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1 “Survival” or “Time-to-Event” Data

• Examples (events not necessarily ’bad’)

• Play down ’time-to’; emphasize its reciprocal (event rates, hazard
function) & cumulative incidence

• Why such data need special techniques

• Types of censored data

• Distinction between censoring and truncation

• (equivalent) Functions: S[t] , hazard h[t] , pdf[t]

• Links: e.g. S[t] = exp
[
−
∫ t
0
h[u]du

]
• Summaries of these functions

• “Cause-specific” Survival; Competing Risks

(NON-PARAMETRIC / SEMI-PARAMETRIC)

• Estimation (point &interval) of S[t], h[t] and pdf [t]

- Lifetable [fixed interval] - Kaplan-Meier [data-determined] - -
Nelson-Aalen [data-determined]

• Comparisons

• Risk Sets

• Adjusted comparisons (non-regression methods)

Contrasts in unexposed and exposed person-time (”Time-dependent”
exposure-)

SOFTWARE / GRAPHICAL DISPLAYS

APPLICATIONS

READINGS (* = most relevant)

http://www.epi.mcgill.ca/hanley/c634/survival analysis *

• * Survival Analysis Sections 1 and 2 [Intro and Lifetables] Ch 17 of
Armitage et al 4th ed.

• * Lifetables [ and Survival after Treatment..] pp 199-205 of Ch 18 of
Bradford Hill

• Survival Analysis Chapter 12 from Statistics at Square One [bmj online]

• Survival Analysis Chapter 11 from Statistical Methods for Comparative
Studies by Anderson et 5 al.

OTHER RESOURCES

• http://www.epi.mcgill.ca/hanley/c634/survival analysis

• Textbooks devoted to Survival Analysis by ...

...Hosmer & Lemeshow

...Collett

...Kleinbaum & Klein

“SURVIVAL” or “TIME-TO-EVENT1” DATA

• Examples (events not necessarily ’bad’)

– women/couples : becoming pregnant; fetuses: being born
(gestational age)

– infants: first sleep through the night, word uttered, walk, tooth,
mosquito bite after application of (sham or real) prophylaxis, tooth
eruption, caries

1Merriam-Webster http://www.m-w.com/cgi-bin/dictionary

Main Entry: EVENT. Pronunciation: i-’vent. Function: noun. Etymology: Middle
French or Latin; Middle French, from Latin eventus, from evenire to happen, from e- +
venire to come – Date: 1573 1 a archaic : OUTCOME b : the final outcome or determination
of a legal action c : a postulated outcome, condition, or eventuality ¡in the event that I am
not there, call the house¿ 2 a : something that happens : OCCURRENCE b : a noteworthy
happening c : a social occasion or activity 3 : any of the contests in a program of sports 4
: the fundamental entity of observed physical reality represented by a point designated by
three coordinates of place and one of time in the space-time continuum postulated by the
theory of relativity 5 : a subset of the possible outcomes of an experiment.
JH would add an ’epi’ definition: a TRANSITION from one state to another.
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– infants: last breast feeding, diaper (and the ’flip side’ thereof *)

– adolescents: first beer, cigarette, sexual intercourse, driving licence,

– then: job, motor vehicle accident; university degree,
marriage/cohabitation

– then: first gray hair; Ph.D.; divorce; lose job; offspring born;
grandchild, cancer diagnosis, menopause, bph, etc....

– new (transient) condition: (headache, rash, cold, ) ... resolution
(removed??) condition, e.g. cancer: re-appearance ; death from
life threatening situation, eg buried by avalanche: how long
survive?

• Play down ’time-to’

– emphasize its reciprocal (event rates, hazard function) &
cumulative incidence at issue is exit from a state (to another), and
the exit rates

• Why such data need special techniques

– not everyone will experience event (no matter how long followed)

– some haven’t been followed for full length of time (enrolled late)

– some ’lost to view’

– some die (of unrelated causes) or have the ”target” removed [NB
”data not symmetrically/normally distributed” not reason per se]
[likewise, absence of censored data doesn’t mean one can’t use
survival analysis techniques.. see fruitfly survival data]

• Other types of censored data (besides right-censored & time)

– left censored
... HepC +ve now, but since when?
... PSA level post prostatectomy ’undetectable’ .. limit of detection
... Thermometer stops at -10C

– interval censored
... onset of puberty / caries / when hiv+ : periodic examinations
... rounded or grouped measurements (eg age, income)

– right censored
... measurement off the upper end of instrument scale
... open-ended category
... thermometer stops at +40C

• Distinction between censoring and truncation

– censoring: every (or representative sample of) person(s)/object(s)
is observed; have some bounds on the quantity

– truncation: some person/objects not observed / excluded, and
probability of in/exclusion has to do with the very quantity of
interest.. the length of time ... , their size, etc. [length-biased
sampling, deliberate exclusions, ..]

Examples of truncated data...

cross-sectional survey misses those who exit quickly

* ask in 2004 for list of all Ph.D. students ’on the books’ i.e. active
in 1994 and determine in which year (Ph.D. 3, 4, ..) these students
got the degree

* survival of Alzheimer pts [Wolfson]

* ask in 2004 for list of all patients on hospital census on randomly
selected days in 2002; calculate average length of stay.

sampling design misses objects of short sizes

* select words by sticking a pin at random on page; measure
average length of the words selected.

* select inter-arrival times of buses via cross-sectional sampling
design

measuring instrument misses objects of short sizes

* select fish using a given size mesh of net ;

* lose rapid onset events if counter takes time to reset after
previous event .. cars, radioactive disintegrations etc.

exclude pts who die early, before ’an adequate trial of tx or

[for 5-year survival, yes/no], include patients who entered study
less than 5 years ago if they already died, but exclude those who
entered less than 5 years ago but who have not died.
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[EQUIVALENT] FUNCTIONS: S[t] , hazard h[t] , pdf [t]

T : random variable (duration, time to, time from T0, etc.. )

t: a specific point on T scale (eg 7 days / 5 years post-op)

• S[t] (survival function)

– S[t] = Prob[T > t] is unconditional.
– can debate whether to use > or ≥; by convention in mathematical

statistics, we define the complement of the S[t] function, namely
1− S[t], as F [t] = Prob[T ≤ t], so I will use S[t] = Prob[T > t].
In practice, since we measure time in discrete amounts, it is not an
issue; survival textbooks are divided on this fine point. F [t] is
often called the cdf or cumulative distribution function (maybe
that’s where the silly term ‘cumulative’ survival comes from!)

• h[t] (hazard function)

– h[t] = limδt→0
Prob[t<T≤t+δt|T>t]

δt is conditional.
– Can think of h[t] as a short-term (‘instantaneous’) rate, in epi

sense, with time denominator. To see why, consult page 12, section
1.3 of Collett, or consider the diagram in the next column.

– Before taking limit, can see that the conditional probability

Prob[t < T ≤ t+ δt|T > t]

in the top part of the above expression can be re-written as

Prob[t < T ≤ t+ δt]
Prob[T > t]

The Numerator of this expression is proportional to the number of
deaths in the interval, just like dx in a lifetable. i.e., it is the
amount by which S (or lower-case l in lifetable) changes during the
interval. The Denominator of this expression is S[t] and, in
lifetable terms, is proportional to the number alive at T = t, and
so has dimension ‘persons’. Divide the top of the first expression
by δt to get a quantity proportional to

d

S[t]× δt
=

number of deaths
Person-time

Think of the rectangle standing on the base (t, t+ δt) as a person
time denominator, and the δS = d as the ‘persons’ numerator. As
one narrows the δt, the rate hardly changes if the curve is smooth.

EPIB 634 Survival Analysis & Related Topics Survival Analysis / Follow-up Studies

• [equivalent] Functions: S[t] , hazard h[t] , pdf[t]
Divide the top of (1) by δt to get a quantity proportional to

d
S[ t ] × δt

    =   number of deaths
Person-time

    (3)T: random variable (duration, time to, time from T0, etc.. )
t: a specific point on T scale (eg 7 days / 5 years post-op) Think of rectangle standing on the base (t, t+ δt) as a person time

denominator, and the ∆s = d as the 'persons' numerator. As one
narrows the δt, the rate hardly changes if the curve is smooth.S[t] (survival function)

S[t] = Prob[ T > t ]       unconditional.
S[t]

1

0
t

∆S

t+∆t

∆t
can debate whether to use > or ≥ ; by convention in mathematical
statistics, we define the complement of the S[t] function,  namely 1
– S[t], as
F[t] = Prob[ T ≤ t } , so I will use S[t] = Prob[ T > t ].
In practice, since we measure time in discrete amounts, it is not an
issue; survival textbooks are divided on this fine point. F[t] is often
called the cdf or cumulative distribution function (maybe that's
where the silly term 'cumulative' survival comes from!)

h[t] (hazard function)

h[t] = limit, as δt -> 0, of  
 Prob[ t < T ≤ t + δt | T > t ]

δt       (1)

   conditional In mathematical-statistical terms, we replace d by the product of
the probability density function f[t] and the δt, so that the limit,
after the δt cancels out, h[t] becomes

Can think of h[t] as a short-term ('instantaneous') rate, in epi
sense, with time denominator. To see why, consult page 12,
section 1.3 of Collett, or consider the diagram in the next column.

Before taking limit, can see that the conditional probability

 Prob[ t < T ≤ t + δt | T > t ]

in the top part of expression (1) can be re-written as

Prob[ t < T ≤ t + δt ]
Prob[ T > t ]

           (2)

The Numerator of (2) is proportional to the number of deaths in
the interval, just like dx in a lifetable. ie it is the amount by which S
(or lower-case l in lifetable) changes during the interval.

The Denominator of (2) is S[t] and, in lifetable terms, is
proportional to the number alive at T=t, and so has dimension
'persons'.

h[t]  =  
f[ t ]
S[ t ]   = (4)

f[t] is the negative of the derivative of S[t], so can rewrite (4) as

h[t]  =  – 
d log{ S[ t ]}

δt  , leading to 

S[t] = exp[ – ∫ h[u] du ],  integral from u=0 to u=t (5)

Bottom line.. can reconstruct h[t] from S[t] & vice versa --  or from f[t]

(see alternative derivation Incidence <--> cumulative incidence, survival function
Notes by JH in Resources for Lifetables.)

Packages plot the negative of the log of the S[t] curve against t, since it
allows us, when comparing two curves, to judge more easily whether the
hazard functions are proportional to each other at all values of t

The integral of h[u] up to t is the area under the hazard function up to t,
and is called (not surprisingly) the 'integrated hazard'

page  3

In mathematical-statistical terms, we replace d by the product of
the probability density function f [t] and the δt, so that the limit,
after the δt cancels out, h[t] becomes

h[t] =
f [t]
S[t]

f [t] is the negative of the derivative of S[t], so can rewrite as

h[t] =
−dlogS[t]

δt
.

Rothman19862 says we can solve this differential eqn. to get

S[t] = exp
[
−
∫ t

0

h[u]du
]
.

Bottom line.. can reconstruct h[t] from S[t] & vice versa – or from
f [t] (see alternative derivation Incidence←→ cumulative incidence,
survival function Notes by JH in Resources for Lifetables.)

Survival analysis packages plot the negative of the log of the S[t]
curve against t, since it allows us, when comparing two curves, to
judge more easily whether the hazard functions are proportional to
each other at all values of t The integral of h[u] up to t is called
(not surprisingly) the ‘integrated hazard’.

2The PoissonProb(0 events | µ = integral] is an easier way to see this.
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SUMMARIES of (3 equivalent) functions S[t], h[t] & f [t]

• median: the value of t at which S[t] = 1/2 ( half-life” or t50)

• mean: the area under the (complete) S[t] curve ( if available) equivalent
to e0 in life table

• quantile/fractile/percentile: the value of t at which S[t] equals some
proportion or %

• x-year survival (or cumulative mortality): the value of S[t] at specified
value of t

“CAUSE-SPECIFIC” SURVIVAL; COMPETING RISKS

Treat time of death from another cause (not of interest) as a censored
observation (used a lot in cancer statistics)

• can give misleading answers if substantial other forces of mortality

... see material on prostate cancer on 626 web page.

• it is possible to have survival curves with 3 categories (alive, dead of
target condition, dead of something else).

... Again, see 3-ply curves in Albertsen Hanley et al JAMA Sept 1998.

same would apply to outcomes of starting a Ph.D.. e.g. at 5 years..
............ xx% have obtained a Ph.D.
............ yy% have decided it is not for them
............ zz% are still pursuing it

• used (sometimes naively) to calculate ‘lifetime probability’ of developing
cancer or other condition.

Should ask: does the calculation allow for the possibility that one might
die of another cause before one could develop the target condition?

INFERENCE (Non-Parametric / Semi-Parametric)

• Estimation (point & interval) of S[t] , h[t] and pdf[t]

– Lifetable (fixed interval) [ Bradford Hill or Armitage ]

– Kaplan-Meier (data-determined) [cf. Armitage]

– Nelson-Aalen (data-determined) [cf. Collett or Clayton/Hills]

• Comparison of Survival Data/Curves

– x-year (e.g. 5-year) survival (or cumulative mortality)

Use SE[Ŝindex−cat.Ŝref.−cat.]

SE for each determined by formula of
... Greenwood (Armitage eqn 17.7 p 576 )
... Kalbfleisch & Prentice (Armitage eqn 17.8 p 575 )
... Peto (Armitage eqn 17.9 p 575 )

– entire curves

log-rank test [M-H ; one 2× 2 table / distinct event-time]
Armitage section 17.6 p 576 )

note that it is a test;
can be used to obtain ’relative death rates’ (Armitage p578)

Wilcoxon (Gehan) test; Peto test
[Kleinbaum Chapter 2]

all of these tests have the log-rank format,
but weight the (a− E[anull]) differences differently

log rank : gives equal weight to each failure time
Peto : gives more weight to early failure times

– Software: SAS / Stata / R : see examples in Resources
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2 Fitting Rate/Hazard/ID Functions via
Regression Methods

2.1 Déjà

• 1 (homogeneous) sample: “Survival” / “Time-to-event” data:

– (equivalent) Functions: S[t] , hazard h[t] , pdf [t]

– Links: e.g. S[t] = exp
[
−
∫ t
0
hu(du)

]
– Summaries of these functions (e.g. T25, T50, S[T ] )

– Non-Parametric / Semi-Parametric Estimation (point & interval)
of S[t], h[t] & pdf [t]
— Lifetable [fixed-∆T ’s] & K-M/N-A [data-determined ∆T ’s]

– Censored data not necessarily “time - to - event”:
Y = PSA levels < detection limit, salaries in intervals, distance
travelled on set of tires, pages on single ink cartridge, etc.

– ‘1 (homogeneous) sample’ structure → think of as ”intercept-only”
regression model

• Comparison of 2 Survival/Hazard Curves or Distributions

– think of as regression model with single binary X

– Risk Sets (match on time of event)

– Adjusted comparisons (non-regression methods, e.g.
standardization/MH)

• Not covered: Parametric models for Lifetime Distributions
SAS LIFEREG procedure fits parametric models to failure time data that can be right,
left, or interval censored. The models for the response variable consist of a linear
effect composed of the covariates and a random disturbance term. The distribution
of the random disturbance can be taken from a class of distributions that includes
the extreme value, normal, logistic, and, by using a log transformation, the
exponential, Weibull, lognormal, loglogistic, and gamma distributions.

Stata streg performs maximum likelihood estimation of parametric regression
survival-time models. Survival models currently supported are exponential, Weibull,
Gompertz, lognormal, log-logistic and generalized gamma. Also see help stcox for
estimation of proportional hazards models.

R survival package: Regression for a Parametric Survival Model: These are all

time-transformed location models, with the most useful case being the accelerated

failure models that use a log transformation.

• (Parametric) Regression Models for Rates

Model (event) rates or hazards

Work in ‘inverse-time’ (t−1) scale, rather than time-scale:

Rate = no. of events
amount of person-time ; TimeToEvent = amount of person-time

no. of events

i Models with ‘multiplicative ’ rates/hazards, e.g.,

[βV denotes ‘regression coefficient associated with variate V ’]

log[rate] = log[h] = log[λ] = β0 + βt × t+ βX1 ×X1 + βX2 ×X2 . . .

rate = h = λ = eβ0+βt×t+βX1×X1+βX2×X2...

rate = h = λ = eβ0 × eβt×t︸ ︷︷ ︸× eβX1×X1 × eβX2×X2 × . . .︸ ︷︷ ︸
Rates/hazards are PROPORTIONAL (rate ratio parameter
constant over time-bands and covariate patterns...) if no product
terms for ‘effect modification’/‘interaction’).
In Generalized Linear Model, we model the numbers of events,
with log link .. and log(PT) as offset.

exp[β̂0]: Rate/incidence/ID at t = 0, X1 = 0, X2 = 0, etc..

exp[β̂]: Rate ratio/IR/IDR/HR:
contrasting rates for two X (or t) values 1 unit apart

ii Models with additive rates/hazards, e.g.,

rate = h = λ = β0 + βt × t+ · · ·+ βX1 ×X1 + βX2 ×X2 . . .

Not as ‘natural’. See pp59– from Ch. 2 Vol. I of Breslow & Day
(in Resources) for empirical evidence for better fit of proportional
rate models (constant rate ratio models) than additive rates
models (constant rate difference models) in cancer epidemiology.
N.B.: B&D use the term “relative Risk” very loosely, when in fact
they mean “relative Rates” or rate Ratios.
In GLM, model the no.’s of events, with identity link .. no
intercept (no cases if denominator is zero) & (as regressors)
product of PT denominator with each regressor in the rate model.
β: rate difference; contrast of 2 rates one X (or t) unit apart

NOTE: Models contain terms for t, i.e., TIME, measured in suitable scale.
Models are ‘parametric-in-t’ or ‘smooth-in-t’

5



EPIB634: Lifetable Regression Methods. March 11, 2010.

2.2 Semi-Parametric Models for Rate/Hazard functions

2.2.1 First, the basics...

Again, ‘multiplicative ’ rates/hazards, but now...

Split Model into 2 distinct parts:

log[rate] = log[h] = log[λ] = log[?(t)]︸ ︷︷ ︸ + βX1 ×X1 + βX2 ×X2 . . .︸ ︷︷ ︸
rate = h = λ = elog[?(t)]︸ ︷︷ ︸ + βX1 ×X1 + βX2 ×X2 . . .︸ ︷︷ ︸
rate = h = λ = ?[t]︸︷︷︸ × eβX1×X1 × eβX2×X2 × . . .︸ ︷︷ ︸

where ?(t) is an unspecified hazard function for the rates over time in the
reference cell or profile (each of the X’s = 0).

2.2.2 A few more details...

Shorthand: You will often see the h (or ID or rate or λ) model written,
with underlined X as shorthand for a vector of variates, and β as the
corresponding vector of regression coefficients, as

hazard[t,X] = h[t,X] = h0[t]︸︷︷︸× eβX︸︷︷︸
JH prefers to write it as

hazard[t,X] = h[t,X] = {? h0[t] ?}︸ ︷︷ ︸× eβX︸︷︷︸
to emphasize the fact that the form of h0[t] is left unspecified.

The word “baseline”: Statisticians often refer to the h0[t] function as the
‘baseline’ hazard function. In this context, the word ”baseline” does not
refer to measurements (covariates) recorded at T = 0. A better name for it
might be the ‘hazard function for the reference profile’: the subscript ( 0)
means that it refers to the hazard function for the profile where all X
variates are set to zero, against which all other profiles are compared. Thus,
it has the same meaning as the “corner” or “point of departure” category
used by Clayton and Hills (eg. “40-49 year olds, unexposed” in the
regression example in Table 22.6 p 221 of Clayton and Hills.

You could also think of the entire curve h0[t] is the “intercept curve”.

“Proportional” hazards: Rates/hazards are PROPORTIONAL (rate
ratio parameter constant over time-bands and covariate patterns...) if no
product terms for ‘effect modification’/‘interaction’).

“How often are hazards “Proportional” ?: Often, one can predict,
based on the biology of the situations, whether they might be. See examples,
on earlier handouts, from JUPITER trial, COMPARE trial, SHEP trial,
cancer screening for cancer or abdominal aortic aneurysms, weekend vs
weekday admissions for MI, role of circumcision in prevention of HIV
infection, etc. See if you can recognize which is which in the schematic
examples in the Figure at end of these notes.

Where does the ‘semi-parametric’ come into it? The model is called
semi-parametric because it only models a portion of the hazard function
using the smooth parametric component eβX and avoids modelling the
nuisance (”t”) part. We don’t fit parameters that (a) are not our focus (b)
waste “degrees of freedom”.

How does one ‘get rid of’ the nuisance part h0[t]? We use risksets &
conditioning to get rid of the h0[t], and thus focus on the the β parameters.

Risk sets are always ordered in time: sometimes, there are
different possible choice for a time-scale: e.g. ‘calendar tim, or
age, or time since entry’: How to choose which one is used to
define the risksets? Cox and Farewell say ‘use the the one over which the
hazard function is the most difficult to model .. avoid this challenge: match
risksets on this scale.’

The Figure at end of the notes shows Framingham data analyzed with two
different times scales, namely age and ‘grant-year‘ (which started in 1948).

Links to analysis of matched case-control studies: These same
multiplicative models, and the strategy of conditioning as a way of
eliminating parameters, applicable to matched case-control studies and even
to c-c and other (e.g. consumer choice*) studies with no ‘time’ element
[“conditional logistic regression”]

(* Daniel McFadden shared the Nobel Prize for his development of theory
and methods for analyzing discrete choice in Economics:
http://www.nobel.se/economics/laureates/2000/mcfadden-autobio.html)
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2.2.3 Once we fit the β’s, how do we get survival curves or CI
curves for different profiles?

See Julien M and Hanley JA. Profile-specific survival estimates: Making
reports of clinical trials more patient-relevant Clinical Trials 2008; 5:
107-115. Under r e p r i n t s on JH’s main page

Sx[t] in terms of S0[t]

• Remember general law: S[t] = exp[−H[t]], where H[t] is the integral or
integrated or “cumulative” hazard.

• (simplest case) Relationship between S[t] curve for x = 1 and S[t] curve
for x = 0 [“corner”]

h[t|x = 1] = h0[t]× eβ×1 = h0[t]×HazardRatio. So, ...

integral of h1[t] = integral of h0[t]×HazardRatio. So, ...

S[t|x = 1] = exp{−H[t|x = 0]×HazardRatio}

= {exp{−H[t|x = 0]}HazardRatio

= S0[t]HazardRatio,
In general, the HazardRatio would involve all of the variates on
which the profile in question differered from the reference profile –
here we just had a 1-dimensional profile, with just 2 levels, x = 1
(index) and x = 0 (reference).

S curve for a profile is constant power of curve for ref. profile.

But need to fit the β’s first: obtaining the S or CI curves for various profiles
is a “post-processing” option – most people seem to be unaware it exists.

2.2.4 Test of Proportionality

Two log[−log[S]] functions (for x = 1 & x = 0 ) should be parallel

• H[t] is the integrated or “cumulative” hazard

• − log[S] = H[t], so − log[S1[t]] = HR× {− log[S0[t]]}

• Two − log[S] curves should be proportional (easier to judge if these
are parallel than that hazards are proportional)

• use as test of proportionality assumption

• hazard functions not stable enough to assess if h[t] curves are prop’nl)

• See textbooks for more details on tests of residuals, etc.

2.2.5 Readings

[ http://www.epi.mcgill.ca/hanley/c681/cox ]
Clayton&Hills, Ch 30, sections 4-6
Collett Textbook, Chapter 3/4
Kleinbaum’s ‘Self-Learning’ textbook, Chapter 3/4
Pair of expository articles by JH

2.2.6 Exercises, Ch30, Cox’sRegressionAnalysis, Clayton & Hills

Table 30.1. A cohort of 10 subjects
Entry to Study End of Study

Subject Sex Date Age Date Age
A F 13/ 6/65 29.3 31/12/89 53.8
B M 23/10/72 25.2 31/12/89 42.4
C M 3/3/59 22.1 31/12/89 52.8
D F 10/10/67 32.2 31/12/89 54.4
E M 2/ 1/60 33.1 4/ 7/79 52.6
F M 9/ 1/75 42.1 31/12/89 57.1
G F 5/8/53 35.2 3/10/68 50.4
H M 10/10/69 27.0 31/12/89 47.2
I M 2/3/72 44.8 31/12/89 62.7
J F 1/11/70 51.5 31/12/89 70.6

Exercise 30.1. The data set out in Table 30.1 refer to 10 subjects from a
cohort study. Subjects E and G died at the second date while the remaining
eight subjects survived until the date of analysis (31/12/89). List the
members of the rIsk sets for both deaths when the appropriate time scale is
(a) calendar date (b) age (c) time since entry into the study.3

The difference between these analyses is that they represent three different
models. In each case the model parameters represent variation of baseline
rates along different time scales.

Exercise 30.2. Repeat Exercise 30.1 for an analysis which is to be
stratified by sex.

3Hint(JH): 10 ‘lifelines’ drawn on a Lexis diagram make it easy to see who is in which.
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Course EPIB634: Proportional (and Non-proportional) Hazards Models {version 2008.03.28}
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Fitting proportional hazards model:  Risksets

Our prime interest is in estimating the parameters of HR; we will also, as
a secondary objective, estimate ho(t). The keys to the estimation are the
Risk Sets, the collections of candidates for (individuals at risk just
before) each distinct failure time (event)

Estimating HR by (Partial) Likelihood approach

It helps to lay it out the 5 risk sets as follows (note that in the 5th riskset
there is 'no contest') ...

o=d1 1 0 1 1 -
    s1 3            2            1            0            -
    n1 4 2 2 1

    d0 0 1 0 0 1
    s0 3            2            2            1            0
    n0 3 3 2 1 1

Simplest case (1 covariate z, 2 levels or Tx groups which we will

distinguish using indicator variable z= 0 and z=1). In e.g. below, a •

denotes a failure (event), a + denotes a censored observation; and time

runs from left to right [note: to estimate HR function we do not need the

failure & censoring times themselves, only their order with respect to z]. In the Maximum Likelihood method, we find that value of the HR which

maximizes the likelihood of the observed data pattern (the sequence

is indicated in bold above) The likelihood is a function of HR.
Raw data..( 7 individuals).

z=1   •   +       •          •
z=0           •        +           •

To construct the Likelihood function, we need a probability model for

each table (i.e., for the outcome in each riskset) and an assumption

regarding the separate tables. In the calculation of a variance for the MH

statistic (log rank test) we already assumed that the 2x2 tables were

realizations of hypergeometric (urn sampling) models and that the tables

could be treated as if they were independent of each other. We could do

the same here to set up a likelihood.

It is easier to lay them out as separate time lines [in the 'early days'

before computers, some investigators would represent survival data on

their patients using lines of thread along a wall].

z=1 ––•
z=1 ––––––+
z=1 ––––––––––––––•
z=1 –––––––––––––––––––––––––•

z=0 ––––––––––•
z=0 –––––––––––––––––––+
z=0 ––––––––––––––––––––––––––––––•

For each risk set, we ask

"Given that the event occurred, what is the chance that it ocurred
to the individual it happened to, rather than to someone else in the
risk set?"

Riskset #  1       2   3          4    5

Cox argued that since there are no failures (events) between the •'s, we

do not know much about the hazards in these gaps [unless we want to

posit parametric form for ho(t) or So(t)]. In any case our prime interest

is in HR, and so we will concentrate just on these risk sets.
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Consider a risk set where the event happened at t to a person with z=1.

If the hazard for persons with z=1 is HR×ho(t) and 1×ho(t) for those
with z=0, and if in the risk set there are n1 and n0 persons respectively,
then the [conditional] probability that the event happened to that
particular person with z=1  out of the n1 and n0 'at risk' is

HR × h0[t]
n1 × HR × h0[t]    +    n0 × 1 × h0[t]

which simplifies to

HR
n1 × HR    +    n0 × 1 

Conversely, in a risk set where the event happened to a person with z=0.
then the [conditional] chance that the event happened to that particular
person with z=0  out of the n1 and n0 'at risk' is

1
n1 × HR    +    n0 × 1 

Thus, for the example above, the product of the probabilities of the
observed outcome (likelihood) in each of the 4 informative risksets is

L = 
HR

4HR+3  ×  
1

2HR+3  ×  
HR

2HR+2  ×  
HR

HR+1

This likelihood L(HR)= prob(data | HR) can be evaluated for a range of
HR values in order to find the value  HR̂ML which mazimises  L. e.g.

HR 1/2 1 2 4 8 16

Lx103 1.4 3.6 5.8 6.1 4.8 3.0

The function L & derived functions are shown graphically on next page.

0 10 20 30 40 50
HR

0.002

0.003

0.004

0.005

0.006

Likelihood

Or with the parameter B = Log[HR] ...

-1 0 1 2 3 4
log[HR]

0.001

0.002

0.003

0.004

0.005

0.006

Likelihood
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or in the log Likelihood scale... Uncertainty / Information concerning log [HR]

The 'sharpness' or 'flatness' of the logL(HR) curve in the vicinity of B =
1.14 gives an indication of how sensitive logL is to changes in log[HR]
i.e. of how well or badly other values of log[HR] would do in producing
a large likelihood. This can be measured by the 2nd derivative of logL
(or if you like by the tangent to the 1st derivative curve) with respect to
B. Note that the L curve increases until B = 1.14 then decreases. Thus
the slope dlogL/dB goes from positive to negative over this range. ie the
2nd derivative is negative. Since we are simply interested in the curvature
we use the negative of the 2nd derivative; it will be a big positive quantity
when the curvature is very sharp, and a small positive quantity when the
curvature is very slow.

-1 0 1 2 3 4

-7

-6.5

-6

-5.5
LogL

B = Log[HR] The plot below shows that the curvature of logL is quite small
(approximately 0.7412 at  B = 1.14). This negative of the 2nd derivative
of the log likelihood, evaluated at the ML estimate, is called the
"Information" in the data. Its reciprocal is a good measure of the
variance of the ML estimate of B.The Derivative of the log Likelihood ...

-1 0 1 2 3 4
B

0.2

0.4

0.6

0.8

1

- d (d LogL / dB ) / dB

-1 0 1 2 3 4

-0.5

0.5

1

1.5

2

d LogL / dB

B = Log[HR]

We usually work with B =log[HR], since the sampling variability of b is
more symmetric. The I[Β] calculated at b = 1.14 is approximately
0.7412, yielding  SE[b] =  √(1/0.7412) = 1.16, yielding a 95% CI for
HR=exp[B] of {0.3 to 31}.The 4 informative risk sets provide just a
small amount of information about log[HR] and our confidence in
values near the ML estimate is low.

Tangent to logL curve is zero at B = 1.14 (we call this B_hat or b];

So...    HR̂ML = exp[b] = 3.14.
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Estimating HR via SAS PROC PHREG 7 obs., representing 5 failures in single record/single failure data
56  total analysis time at risk, at risk from t =  0
earliest observed entry t = 0 last observed exit t =  14DATA a;
.

INPUT event  time   tx ;  /* Note arbitrary times              */
* null modelLINES;                    /* only ORDER matters                */
stcox, estimate        1     2     1     /* event=0 stands for censored obsn. */

        0     4     1          failure _d:  event
        1     6     0    analysis time _t:  time
        1     8     1

Iteration 0:   log likelihood = -5.6347896        0    10     0
        1    12     1

Log likelihood  =   -5.63   Prob > chi2     =         .        1    14     0
; * model with tx.. gives beta_hats, not HR_hats
title null model; proc phreg ; model time*event(0) = ; stcox tx, nohr
Dependent Variable: TIME       Number of Event & Censored Values Iteration 0:   log likelihood =  -5.074435
Censoring Variable: EVENT

LR chi2(1)      =     1.12Censoring Value(s):            Total   Event  Censored  %Censored
Log likelihood  =    -5.07   Prob > chi2     =    0.2898Ties Handling:      BRESLOW        7       5         2    28.57

 _t |    Coef. Std. Err.   z    P>|z|  [95% Conf. Int]NOTE: No explanatory variables in this model.  -2 LOG L = 11.27

JH: LOG L = log[{1/7} x {1/5} x {1/4} x {1/2}] = LOG[1/280] = -5.63 ---------------------------------------------------------
  tx |   1.143    1.161  0.98   0.325    -1.13   3.41

title model with tx; proc phreg data=a; --------------------------------------------------------
                     model time*event(0) = tx / RISKLIMITS; .

. * model with tx.. gives HR_hats, not beta_hats
    Testing Global Null Hypothesis: BETA=0 . stcox tx
         Without   With Covariates        Model Chi-Square

 _t | HazRatio Std. Err.  z    P>|z|   [95% Conf. Int]
-2 LOG L  11.27   10.15              1.12  with 1 DF (p=0.29) ---------------------------------------------------------

 tx |  3.14      3.64   0.98   0.325     .32    30.55ML Estimates
--------------------------------------------------------         Parameter Standard  Wald    Pr >     Risk*      95% CL

Variable  Estimate   Error  Chi-Sq  Chi-Sq    Ratio    Lower  Upper Estimating HR via survival package in RTX         1.14      1.16** 0.9685   0.33     3.14     0.32    30.6

require(survival);      event=c(1,0,1,1,0,1,1);
time=c(2,4,6,8,10,12,14); tx =c(1,1,0,1,0,1,0);

* Technically speaking, should be called Hazard Ratio;  Obtained as exp[1.14]
** See 2nd Derivative graph on left:   SE[b] = Sqrt[var] = sqrt[1/Information]

fit=coxph( Surv(time, event) ~ tx); summary(fit)
Estimating HR via Stata    coef exp(coef) se(coef)     z    p
1.input event time tx tx 1.14      3.14     1.16 0.984 0.33
          1     2   1               hr
          0     4   1   2. stset time , failure(event)

   exp(coef) exp(-coef) lower .95 upper .95          1     6   0
          1     8   1 tx      3.14      0.319     0.322      30.6
          0    10   0 Likelihood ratio test= 1.12  on 1 df,   p=0.29
          1    12   1 Wald test            = 0.97  on 1 df,   p=0.325          1    14   0

Score (logrank) test = 1.07  on 1 df,   p=0.3   end
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   Framingham study: TIME Scale =  YEAR_of_research_grant ...    TIME Scale = AGE  .(NOTE how delayed entry is specified)
FU_AGE | risk set( vertical ) based on deaths in calendar (project) year FU_AGE | risk set ( horizontal ) based on deaths at a particular age
       |        |
    88 +                                                          ^     88 +                                                          >
    87 +                                                          ^     87 +                                                          >
    86 +   time scale is 'rough', because of 2-year cycles    ^   ^     86 +                                                      >   >
    85 +                                                      ^   ^     85 +                                                      >   >
    84 +                                                  ^   ^   ^     84 +                                                  >   >   >
    83 +                                                  ^   ^   ^     83 +                                                  >   >   >
    82 +                                              ^   ^   ^   ^     82 +                                              >   >   >   >
    81 +                                              ^   ^   ^   ^     81 +                                              >   >   >   >
    80 +                                          ^   ^   ^   ^   ^     80 +                                          >   >   >   >   >
    79 +                                          ^   ^   ^   ^   ^     79 +                                          >   >   >   >   >
    78 +                                      ^   ^   ^   ^   ^   ^     78 +                                      >   >   >   >   >   >
    77 +                                      ^   ^   ^   ^   ^   ^     77 +                                      >   >   >   >   >   >
    76 +                                  ^   ^   ^   ^   ^   ^   ^     76 +                                  >   >   >   >   >   >   >
    75 +                                  ^   ^   ^   ^   ^   ^   ^     75 +                                  >   >   >   >   >   >   >
    74 +                              ^   ^   ^   ^   ^   ^   ^   ^     74 +                              >   >   >   >   >   >   >   >
    73 +                              ^   ^   ^   ^   ^   ^   ^   ^     73 +                              >   >   >   >   >   >   >   >
    72 +                          ^   ^   ^   ^   ^   ^   ^   ^   ^     72 +                          >   >   >   >   >   >   >   >   >
    71 +                          ^   ^   ^   ^   ^   ^   ^   ^   ^     71 +                          >   >   >   >   >   >   >   >   >
    70 +                      ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     70 +                      >   >   >   >   >   >   >   >   >   >
    69 +                      ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     69 +                      >   >   >   >   >   >   >   >   >   >
    68 +                  ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     68 +                  >   >   >   >   >   >   >   >   >   >
    67 +                  ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     67 +                  >   >   >   >   >   >   >   >   >   >
    66 +              ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     66 +              >   >   >   >   >   >   >   >   >   >
    65 +              ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     65 +              >   >   >   >   >   >   >   >   >   >
    64 +          ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     64 +          >   >   >   >   >   >   >   >   >   >
    63 +          ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     63 +          >   >   >   >   >   >   >   >   >   >
    62 +      ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     62 +      >   >   >   >   >   >   >   >   >   >
    61 +      ^   ^   ^   ^       ^   ^   ^   ^   ^     61 +      >   >   >   >       >   >   >   >   >
    60 +  ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     60 +  >   >   >   >   >   >   >   >   >   >
    59 +  ^   ^   ^   ^   ^   ^   ^   ^   ^   ^    overall mortality     59 +  >   >   >   >   >   >   >   >   >   >    overall mortality
    58 +  ^   ^   ^   ^   ^   ^   ^   ^   ^     58 +  >   >   >   >   >   >   >   >   >
    57 +      ^   ^   ^   ^   ^   ^   ^   ^     57 +      >   >   >   >   >   >   >   >
    56 +  ^   ^   ^   ^   ^   ^   ^   ^     56 +  >   >   >   >   >   >   >   >
    55 +  ^   ^   ^   ^   ^   ^   ^   ^     55 +  >   >   >   >   >   >   >   >
    54 +          ^   ^       ^   ^     54 +          >   >       >   >
    53 +  ^   ^   ^   ^   ^   ^   ^  proc phreg data=sasuser.fram;     53 +  >   >   >   >   >   >   >
    52 +  ^   ^   ^   ^   ^   ^     52 +  >   >   >   >   >   >
    51 +  ^   ^   ^   ^   ^   ^      model fu_year*dead(0) = i_male ;     51 +  >   >   >   >   >   >  proc phreg data=sasuser.fram;
    50 +      ^   ^       ^     50 +      >   >       >
    49 +  ^   ^   ^   ^   ^          where (40 <= age <= 59);     49 +  >   >   >   >   >      model (age,fu_age)*dead(0) = i_male ;
    48 +  ^   ^   ^   ^     48 +  >   >   >   >
    47 +  ^       ^   ^ Total 3198 Event 1544  Censored 1654(51.72 %)     47 +  >       >   >            where (40 <= age <= 59);
    46 +     46 +
    45 +      ^   ^     45 +      >   >      Total 3198 Event 1544  Censored 1654(51.72 %)
    44 +  ^     44 +  >
    43 +  ^   ^     43 +  >   >
       |                                          FU_YEAR (Since 1948)        |                                                    FU_YEAR
       --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --        --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --
          1   3   5   7   9  11  13  15  17  19  21  23  25  27  29           1   3   5   7   9  11  13  15  17  19  21  23  25  27  29

Testing Global Null Hypothesis: BETA=0 Testing Global Null Hypothesis: BETA=0

-2LOGL W/out:24098.1 With:23968.1 Covariates; Chi-Sq(1) 130; p=0.0001 -2LOGL W/out:22819.8 With:22662.7 Covariates; Chi-Sq(1) 157; p=0.0001

Maximum Likelihood Estimates Maximum Likelihood Estimates

              Parameter  Standard    Wald     Pr >    Risk (hazard)               Parameter  Standard    Wald     Pr >    Risk (hazard)
Variable  DF  Estimate    Error     Chi-Sq   Chi-Sq   Ratio Variable  DF  Estimate    Error     Chi-Sq   Chi-Sq   Ratio
I_MALE     1  0.583       0.051      129.3   0.0001   1.79 I_MALE     1  0.643       0.051      156.3   0.0001   1.90

Risk-sets "68" "69" ... ... candidates for death at age 68, 69,...

Mortality rates vary much more (and in more complex way)
over 20 years of age, than over 20 calendar years  => "t"=age

Risk-sets "1" "3", ... candidates for deaths in FU-YEAR "1" "3" ...
(each set has persons with a range of ages)
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