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ABSTRACT

The first of the two articles in this series presented the proportional hazards model to analyze data arising

from matched pairs followed until one of the pair-members had the event of concern. Using worked

calculations and diagrams, I attempted to show what the model is, its flexibility and its assumptions, how its

parameters are fitted, and how it can help us to see different epidemiologic designs and analyses in a more

unified light. These are further illustrated in this second paper via two additional examples. In one, the

longevity of two groups in an experimental study is compared via lifetable regression; in the other -- non-

experimental -- the focus is on the degree of exposure to a contaminated source and its possible role in the

etiology of cancer
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To illustrate data analysis in an easier-to-compute situation, the first of the two articles in this series

presented the proportional hazards model to analyze data arising from a very uncommon design, matched

pairs followed until one of the pair-members had the event of concern. This second article focuses on the

more traditional and more common: a survival analysis, via what Cox calls "lifetable regression" and a case-

control study.

ILLUSTRATION II: DOES SEXUAL ACTIVITY DECREASE THE LONGEVITY OF MALES?

This experimental study investigated whether sexual activity reduces the lifespan of male fruitflies. The

study, and the teaching dataset derived from it, are described in detail elsewhere (Partridge and Farquhar,

1981; Hanley and Shapiro, 1994). In all, in order to control for the possibility that reductions might be the

result of competition for food etc., rather than sexual activity, five groups of 25 males each were formed by

random allocation. In the two "experimental" groups, sexual activity was manipulated by supplying

individually housed males with ("e") a smaller, or ("E") a larger number of, receptive virgin females each

day. In two other "control" groups, individually housed males were supplied with ("c") a smaller or ("C") a

larger number of, sexually inactive (i.e., newly inseminated) females; the third control group consisted of 25

individually housed  males who lived alone. Very large longevity differences were noted between the males

in groups E and C, so here we restrict our analyses to the longevity comparison of "e" vs. "c". In order to

show detailed hand-calculations, we analyze the data for just 10 males, 5 of whom we selected at random

from the 25 in "e" and 5 from the 25 in "c". And, as the original authors did, we consider one important

covariate, thorax size, which is a strong determinant of longevity.

There were no losses to follow-up, and all subjects had died by the time the data were analyzed. Thus the

biologists analyzed the difference in the mean longevity using classical analysis of covariance. Today, we

might accomplish this using thorax size as a covariate in a multiple regression model: if thorax length is

included as a centered variable, then the fitted intercept denotes the mean in the reference group, the

coefficient associated with the indicator variable for the experimental group is the adjusted difference in

mean longevity, and the coefficient associated with the covariate denotes the independent relationship

between it and longevity, This analysis makes the comparison "fairer" by adjusting for (what was a very
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slight) imbalance in the groups with respect to thorax size. More importantly, even if the comparison had

turned out, by a lucky randomization, to be perfectly fair, the inclusion of the covariate would make the

comparison "sharper" (Hanley, 1983; Anderson et al. 1980). It does this by removing the (extraneous)

variation in longevity caused by variation in thorax size: the smaller standard error of the difference in

means leads to a more precise comparison.

Few epidemiologists work in research contexts where a long lifetime is 100 days rather than 100 years,

where informed consent, missing data, confounding factors and multiple time scales are not an issue, and all

subjects reach the endpoint of interest, leaving no censored observations. Nevertheless, we will analyze the

data using survival analysis to see how this analysis is intimately linked with other data analysis approaches

in epidemiology. We will take advantage of the simple structure --  no censored observations, and just two

explanatory variables, both binary -- to see more clearly the essential elements of the Cox model, to

understand how the likelihood is set up and maximized, and to illustrate how the Cox model. with

stratification on nuisance covariates, can be an alternative to modeling them.

Figure 1 shows the longevity data, together with the associated risksets, and Maximum Likelihood

estimation of the hazard ratio (HR) parameter of the proportional hazards model (vertical timelines, rather

than the  more common horizontal left to right ones, were used to allow the primary focus,  the Likelihood

function, to be drawn in the standard orientation). For now, the one covariate is ignored.

Time zero , time scales, and risksets

A time scale, starting at a defined "time-zero", is the point of departure for the 'survival' or other 'time-to-

event' analysis version of the Cox life-table regression analysis(Cox1972). In non-experimental follow-up

studies of humans, there may be several possible time scales. In analyses of the Framingham study, the

most commonly employed time scale has been the time elapsed since "t0" = 1948, even though this is

simply an administrative scale, starting from the funding year zero. Age is often a more relevant time scale,

Farewell and Cox(1979) have given some guidance on this, suggesting that the primary scale should be the

one over which hazard rates vary the most, and are the most difficult to model  accurately with a parametric
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function and that other relevant time scales be included as regressor variables. In their example, dealing with

the occurrence of breast cancer in parous women,  the possible times scales were chronological age, and age

since the birth of the woman's first child. In the fruitfly study, longevity was measured from when fruitflies

emerged as adults (the fourth stage of their life cycle) and were allocated to one of the two conditions being

investigated.

Using the selected time scale, each distinct event-time (death) defines an unambiguous riskset, namely those

subjects alive just before the event in question. Subjects appear in successive risksets until they themselves

suffer a riskset-defining event, or are lost to follow-up or otherwise censored. Thus, in this mortality study,

each riskset contains those fruitflies who were alive just before the death which defines the riskset. And,

unusually, since all subjects were followed until death, and each death occurred at a different age, there are

as many risksets as there are subjects.

The elements of  the (partial) Likelihood function

Using a specific HR value, one can, for each riskset, calculate the (conditional) probability that the death

would occur to the subject who did die then, rather than to one of the other candidates in the riskset, who

were also alive just before. The likelihood is a product of the probabilities associated with the different

risksets. By calculating the likelihood for various values of HR, one is effectively asking why the deaths

occurred in the order they did.  That the first subject to die did so on the xx-th day of life rather than on

some other day, that the second died on the yy-th specifically,  and that there was or was not a large amount

of potential follow-up time over and above what was needed, are not considered in the analysis. The

probabilities used in the likelihood are conditional on the individuals dying when they did.  and this

conditioning leads to what is now referred to as a partial likelihood. The analysis does not ask  why then?

but rather "who then?", i.e.,  given that there was a death then, was it likely to happen to the person to whom

it happened ? Thus, the Likelihood is not affected by the actual times, or by the time spaces between events.

[This is one of the reasons why survival analysis software can be used to analyze case-control studies with

matched sets, even if there is no, or no natural, time  dimension: for the 'case' in the set, one simply
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designates an arbitrary event-time t; for each control in the same set, one creates an event-time that is

censored at or beyond t]

This conditional approach to analysis, i.e.., posing each probability as the answer to an after-the-fact "why

the event in this person?" question, is one of the two reasons why the probabilities shown in Figure 1 have

the simply form they do. The other has to do with the form of the proportional hazards model itself. The

PH form was not new, even in 1972: constant (homogeneous) odds and incidence density ratios are used

implicitly in the Mantel-Haenszel summary ratio measures, and explicitly in Poisson regression models that

use multiplicative rates. In this example, with "t" (= adult age), the model posits that if hinactive[age] is the

age-specific mortality rate (hazard) for sexually inactive subjects (reference category) of that age, then the

corresponding mortality rate at the same age for their sexually active counterparts (the index category) is a

constant times this, viz.

hinactive[age] = HR × hinactive[age]

where HR is shorthand for the hazard ratio, presumed constant over age.

Note: we use the square brackets [ ] in hinactive[age] to denote that hinactive is a function of age, rather than a

single number obtained by multiplying two other single numbers hinactive and age. Also, it is common, but

potentially misleading, to use the term "baseline" hazard here: many authors use a subscript "0" where I

have used the subscript "inactive"; by doing so, they may give the mistaken impression that the zero refers

to time 0, when in fact they are referring to the reference category of persons who have none of the risk

factors or interest, i.e., to persons with zero levels of all covariates. For a single categorical 'determinant',

the notation

hindex-category[t] = HR × hreference-pattern[t]

males it clearer that hreference-pattern[t] is a series of h's, indexed by t, i.e. a time-function. Moreover, if one

takes logs of both sides, then on the right-hand side the log of the time-function hreference-pattern[t] forms

the (nuisance) "intercept' of a regression model, and log[HR] becomes the  regression parameter of primary

interest).
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The implications of this form are best seen by example. Consider  the fourth subject in figure 1 to die.

Some  3 individuals from the active group and 4 from the inactive group were alive at the end of the

previous day. The subject who died was in the sexually inactive group. Imagine for now that we don't know

that and that we are simply given a list of the 7 members of the riskset  at the end of the previous day,

showing which  group each one belonged to, and asked to try to identify the individual who died. What is

the chance that we could identify the 'correct' individual? 1 For concreteness, let us say that the first 4

individuals in the list were the sexually inactive ones, and the last 3 the active ones, and that [although we

don't know this] the event occurred in the 1st subject on the list.

Because the 7 individuals in the riskset are all of the same age, and because the HR is constant at all ages,

the hinactive[age] factor drops out of the calculations: the 7 individuals' relative chances of being the 'case'

are simply1:1:1:1:HR:HR:HR.  If we know that there is one event, but not to whom, then the probability

that it happened to a specific sexually inactive subject is 1/(4  × 1 + 3 × HR), and that it happened to a

sexually  active subject is HR/(4  × 1 + 3 × HR).

But in our data analysis, we know that the event befell the 1st individual, i.e., the one indicated in bold in the

list 1:1:1:1:HR:HR:HR. The probability that it happened to this specific individual is therefore

1/(4  × 1 + 3 × HR). Note that this probability no longer depends on hinactive[age], but only on HR -- the

combination of the assumption that the hazards are proportional , and the specific conditional probability

formulated in reference to the riskset,  leave us with a probability which only involves HR. If we consider a

trial value of  HR=1, then the probability that we could pick out the 'correct' individual, or that nature would

'finger' this specific (1st) individual from among the 7, is 1/(4 × 1 + 3 × 1) = 1/7. If we use a trial value of

1 OSM "a person is not a case" [ OSM ]. The person represents an 'instance' of the phenomenon under
study (this is one of the several OED definitions of case; the first definition the OED gives for 'case' is 'a
thing that befalls or happens; an event, occurrence, ...' ;  the word case comes from the Latin  casus f. cas-,
cadere , words all having to do with fall. The Latin dictionary at http://www.nd.edu/~archives/latgramm.htm
gives casus -us m. [a falling , fall]. Transf.: (1) [what befalls, an accident, event, occurrence]. (2) [occasion,
opportunity]. (3) [destruction, downfall, collapse]; and, in gen., [end]. (4) in grammar, [a case] ]. and cado
cadere cecidi [to fall , sink, drop]; 'vela cadunt', [are furled]; 'iuxta solem cadentem', [in the west]; of living
beings, often [to fall in death, die]; hence [to be destroyed, to subside, sink, flag, fail]; 'cadere animis', [to
lose heart]; with in or sub, [to come under, be subject to]; with in, [to agree with, be consistent with]; of
events, [to fall out, happen]; of payments, [to fall due]. Of note is the fact that the 'case' focuses on the event,
rather than on the person in whom it occurred.
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HR=2, the probability of the event happening to the individual it happened to is 1/(4 × 1 + 3 × 2) = 1/10,

and so on.

The (partial) Likelihood function based on all 10 risksets

We have worked out the probability of observing the data we did observe for one particular riskset. We

now calculate the corresponding probabilities for the other 9 risksets, and multiply together the 10

probabilities derived  from  these 10 different risksets. Each riskset-specific probability represents the

probability of the event happening to the individual it happened to, and is a function of the parameter of

interest, HR. The Likelihood, the product of these, is the probability based on the observed time ordering

of the collection of 10 events. It concentrates on who in each riskset died, but not specifically when.

It now remains to work out this product (or, to avoid small products, the log of the product) for the

continuum of candidate HR values, and to plot the Likelihood (or its log) as a function of HR, to determine

which HR values make the observed data pattern more 'likely' than other values. The use of the log

likelihood, which is a sum of individual log-likelihoods, also emphasizes the independent additive nature of

the information from each riskset, just like the Mantel-Haenszel adds the information from separate strata.

[In his very first paper on Likelihood, Fisher(1912) did not begin with the Likelihood (i.e., the product) per

se but rather went directly to the log Likelihood, as a sum of log-Likelihood contributions from each

observation or 'atom'. ]

Incorporating confounding variables/ other covariates

We now move beyond a crude comparison to one that takes account of thorax size, an important

determinant of survival. To simplify matters for didactic purposes, we dichotomize thorax size into smaller

(s, the index category) or larger (reference category). There are two ways of incorporating a covariate into

the proportional hazards analysis. One of these is to include it as a term in a regression model, the other is

to stratify/match on thorax size.
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The model-based approach is similar in spirit to a classical analysis of covariance which allows

comparisons of means to be adjusted for imbalances in the distribution of important variables. In the crude

model, the hazard function hactive[age] for those in the active group was the simple product of the

hinactive[age] function describing the hazard in the reference group, and the parameter HR, with the same

HR value for all ages. In the simplest multivariable model, the hazard function for a group of individuals is

the product of the hinactive,large[age] function for those larger, inactive individuals (the reference group,

shown in the upper left cell in the table below), the parameter of interest HR (if applicable ), and (again if

applicable) a factor S (also a hazard ratio). The HR value is assumed constant over all ages and both thorax

sizes, and the S factor is assumed constant over all ages and both activity levels ( a model which allows the

combined factor in the lower right cell to be sub- or super-multiplicative, but to remain constant for all ages,

is still considered a proportional hazards model, since the primary proportionality is across the 'time' axis

(age in this example).

Hazard function for groups of individuals, in relation to thorax size, and sexual activity
(reference category: upper left "corner"; models of this type are referred to by Clayton and
Hills(1993) as the "corner model")

Thorax Size

Sexual activity larger smaller

inactive hinactive,larger[age] hinactive,larger[age] × S

active hinactive,larger[age] × HR hinactive,larger[age] × HR × S

Consider again the probability of observing what we did in the previously examined riskset, where 7

individuals were alive at the close of the previous day. As shown in figure 2, of the 4 individuals in the list

who were not sexually active, two were smaller and two were larger; of the 3 sexually active ones, 1 was

smaller and 2 were larger. Given that one of them died on day 't', the easiest way to obtain their relative

probabilities of 'being the one to die' is to list the 7 absolute hazards as in Table 1, then cancel out the

common factor  hinactive,larger[age] and arrive at the expression in the last column.
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The probabilities for this and the other 9 risksets, as a function of HR and the nuisance parameter S, are

shown in Figure 2. Also shown are sections of the  log-likelihood surface for selected values of S, allowing

us to see that, with simultaneous consideration of thorax size, the MLE of the HR is found at  HR=2.4.

Note the symmetry in the estimation process: the fitting of the 2-parameter model also provides a ML

estimate of 3.2 for  S.

The other approach to estimating HR from these data is to use a combination of matching and

regression. This is illustrated in Figure 3, where subjects are first segregated by thorax size, so that each

riskset is matched with respect to this variable.  The likelihood, for any HR value, is again the product of

the probabilities associated with the different risksets, each one now smaller and more homogeneous.

Because we have not included thorax size in the regression,  the likelihood function involves just the 1

parameter (HR) of direct interest. Implicitly however, by the act of pooling the log-likelihoods from the

smaller and larger sub-populations,  the analysis makes the further assumption that the HR's in the  two

sub-populations are 'poolable', i.e., that the two series are estimating a common HR. See the textbook by

Kalbfleisch and Prentice(2002), who were the first to suggest this less restrictive 'model' -- this 'stratified'

proportional hazards model allows the hazard functions in the reference categories (i.e., the  hinactive[age]

function in the smaller individuals and the corresponding  hinactive[age] function in the larger individuals)

to follow different non-proportional shapes over time (age).

Just as with matching in other contexts, one difficulty with this approach is that if strata are narrow, some of

them may only contain individuals of one kind (e.g. all those of thorax size 0.72 mm are in the active

group) and so -- just as in a Mantel-Haenszel summary ratio, do not contribute to the comparison. This

problem would be worse in an observational study (the present study formed groups by randomization)

and where there are important uncontrolled variables. The full multivariate model  circumvents this by

mathematical, rather than actual, matching: the price of this convenience is the uncertainty about the

assumptions made, and the consequences of miss-specifying how the covariate affects the hazards.
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ILLUSTRATION III:
ACCESS TO CONTAMINATED DRINKING WATER: LINK WITH INCIDENCE OF CHILDHOOD LEUKEMIA?

The study by Lagakos et al (1986) compared rates of miscarriages, birth-defects and childhood leukemia in

Woburn, Massachusetts residents whose households received different amounts of their drinking water

from two municipal wells found to have been heavily contaminated by several chlorinated organics. The

investigations were planned and supervised by university investigators (both biostatisticians, well known for

their contributions to the statistical analysis of survival data from clinical trials of cancer, and now HIV,

therapies). Personal data were collected by telephone interviews conducted by community volunteers. The

pumping records for each of the town's 8 wells, combined with a detailed model of the water distribution

system, provided estimates, some of which are shown in the top of Figure 4, of the fraction of each

household's annual water supply that originated from the contaminated wells.  The results of the study,

which used were widely reported in the lay press and the portion on leukemia was the subject of the book

and subsequent film A Civil Action. The scientific report used a modern approach to statistical analysis, and

is an early example of the singular [Miettinen2004] basis for "cohort" and "case-control" studies -- entities

that, even today, are widely perceived as two conceptually distinct  entities. The report appeared in a

technical statistical journal, and so it has taken longer for its holistic approach to epidemiologic data-

analysis to be appreciated by epidemiologists.

Data

Even though childhood leukemia was the most "statistically fragile" of the outcomes studied, the data on

this outcome are used here because they were reported in some detail, and were compact enough to allow

the arithmetic of the parameter estimation to be carried out with a calculator or simple software. In all, some

20 cases of childhood leukemia were documented during the period studied. The bottom of Figure 4 shows

the residential histories of the 17 informative ones, born before the wells were closed, and identifies, by a

lighter color, the 9 cases in which the child resided for some years in zones where some of the water supply

in those years originated in the contaminated wells. The estimated amounts of exposure (obtained by

cumulating the yearly fractions into a "well-years of exposure") for each of the 17 are shown in Table 2.
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Shown in Figure 5  are the corresponding "ever/never exposed" data for the children in the 17 risksets. The

riskset for a particular instance (case) of leukemia consists of the child diagnosed with leukemia, together

with that child's cohort/peers.  Contrary to some mis-apprehensions, the risk set includes the person who

represents the 'case'. In several 'birth-cohorts'. there were 2 cases of leukemia. For children born in 1964

for example, the investigators were able to obtain 1964-1969 residential histories for 265 children who were

'at risk' -- when case number 3 occurred in 1969. The 1964-1975 residential histories were available for

239 'candidate' children from this same 'cohort' when another case (number 9) occurred in 1975

(technically, the in- and out-migration made this a dynamic population, rather than a fully-followed closed

birth-cohort, so the 239 are not a pure subset of the 264). However, the child representing the 'case' in 1975

was also in the 1969 riskset, but with a shorter history at that earlier time.

Ever exposed vs. never exposed : Simple and Maximum Likelihood estimators of IDR

The data in the first 3 columns of Table 2 allow us to use a Mantel-Haenszel type estimator of the incidence

density ratio, based on the "ever/never" exposure scale. In each of the 9 instances where the child diagnosed

with leukemia had been exposed, the data on the n children in the case-associated 2 × 2 table contribute

zero to the denominator, and 1 × [n × (1−p)] / n = (1-p) to the numerator. Conversely, in each of the other 8

cases, where there was no history of exposure, the 2 × 2 table contributes zero to the numerator, and

1 × [n × p] / n = p to the denominator. Thus, the IDR estimate is simply

IDRM-H =  
0.67 + 0.75 + 0.64 + 0.68 + 0.81 + 0.60 + 0.60 + 0.69 + 0.77

0.26 + 0.29 + 0.38 + 0.25 + 0.18 + 0.39 + 0.35 + 0.23   =  
6.21
2.33 =  2.66

As shown in Table 5, the Likelihood can be constructed using the same scheme shown in the two previous

applications. Consider the first riskset, comprising 218 children born in 1959, one of whom was diagnosed

with leukemia at age seven. By that age, some 72 of the 218 had lived for some time in a part of Woburn

supplied by contaminated water, and the remaining 146 had not. The probability that the leukemia would

occur in the specific (exposed) child in whom it did is thus  IDR/(72 × IDR  + 146 × 1). For the second
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riskset, the probability that the leukemia would occur in the specific (unexposed) child in whom it did is

1/(75 × IDR + 215 × 1), and so on to the last probability of 1/(19 × IDR + 65 × 1). The product of these

17 conditional i.e. evaluated-after-the-fact, probabilities is the Likelihood. Because it is a function of just

one parameter, it -- or more readily, its log,  a sum-- is easily maximized with nothing more than a

spreadsheet: for any 'what-if' value of IDR, the logs of the 17 probabilities can be calculated using a

spreadsheet formula,  then summed to form the logLikelihood. The Maximum Likelihood Estimate of IDR

can be found by trial and error, i.e., by varying the 'what-if' value of the IDR, until the largest sum is found.

The maximum occurs at IDRMLE=2.68. Once the formula is set up, it is a simple matter to obtain enough

values to sketch the logLikelihood function,  the curvature of which is used to measure the precision of the

MLE.

Taking advantage of calculations used in the log-rank test of IDR=1, which yields an expected number of

exposed 'cases' of 5.12,  Lagakos et al. used the approximation to the MLE

MLEapprox.  = exp[(9- 5.12)/{0.33 × 0.67 + ... + 0.23 × 0.77}] = 3.03.

They acknowledge -- and the exact calculation in this example shows --  that the approximation can

inaccurate when the IDR is far from the null. Interestingly, in this example, the Mantel-Haenszel estimator

gives an estimate very close to  the MLE.

Cumulative exposure : Simple and Maximum Likelihood estimators

For each child, the amount of exposure was obtained by cumulating the yearly exposure fractions into a

"well-years" (W-Y) of exposure". Just as the authors did, we will use this in a statistical model in which

children, born in a certain year, and now age t, who had accumulated x well-years of exposure by this age,

were  IDRx = exp[x × b] times more likely to be diagnosed with leukemia in the next little while than
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children born the same year, who had accumulated x=0 units exposure by this same age t. The proportional

hazards model does not force one to assume this exposure 'metric' x, or this particular exponential function;

for example, one might ignore the exposure in the previous year, or in the first year of life, etc., or use the

logarithm of the exposure, or use IDRx as some other function of x.

The cumulative exposures for the children diagnosed with leukemia were reported,  but we did not have

access to the separate x's for each child in each riskset,. Therefore, for illustrative purposes, for four

selected leukemia cases (numbers 15,  13, 12 and 7) we used the reported mean and variance of each of the

four distributions to construct four rough histograms that matched the reported mean and variance for the

risksets. These four histograms are shown twice each in Figure 6,: on the left when calculating the

LogLikelihood under the null value b=0, and on the right under the value b=0.25. The non-null value 0.25

was deliberately chosen to make the arithmetic easier, so that  the exponents, exp[x × b],  would be of

integers, for example, IDR4:0 = exp[4 × b]=exp[1] =2.7, and IDR8:0 = exp[8 × b]=exp[2] =7.4,  in relation

to the reference value ID0  = exp[0 × b]=exp[0] =1.

The calculations in each riskset can be likened to after-the fact calculations for a lottery with an undesirable

prize. For example, consider the children in riskset  13,  consisting of 131, 13, 13 and 7 children with 0,  2,

4 and 6 W-Y units of exposure respectively. Under the non-null value b=0.25, these children hold 1, 1.6,

2.7 and 4.5 'shares' each (total: 164 children, holding a total of 218.4 shares). If, as did happen, the

undesirable prize was drawn by a child with 2 W-Y units of exposure, worth exp[2 × b]=1.6 shares, one

could calculate that this specific child, rather than any of the others, had a 1.6/218.4 or 1 in 137 chance

(Log: -4.9) of being the unlucky one. This contrasts with the 1 in 164 chance (Log: -5.1) of it happening to

him if the cumulated exposures did not confer additional risk.

In the upper panel of Figure 7,  the LogLikelihood is evaluated for each riskset, for a range of b values. In

the lower panel,  these LogLikelihoods is combined over all four risksets. The 'convenient for computation'

value b=0.25 happens to be close to the bML = 0.29 found by the full search. [Lagakos et al., using all 17

risksets, but the same approximate Ml method referred to previously, obtained an estimate of b=0.33].
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The ML estimation process has often been explained "algebraically" using estimating equations. The data

display in Figure 6 allows one to "see" the ML estimation process more graphically. In the usual

expositions of the MLE process, including the 1972 one by Cox himself, the LogLikelihood is first written

as a sum of the riskset-specific LogLikelihoods; the derivatives, with respect to b, of these summands are

then obtained. Setting the sum of these derivatives to zero results in the "estimating equation", with the sum

taken over risksets,

Sum[ exposure of the 'case' ] = Sum[ weighted average of exposures of all persons in riskset].

In our example, the sum on the left is of the four x's denoted by asterisks in Figure 6. Cox(972) noted that

the four weighted averages on the right were constructed using an 'exponential weighting' of the exposures

in the riskset. In fact, the weights are the IDR's, -- the exp[x × b]'s themselves: a person with an exposure

of zero receives a weight of 1,  a person with an exposure of 3 a weight of  exp[3 × b], etc., i.e., persons

with larger exposures count for more. We have tried to illustrate this in the Figure using dots of increasing

magnitudes. The weighted averages are shown in Figure 6 as vertical arrows. In effect then, the search for

bML involves turning the 'b knob' up (so that the dots get larger, and averages move to the right) or down

(so they move to the left) until the  sum of the four resulting "fitted" weighted averages matches (i.e., is

counter-balanced by) the sum of the four "observed" exposures. This idea of translating persons in the

riskset into 'IDR-equivalents' is also a helpful way to understand how, in survival analysis applications, one

can estimate the survival (and hazard) curve for persons in the reference (unexposed) category: one uses the

fitted b, to convert each other ('exposed') person into a number of unexposed-equivalents, and then applying

the standard Kaplan-Meier estimator to these.

 Sampling from Risksets

A "primitive' form of this design was used in a study reported in 1972 (Doll, 2001). This technique of

carrying out a 'case-control-within-a-cohort-study', was formally proposed by Mantel in 1973, and

extended to time-based sampling by Liddell et al. in 1977. Breslow and Day(Chapter 5, 1987) use two

worked examples, one involving an ever-never and one a measured exposure, to illustrate the computational
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savings that can be achieved by restricting analyses to subsamples of the risksets. Extensive computations

are far less of an obstacle nowadays, but the costs of obtaining the exposure and/or confounder data

continue to be important considerations. Naturally, these savings come at a cost of poorer precision.

Sometimes, e.g., when all of the data come from cohorts or administrative databases, with all of the data

already in electronic form, cost considerations are less of an issue. In such situations, the worked examples

in their textbook show that the common belief that '4 controls per case' is sufficient is not generally

justified, particularly if the exposure distribution is considerable skewed, and the associated IDR's are large.

In such instances, there can be considerable reductions in standard errors by taking 10 or 20 'controls' from

each riskset. Even in the analysis of the 17 leukemia cases in the Woburn study, where the proportion of

the riskset 'exposed' ranged from 0.18 to 0.39, simulations carried out by this author confirm that IDR

estimates based on say 16 or 32 'controls' per case were often quite far from the estimate of 2.7 obtained

using the full risksets.
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DISCUSSION

The data in the three examples arise from seemingly very different 'study designs', yet the analyses follow a

common approach. The unifying factor is the riskset, and the partial likelihood -- which focuses on the

parameter(s) of interest, and eliminates -- by conditional arguments -- those felt to be of no direct interest.

The three examples emphasize that whereas modern-day epidemiologists continue to separate study

designs into 'cohort' and 'case-control' studies, there is only one modern approach to their analysis. No

matter whether "case-control" or "cohort 'study, the risksets used to construct the likelihoods in all three of

our examples use as their point of departure the 'case series'. Epidemiologists who analyze 'case-control'

studies are comfortable starting with the numerators of the to-be-compared rates. Then, rather than

establishing the total sizes of the denominators for these -- denominators that would allow them to calculate

ID's -- they resort to samples of the denominators, and from the computed quasi-rates, they can estimate

the ID ratios. But the risksets, and the associated likelihoods, in the fruitfly study -- a classic 'cohort'

study, traditionally defined by its denominators -- also begin with the numerators. Risksets in a traditional

matched case control study have no overlap one with the next, whereas each riskset in a survival analysis is

included within the one to its 'left' along the time axis. Indeed, Miettinen (2004) argues that

Even before Cox proposed the concept of risksets to more readily estimate the hazard ratio, the log rank

test (Mantel 1966, Peto and Peto 1972) had been used to test the equivalence of two survival curves, by

constructing a  2 × 2 table (effectively a riskset) at each distinct event-time. However, this is the same test

proposed by Mantel on 1959 --  for case-control studies that use stratification to control for confounding.

In the first part, I argued that "case-crossover' studies(McLure 1991, exemplified by Redelmeier 1997) did

not need this special name; they are self-matched case-control studies. Again, the purpose of the  'control'

(more appropriately called the 'denominator') series is to obtain estimates of the person-specific

denominators (amounts of person-time, exposed and unexposed) underlying each 'exposed' and

'unexposed' numerator in the 'case' series. Even though at first the design appears to be very different, the

likelihood used in the analysis of "self-controlled case-series studies" (Farrington1995, Andrews2002) has
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the same form as that used throughout examples I-II above. And, although "case-cohort" studies have some

statistical complexities, they too are examples of the fact that all epidemiologic contrasts, whether in "case-

control" or "cohort" studies, involves  contrasts between the "exposed" and unexposed"; the comparison

never is between a "case group" and a "control group"(Miettinen2004). Rather, what distinguished the

case-control from the cohort study is the completeness of the denominators -- complete in the latter,

estimated in the former. This modern way of thinking of the two designs as one was nicely illustrated in a

report (Hernan2002) of a meta-analysis of 48 studies (44 case-control and 4 cohort) examining the link

between cigarette smoking and the risk of Parkinson's disease. The table listed the sizes of the 48

investigations using the numbers of cases (numerators) and the "number of controls or the cohort size"

(i.e., the sizes of the partial, or entire denominators).

In the first article, I make limited use of the diagram on cell phone use. I use it again here  to emphasize that

when etiologic research involves transient -- or accumulating -- exposures, and necessarily dynamic

denominators,  -- the 'case-control' approach is only one viable, and even conceptually valid, option.

Suppose one sought denominators by which to compare the rate of accidents in on-the-phone driver time

with that in off-the -phone  driver-time (whether in the same or different drivers). Imagine that person-

specific records were readily available for say an entire year for each of the 1 million persons who drove at

some time in a city that year. Imagine further that a person's record was divided up into 60x60x24x265 =

31 million time units, of 1 second each, each one indicating whether the person was driving at that instant,

and if so whether (s)he was using the cell-phone. Even with this utopian database, few investigators would

go through the laborious exercise of creating two dynamic registers with which to record the levels of on-

the-phone and off-the-phone driving at each of these instants (they might, for a crude comparison -- one

that ignores driver, time of day, weather, season etc. -- calculate the total numbers of on-the-phone and off-

the-phone driver-moments). Instead, most would use the accidents within this base as a more efficient and

informative point of departure. And, in the real world, they would estimate -- via sampling -- the levels of

on-the-phone and off-the-phone driving in the relevant time windows preceding these events.
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Epidemiologists have been slow to change terminology or to appreciate that, conceptually, there is only

one  approach to -- what Miettinen(2004) aptly calls --  the etiologic study. Even in a 'cohort' study, and

even in one with full documentation already available, the point of departure is the case series, and that

for both the  'case' and the 'base' series, ['denominator' series in a 'case-control' study] "the etiologic

histories are defined as of the time of the outcome (case occurring or not occurring)" (Miettinen,2004).

Indeed, by the very way we pursue causes, we dare forced to pursue in the historical direction. The way

in which Cox set up his partial Likelihood reinforces the direction of this pursuit.

Despite the slow evolution in (study design) methods and concepts, the data analyses presented here do

show that over the period of time covered in the review by Zhang et al (2004), considerably considerable

convergence in the statistical analyses of data from the etiologic study. And, it is hoped that -- as a

byproduct of this exposition -- the extensive arithmetic used throughout these two articles will make the

inner-workings of Maximum Likelihood- estimation a little more understandable.
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Table 1. Calculation of the probability that the 4th event occurred (on day 't') to the individual (fruitfly) it

occurred to, as a function of the hazard ratio HR associated with sexual activity (relative to the

reference category, 'inactivity') and the hazard ratio (S) associated with being short (relative to

the reference category, 'larger' )

order in list# Active? Smaller?
hazard

(absolute)
hazard

(relative)
probability

(conditional)

1 √ h0[ ] × 1 × S S  
S

Sum

2 h0[ ] × 1 × 1 1  
1

Sum

3 √ h0[ ] × 1 × S S  
S

Sum

4 h0[ ] × 1 × 1 1  
1

Sum

5 √ √ h0[ ] × HR × S HR × S  
S

Sum

6 √ h0[ ] × HR × 1 HR  
HR × S

Sum

7 √ h0[ ] × HR × 1 HR  
HR
Sum

Total: Sum*  1

# from left to right [ 4th 'earliest' riskset in Figure 1 ]

hinactive,larger[ t ], the hazard function for the reference category, is abbreviated to h0[ ] .

* 2 + 2 × S + 2 × HR + HR × S abbreviated to 'Sum'

In this example, the event occurred to the 1st (leftmost) member on list.
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FIGURES AND LEGENDS

Figure 1 Longevity of n = 5 sexually active male fruitflies (gray vertical lines) and  n = 5 sexually

inactive male fruitflies ((black vertical lines, reference group), together with the associated

risksets, and Maximum Likelihood estimation of hazard ratio (HR) parameter in the (1-

parameter) proportional hazards model which ignores thorax size. Circles denote age at death

(longevity, survival time). In order to show all calculations clearly, the survival time axis is not

perfectly to scale; the distortion is of no consequence, since the likelihood depends only on the

ordering of the deaths. Risksets, one for each distinct event-time, are enclosed by dashed lines.

The entries in the corresponding rows are the probabilities, calculated using the HR value in the

column, that the death would occur to the subject who did die then, rather than in one of the

other candidates in the riskset.  As an example, consider  the fourth subject to die, when the

riskset consisted of 4 individuals from the inactive group and 4 from the active group. The

subject who died, the leftmost of the 7, was in the sexually inactive group. If only told showing

which  group each of the 7 members of the riskset belonged to, and an HR value of say 2, the

probably of replicating the results of this 'lottery', is 1/(1+1+1+1+2+2+2) =  1/10. The entire

likelihood, for this HR value, is the product of the full (column of) probabilities associated with

the different risksets. The Maximum (log-)Likelihood occurs at HR  = 2.4.
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Figure 2 Maximum Likelihood estimation of 2-parameter proportional hazards model. Vertical lines

represent the longevity of n = 5 sexually active fruitflies (gray) and  n = 5 sexually inactive male

fruitflies ((black, reference group). Three of the latter, and two of the former have shorter than

average thorax lengths and are identified by the lowercase letter s and represented by thinner

lines, while the remainder , with above average thorax lengths, are represented by thicker lines.

Circles denote age at death and dashed lines enclose the risksets. The entries in the

corresponding rows are the probabilities, calculated using the HR value in the column, and the

hazard ratio S associated with a short thorax, that the death would occur to the subject who did

die, rather than in one of the other candidates in the riskset. The likelihood, for a fixed value of

S, and a specific HR value, is the product of the (column of) probabilities associated with the

different risksets.  Sections of the 2-D log-likelihood surface are shown for selected values of

S: S=1 (same function as in Figure 1), 1.5, 3.2 and 8. The Maximum (log-)Likelihood occurs at

HR  = 3.5, S= 3.2.
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Figure 3 Maximum Likelihood estimation of a 1-parameter proportional hazards model using

stratification/matching to eliminate confounding/variation produced by an extraneous variable.

Vertical lines represent the longevity of n = 5 sexually active fruitflies (shaded line) and  n = 5

sexually inactive male fruitflies (black, reference group). Three of the latter, and two of the

former have shorter than average thorax lengths and are identified by the lowercase letter s and

represented by thinner lines, while the remainder, with above average thorax lengths, are

represented by thicker lines. Circles denote age at death. Subjects are first segregated (stratified)

by thorax size, so that each riskset (enclosed by dashed lines ) is homogeneous with respect to

this variable. The entries in the corresponding rows are the probabilities, calculated using the

HR value in the column, that the death would occur to the subject who did die, rather than in one

of the other candidates in the riskset. The likelihood, for any HR value, is the product of the

(column of) probabilities associated with the different risksets.  The Maximum Likelihood

occurs at HR = 2.3. The different log-likelihood scale, compared with Figure 2, stems from the

fact that each riskset is smaller, so that the associated probability is larger, and the log-

probability is less negative. For this reason, the log-likelihood based on these stratified series

cannot be compared with the log-likelihood from the 2-parameter model.
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Figure 4 Top: Zone-and-year-specific exposure data used in the analysis, adapted from table 1 in original

article. Shown are estimates, for each year indicated, of the fraction of each household's water

supply that arose from the two contaminated wells. For estimates for the years 1960-1969, the

town was partitioned into 5 zones (1-5) of graduated exposure to wells G&H. Because of a

substantial change in industrial demand in 1970,  different residential zones (A-E) were used for

the estimates for the period from 1970 until the 2 wells were closed in 1979. The study

estimated, on a monthly basis, which zones received none, some or all of their water from wells

G&H. These data were used to estimate, for each year and each residential zone, the fraction of

each household's water supply that arose from the two wells

Bottom: Residential histories, shown by Lexis diagram,  in 17 informative cases of leukemia.

Duration of the child's residence in Woburn, up until the date of diagnosis, is indicated by a

line. Lighter color lines indicate children who resided for some years in zones where some of

the household water supply in those years was estimated to have originated in the 2

contaminated wells. Darker lines indicate a child whose residential history suggested that during

that time none of the household water supply originated in these 2 wells. Circles denote when

leukemia was diagnosed. Adapted, with some simplifications, from Lagakos et al (1986).
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Figure 5 Obtaining the Maximum Likelihood estimate of the IDR comparing those ever-exposed with

those. never-exposed. Cases are numbered as in Figure 4, with "E" denoting that the child had

lived in a zone exposed to water from the contaminated wells. The numbers of exposed and

unexposed in the riskset are shown in plain and bold text respectively. The 17 likelihood

contributions, one per riskset. calculated under the assumption that the IDR is 1. are shown in

the first column, and the log of the product of these, i.e. the log Likelihood of -88.5, is shown at

the foot of the column. The entries in the three remaining columns are calculated under the

assumption that the IDR is 2, 4 and 8 respectively. The log Likelihoods are also shown in the

graph for intermediate values of the IDR, allowing us to see that the Maximum Likelihood

Estimate of the IDR is approximately 2.7.
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Figure 6 Log Likelihood calculations of the IDR comparing those with (x+1)  vs. those with x "well-

years" (W-Y) of cumulative exposure, illustrated using 4 selected leukemia cases [15, 13,12,7),

and for just 2 values of the regression coefficient b. Cumulative exposure is depicted on the x

axis. The cumulative exposure for the actual child diagnosed with leukemia is indicated with an

asterisk. The distribution of cumulative exposure in all the children in the riskset is shown as a

histogram, with 1 dot representing 2 children [For each riskset, only the mean and variance of

the distribution were reported. For didactic and presentation purposes, the possible values are

limited to a few values, all integers -- but the distributions shown were constructed to match the

reported means and variances].

Left: Log Likelihood calculation under the null value, IDR=1, regardless of W-Y. Thus, the

probability that the leukemia would be diagnosed in the child in whom it was actually diagnosed

is simply 1/(number of children in risk set). The log of this "likelihood" is shown for each

riskset (risksets differ slightly in size, and so the LogLikelihoods do too). The LogLikelihood

based on all 4 risksets is the sum of the 4 individual LogLikelihoods. The vertical arrows

denote the average of the exposures in the riskset.

Right: Log Likelihood calculation under the assumption that, relative to children with x well-

years of cumulative exposure, those with (x+1) well-years is exp[b] = exp[0.25]. Thus, relative

to the reference category where W-Y=0, the IDR's for those with 1,2, ,4, , , ,8 W-Y's are

exp[0.25]=1.3, exp[2 × 0.25] =1.6, , exp[4 × 0.25] =2.7, , , ,exp[8 × 0.25] =7.4. The IDR's for

the children with different amounts of exposure are shown using dots whose diameters are

proportional to the IDR's. The probability that the leukemia would be diagnosed in the child

who was actually diagnosed -- who had W-Y units of exposure -- is IDR[W-Y]/(Sum of IDR's

for each child in riskset).  Again, the LogLikelihood based on all 4 risksets is the sum of the 4

individual LogLikelihoods. The Maximum Likelihood estimate is found by varying b until the

LogLikelihood, based on all 4, is the largest (i.e., least negative) possible. The vertical arrow

denotes the weighted average of the exposures in the riskset, with weights given by the

corresponding IDRs.
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Figure 6
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Figure 7 Individual and collective LogLikelihood contributions of 4 risksets shown in Figure 6.

Top: LogLikelihood functions for the parameter b = log[IDR(x+1):x], evaluated from b = -0.5 to

b = 0.9, for each of the 4 risksets shown in Figure 6. In case 12,  the calculated exposure for the

child in question was 8 W-Y, well beyond the mean of 1.4 W-Y in the entire riskset, and so this

case is better explained by positive values of b. In contrast, in case 15, the calculated exposure

was 0, whereas the mean in the riskset was 1.1, and so the data are better explained by negative

values of b. In cases 14 and 6, the observed W-Y values are just about as probable  under a wide

range of positive and negative values. (The slopes of the LogLikelihoods at b = 0 are called

'scores', and their sum is called the score statistic.)

Bottom: The summation of the 4 separate LogLikelihoods: the observed W-Y pattern in the 4

cases is 'most likely' for b values closer to 0.25, but -- with just 4 cases in this example-- the

data could have been produced with any of a broad range of values of b. In practice, parameter

values that produce LogLikelihoods that are within 2 units of the Maximum LogLikelihood (so

that 2 times the difference is approximately 4  i.e. chi-squared critical value 3.84) are considered

as 'plausible', i.e. the observed data-pattern is only exp[2] or approximately  7 times more likely

under the MLE value than under the values at the edge of this range.
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