QUESTION 2

Use of antiinflammatory therapy and asthma mortality in Japan

ABSTRACT:

Asthma treatment guidelines were introduced in Japan in the 1990s, insisting as elsewhere, on the importance of anti-inflammatory therapy. The present study assessed whether use of anti-inflammatory medications was associated with a decrease in asthma mortality in Japan, the first country to use leukotriene receptor antagonists.

A population-based ecological study was conducted, spanning the period 1987 to 1999, among people aged 5 to 34 yrs in Japan. The association between the yearly rate of asthma death and sales of inhaled corticosteroids and leukotriene receptor antagonists was estimated using Poisson regression. The yearly asthma death rate was stable at 6 to 7 deaths per million before the introduction of leukotriene receptor antagonists in 1995 and decreased by __% thereafter, reaching 3.5 per million in 1999. The rate of asthma death was found to decrease with increasing use of both leukotriene receptor antagonists and inhaled corticosteroids. The rate ratio of asthma death was ____ per 1 million 25-day treatment courses of leukotriene receptor antagonists, consumed per year in Japan. The increasing use of inhaled corticosteroids and leukotriene receptor antagonists may have contributed to the significant reduction in asthma mortality among young asthmatics in Japan. *Eur Respir J 2003; 21: 101 to 104.*

Fig. 1.- Yearly asthma death rate per million people aged 5-34 yrs in Japan over the period 1987–1999 (\blacksquare) along with sales of inhaled corticosteroids in units of 1 million 25-day treatment courses (\blacklozenge).

Fig. 2.- Yearly asthma death rate per million people aged 5-34 yrs in Japan over the period 1987–1999 (■) along with sales of leukotriene receptor antagonists in units of 1 million treatment episodes of 25 days with capsules of 112.5 mg of pranlukast (♥).

QUESTION 2

- a Refer to the SAS statements, and the output, for "analysis a"
 - Interpret the parameter estimate 5.8104. Comment.
- b Refer to the SAS statements, and the output, for "analysis b"
 - Fill in the blanks (indicated by ????????) in the SAS program and output
 - *Interpret the parameter estimate* <u>1.8929</u>.
 - *Why is the* 0.0194 so small? (hint: what would it be in Quebec?)
 - Interpret the p = 0.0001 and say why it is silly in this analysis.
- c Refer to the SAS statements, and the output, for "analysis c"
 - Use these to fill in the blanks in the author's text below (show your work):
 - "The rate ratio for the [5-year] intra-LTRA period relative to the [8-year] pre-LTRA period was _____

(____% reduction in the rate of asthma death; 95% CI ____% to ____%). This decrease corresponds to a reduction of (approx) ____ deaths per million per year after this introduction.

- Why is the Deviance so high in analysis c, compared with analysis b? (above graphs from article may help)
- d The authors, in the methods section, say that

"Poisson regression models were used for all analyses. (...) To correlate yearly drug consumption with the corresponding yearly rate of asthma death a loglinear relative risk model was used to estimate rate ratios and a *linear excess risk* model was used to estimate rate differences associated with LTRAs and inhaled corticosteroid usage"

• Explain in detail how you would set up the data in SAS and what statements you would use in GENMOD to fit the "linear excess risk" model. Also, specify and explain which fitted parameter(s) from the output you would use to report and interpret your findings.

e Examine Table 2, the text following it, and analyses e1.a, e1.b and e2

Table 2. – Rate ratio and rate difference of asthma death, among subjects aged 5–34 yrs in Japan during 1987-1999, associated with leukotriene receptor antagonist (LTRA) and inhaled corticosteroid use

	<u>RR</u>	<u>95% CI</u>	<u>RD</u>	<u>95% CI</u>
Inhaled corticosteroids	0.96	0.95 to 0.97	-0.29	-0.35 to -0.23
Leukotriene receptor				
antagonists	0.80	0.76 to 0.83	-1.29	-1.51 to -1.07

"Table 2 shows that the rate ratios of asthma death were _____ for every 1 million treatment courses of inhaled corticosteroids sold per year and _____ for every million treatment courses of LTRAs sold per year. Table 2 also indicates that every additional million treatment courses of LTRAs is associated with a reduction of _____ asthma deaths per million people per year and that every additional million units of inhaled corticosteroid is associated with a reduction of _____ asthma deaths per million people per year.

- *Fill in the 4* _____ 's in the above statements.
- From which analysis (e1.a / e1.b / e2) and how did the authors get the 0.96?
- In light of el.a and el.b, how do you interpret the results of analysis e2 ?
- f Although not included in analyses a-e below, the analyses performed by the authors *"included an adjustment for extra-Poisson year-to-year variability"*
 - Explain what they mean by "extra-Poisson year-to-year variability", why it might occur, and the effect on parameter estimates/SE's of adjusting for it.
- g The authors state that "These results must be interpreted with caution. Populationbased epidemiological studies based on ecological designs are inherently weak because they ______. The "ecological fallacy" can result from this limitation and that is why ecological studies are employed primarily to generate hypotheses.
 - Fill in some words (not more than 20) to complete the above sentence. Then give a concrete example of how the results could lead to a wrong conclusion from this study
- h See analyses h.
 - What caused the error message for analysis h1?
 - What modification was used to produce analysis h2?
 - *What does* exp[-11.9226] *represent?*
 - Why is the -11.9226 different from the 1.8929 in analysis b?
- i In Table 1 of the article it was reported that in the 8 year period before the introduction of leukotriene receptor antagonists (LTRAs), the asthma death rate (per million inhabitant-years) was 6.64; 95% CI 6.39 to 6.89. The paper did **not** report (a) how many deaths there were in this 8-year period, or (b) the number of inhabitants aged 5–34 yrs in an 'average' year. But, just from this rate, and its associated CI, it is possible, without any further information, to derive these two numbers.
 - Explain how these numbers could be back-calculated just from the 6.64 and the 95% CI 6.39 to 6.89. (if you don't remember the exact form of a formula, that's fine, but do explain the principles, and any assumptions, you would use)

DATA a; /* [obtained from one of the authors]

pop: population aged 5-34 yrs (millions)

InhCo6: # Tx courses of inhaled corticosteroids (millions)
LTRA6: # Tx courses of leukotriene receptor antagonist (millions)

INPUT

Obsn	Year	deaths	pop	rate	InhCo6	LTRA6	post;
LINES	;;						
1	1987	317	51.312	6.177	1.7830	0.00000	0
2	1988	323	50.974	6.336	2.2050	0.00000	0
3	1989	317	50.736	6.248	2.0240	0.00000	0
4	1990	347	50.312	6.896	2.4110	0.00000	0
5	1991	356	50.067	7.110	2.6410	0.00000	0
6	1992	304	49.889	6.093	3.0980	0.00000	0
7	1993	364	49.632	7.333	4.4180	0.00000	0
8	1994	342	49.271	6.941	5.1820	0.00000	0
9	1995	331	48.758	6.788	6.6670	0.37394	1
10	1996	310	48.467	6.396	7.8000	1.15929	1
11	1997	235	48.117	4.883	9.1510	1.58748	1
12	1998	190	47.800	3.974	9.9836	1.86794	1
13	1999	171	47.500	3.600	10.0314	2.22614	1
;							

```
RUN;
```

```
>>>> analysis a <<<<
```

```
proc genmod data=a;
model deaths = / dist = poisson link=log ;
where (post=0) ;
run;
```

The GENMOD Procedure Model Information

Description	Value
Data Set	WORK.A
Distribution	POISSON
Link Function	LOG
Dependent Variable	DEATHS
Observations Used	8

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	7	9.6299	1.3757
Scaled Deviance	7	9.6299	1.3757
Pearson Chi-Square	7	9.6344	1.3763
Scaled Pearson X2	7	9.6344	1.3763
Log Likelihood		12843.7472	•

Analysis Of Parameter Estimates

Parameter	DF	Estimate	Std Err	ChiSquare	Pr>Chi
INTERCEPT	1	5.8104	0.0194	90141.1528	0.0001

	>>>> ana	alys	is b <<<<		
<pre>proc genmod data=a; model deaths = /</pre>					
dist = poisson 1 where (post=0) ;	.ink=log	???	???????????	??? ;	
Model Information					
Description			Va	<u>lue</u>	
Distribution			PO	ISSON	
Link Function	1		LO	Ę	
Dependent Var	iable		DEA	ATHS	
????????????????	????		??:	????	
Observations	Used		8		
Criteria For Assessi	.ng Goodne	ess	Of Fit		
Criterion		DF	Valı	ue Val	ue/DF
Deviance		7	12.182	21 1	.7403
Scaled Deviar	ice	7	12.182	21 1	.7403
Pearson Chi-S	Square	7	12.219	95 1	.7456
Scaled Pearso	n X2	7	12.219	95 1	.7456
Log Likelihoo	od	•	12842.473	11	•
Analysis Of Paramete	er Estimat	tes			
Parameter DF	Estimate		Std Err	ChiSquare	Pr>Chi
INTERCEPT 1	1.8929		0.0194	9566.8661	0.0001

>>>> analysis c <<<<

proc genmod data=a; model deaths = post / dist = poisson link=log ??????;

Model Information

Description	Value
Distribution	POISSON
Link Function	LOG
Dependent Variable	DEATHS
Offset Variable	;;;;;;
Observations Used	13

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	11	88.2099	8.0191
Scaled Deviance	11	88.2099	8.0191
Pearson Chi-Square	11	88.0281	8.0026
Scaled Pearson X2	11	88.0281	8.0026
Log Likelihood	•	18425.4574	•

Analysis Of Parameter Estimates

Parameter	DF	Estimate	Std Err	ChiSquare	Pr>Chi
INTERCEPT	1	1.8929	0.0194	9566.8150	0.0001
POST	1	-0.2558	0.0344	55.3004	0.0001

Model Information	(all	3	analyses,	namely	el.a,	e1.b	and	e2)	
-------------------	------	---	-----------	--------	-------	------	-----	-------------	--

Description	Value	Description	Value
Distribution	POISSON	Dependent Variable	DEATHS
Link Function Observations Used	LOG 13	Offset Variable	???????

>>>> analysis e1.a <<<<

proc genmod data=a; model deaths = InhCo6 /

dist = poisson link=log ????????? ;

Criterion	DF	Value	Value/DF	
Deviance	11	75.0957	6.8269	
Pearson Chi-Square	11	75.0763	6.8251	
Scaled Pearson X2	11	75.0763	6.8251	
Log Likelihood		18432.0145		
Parameter DF	Estimate	Std Err	ChiSquare	Pr>Chi
INTERCEPT 1	2.0269	0.0304	4443.1982	0.0001
INHCO6 1	-0.0453	0.0055	68.0151	0.0001

>>>> analysis e1.b <<<<

proc genmod data=a; model deaths = LTRA6 /

dist = poisson link=log ???????? ;

Criterion	DF	Value	Value/DF	
Deviance	11	33.4434	3.0403	
Pearson Chi-Squa	re 11	34.0678	3.0971	
Scaled Pearson X	2 11	34.0678	3.0971	
Log Likelihood	•	18452.8407	•	
Parameter DF	Estimate	Std Err	ChiSquare	Pr>Chi
INTERCEPT 1	1.9115	0.0184	10782.6883	0.0001
LTRA6 1	-0.2272	0.0223	103.3338	0.0001

>>>> analysis e2 <<<<

proc genmod data=a; model deaths = InhCo6 LTRA6 / corrb dist = poisson link=log ????????? ;

Criterion			DF	Va	alue	Value/DF	
Deviance			10	22.1	170	2.2117	
Pearson Ch	ıi-	Square	10	22.6	5470	2.2647	
Scaled Pea	ars	on X2	10	22.6	5470	2.2647	
Log Likeli	iho	od	•	18458.5	5039		
Parameter	DF	Estimat	e SE	Pr>Chi	Co	orrelation Ma	atrix
					INTE	RCEPT INHCO6	LTRA6
INTERCEPT	1	1.7647	0.0476	0.0001	1.0	0 -0.92	0.75
INHCO6	1	0.0456	0.0135	0.0007	j-0.9	2 1.00	-0.90
LTRA6	1	-0.3906	0.0532	0.0001	0.7	5 -0.90	1.00
					•		

```
>>>> analysis h1 <<<<
proc logistic data=a;
model deaths/pop = ;
where (post=0);
run;
NOTE: 8 observations were read.
ERROR: No valid observations due either to missing values in
the response, explanatory, frequency, or weight variable, or
to nonpositive frequency or weight values.
                   >>>> analysis h2 <<<<
proc logistic data=a ;
model deaths/popln = ;
where (post=0);
run;
The LOGISTIC Procedure
Data Set: WORK.A
Response Variable (Events): DEATHS
Response Variable (Trials): POPLN
Number of Observations: 8
Link Function: Logit
                             Response Profile
                       Ordered Binary
                         Value Outcome
                                            Count
                             1 EVENT
                                               2670
                             2 NO EVENT 402190330
                           -2 \text{ LOG L} = 69006.71
Analysis of Maximum Likelihood Estimates
                           -
                             011
```

Variable	DF	Parameter Estimate	Standarc Error	a Wald Chi-Sq	Pr > Chi-Sq	Odds Ratio
INTERCPT	1	-11.9226	0.0194	379533.8	0.0001	•