. 123	. 5008	. 122	. 0194	. 001	. 05
8	247	33	. 134	. . 5638	. 126	. 0211	. 008	. 38
9	210	26	. 124	. 6199	. 129	. 0231	-. 005	-. 22
10	182	17	. 093	. 6698	. 131	. 0250	-. 038	-1.52
11	163	22	. 135	. 7145	. 134	. 0267	. 001	. 04
12	139	16	. 115	. 7537	. 136	. 0291	-. 021	$-.72$
13	123	8	. 065	. 7876	. 138	. 0311	-. 073	-2.35
14	114	19	. 167	. 8174	. 140	. 3026	. 027	. 83
15	95	17	. 179	. 8432	. 141	. 0357	. 038	1.06
16	78	13	. 167	. 8656	. 143	. 0396	. 024	. 61
17	65	8	. 123	. 8850	. 144	. 0436	-. 021	-. 48
18	56	7	. 125	. 9016	. 145	. 0470	-. 020	-. 43
19	49	12	. 245	. 9161	. 146	. 0504	. 099	1.96
20	37	5	. 135	. 9284	. 147	. 0582	-. 012	-. 21
21-25	31	17	. 548	. 9680	. 553	. 0893	-. 005	-. 06
26-30	14	10	. 714	. 9860	. 563	. 1325	. 151	1.14
$\chi^{2}=\Sigma(\delta / \sigma)^{2}=18.3$								
$F_{i}=\int_{0}{ }^{i} f(x) d x$ (From tables of the incomplete gamma function)							$\sigma \sqrt{P_{i}^{c}\left(1-P_{i}^{c}\right)}$	
$P_{i}{ }^{c}=$							$\delta=\frac{n}{N}$	

