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Preface 

Investigators in many fields need methods for evaluating the effectiveness of 
new programs or practices involving human populations. To determine whether 
a program is more effective than the status quo or another alternative, we must 
perform comparative studies. An ideal study would apply the different programs 
to identical groups of subjects. Randomized experiments are often advocated 
as approximating this ideal. Often, however, randomization is not feasible, re- 
sulting in difficult problems of design and analysis. To address these problems, 
a variety of statistical methods have been developed. Many of these methods 
are quite recent, and to date have appeared only in technical journals. Although 
they are potentially very useful to researchers in many fields, these techniques 
are presently not readily accessible. 

In this book we bring together for the first time the various techniques for the 
design and analysis of comparative studies. The book includes, at a relatively 
nontechnical level, both familiar techniques and more recent developments. 
Although we present theoretical results concerning the performance of the 
various techniques, we emphasize primarily practical implications for the applied 
researcher. Throughout the book we develop for the applied research worker 
a basic understanding of the problems and techniques and avoid highly math- 
ematical presentations in  the main body of the text. 

Overview of the Book 

The first five chapters discuss the main conceptual issues in the design and 
analysis of comparative studies. We carefully motivate the need for standards 
of comparison and show how biases can distort estimates of treatment effects. 
The relative advantages of randomized and nonrandomized studies are also 
presented. 

V 
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Chapters 6 to 10 present the various methods: matching (including multi- 
variate matching); standardization and stratification; analysis of covariance; 
and two relatively new multivariate methods, logit analysis and log-linear 
analysis. We emphasize the assumptions under which the techniques were de- 
veloped and, whenever possible, assess quantitatively their effectiveness in re- 
ducing bias. Although we emphasize estimation as opposed to hypothesis testing, 
we do indicate the appropriate tests and provide references. 

Chapter 1 I ,  on survival analysis, deals with the special problem of subject 
losses during the course of a study and discusses how to form estimates which 
are not biased by these losses. Chapter I2 discusses repeated measures designs, 
where subjects are assessed on the same variable both before and after treatment 
intervention, and presents new methods to handle these problems. 

An important feature of the book is Chapter 13. In this chapter we describe 
the comparative effectiveness of the techniques in reducing bias. In addition, 
we discuss methods that combine features of two or more techniques. Chapter 
14 deals with many of the practical issues that must be faced before drawing 
causal inferences from comparative studies. 

Use of the Book 

The book is intended for students, researchers, and administrators who have 
had a course in statistics or the equivalent experience. We assume that the reader 
has a basic familiarity with such techniques as regression and analysis of vari- 
ance, in addition to the basic principles of estimation and hypothesis testing. 
Depending on the reader’s background, some of the relatively more technical 
sections may be too difficult. The book is written, however, so that the more 
technical sections can be skipped without loss of understanding of the essen- 
tials. 

We view this book as serving two different functions. First, the book can be 
used in a course in research and evaluation methods for students in fields such 
as public health, education, social welfare, public safety, psychology, medicine, 
and business. Second, the book serves as a reference for applied researchers 
wishing to determine which techniques are appropriate for their particular type 
of study. 

However this book is used, we encourage the reader to begin with the first five 
chapters, because these chapters provide the definitions and lay the foundation 
for a clear understanding of the problems. A knowledge of the terminology is 
particularly important, because the fields of application and the statistical lit- 
erature tend to lack a common terminology. The reader could then refer to 
Chapter 13, which serves to identify the most appropriate technique(s) (see 
especially Table 13. I ) .  
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Introduction 

1 .  I Problems of Comparative Studies: An Overview 
I .2  Plan of the Book 
I .3  Notes on Terminology 

1 
4 
5 

This book is concerned with the design and analysis of research studies assess- 
ing the effect on human beings of a particular rrearment. We shall assume that 
the researchers know what kinds of effects they are looking for and, more pre- 
cisely, that there is a definite outcome of interest. Examples of such treatments 
and the corresponding outcomes include the administration of a drug (treatment) 
claimed to reduce blood pressure (outcome), the use of seat belts (treatment) 
to reduce fatalities (outcome) among those involved in automobile accidents, 
and a program (treatment) to improve the reading level (outcome) of first 
graders. As is seen from these examples, the word “treatment” is used in a very 
general sense. 

1.1. PROBLEMS OF COMPARATIVE STUDIES: AN 
OVERVIEW 

I t  is useful to begin with what might at first sight appear to be an obvious 
question: What do we mean by the effect of a treatment? We would like to as- 
certain the differences between the results of two studies. In the first study we 
determine what happens when the treatment is applied to some group, in the 
second we determine what would have happened to the same group if it had not 
been given the treatment of interest. Whatever differences there may be between 
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2 INTRODUCTION 

the outcomes measured by the two studies would then be direct consequences 
of the treatment and would thus be measures of its effect. 

This ideal experiment is, of course, impossible. Instead of doing the second 
study, we establish a standard of comparison to assess the effect of the treatment. 
To be effective, this standard of comparison should be an adequate proxy for 
the performance of those receiving the treatment-the treatment group-if they 
had not received the treatment. One of the objectives of this book is to discuss 
how to establish such standards of comparison to estimate the effect of a treat- 
ment. 

Standards of comparison usually involve a control or comparison group of 
people who do not receive the treatment. For example, to measure the effect of 
wearing seat belts on the chance of surviving an automobile accident, we could 
look at drivers involved in auto accidents and compare the accident mortality 
of those who wore scat belts at the time of the accident with the accident mor- 
tality of those who did not. Drivers who were wearing seat belts at the time of 
the accident would constitute the treatment group, those who were not would 
constitute the control group. Ideally, the accident mortality of the control group 
is close to what the accident mortality of the treatment group would have been 
had they not worn seat belts. If  so, we could use the accident mortality of the 
control group as a standard of comparison for the accident mortality of the 
treatment group. 

Unfortunately, the use of a control group does not in itself ensure an adequate 
standard of comparison, since the groups may differ in factors other than the 
treatment, factors that may also affect outcomes. These factors may introduce 
a bias into the estimation of the treatment effect. To see how this can happen, 
consider the seat belt example in more detail. 

Example 1.1 Effect o f  seat belts on auto accident fatality: Consider a hypothetical 
study attempting to determine whether drivers involved in auto accidents are less likely 
to be killed if they wear seat belts. Accident records for a particular stretch of highway 
are examined, and the fatality rate for drivers wearing seat belts compared with that for 
drivers not wearing seat belts. Suppose that the numbers of accidents in  each category 
was as given in Table 1 .  I .  

From Table 1 . I ,  the fatality rate among drivers who wore seat belts was 10/50 = 0.2 

Table 1.1 Hypothetical Auto Accident Data 

Seat Belts 
Worn Not Worn Total 

Driver killed 10 20 30 
Driver not killed 40 30 70 

Total 50 50 100 
Fatality rate 0.2 0.4 
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Table 1.2 Auto Accident Data Classified by Speed at fmpact 

Low Impact Speed High Impact Speed 
Seat Belts Seat Belts Seat Belts Seat Belts 

Worn Not Worn Total Worn Not Worn Total 

Driver killed 4 2 6 6 18 24 
Driver not killed 36 18 54 4 12 16 

Total 40 20 60 10 30 40 
Fatality rate 0. I 0. I 0.6 0.6 

and the rate among those not wearing seat belts was 20/50 = 0.4. The difference of 0.4 
- 0.2 = 0.2 between the two rates can be shown by the usual chi-square test to be sta- 
tistically significant a t  the .05 level. At first sight the study appears to demonstrate that 
seat belts help to reduce auto accident fatalities. 

A major problem with this study, however, is that it takes no account of differences 
in severity among auto accidents, as measured, for example, by the speed of the vehicle 
a t  impact. Suppose that the fatalities among accidents at low speed and at  high speed 
were as given in Table 1.2. 

Notice that adding across the cells of Table 1.2 gives Table 1.1. Thus 10 = 6 + 4,20  
= 2 + I8,40 = 36 + 4, and 30 = 18 + 12. However, Table 1.2 tells a very different story 
from Table 1 . I .  At low impact speed, the fatality rate for drivers wearing seat belts is 
the same as that for drivers not wearing seat belts, namely 0.1. The fatality rate a t  high 
impact speed is much greater, namely 0.6, but is still the same for belted and unbelted 
drivers. These fatality rates suggest that seat belts have no effect in reducing auto accident 
fatalities. 

The data of Example 1.1 are hypothetical. The point of the example is not 
to impugn the utility of seat belts (or of well-conducted studies of the utility of 
seat belts) but to illustrate how consideration of an extra variable (speed at  
impact) can completely change the conclusions drawn. 

A skeptical reader might ask if there is a plausible explanation for the data 
of Table 1.2 (other than that the authors invented it). The crux of the example 
is that drivers involved in accidents at low speed are more likely to be wearing 
seat belts than those involved in accidents at  high speed. The proportions, cal- 
culated from the third line of Table 1.2, are 40/60 and 10/40, respectively. 
Perhaps slow drivers are generally more cautious than are fast drivers, and so 
are also more likely to wear seat belts. 

We say that speed at impact is a confounding factor because it confounds or 
obscures the effect, if any, of the risk factor (seat belts, or the lack of them) on 
outcome (death or survival). I n  other words, the confounding factor results in 
a biased estimate of the effect. 

Fortunately, if (as in Example 1.1) the confounding factor or factors can be 
identified and measured, the bias they cause may be substantially reduced or 
even eliminated. Our purpose in this book is to present enough detail on the 
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various statistical techniques that have been developed to achieve this bias re- 
duction to allow researchers to understand when each technique is appropriate 
and how it may be applied. 

1.2 PLAN OF THE BOOK 

In  Chapters 2 and 3 we discuss the concepts of bias and confounding. In  
Chapter 3 we also consider the choice of the summary measure used to describe 
the effect of the treatment. I n  Example 1.1  we used the difference between the 
fatality rates of the belted and unbelted drivers to summarize the apparent effect 
of the treatment, but other choices of measure are possible, for example the ratio 
of these rates. 

The construction of standards of comparison is the subject of Chapter 4. As 
we have said, these usually involve a control or comparison group that does not 
receive the treatment. When the investigator can choose which subjects enter 
the treatment group and which enter the control group, randomized assignment 
of subjects to the two groups is the preferred method. Since randomization is 
often not feasible in studies of human populations, we discuss both randomized 
and nonrandomized studies. In  nonrandomized studies statistical techniques 
are needed to derive valid standards of comparison from the control group, which, 
as we have seen in Example I .  1,  may otherwise give misleading results. Although 
randomized studies are less likely to mislead, their precision can often be im- 
proved by the same statistical techniques. 

Chapter 5 discusses the choice of variables to be used in the analysis, a choice 
that must be related to the context and aims of the study. We also show how the 
specification of a mathematical model relating the chosen variables iscrucial 
to the choice of an appropriate method of analysis and consider the effects of 
inadequacies in the model specification. 

Chapters 6 to 10 each consider one statistical technique for controlling bias 
due to confounding factors. These techniques fall into two major categories, 
matching and adjustment. 

In matching (Chapter 6 ) ,  the members of the comparison group are selected 
to resemble members of the treatment group as closely as possible. Matching 
can be used either to assemble similar treatment and control groups in the 
planning of the study before the outcomes are determined, or to select compa- 
rable subjects from the two groups after a treatment has been given and outcomes 
measured. Unlike randomization, which requires control over the composition 
of both groups, matching can be used to construct a comparison group similar 
to a preselected or self-selected treatment group. 

The other major category, adjustment techniques, consists of methods of 
analysis which attempt to estimate what would have happened if the treatment 
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and comparison groups had been comparable when in fact they were not. In other 
words, the estimate of the effect of the treatment is adjusted to compensate for 
the differences between the groups. These adjustment methods include stan- 
dardization and stratification (Chapter 7), analysis of covariance (Chapter 8), 
logit analysis (Chapter 9), and log-linear analysis (Chapter 10). 

A common problem with longitudinal studies is that subjects may be lost to 
follow-up at the end of or during the course of the study. Chapter 1 I ,  on survival 
analysis, discusses the analysis of such studies, including the control of con- 
founding factors. Chapter 12 discusses repeated measures designs, where the 
same subjects are assessed on the outcome variable before and after the inter- 
vention of a treatment. 

Two summary chapters conclude the book. Chapter 13 discusses the choice 
of statistical technique and shows how two techniques can sometimes be used 
together. Finally, Chapter, 14 presents criteria to consider in drawing causal 
inferences from a comparative study. 

The methodological Chapters (6 to 12) may be read in any order, but they 
all use material from Chapters 1 to 5. Chapter 13 refers in detail to Chapters 
6 to 10. Chapter 14 may be read at any point. 

The book presents the general rationale for each method, including the cir- 
cumstances when its use is appropriate. The focus throughout is on unbiased, 
or nearly unbiased estimation of the effect of the treatment. Tests of significance 
are given when these can be performed easily. Although we give many examples 
to illustrate the techniques, we do not dwell on computational details, especially 
when these can best be performed by computer. We shall assume throughout 
the book that the researchers have chosen a single outcome factor for study. For 
simplicity of presentation we often also restrict attention to the estimation 'of 
the effect of a single treatment in the presence of a single confounding factor, 
although extensions to multiple confounding factors are indicated. Some special 
issues that arise with multiple confounding factors are discussed in Chapter 
5. 

Throughout the book the main concern will be internal validity-attaining 
a true description of the effect of the treatment on the individuals in the study. 
The question of external validity-whether the findings apply also to a wider 
group or population-is not discussed in depth as it is primarily determined by 
the subject matter rather than by statistical considerations. 

1.3 NOTES ON TERMINOLOGY 

Throughout, we shall refer to the effect of interest as the outcome factor. A 
common synonym is response factor. The agent whose effect on the outcome 
factor is being studied will be called the treatment, treatment factor, or risk 
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factor. The word “treatment” is generally used to describe an agent applied 
specifically to affect the outcome factor under consideration (as was true for 
all the examples in the first paragraph of this chapter). The term “risk factor,” 
borrowed from epidemiology, is used when exposure to the agent is accidental 
or uncontrollable, or when the agent is applied for some purpose other than to 
affect the specific outcome factor under consideration. An example would be 
the study of the effect of smoking on the incidence of lung cancer. The use of 
the term “risk factor” does not in itself imply that the agent is “risky” or in fact, 
that risk enters the discussion at all. We use whichever term (“treatment” or 
“risk factor”) appears more natural in context. 

In later chapters we talk about quantities or labels that measure the presence, 
absence, level or amount of a risk factor, treatment, outcome factor, or con- 
founding factor. Such quantities or labels will be termed uariables. In studying 
the effect of seat belts on accident mortality (Example 1.1) we may define a risk 
variable taking the value 1 or 0, depending on whether or not the driver was 
wearing a seat belt at the time of the accident. The logical distinction between 
a factor and a variable which measures that factor is not always made in the 
literature, but it can be useful. 

The term “comparison group” is used interchangeably with the more familiar 
“control group.” When the important comparison is between a proposed new 
treatment and the present standard treatment, the standard treatment (rather 
than no treatment) should be given to the comparison group. In dealing with 
risk factors it is natural to speak of “risk groups” or of “exposed” and “nonex- 
posed” groups. We may have several different “exposed” or “treatment” groups, 
corresponding to different levels of the risk factor or treatment. 
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Confounding Factors 

2.1 
2.2 

Adjustment for a Confounding Factor 
Bias, Precision, and Statistical Significance 
2.2.1 Bias 
2.2.2 Precision and Statistical Significance 

2.3 Some Qualitative Considerations 
2.3.1 Unnecessary Adjustment 
2.3.2 Proxy Variables 
2.3.3 Defining the Factors 

Appendix 2A 
Reference 

Bias, Precision, and Mean Squared Error 

8 
10 
1 1  

12 
13 
14 
16 
16 
17 
17 

In the discussion of Example 1.1 (effect of wearing seat belts on auto accident 
fatality) we saw that a background factor (speed at impact) could seriously 
distort the estimate of the effect of the risk factor on the outcome. The distortion 
will arise whenever two conditions hold: 

1. The risk groups differ on the background factor. 
2. The background factor itself influences the outcome. 

Background factors which satisfy conditions 1 and 2 are called confounding 
factors. If ignored in the design and analysis of a study, they may affect its 
conclusions, for part of the effect of the confounding factor on the outcome may 
appear to be due to the risk factor. Table 1.1 is misleading because the effect 
on accident fatality apparently due to wearing seat belts (the risk factor) is ac- 
tually due to speed at  impact (the confounding factor). 

In Section 2.1 we show by another example how the effect of a risk factor can 
7 
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8 CONFOUNDING FACTORS 

sometimes be disentangled from that of a confounding factor. A useful measure 
of the likely influence of a confounding factor on the estimate of treatment effect 
is the bias. Section 2.2 quantifies the term “bias” and briefly introduces the 
concepts of precision and statistical significance. The qualitative discussion in 
Chapter 1 of the relation among the risk, outcome, and confounding factors is 
extended in Section 2.3. Formulas relating bias, standard error, and mean 
squared error are given in Appendix 2A. 

2.1 ADJUSTMENT FOR A CONFOUNDING FACTOR 

In Example 1.1 the risk factor had no actual effect on the outcome. Table 1.2 
shows that its apparent effect was due entirely to the confounding factor. In most 
studies many factors will each have some effect on the outcome and the inves- 
tigator will want to estimate the magnitude of the treatment effect after allowing 
for the effect of the other factors. An example will show that sometimes this can 
be done quite easily. 

Example 2.1 Coffee drinking, obesity, and bloodpressure: Suppose that a physician, 
Dr. A, wants to assess the effect on the diastolic blood pressure of his male patients of 
their regularly drinking coffee. We shall consider just two levels of the risk factor, coffee 
drinking, corresponding to patients who drink coffee regularly (the drinkers) and patients 
who do not drink coffee regularly (the nondrinkers). The outcome variable, diastolic blood 
pressure, is a numerical measurement. Dr. A is unwilling to instruct his patients to drink 
coffee or to stop drinking coffee, but he can rely (let us say) on truthful answers to 
questions on the subject in his medical records. 

Because he knows that blood pressure is also influenced by weight-overweight patients 
tend to have higher blood pressures that those of normal weight-Dr. A classifies all his 
male patients by obesity (overweight or not overweight) as well as by coffee drinking. 
Dr. A calculates the average diastolic blood pressure in millinieters of mercury (mm Hg) 
of patients in the four categories. We shall suppose that the average diastolic blood 
pressure among the nondrinkers who are not overweight is 70 mm Hg, but that among 
the nondrinkers who are overweight the average is 90 mm Hg. Let us also suppose that 
the effect of drinking coffee regularly is to increase blood pressure by exactly 4 mm Hg, 
and that there are no other complicating factors. Then the average diastolic blood pres- 
sures among the drinkers who are and who are not overweight are 94 and 74 mm Hg. 
respectively. These assumptions are summarized in Table 2.1. Notice that we have not 
yet specified the numbers of patients in each category. 

Suppose that Dr. A were to attempt to estimate the effect of drinking coffee on blood 

Table 2.1 Average Diastolic Blood Pressures (mm Hg) 

Overweight Not Overweight 

Drinkers 
Nondrinkers 

94.0 
90.0 

74.0 
70.0 
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Table 2.2 “Even” Distribution for Dr. A’s Patients 
~ ~~~ 

Overweight Not Overweight Total 

Drinkers I00 300 400 
Nondrinkers 50 I50 200 

pressure ignoring the effect of obesity. He would compare the average blood pressure 
of the drinkers with that of the nondrinkers. To calculate these averages Dr. A will need 
to know the numbers of his patients in each category of Table 2.1. We shall suppose that 
he has 600 male patients in all, and will consider two different distributions of their 
numbers, an “even” distribution (Table 2.2) and an “uneven” distribution (Table 
2.3). 

In the “even” distribution the proportion of overweight patients among the drinkers 
(100/400 = 0.25) is the same as that among the nondrinkers (50/200 = 0.25). In sta- 
tistical language, Table 2.2 exhibits no association between coffee drinking and obesity. 
The average blood pressure among all the drinkers is the weighted mean of the averages 
on the top line of Table 2.1, weighted by the numbers of patients contributing to each 
average. From Table 2.1 and Table 2.2, this is 

(94.0 X 100) + (74.0 X 300) - 79.0 mm Hg. 

From the second line of the same tables, the average blood pressure among the non- 
drinkers is 

- 
100 + 300 

Dr. A’s estimate of the average increase in blood pressure due to coffee drinking would 
be 

79.0 - 75.0 = 4.0 mm Hg. 

This is the correct answer because it agrees with the rise of 4.0 mm Hg that we assigned 
to coffee drinking. To summarize, if there is no association between the risk factor, coffee 
drinking, and the background factor, obesity, among Dr. A’s patients, a straight com- 
parison of average blood pressures among the drinkers and among the nondrinkers will 
be adequate. Here the background factor satisfies condition 2 of the definition of a 
confounding factor given at the beginning of this chapter, but it does not satisfy condition 
1 and so is not a confounding factor. 

If, instead, Dr. A’s patients follow the “uneven” distribution of Table 2.3, then both 
parts of the definition will be satisfied, as Table 2.3 does indicate an association between 
coffee drinking and obesity. Obesity will now be a confounding factor. The average blood 

Table 2.3 “Uneven” Distribution for Dr. A’s Patients 

Overweight Not Overweight Total 

Drinkers 300 I00 400 
Nondrinkers 50 I50 200 
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pressure among the drinkers who visit Dr. A will be 
(94.0 X 300) + (74.0 X 100) I 89,0 mm Hg. 

300 + 100 
Among the nondrinkers, the average blood pressure will be 

The crude estimate of the average increase in blood pressure due to coffee drinking, 
namely 

89.0 - 75.0 = 14.0 mm Hg, 

would be incorrect. 
Of course, this problem does not arise if Dr. A assesses the effect of coffee drinking 

separately among his overweight patients and among his patients who are not overweight. 
He then uses the values given in Table 2.1 to arrive at the correct estimate of the effect 
of coffee drinking, namely that it increases average blood pressure by 4.0 mm Hg among 
both classes of patient. 

However, Dr. A may prefer to calculate a single summary measure of the effect of 
coffee drinking on blood pressure among all his patients. He can do this by applying the 
average blood pressures in Table 2.1 to a single hypothetical standard population con- 
sisting. for example, of 50% patients of normal weight and 50% patients who are over- 
weight. These calculations would tell him what the average blood pressures would be 
in this standard population (a )  if they all drank coffee and ( b )  if none of them drank 
coffee. The calculations give 

(94.0 X 0.50) + (74.0 X 0.50) = 84.0 mm Hg 

for the average blood pressure among the patients in the standard population if they were 
all to drink coffee, and 

(90.0 X 0.50) + (70.0 X 0.50) = 80.0 rnm Hg 

if none of them were to drink coffee. The comparison between these two averages gives 
the correct result. 

This adjustment procedure is an example of standardization, to be described further 
in Chapter 7. 

2.2 BIAS, PRECISION, AND STATISTICAL SIGNIFICANCE 

For many reasons the estimated treatment effect will differ from the actual 
treatment effect. We may distinguish two types of error: random error, and 
systematic error or bias. This book is primarily concerned with the bias intro- 
duced into the estimate of treatment effect by confounding factors. However, 
to illustrate the distinction between random error and bias, we give a simple 
example not involving a treatment or confounding factor. 

Example 2.2 The Speak-Your- Weight machines: An old Speak-Your- Weight ma- 
chine is rather erratic but not discernibly off-center. A new machine gives perfectly re- 
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producible results but may be off-center because of an incorrect setting at  the fac- 
tory. 

A man of weight 170 Ib who weighs himself five times on the old machine may hear 
weights of 167,172,169,173, and 168 Ib. The new machine might respond 167,167,167, 
167, and 167 Ib. The old machine is exhibiting random error, the new machine systematic 
error. Of course, a Speak-Your-Weight machine could easily be both erratic and off- 
center. Such a composite machine, exhibiting the defects described both for the old and 
the new machines, might give readings of 164, 169, 166, 170, and 165 Ib, which are subject 
to random error and to bias. 

There is clearly no way to distinguish between these types of error by a single mea- 
surement (e.g., of 167 Ib). Implicit in the distinction between random error and systematic 
error is the notion of repetition: random error would approximately cancel out if repeated 
measurements were taken and averaged [in this example the average of the five weights 
spoken by theold machine, (167 + 172 + 169 + 173 + 168)/5 = 169.8 Ibisquiteclose 
to the true weight, 170 Ib], while systematic error is impervious to averaging (the average 
of the weights spoken by the new machine is still 167 Ib). 

Statistical techniques such as significance testing and the calculation of 
standard errors and confidence intervals are often helpful in gauging the likely 
effect of random error on the conclusions of a study. These techniques cannot 
in themselves assess the effect of systematic error. 

2.2.1 Bias 

We can now attempt a formal definition of the term “bias.” 

&finifion: The bias of an estimator is the difference between the average 
value of the estimates obtained in many repetitions of the study and the true value 
of what it is estimating. 

By thinking of an estimator as a procedure that produces estimates, we in- 
troduce the notion of repetition into the definition. Because of random error the 
estimate would change from repetition to repetition, although the estimator, 
the procedure used to derive the estimates, would not change. The definition 
emphasizes that the bias is a number, positive or negative. This contrasts with 
the common use of the term as an abstract noun, or even as a general insult to 
impugn any study that disagrees with one’s own opinions: “This study is bi- 
ased.” 

Confounding factors are the major source of bias in nonrandomized studies 
(in both the common and the technical usage of the term “bias”) and it is with 
the bias due to confounding factors that this book is primarily concerned. Other 
possible sources of bias will be mentioned in Chapter 5 .  

Unfortunately, the definition we have just given rarely enables the bias to be 
calculated, even in terms of the unknown true treatment effect, since studies 



12 CONFOUNDING FACTORS 

are not repeated and we cannot say what would happen if they were. With the 
partial exceptions of matching and standardization, all the techniques described 
herein depend on assumed statistical models, which state what would happen 
in hypothetical repetitions. A simple statistical model for the weight X registered 
by the “old” Speak-Your-Weight machine of Example 2.2 has 

X = p + E ,  

where p is the true weight of the man and e denotes a random error. The true 
weight p would not change from repetition to repetition, but the random error 
E would change, with an average value close to zero after many repetitions. 

By contrast, the “new” Speak-Your-Weight machine has 

X = p + b ,  

where p is the true weight, as before, and b is a systematic error which does not 
change from repetition to repetition. 

Rarely can the validity of an assumed statistical model be checked directly. 
The methodological chapters (Chapters 6 to 12) will discuss the statistical models 
demanded by each technique and such indirect checks of the validity of these 
models as are available. The equations are not usually as simple as those given 
above because they must relate the outcome variable to the treatment and 
confounding variables of interest and to the measure chosen to describe the effect 
of the treatment. The distribution of the random error must also be specified. 

2.2.2 Precision and Statistical Significance 

The precision of an unbiased estimator of a treatment effect is usually mea- 
sured by the variance of the estimator or by the square root of this variance, the 
standard error. The smaller the variance or standard error, the more precise is 
the estimator. The standard error of a biased estimator still measures the in- 
fluence of random error on the estimator, but it gives no clue as to the magnitude 
of systematic error. As systematic error is usually a more serious threat to the 
validity of observational studies than is random error, this book assesses tech- 
niques by their ability to reduce bias and places only a secondary emphasis on 
precision. However, most of the procedures we describe permit the calculation 
of standard errors of estimated treatment effects. 

The mean squared error of an estimator is defined as the mean value, in hy- 
pothetical repetitions, of the square of the difference between the estimate and 
the true value. We show in Appendix 2A that the mean squared error can be 
calculated as the variance plus the square of the bias. It provides a useful criterion 
for the performance of estimators subject to both systematic and random 
error. 

The function of a test of statistical significance is to determine whether an 
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apparent treatment effect could reasonably be attributed to chance alone. When 
applied to data from well-designed randomized studies, significance tests can 
effectively demonstrate the reality of the observed treatment effect. In non- 
randomized studies, where systematic error will usually provide a more plausible 
explanation of an observed treatment effect than will random variation, sig- 
nificance tests are less crucial. Nevertheless, they can, if carried out after ad- 
justment for confounding factors, be useful indicators of whether the observed 
treatment effect is real. 

The concepts of precision and statistical significance are closely related. 
Whether an estimated treatment effect is statistically significant depends not 
only on the magnitude of the estimated effect but also on the precision of the 
estimator. A useful rule of thumb, based on an assumed normal distribution, 
holds an estimated treatment effect at least twice its standard error from the 
no-effect value to be on the borderline of statistical significance, and to be highly 
significant if away by at least three times its standard error. 

The methodological chapters include some discussion of tests of statistical 
significance and of the precision of estimators. 

2.3 SOME QUALITATIVE CONSIDERATIONS 

For the two examples involving confounding factors discussed so far (seat belts 
to reduce accident fatalities, effect of coffee drinking on blood pressure), the 
assumed relations among the factors are summarized in Figures 2.1 and 2.2. 

In these figures an arrow (+) denotes a direct casual link. That is, A - B 
if a change in A would result in a change in B if all other factors listed in the 
figure do not change. A double arrow (-) denotes a possible association between 
factors A and B which may not have a simple causal interpretation. The two 
factors may influence each other and may both be influenced by other factors 
not included in the figure. The relation of primary interest is, as always, that 

Seat belts Fatality 
(risk factor) (outcome) 
- 

Speed at impact 
(confounding . 

I Fatality I (risk factor) H (outcome) 
Seat belts 

7-7- 
Speed at impact 

(confounding . 

Figure 2.1 Seat belts andfatalities. 
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- 
Coffee 

(risk factor) - 
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Blood pressure 
(outcome) 

Figure 2.2 Coffee drinking and blood pressure. 

between the risk factor and the outcome. The figures indicate the defining 
properties of a confounding factor: it is associated with the risk factor and it 
influences the outcome. As we have seen, the correct statistical analysis for both 
Examples 1.1 and 1.2 is to adjust for the effect of the confounding factor. 

2.3.1 Unnecessary Adjustment 

that adjustment is not always called for. 
The following example, from MacMahon and Pugh (1970, p. 256), suggests 

Example 2.3 Oral contraceptives and thromboembolism: Consider an investigation 
of the effect of oral contraceptives on the risk of thromboembolism in women. A factor 
possibly associated with the risk factor (use of oral contraceptives) is religion. Catholic 
women may be less likely to use oral contraceptives than are other women. The relation 
between the three factors mentioned might be as shown in Figure 2.3. The cynic may 
add a second arrowhead to the arrow connecting “Religion” and “Oral contraceptive.” 
As always, the relation between the risk factor (oral contraceptive use) and the outcome 
(thromboembolism) is of primary interest. 

Oral contraceptive Thrornboembolirm 
(risk factor) (outcome) 

Figure 2.3 Oral contraceptives and thromboembolisms. 
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Table 2.4 Number of Thromboembolisms and Number o f  Women by 
Religion and Oral Contraceptive (00 Use 

Catholic Non-Catholic Total 

OC users 2000 5000 7000 
(thromboembolisms) ( 100) (250) (350) 
Nonusers 8000 5000 13,000 
(thromboembolisms) (240) ( 150) (390) 

To amplify the discussion, let us assume that the true lifetime risks of thromboembolism 
among users and nonusers of the contraceptive pill are 5% and 3%, respectively, irre- 
spective of religion. Consider a study population consisting of 10,000 Catholic women 
and 10,000 non-Catholic women and suppose that 20% of the Catholics but 50% of the 
non-Catholics use oral contraceptives. Table 2.4 gives the number of women in each 
category of the study population and the number of these women who would suffer a 
thromboembolism if the rates of 5% and 3% were to apply. 

In this example an analysis ignoring religion will give the correct risks (350/7000 = 
0.05 and 390/13,000 = 0.03), as should be clear from the construction of Table 2.4. 
However, the background factor of religion is apparently related not only to the risk 
factor-this we assumed at  the start-but also to the outcome, as Table 2.5 demonstrates. 
The .risk of thromboembolism is slightly higher among non-Catholics than among 
Catholics. Apparently, religion here satisfies the definition of a confounding factor, since 
it is a background factor associated with both the risk factor and the outcome. 

Closer examination reveals that religion does not satisfy the definition. Although this 
background factor is associated with the outcome, it does not influence the outcome except 
through its effect on the risk factor. The dashed arrow in Figure 2.3 is a consequence of 
the other two arrows in the diagram. 

If, nevertheless, the investigator does choose to correct for religion as a confounding 
factor using one of the techniques described in later chapters, he or she will not introduce 
bias into the study. Depending on the procedure chosen, there will be a slight or substantial 
loss of precision. 

This last point applies more generally. Unnecessary adjustment-adjustment 
for a background factor that is not in fact confounding-will not introduce bias 
into a study except in some rather special circumstances, involving regression 
effects to be discussed in Section 5.3 (but note also Example 2.4). However, the 
precision of the estimated treatment effect may be reduced. 

Table 2.5 Totals from Table 2.4 

Catholic Non-Catholic 

All women I0,OOO 10,000 
Thromboembolisms (340) (400) 
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2.3.2 Proxy Variables 

Before leaving Example 2.3, we should consider the possible effects of other 
important background variables. In fact, correction for the effect of religion will 
be useful if religion is associated with a confounding variable not measured in 
the study. Religion would then be called a proxy uariable. This could happen, 
for example, in the following cases: 

1. I f  risk of thromboembolism is affected by diet and the eating habits of 
Catholic and non-Catholic women differ. Diet would then be confounding, being 
related to both the risk factor (oral contraceptive use), through its relation to 
religion, and to the outcome (thromboembolism). 

2. If risk of thromboembolism is affected by family size, and Catholic women 
had more children than did non-Catholic women. Here family size would be 
confounding for the same reason as diet in (1). 

The investigator may choose to adjust for religion as a substitute for the un- 
measured confounding factor. Unfortunately, the association between the proxy 
variable and the unmeasured confounding factor needs to be quite strong before 
the former can substitute effectively for the latter. 

2.3.3 Defining the Factors 

In some situations confusion over the definition of the risk factor can actually 
introduce bias into the study. 

Example 2.4 Maternalage and infant mortality: Suppose that we want to determine 
the effect of maternal age on infant mortality. Birth weight might be considered as a 
confounding factor, as older mothers have lower-weight babies and lower-weight babies 
have higher mortality. However, adjusting for birth weight in the analysis would be 

Figure 2.4 Maternal age and infant mortality. 
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misleading, because we would be adjusting away the major difference we should be 
looking for. Birth weight in this example is a kind of intermediateoutcome which leads 
to the final outcome of interest. Figure 2.4 summarizes the relationships among the three 
factors. If the effect of maternal age on infant mortality is entirely attributable to its effect 
on birth weight, an analysis adjusted for birth weight will indicate no association between 
maternal age and infant mortality. 

Of course, it is possible that maternal age affects infant mortality through factors other 
than birth weight. Two infants of identical birth weight but whose mothers were of dif- 
ferent ages would then be subject to different risks. An investigator interested in the effect 
of these other factors should adjust for birth weight. The new, adjusted estimate of the 
effect of the risk factor would differ from the unadjusted estimate, because the investi- 
gator's definition of the risk factor would be different. 

Often the question of whether to adjust for a particular factor is not statistical 
but arises because the researcher has not defined with sufficient care the risk 
factor he or she wants to study. 

APPENDIX 2A BIAS, PRECISION, AND MEAN SQUARED 
ERROR 

Let 8 denote the true value of the treatment effect and 8 the estimator of 8. 
The expectation symbol E denotes averaging with respect to the distribution 
of 8 in hyvthetical repetitions. The bias, variance, and mean squared error 
(m.s.e.) of 6 are, respectively, 

bias (8) = E ( 8 )  - 8 

var (8) = E [ B  - ~ ( 8 ) 1 2  = ~ ( 8 ) 2  - [~(8)1*  
m.s.e. (8) = ~ ( 8  - ~ 2 .  

On expanding the squared term in the last formula, we see that the cross-product 
term vanishes, and we obtain 

m.s.e. (8) = ~ [ 8  - ~ ( 8 )  + ~ ( 8 )  - 812 

= var (8) + [bias 

= E [ 8  - E ( 8 ) ] 2  + [ E ( 8 )  - 812  
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In  an ideal hypothetical situation we could observe on the same group of indi- 
viduals the outcome resulting both from applying and from not applying the 
treatment, We could then calculate the effect of the treatment by comparing 
the.outcomes under the two conditions. We could define a measure of treatment 
effect for each individual as the difference between his or her outcomes with and 
without the treatment. If all subjects were exactly alike, this measure would be 
the same for each. But more commonly, differences between subjects will cause 
the measure to vary, possibly in relation to background factors. A treatment may, 
for instance, be more beneficial to younger than to older people; so the effect 
would vary with age. We may then wish to define a summary measure of the 
effect of the treatment on the entire group. 

In Section 3.1 we will explore different summary measures of treatment effect. 
In Example 2.1, Dr. A’s choice was to express the treatment effect as the average 
difference in blood pressure between patients who drink coffee and those who 
do not drink coffee. We will see that this choice was dictated partly by the nature 
of the risk factor and partly by the underlying model that Dr. A had in mind as 
to how coffee consumption affects blood pressure. In Section 3.2 we will leave 
our ideal situation and see how, when we use a comparison group to estimate 
a summary measure of treatment effect, a confounding factor may distort that 

18 
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estimate. Finally, in Section 3.3 we will focus on situations in which the treatment 
effect is not constant and show that a single summary measure of treatment 
effect might not be desirable. 

3.1 MEASURES OF TREATMENT EFFECT 

The choice of measure for treatment effect depends upon the form of the risk 
and outcome variables. It is useful to make the distinction between a numerical 
variable and a categorical variable. The levels of a numerical variable are 
numbers, whereas the levels of a categorical variable are labels. Thus age ex- 
pressed in years is a numerical variable, whereas age expressed as young-mid- 
dle-aged/old or religion expressed as Catholic/Protestant/ Jewish/other are 
categorical variables. Since the levels of a numerical variable are numbers, they 
can be combined to compute, for instance, a mean (e.g., the mean age of a group 
of individuals). For categorical variables, on the other hand, the levels are looked 
at  separately (e.g., there are 45 young individuals, 30 middle-aged, and 60 old). 
Categorical variables with only two possible levels (e.g., intensive reading pro- 
gram vs. standard reading program) are called dichotomous variables. 

Furthermore, we will sometimes distinguish between an ordered categorical 
variable, such as age, and an unordered categorical variable, such as religion. 
There exists for the first type an intrinsic ordering of the levels (e.g., young/ 
middle-aged/old), whereas for the second type there is no relationship between 
the levels (e.g., we cannot arrange the various religions in any particular order). 
A numerical variable can be created from an ordered categorical variable by 
assigning numbers or scores to the different levels (e.g., -1 to young, 0 to 
middle-aged, and 1 to old). 

Using numerical and categorical variables, we can distinguish four different 
situations, as shown in Figure 3.1. In  this book we are concerned mainly with 
Cases 1 and 2, where the risk variable is categorical. 

Outcome variable Categorical /Categorica\ Numerical Categorical Numerical 

Risk variable 

Case 1 2 3 4 

Figure 3.1 Different cases for measures of treatment effect. 

Case 1: Consider first the effect of a treatment on a dichotomous outcome, 
specifically death or survival. Three measures of treatment effect are commonly 
used (Fleiss, 1973; see also Sheps, 1959, for other proposals). We define the three 
measures and illustrate their use with the data given in Table 3.1. Notice that 
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Table 3.1 Measures of  Treatment Effect for Dichotomous Treatment and 
Outcome in Three Examples 

Example (a) Example (b) Example (c) 
Treatment Control Treatment Control Treatment Control 

Outcome in Three Examples 

Example (a) Example (b) Example (c) 
Treatment Control Treatment Control Treatment Control 

- 

Death rate 0.06 0.0 I 0.55 0.50 0.60 0.10 

Survival rate 0.94 0.99 0.45 0.50 0.40 0.90 

Difference of 0.06 - 0.01 = 0.05 0.55 - 0.50 = 0.05 0.60 - 0.10 = 0.50 
death rates (A) 

Relative risk (8) 0.06/0.01 = 6.00 0.55/0.50 = 1.10 0.60/0.10 = 6.00 

Odds ratio (+) = 6.32 g/E = I ,22 !@I&!.! = 13.50 
0.94 0.99 0.45 0.50 0.40 0.90 

in all three examples given in Table 3.1 the treatment is harmful, since the death 
rate is higher in the treatment group than in the control group. The three mea- 
sures of treatment effect are: 

The difference in death rates (A) between the treatment and control 
groups. (In epidemiology this is called the attributable risk.) In example 
(a) in Table 3.1, A = 0.05 means that the risk of dying is 0.05 greater in 
the treatment group. 
The relative risk (0) is defined as the ratio of the death rate in the treatment 
group to the death rate in the control group. In example (c) in Table 3.1, 
0 = 6 implies that the risk of dying in the treatment group (0.60) is 6 times 
higher than the risk of dying in the control group (0.10). 
The odds ratio ( J / )  or cross-product ratio is based on the notion of odds. 
The odds of an event are defined as the ratio of the probability of the event 
to the probability of its complement. For instance, the odds of dying in 
the treatment group of example (c) are equal to the death rate (0.60) di- 
vided by the survival rate (0.40), or 1.50. When the odds of dying are 
greater than 1, the risk or probability of dying is greater than that of 
surviving. Now, the odds ratio in our example is the ratio of the odds of 
dying in the treatment group (1 SO) to the odds of dying in the control 
group (0.10/0.90 = 0.1 I ) ,  or 13.50. The odds of dying are 13.50 times 
higher in the treatment group. The odds ratio can be conveniently com- 
puted as the ratio of the product of the diagonal cells of the treatment by 
survival table-hence its alternative name, cross-product ratio. In our 
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example, 

(ratio of the odds) 

(cross-product ratio) 
(0.60) X (0.90) 
(0.40) X (0.10) 

or = 

= 13.50. 

The three measures of treatment effect-difference of rates (A), relative 
risk ( B ) ,  and odds ratio ($)-are linked in the following ways: 

1. If the treatment has no effect (i.e., the death rates are equal in the control 
and treatment groups), then A = 0 and B = $ = 1. 

2. If  A is negative or 0 or $ smaller than 1, the treatment is beneficial. 
Conversely, if  A is positive, 0 or t) greater than I ,  the treatment is harmful. 

3. I f  the death rates in the treatment and control groups are low, the odds 
ratio and relative risk are approximately equal [see, e.g., Table 3.1, example 
(a); see also Appendix 4Al.  

4. I n  certain types of studies (see case-control studies in Chapter 4), only the 
odds ratio can be meaningfully computed. In these studies the total number of 
deaths and the total number of survivors are fixed by the investigator, so that 
death rates and hence differences of death rates and relative risks cannot be 
interpreted. We shall see in Chapter 4 that the odds ratio does have a sensible 
interpretation in these studies. 

The three examples of Table 3.1 were chosen in such a way that (a) and (b) 
lead to the same difference of rates and (a) and (c) to the same relative risk. 
These examples show that the value of one of the three measures has no pre- 
dictable relation (other than those mentioned above) to the value of any other 
two: although (a) and (b) have the same A of 0.05, their relative risks (6.00 and 
1.10) are widely different. 

Several factors influence the choice of the measure of treatment effect. The 
choice may depend on how the measure is going to be used. For example, a dif- 
ference in death rates would give a better idea of the impact that the treatment 
would have if it were applied to all diseased people (MacMahon and Pugh, 1970). 
Berkson ( 1  958; also quoted in Fleiss, 1973), in looking at  the effect of smoking 
on survival, makes this point by saying that “of course, from a strictly practical 
viewpoint, it is only the total number of increased deaths that matters.” On the 
other hand, the relative risk may highlight a relationship between a risk and an 
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outcome factor. Hill (1965) remarks that although 71 per 10,000 and 5 per 
10,000 are both very low death rates, what “stands out vividly” is that the first 
is 14 times the second. Thus the choice of a measure may be guided by the aim 
of the study. 

Also, the investigator may believe that one model is more appropriate than 
another in expressing how the treatment affects the outcome, and he or she can 
use the data at hand to test his or her belief. That particular model may suggest 
a measure of treatment effect. This applies for any of the four cases considered 
in this section. We will turn to Case 2 and illustrate there how a measure may 
derive from a model. 

Case 2: When the outcome variable is numerical (e.g., weight, blood pressure, 
test score), the difference of the average of the outcome variable between the 
treatment and comparison groups is a natural measure of treatment effect. For 
instance, Dr. A can calculate the average blood pressure among coffee drinkers 
and among non-coffee drinkers and take the difference as a measure of treatment 
effect. 

Dr. A. may think of two different ways in which coffee might affect blood 
pressure. Let Y I  and YO be the blood pressure of a given patient with and without 
coffee drinking. First, coffee drinking might increase blood pressure by a certain 
amount A, which is the same for all patients: 

Y I  = YO + A for any patient (ignoring random variation). 

Second, coffee drinking might increase blood pressure proportionally to each 
patient’s blood pressure. Let 7~ be this coefficient of proportionality: 

Y I  = TYO for any patient. 

By taking logarithms on each side of this expression, we have, equivalently, 

log YI = log Yo + log T .  

Notice that we have transformed a multiplicative effect (T )  into an additive 
effect (log x )  by changing the scale of the variables through the logarithmic 
function. 

In the first case, A would be the measure of treatment effect suggested by the 
model, which Dr. A. could estimate by the difference of average blood pressure 
in the coffee and no-coffee group. In the second case, he could consider log T 

as a measure of treatment effect, which he could estimate by the difference of 
the average logarithm of blood pressure between the two groups. Or he may find 
T easier to interpret as a measure of treatment effect and transform back to the 
original units through the exponential function. Clearly, with the data at hand 
(see Table 2. I ) ,  the first model (and hence A) is more appropriate. 

Case3: An example of Case 3, where the risk variable is numerical and the 
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outcome categorical, is a study of increasing doses of a drug on the chance of 
surviving for 1 year. The odds of dying can be defined for each dose of the drug. 
The effect of the drug can be assessed by looking at the change in the odds of 
dying as the dose increases. A model often used in such cases assumes that for 
any increase of the dose by I unit, the logarithm of the odds changes by a constant 
amount. This amount is taken as the measure of treatment effect. 

Case 4: Here both the risk and outcome variables are numerical. Suppose 
that we want to look at the effect of increasing doses of a drug on blood pressure; 
if a straight line is fitted to the blood pressure-dose points, the slope of the line 
can be taken as a measure of the effect of the drug. It represents the change in 
blood pressure per unit increase in dosage. Regression techniques that can be 
used in this case will not be discussed in this book. This topic has been covered 
in many other books (see, e.g., Tufte, 1974; Mosteller and Tukey, 1977; Han- 
ushek and Jackson, 1977; Daniel and Wood, 197 1; Colton, 1974). 

From the discussion of these four cases, it should be clear that a measure of 
treatment effect not only depends on the form of the risk and outcome variables, 
but also on the aim of the study, the scale of the variables, and the models judged 
appropriate by the investigators. 

3.2 WHAT HAPPENS WHEN THERE IS CONFOUNDING 

We know from previous chapters that we might be wary of confounding 
factors when we compare a group of treated individuals and a group of com- 
parison individuals to assess the effect of a treatment. The purpose of this section 
is to show how a confounding factor distorts the estimate of the treatment effect, 
and how crude odds ratios or differences of average outcome are not good esti- 
mates of treatment effect in the presence of confounding. 

As before, we will consider different cases, depending on how the outcome 
and confounding factors are measured (i.e., whether they are numerical or 
categorical). We will consider here only dichotomous risk variables, one level 
being the treatment and the other the comparison. Figure 3.2 illustrates the four 
possibilities. The numbers (2) and (1) at  the top of the figure refer to the case 

1 Risk variable1 I Dichotomous1 

p) 
Categorical 

/ \  
Categorical 

/Numerical \ 
Outcome variable 

Confounding variable Numerical Categorical Numerical 

Case A B C 

Figure 3.2 Dijjerent cases for the effect o f a  confounding factor. 

D 
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Proportion 
of individuals 

Age 

Figure 3.3 Age distribution in the smoking and nonsmoking groups. 

numbers in Figure 3.1, and these indicate which measures of treatment effect 
are appropriate for Cases A, B, C, and D. 

An example of Case A is a study of the effect of smoking on blood pressure 
where age expressed in years would be a confounding factor. Suppose that the 
smoking and nonsmoking groups that we compare have the age distributions 
shown in Figure 3.3. Note that there are very few young smokers and very few 
old nonsmokers. The average age of smokers is greater than the average age of 
nonsmokers. 

I n  addition, suppose that a plot of blood pressure vs. age in each group 
suggests, as in Figure 3.4, that blood pressure is linearly related to age, with equal 
slopes among smokers and nonsmokers. If we denote blood pressure by Y and 
age by X and use the subscripts S for smokers and NS for nonsmokers, we have 
(ignoring random variation) 

Ys = as + j3Xs 
Y N S  = (YNS + ~ X N S  

in the smoking group 
in the nonsmoking group. 

Blood 
pressure 

Age 

Figure 3.4 Relationship of blood pressure with age in the smoking and nonsmoking groups. 
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The same slope (p )  appears in the two equations, but the intercepts as and ~ Y N S  

are different. 
Note that age satisfies the definition of a confounding factor given in Chapter 

2: it has a different distribution in the smoking and nonsmoking groups (Figure 
3.3) and it affects blood pressure within each population (Figure 3.4). If we 
assume that age and smoking are the only factors affecting blood pressure, we 
can measure the effect of smoking by the vertical distance between the two lines 
of Figure 3.4 (i.e., as - ~ N S ) .  

In the discussion of Case 2 in Section 3.1, we suggested measuring the 
treatment effect by the difference between the average outcomes: in our example 
by ys - BNS, the difference between the average blood pressure in the smoking 
group and that in the nonsmoking group. Since 

- 
Ys = as + pxs 
- 
Y N S  = a N S  -k P x N S  

(where the overbar indicates that we have averaged over the group), it follows 
that 

- -  
YS - YNS = (as + P X S )  - ( a N S  -k PxNS)  

= (as - a N S )  -k P ( x S  - Z N S )  

= treatment effect + bias. 

Thus if we use the difference of average blood pressure, in our example we 
overestimate the treatment effect by the amount ~ ( X S  - ~ N S ) ,  which we call 
the bias. We have represented this situation in Figure 3.5, which combines 
Figures 3.3 and 3.4. (In Figure 3.5 the age distributions in each group from Fig. 

B I ood 
pressure 

Figure 3.5 Trearment effect and bias. 
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3.3 appear at the bottom of the figure and the relationships between blood 
pressure and age from Figure 3.4 appear as solid lines. The vertical axis of Figure 
3.3 is not explicitly shown.) Note that if age were not a confounding factor, either 
the age distribution would be the same in the two groups (so that XS - ~ N S  = 
0 )  or age would not be related to blood pressure (so that /3 = 0): in both cases 
the bias would be 0. 

As an example of Case B, let us consider sex as a confounding factor. If the 
difference in mean blood pressures for smokers vs. nonsmokers is the same for 
males and females, this difference may be regarded as the treatment effect (again 
assuming that no factors, other than smoking and sex, affect blood pressure). 
But if males have higher blood pressures than females and if males are more 
likely to smoke than females, the overall difference in average blood pressure 
between smokers and nonsmokers is biased as in Case A. Another example of 
Case B is Example 2. I .  

To illustrate Case C, where the outcome is categorical and the confounding 
is numerical, let us suppose that we are interested in the effect of smoking on 
mortality, and once again we will consider age as a confounding factor. Assume 
the same age distributions as in the example for Case A (see Figure 3.3). Now 
consider, for instance, the smoking group: to each level of age corresponds a death 
rate, and a plot of death rate vs. age may suggest a simple relationship between 
them; similarly in the nonsmoking group. For instance, in Figure 3.6, we have 
assumed that the relationship between death rate and age could be described 
by an exponential curve in each group, or equivalently that the relationship 
between the logarithm of the death rate and age could be described by a straight 
line in each group. 

As can be seen in Figure 3.66, we have also assumed that the distance between 
the straight lines is the same for each age (i.e., the difference in the logarithm 
of the death rates is a constant a; - ahs). Note that this difference is the log- 
arithm of the relative risk, since the relative risk is the ratio of the death rate in 
the smoking group, rs,  to the death rate in the nonsmoking group, r N S .  That 
is, 

log rs - Log r N s  = a; - ahs, 

which implies that 

So we are considering a model with the same relative risk at  each age. The 
brackets in Figure 3.6 indicate the ranges of the risks of death for smokers and 
nonsmokers corresponding to the age ranges of Figure 3.3. A crude relative risk 
obtained by dividing the overall smoker death rate by the overall nonsmoker 
death rate would overestimate the true relative risk, because smokers tend to 
be older than nonsmokers. 
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Smokers 

Death 
rate Nonsmokers 

Age 

fa) 

Smokers 

a's - ahs 

Nonsmokers 
Log 

(death rate) 

I Age 

(b) 

Figure 3.6 
age. 

( a )  Relationship of death rate with age; ( b )  relationship of log (death rate) with 

Confounding in Case D operates much the same way as in Case B except that 
the initial assumption is that the relative risk of death for smokers vs. nonsmokers 
is the same for males and females. Example 1.1 is of the Case D type. 

3.3 TREATMENT EFFECT DEPENDENT ON A 
BACKGROUND FACTOR 

In the previous examples we have assumed an identical treatment effect for 
all individuals. In Figure 3.4, for instance, smoking increases blood pressure by 
the same amount for everybody. The assumption of constant treatment effect 
is commonly made for simplicity, but it may be more realistic to assume that 
a treatment acts differentially across individuals. This variability may be modeled 
by assuming that the treatment effect is a function of one or several background 
factors. For instance, the effect of surgery as compared with standard medication 
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Logkardiovascular 
mortality rate) 
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p Surgery ication 

I I 
I I 
1 I Age 

in the treatment of cardiovascular diseases depends in particular on a patient’s 
age, arterial state, and properties of the heart as measured by several variables. 
It may or may not be desirable to refer then to a summary measure of treatment 
effect, as the following two hypothetical cases will illustrate. 

For simplicity we will assume that the effect of surgery depends only on age 
and that the relationships between age and cardiovascular mortality for both 
surgical and medical treatments are as shown in Figures 3.7 and 3.8; in both 
cases, the logarithm of the cardiovascular mortality rate is a linear function of 
age under each treatment. In Figure 3.8, but not in Figure 3.7, the two lines cross. 
In both cases, the comparison of surgery and medication depends on age. In 
Figure 3.7, surgery is always associated with a lower mortality rate, its greatest 
benefit being for younger patients (XI). In this case, a summary treatment effect 
such as a difference in the average logarithm of the mortality rates would provide 
useful information on the effect of surgery. Contrast this with Figure 3.8, where 
surgery is beneficial for younger patients (XI), whereas for older patients (xz) 

Log (cardiovascular 
mortality rate) 

I Aae 
Xl 

Figure 3.8 Second example of interaction. 
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standard medication is preferable. Here a summary measure would give a dis- 
torted picture of the effect of surgery. 

When the treatment effect is related to a background factor in this way, there 
is said to be an interaction between the treatment and background factors. The 
presence or absence of interaction may depend on the measure chosen to express 
the treatment effect. 

Example 3.1 Treatment for breast cancer: Consider the data given in Table 3.2, 
which come from a randomized study (Atkins et al., 1972) comparing two forms of 
surgical treatment for breast cancer. The outcome variable is the presence or absence 

Table 3.2 Surgical Treatment for Breast Cancer" 

Clinical stage I 
Recurrence 

No recurrence 

CIinical stage 2 
Recurrence 

No recurrence 

Surgical Procedure 
Extended Tylectomy Radical Mastectomy 

15 4 

91 

112 
- 

15 4 

112 108 
Rates difference = - - - = 0. I0 

Relative risk = E / L  = 3.62 
112 108 

15 X 104 

4 x 97 
Odds ratio = - - - 4.02 

I 04 

I08 
- 

Extended Tylectomy Radical Mastectomy 
30 9 

40 

70 
- 

30 9 

70 80 
Rates difference = - - - = 0.32 

Relative risk = 3019 = 3.81 
70 80 

Odds ratio = 
30 X 71 

40 X 9 
-- - 5.92 

71 

80 
- 

Adapted, by permission, from Atkins et al. (1972). Tables 2 to 4. 
Treatment = surgical procedure: outcome = recurrence; background factor = clinical stage. 
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of local recurrence of malignancy after the surgery. Patients were divided into two groups, 
depending upon the stage of the disease prior to surgery. 

Since both the risk and outcome variables are categorical, three measures of treatment 
effect- difference in recurrence rates, relative risk, and odds ratio-may be computed 
for each stage (see the calculations in Table 3.2). It turns out that the relative risk is nearly 
the same for stage 1 and stage 2 patients (3.62 vs. 3.81), whereas the odds ratio and dif- 
ference in rates depend on the stage (4.02 vs. 5.92 and 0.10 vs. 0.32). In other words, there 
is an interaction if the treatment effect is expressed in terms of the latter two measures, 
but no interaction if it is measured by the relative risk. 

Since the logarithm of the relative risk is equal to the difference of the log rates 
(log 0 = log rl - log r ~ ) ,  this is an example where an analysis in the original units 
(recurrence rates) show an interaction, whereas an analysis in a different scale 
(log - recurrence rates) does not. Often, however, interactions cannot be re- 
moved by changing the scale. If in  the previous example, stage 1 patients had 
fewer recurrences with tylectomy than with mastectomy but the opposite had 
been true for stage 2 patients, there would be no way of avoiding interaction. 
Figure 3.8 gives another example of nonremovable interaction. 

Although it is desirable to avoid interaction since a single measure can then 
completely describe the treatment effect, sometimes, as we discussed in Section 
3.1, because one measure of treatment effect is more useful than others, this 
measure should be used even if it does result in interaction. 
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Estimating a treatment effect requires the construction of a standard of com- 
parison. As we have seen in Chapter 1,  this involves a comparison group which 
does not receive the treatment of interest. In this chapter we will explore several 
ways of establishing such a comparison group, emphasizing the difference be- 
tween randomization and other methods. It will be seen that a randomized al- 
location of subjects to a treatment and control group generally ensures that the 
latter is an adequate standard of comparison for the former. 

We will start by defining randomization and discussing the properties that 
make this method particularly attractive. We will then give reasons for doing 
nonrandomized studies, and distinguish the different types of studies involving 
a comparison group. For simplicity of presentation, this chapter will be confined 
mainly to studies with a dichotomous risk factor. 
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4.1 DEFINITION OF RANDOMIZATION 

Randomization is a method whereby subjects are allocated to one of the two 
risk factor groups by a random mechanism which assures that each individual 
has an equal chance of being assigned to either group. Tossing a fair coin and 
allocating an individual to one group or the other based omthe appearance of 
“heads” or the use of a table of random numbers are examples of such processes. 
For instance, in studying the efficacy of a new medication relative to a standard 
one, the names of the patients could be entered sequentially, line by line, in a 
book, and a number from a table of random numbers could be assigned to each 
line. The patients assigned even numbers would be allocated to the new medi- 
cation, those with odd numbers to a standard one. A more sophisticated ran- 
domized design should be used if we require equal numbers of patients in the 
two medication groups. After the randomization process has determined that 
a particular subject should be assigned to a particular group, the investigator 
must have enough control to implement that assignment. There is clearly no way 
to conduct a randomized study if the investigator must accept the assignment 
of people to treatment or comparison groups as determined by nature or by some 
institutional process (some examples will be given in Sections 4.4 and 4.5). 

The primary virtue of randomization is that with high probability the two 
groups will be similar. Indeed, the only initial systematic difference between 
the two groups will be that one received the treatment and the other did not. 
Therefore, if the treatment has no effect, the distribution of the outcome variable 
in the two groups would be quite similar. In the next section we provide a more 
extensive discussion of the properties of randomization. 

Although randomization offers important advantages, the investigator may 
sometimes want to consider nonrandom allocations. For example, it is possible 
to use systematic processes such as allocating every second subject or all the 
subjects with odd birth years to one of the two groups. Such processes may be 
much easier to administer than is randomization, and generally these systematic 
processes will be essentially equivalent to randomization. However, there is al- 
ways a risk that the characteristic on which the allocation is done (order of ar- 
rival, birth year) is related to the outcome under study, so that its effect cannot 
be disentangled from that of the treatment. Haphazard processes, where no 
well-defined method is used to form the groups, are even more dangerous since 
the investigator may allocate, often unconsciously, a particular type of subject 
to one of the groups. Thus when assignment of subjects to treatments is under 
the control of the investigator, it is safest to use a random mechanism. 

4.2 PROPERTIES OF RANDOMIZATION 

1. Randomization generally implies equal distribution of subject charac- 
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teristics in each group and thereby facilitates causal inference. If the number 
of subjects in a randomized study is large, it is unlikely that the two groups differ 
with respect to any characteristic that can affect the outcome under study, 
whether or not these characteristics are known to the investigators. To illustrate 
this property, we consider a hypothetical study to determine whether drug X 
is effective, as compared to drug Y, in reducing blood pressure for patients with 
hypertension. The investigators identify a number of hypertensive patients. They 
randomize the patients into a drug X group and a drug Y group. What has been 
gained by randomization here? 

By employing randomization, the investigators assure themselves that the 
groups are likely to have similar distributions of variables which can affect blood 
pressure. More precisely, the probability is small that potentially confounding 
variables differ in the two groups by a large amount. If the drug X group sub- 
sequently exhibits a substantially lower average blood pressure than does the 
drug Ygroup, randomization makes it unlikely that the difference is caused by 
a factor other than the drug. For example, it is unlikely that the drug X group 
has lower blood pressure because it consists of younger people. 

2. Randomization eliminates selection effects. If individuals found eligible 
for a study are randomized into groups, there is no possibility that the investi- 
gators’ initial biases or preferences about which subjects should receive what 
program could influence the results. For example, in the blood pressure illus- 
tration, the investigator, had he or she not randomized, may have tended to give 
the drug X to the more severe hypertensives. Thus a crude comparison of sub- 
sequent blood pressures between the two groups would not give a fair comparison 
of the two drugs. Or consider the Lanarkshire experiment carried out in schools 
to study the effect of milk on growth of children. It was criticized by Student 
(1931) because a loose design allowed the investigators to allocate, perhaps 
unconsciously, more milk to the poorer and ill-nourished children than to the 
well-fed children. Although the number of children participating in the study 
was large, this failure in the design prevented a clear inference about the effect 
of milk. 

If the individuals are considered sequentially for admission to the study, the 
randomization scheme should be kept secret from the investigator. Otherwise, 
a medical researcher who knows that the next patient arriving at  the hospital 
will be assigned by the randomization scheme to drug Y may declare that patient 
ineligible for the study if he or she would have favored drug X for this patient. 
I n  this case, randomization together with “blindness” of the investigator will 
eliminate any selection effects. 

The investigator may or may not be conscious of his or her own selectivity in 
a nonrandomized allocation. Randomization will assure him or her as well as 
others that subtle selection effects have not operated. This element of persu- 
asiveness is a definite strength of randomized studies. 

Selection effects may be created in nonrandomized studies not only by the 
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investigators, as we have just seen, but by the subjects themselves. With ran- 
domization, the subjects cannot select or influence the selection of their own 
treatment. Self-selection may be particularly troublesome in nonrandomized 
studies, since it is often difficult to isolate or to measure the variables that dis- 
tinguish people who select one treatment rather tcan another, and hence to di- 
sentangle the treatment effect from the selection effect. Yerushalmy (1 972). 
in studying the relationship between smoking during pregnancy and birth weight 
of the infant, argues that the observed difference in birth weights between the 
smoking and nonsmoking groups may be due to the smoker and not the smoking 
(i.e., that the smoking may be considered as an index characterizing some other 
unmeasured differences between smokers and nonsmokers). Even if we know 
how to measure these differences, it may be impossible to adjust for their effect 
(see Section 5.6). No such problems arise when randomization is employed. 

3. Randomization provides a basis for statistical inference. The process of 
randomization allows us to assign probabilities to observed differences in out- 
come under the assumption that the treatment has no effect and to perform 
significance tests (Fisher, 1925). If the significance level attached to an observed 
difference is very small, it is unlikely that the difference is due only to chance. 
The purpose of a significance test is to rule out the random explanation. If it is 
used in conjunction with randomization, it rules out every explanation other than 
the treatment. 

4.3 FURTHER POINTS ON RANDOMIZATION 

1. Background variables in randomized studies. Although the primary virtue 
of randomization is to tend to balance the two groups with respect to background 
variables, it does not exclude the possibility of imbalance with respect to one or 
more individual characteristics. The larger the size of the groups, the less likely 
this possibility is; however, the investigator should make some basic checks on 
his or her data to verify that such an unlikely event has not happened. These 
checks involve comparing the distribution of background variables in the two 
groups, primarily those background factors which may have an important effect 
on the outcome factor. If the investigator finds differences between the two 
groups, he or sheshould use one of the adjustment techniques described in this 
book. 

The University Group Diabetes Program (UGDP, 1970) provides an example 
of a carefully randomized study with an extensive check of possible inequalities 
between treatment groups. The study revealed a higher cardiovascular mortality 
among patients taking tolbutamide-a drug for the treatment of diabetes, until 
then regarded as safe-than among patients on other drugs for diabetes or a 
placebo. One of the controversies that emerged from this study concerned the 
excessive cardiovascular mortality-1 2.7% in the tolbutamide group as com- 
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pared to 6.2% in the placebo group. Could it be explained by an unlucky ran- 
domization that happened to assign healthier patients to the control group? A 
committee appointed by NIH to review the available evidence (Committee for 
the Assessment of Biometric Aspects of Controlled Trials of Hypoglycemic 
Agents, 1975) confirmed that the random process had indeed allocated healthier 
patients to the control group. After adjusting for this particular problem, how- 
ever, the committee concluded that there still existed excessive mortality in the 
tolbutamide group. Cornfield (1971) in his reassessment of the study, points 
out that when differences in background variables are observed after random 
allocation, the randomization scheme should be carefully reviewed to eliminate 
the possibility that it has been violated. 

Often, before the randomization is carried out, certain factors are thought 
to have an important effect on the outcome. It is then advisable to form groups 
of individuals who are homogeneous in these factors and use randomization 
within these groups: this process is known as stratvied randomization. It con- 
stitutes an insurance against differences in the distribution of major variables 
and reduces the random variability. It does require, however, more extensive 
bookkeeping, to perform the random allocation, and a more complex analysis, 
to take these groupings into account. 

The question of designing such randomized studies and more complex types 
will not be discussed in this book. The interested reader is referred to texts on 
experimental design: see Cox (1958) for a nonmathematical presentation and 
Zelen (1974) and Pocock (1979) for reviews of designs in clinical trials. 
Kempthorne (1952) and Cochran and Cox (1 957) present experimental designs 
for comparative studies and their analysis at  a higher level. 

2. Randomization in small samples. When the number of individuals in the 
study is small, the probability of imbalance on important background factors 
between the groups may be substantial. Precautions should be taken at the design 
stage to reduce this probability and to decrease the random variation around 
the difference in outcome. References given in the previous section should be 
consulted. Also relevant to studies where the individuals are considered se- 
quentially for eligibility-patients entering a hospital, inmates arriving a t  a 
prison-are the new type of “biased coin designs” (Efron, 1971; Pocock and 
Simon, 1975; Simon, 1979). These designs attempt to achieve balance with re- 
spect to important background factors while preventing the investigator from 
being aware of which treatment group the next individual will be assigned to. 

4.4 REASONS FOR THE USE OF NONRANDOMIZED 
STUDIES 

We have outlined in Section 4.2 three well-known advantages of randomi- 
zation: ( a )  it tends to balance subject characteristics between the groups and 



36 RANDOMIZED AND NONRANDOMIZED STUDIES 

facilitate causal inference, (b )  it eliminates selection effects, and ( c )  it provides 
a basis for statistical inference. Why, then, should standards of comparison be 
constructed in any other way? We present next some possible reasons for con- 
structing standards of comparison by some other procedure. 

1. Nonrandomized studies are sometimes the only ethical way to conduct 
an itwestigation. If the treatment is potentially harmful, it is generally unethical 
for an investigator to assign people to this treatment. An example of this is a study 
of the effects of malnutrition, where we simply cannot assign subjects to intol- 
erable diets. Thus we compare malnourished populations with those on adequate 
diets. 

2. Nonrandomized studies are sometimes the only ones possible. Certain 
investigations require the implementation of treatments that may affect people’s 
lives. In a democratic society randomized implementation of such treatments 
is not always feasible. Consider, for example, the question of fluoridating a town’s 
water supply. Let us assume that the voters in any town, or their elected repre- 
sentatives, have the final say about whether the water supply is fluoridated. No 
experimenter can make this decision. We would then have a series of towns, some 
of which have elected fluoridation and others which have not. The dental ex- 
perience of the children in these towns can provide a great deal of useful infor- 
mation if properly analyzed. 

3. Nonrandomized studies are usually less expensive. An advantage of 
nonrandomized studies is that they usually cost less per subject and may not 
require the extensive planning and control that are needed for randomized 
studies. This makes nonrandomized studies particularly attractive in the early 
stages of any research effort. Preliminary estimates of the relative importance 
of many background variables and their variation may be developed at a rea- 
sonable cost. These data may be important in designing future randomized ex- 
periments. 

Also, if the investigator is expecting or is interested only in very large, 
“slam-bang” effects (Gilbert et al., 1979,  nonrandomized studies may detect 
such differences adequately. For instance, the effect of penicillin on mortality 
was so obvious when it was first used that no randomized study was necessary. 
However, Gilbert et al. (1975, 1977), after reviewing a large number of inno- 
vations in social and medical areas evaluated by randomized and nonrandomized 
studies, conclude that such slam-bang effects are exceptional. 
4. Nonrandomized studies may be closer to real-life situations. To the extent 

that randomization differs from natural selection mechanisms, the conditions 
of a randomized study might be quite different from those in which the treatment 
would ordinarily be applied. For example, a program may be very successful 
for those who choose it themselves on the basis of a media publicity campaign 
but ineffective when administered as a social experiment. It would then be dif- 
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ficult to disentangle the effect of the program from that of the experimental 
conditions and to generalize the results of this particular study to a natural, 
nonexperimental setting. Although we do not discuss this problem of “external 
validity,” because it is primarily subject-matter-related rather than statistical, 
it might preclude experiments whose conditions of application are too artifi- 
cial. 

4.5 TYPES OF COMPARATIVE STUDIES 

The investigator who does not have control over the assignment of treatment 
to individuals can often take advantage of situations created by nature or society. 
Suppose that we want to study the relation between cigarette smoking (risk 
factor) and lung cancer (outcome). Although we cannot randomly assign subjects 
to levels of the risk factor, we can still observe over time groups of people who 
smoke and who do not and compare the proportions of individuals who develop 
lung cancer in each group. This approach, called a cohort study, may require 
the observation of a large number of people if the outcome under study is rare 
in order to get enough “positive outcome” subjects (with lung cancer in this case). 
In cases of rare outcome, a more economical approach, the case-control study, 
may be considered. One would assemble a group of people with lung cancer and 
a group without and compare the proportions of smokers in each group. 

These two designs (Cochran, 1965; WHO, 1972) can be viewed as different 
methods of sampling from a given population (we will later refer to that popu- 
lation as the “target population,” i.e., the collection of individuals to whom we 
would like to apply the results of the study). In cohort studies, we focus on risk 
factor groups and take samples of exposed and unexposed subjects (smokers/ 
nonsmokers); in case-control studies, we focus on outcome groups and take 
samples of cases and noncases (with lung cancer/without lung cancer). To clarify 
this point, we can look at  a 2 X 2 table (Table 4.1) which gives the number of 
subjects in the target population falling in each category. In a cohort study, we 
would take samples from the smoking group (A + B) and the nonsmoking group 
(C + D ) .  In a case-control study, we would take samples from the group with 
lung cancer (A + C) and the group without lung cancer (B + D ) .  

Table 4.1 Distribution of Target Population 

Smokers Nonsmokers Total 

With lung cancer A C A + C  
Without lung cancer B D B + D  - - 

Total A + B  C + D  A + B + C + D  
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In the following discussion, we will point out arguments for and against each 
approach-cohort or case-control study. A detailed presentation of these two 
types of studies may be found in MacMahon and Pugh (1970). 

4.5.1 Cohort Studies 

In a cohort study, persons are selected on the basis of their exposure (or lack 
of exposure) to the risk factor. The outcome is measured in the subjects of each 
group after their selection for study. 

Cohort studies may be either prospective or retrospective. If the outcome has 
occurred prior to the start of the study, it is a retrospective cohort study. If the 
outcome has not occurred at the beginning of the study, it is prospectiue. Re- 
trospective studies are particularly useful when the time lag between exposure 
to the risk factor and the outcome is large, because the time needed to complete 
a retrospective study is only that needed to assemble and analyze the data. In 
a prospective study, for instance of smoking and lung cancer, one may have to 
wait 20 years or more until the risk factor has an effect. The possibility of doing 
a retrospective cohort study depends on the availability and reliability of records 
on both the risk and outcome factor. In a prospective study, the investigator can 
plan and control the collection of data and therefore avoid, or at  least be aware 
of, defects in the collection of data. Note that a randomized study is a special 
type of prospective cohort study. Consequently, some of the problems mentioned 
later in this section apply also to randomized studies. 

Cohort studies are preferred to case-control studies when the risk factor is 
rare in the target population. For example, suppose that we want to study the 
relation between working in a textile mill and lung cancer among all Americans. 
As this occupation is rather uncommon, it would not be efficient to use a case- 
control approach, because by selecting individuals with and without lung cancer 
we would find too small a proportion (if not nonexistent) of cotton textile mill 
workers to draw any conclusion. (However, if the study were to be restricted to 
a town with a high proportion of cotton workers, a case-control study might well 
be appropriate.) But with a cohort study, we could build a sample of these 
workers which is of reasonable size. Conversely, cohort studies do require very 
large sample sizes if the outcome is rare. 

As pointed out earlier, the latent period between the exposure to the risk factor 
and the outcome may be very long, so that people may be lost before the outcome 
is measured. This may happen for several reasons: people move to another region; 
people do not want to participate any more (e.g., if the study requires periodic 
measurements); people die (and death is not the outcome under study); and so 
on. An analysis for handling losses to follow-up is presented in Chapter 1 1. This 
method of analysis takes care of situations in which the probability of loss is 
related to the risk factor. Imagine, for instance, that smokers tend to move more 
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than nonsmokers and thus the loss rate would be higher in the exposed group 
than in the nonexposed group. Or people may have an incentive to participate 
if they belong to one of the risk factor groups: for instance, a tastier diet may 
be part of a treatment and encourage people to continue to participate; those 
in the ‘‘dull’’ diet may drop out more easily. More difficulties arise if the prob- 
ability of loss is related to the outcome factor, as discussed in Chapter 1 1. 

The problem of observation bias in ascertainment of the outcome is often 
present in cohort studies. If the observer who measures the outcome is aware 
of the risk factor group to which the subject belongs, he or she may be tempted 
to set systematically the doubtful cases in one outcome category for the treatment 
group and in another category for the comparison group. This kind of bias may 
be avoided by using a “blind” procedure wherein the observer does not know 
the risk factor group to which the subject belongs. Similarly, it is sometimes 
possible to keep the subject from knowing to what risk factor group he or she 
belongs, to avoid differential rates of reporting: the patient who receives a new 
drug may be influenced by expectations in reporting results of the medication. 
When both the observer and the subject are kept “blind,” the study is called a 
“double-blind” study. 

4.5.2 Case-Control Studies 

In a case-control study, we assemble groups of subjects on the basis of their 
outcomes and then collect data on their past exposure to the risk factor. Consider, 
for example, the following study on the characteristics of adult pedestrians fatally 
injured by motor vehicles in Manhattan (Haddon et al., 1961). The investigators 
of this case-control study assembled 50 pedestrians fatally injured by motor 
vehicles to form the case group and 200 live pedestrians to form the control group. 
They were interested in the association of different risk factors-age, heavy 
drinking, and so on-with pedestrian deaths. To ensure some comparability 
between the two groups, they forced comparability on background variables 
(other than the risk factors) that they thought related to both the outcome and 
the risk factors, by assigning to each case four controls with the same sex, found 
at  the same accident site, at  the same time of day, and on the same day of week 
of accident. That is, they “matched” (see Chapter 6) cases and controls on four 
background variables. Then they compared the age distribution in both groups, 
the blood alcohol content, and other risk factor distributions in the two 
groups. 

By using a case-control approach, the investigators were able to look at the 
influence of several risk factors by means of a single study. Their study was rather 
economical since they needed to assemble data on only 250 people; if they had 
used a cohort study, tens of thousands of people would have been needed to get 
a few pedestrian deaths in each risk factor group. 
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As with all nonrandomized studies, there can be no assurance of comparability 
between the two groups. The investigators have matched cases and controls on 
four background factors, but an undetected confounding factor could induce 
different distributions of risk factors in the two groups even if the risk factors 
had no effect. 

A selection bias may be encountered in case-control studies when cases (or 
controls) have a different chance of being selected from the target population 
as exposed than as nonexposed. This results from the fact that the individuals 
participating in the study are selected after both the exposure and the outcome, 
so that a combined effect of the risk and outcome may influence the selection. 
The results of a case-control study have been published (Boston Collaborative 
Drug Surveillance Program, 1972) showing that the risk of myocardial infarction 
(MI), more commonly known as heart attack, was twice as large for heavy coffee 
drinkers as for others. The possibility of a selection bias was later suggested 
(Maugh, 1973). The cases were selected among hospitalized MI patients and 
the controls were patients from the same hospitals suffering from other diseases. 
However, the cases represent a “lucky” fraction of the MI population, since 60% 
of MI victims die before reaching the hospital. So the data would be consistent 
with an interpretation that coffee drinking has no adverse effect on the incidence 
of MI, but on the contrary increases the chance of survival after MI! If that were 
the case, the proportion of coffee drinkers would be higher among survivors of 
MI than among MI victims in the target population. Then the cases being 
sampled from the survivors of MI, rather than from the MI victims in the target 
population, would have a higher chance of being selected as coffee drinkers than 
as noncoffee drinkers. We would then find an excess of coffee drinkers among 
the cases, even though coffee drinking may have no effect on the incidence of 
MI. 

Selection bias makes it hard to generalize the results of a case-control study 
to a target population, because it may be impossible to know how original groups 
of exposed and unexposed subjects were reduced by death or migration before 
they appear as cases or controls (Dorn, 1959; Feinstein, 1973). Important groups 
of subjects may never appear for observation in a case-control study, such as 
the 60% of MI victims who die before reaching a hospital. 

Observation bias may arise in ascertaining exposure to the risk factor. I f  it 
is done by interviews, the quality of memory may be different among cases and 
controls. For instance, if mothers who give birth to abnormal children are in- 
terviewed about a possible exposure to X-rays during their pregnancy, they may 
remember better all the events that occurred during their pregnancy than will 
mothers who gave birth to normal children. Also, the interviewer may be inclined 
to get more accurate information among cases than among controls. 

The estimation of effects raises special problems in case-control studies. To 
illustrate these difficulties, again consider Table 4. I ,  which classifies subjects 



4.5 TYPES OF COMPARATIVE STUDIES 41 

Table 4.2 Distribution of Individuals in a Hypothetical Case-Control Study 

Smokers Nonsmokers Total 

With lung cancer 560 
Without lung cancer 360 

440 I000 
640 1000 

Table 4.3 Distribution of Individuals in Another Hypothetical Case-Control 
Study 

Smokers Nonsmokers Total 

With lung cancer 5,600 
Without lung cancer 360 

4,400 I0,OOO 
640 1,000 

in the target population according to their smoking and lung cancer statuses. 
In a case-control study we may decide to take 1000 subjects from the population 
with lung cancer and 1000 subjects without and look into their smoking history: 
we may get Table 4.2. Or we may want to choose more lung cancer patients, say 
10,000, and get Table 4.3. 

In Chapter 3 we discussed three measures of treatment effect available when 
both the risk and outcome factors are dichotomous. Applied to our example, they 
would be: 

The difference in lung cancer rates in the smoking and nonsmoking 
groups. 
The relative risks of developing lung cancer for smokers as compared to 
nonsmokers. 
The odds ratio, that is, the ratio of the odds of developing lung cancer in the 
smoking group to that of developing lung cancer in the nonsmoking group. 

By comparing Tables 4.2 and 4.3, we see that the lung cancer rate in, for in- 
stance, the smoking group, is not meaningful since the number of lung cancer 
patients may be changed at will by the investigator: in Table 4.2,560 of 920 (= 
560 + 360) smokers have lung cancer; in Table 4.3,5600 of 5960 (= 5600 + 
360) smokers have lung cancer. Thus a measure derived from comparing lung 
cancer rates, such as the difference of rates and relative risk, cannot be inter- 
preted in a case-control study. Only the odds ratio can be computed, since it does 
not depend on the sampling ratio of lung cancer to noncancer subjects (it is equal 
to 2.26 for the data in Tables 4.2 and 4.3). 

Under the following two special circumstances, however, the relative risk in 
the target population may be estimated from the odds ratio of a case-control 
study: 
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1 .  The outcome is rare (this implies that the relative risk of the target pop- 
ulation is approximately equal to the odds ratio of the target population). 

2. There is no selection bias (then the odds ratio of the case-control study is 
a good estimate of the odds ratio in the target population). Detailed calculations 
showing how the relative risk in the target population may be estimated by the 
odds ratio are given in Appendix 4A. 

Further information regarding case-control studies can be found in the pro- 
ceedings of a recent symposium (Ibrahim, 1979). 

4.5.3 Cross-Sectional Studies 

Up to now we have presented two types of studies which are generally longi- 
tudinal; that is, there is a period between the exposure to the risk factor and the 
outcome which is the period needed by the risk factor to have an effect, if it has 
any. However, the length of this period may not be known; the outcome may be 
undetected for a while or the exposure to the treatment may expand over many 
years. For these various reasons, cross-sectional studies are sometimes done 
in which the risk and outcome factors are ascertained at  the same time. For 
example, to study the relationship between obesity and heart disease, we might 
collect data that classified people as obese or nonobese in 1978 and with or 

Table 4.4 Types of Comparative Studies" 

Cohort 

Cross-sectional 

Retrospective Prospective 

Randomized Nonrandomized 

Longitudinal Cross-sectional 

(I All studies are nonrandornized studies except when otherwise indicated. Case-control studies 
can be carried out only retrospectively. 
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without heart disease in 1978. In addition to the usual problems in nonran- 
domized studies there is the difficulty of deciding whether the “outcome“ or 
“risk” factor came first. There is no way in the previous example of indicting 
obesity as a causal factor in heart disease: we can imagine a circumstance where 
people with heart disease began to worry about their condition and ate pro- 
gressively more as their disease worsened. 

The different classifications we have made in this chapter are summarized 
in Table 4.4. 

Whereas cohort and case-control studies always involve two different groups 
to be compared (treated and nontreated for cohort studies, cases and controls 
for case-control studies), there are instances in which only one group is consid- 
ered, the group acting as its own comparison group: each subject is measured 
before and after the treatment, .the first measurements providing the comparison, 
group, the second the treated group. The difficulty of disentangling effects due 
to the passage of time from the effect of the treatment is particularly troublesome 
in these studies. The analysis of this type of study is discussed in Chapter 12. 

4.6 OUR ATTITUDE TOWARD NONRANDOMIZED STUDIES 

The limitations of nonrandomized studies that have been discussed in this 
chapter lead to a question of research strategy. While nonrandomized studies 
are cheaper, more easily carried out, and can be done retrospectively, inferences 
from them are generally more suspect than are those from randomized studies. 
Does this mean that the investigator should discard the idea of doing a study 
at  all if randomization is not feasible? Similarly, when reviewing the results of 
previous studies, should the reviewer discard all those with nonrandomized de- 
signs? We think not. Such a strategy would be extremely conservative. 

As mentioned above, there are often sound reasons for considering nonran- 
domized studies, and much can be learned from them. To eliminate all such 
studies would be terribly wasteful. On the other hand, the researcher has a re- 
sponsibility to report clearly all circumstances that may bear on the credibility 
of results. Without randomization, there are often many alternative explanations 
of observed results. The researcher must be able to present convincing evidence 
to rule out alternatives, or to provide data that allow the “consumer” to make 
an informed judgment. 

APPENDIX 4A THE ODDS RATIO AND THE RELATIVE RISK 
IN CASE-CONTROL STUDIES 

We show how the relative risk in the target population may be estimated from 
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the odds ratio in a case-control study if conditions 1 and 2 of Section 4.5.2 are 
satisfied. 

Using the notation of Table 4.1, which gives numbers of smokers/nonsmokers 
with lung cancer/without lung cancer in the target population, we have the 
relative risk in the target population: 

A / ( A  + B )  - A ( C  + D )  

C/(C + D )  - C ( A  + B )  * 
f?= 

If condition 1 of Section 4.5.2 is satisfied (i.e., lung cancer is rare), then A 
and C are small compared, respectively, to A + B and C + D: 

A + B = B  
C + D G D ,  

so that 8 = AD/CB = odds ratio (+) in the target population. 
Now denote by lowercase letters the numbers of subjects in a case-control 

study who represent a sample from the target population. Condition (2) (no 
selection bias) can be written, ignoring sampling variability, as 
a c  
- & -  (the selection of lung cancer patients for study does not depend on 
A whether they smoked or not) 

(the selection of control subjects for study does not depend on whether 
they smoked or not), 

& 

so that 

4 A - !! and - D,! 
c c  B - 6 '  

Thus 

AD ad .. + = - = - = # 
CB cb 

(the odds ratio in the case-control study) 

Therefore, if conditions 1 and 2 are satisfied, &, the odds ratio in a case-control 
study may be used as an estimate of 8, the relative risk in the target popula- 
tion. 
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Before presenting the various methods for controlling bias, we will raise several 
important caveats. The basic theme of this chapter is that the validity of any 
statistical adjustment rests on a set of assumptions which may be difficult to 
verify. In addition to an understanding of technical details, judgment is required 
in order to apply these techniques properly. Since a certain amount of practical 
experience is necessary to develop good judgment, we can offer no simple for- 
mulas. However, we can point out the major problems that arise in practice and 
some general approaches which are helpful in dealing with them. 

5.1 OMITTED CONFOUNDING VARIABLES 

In order to obtain a valid estimate of the treatment effect, the analyst must 
be sure that the variables used for adjustment include, all important confounding 
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factors. In Chapter 2 we defined a confounding factor as a variable that has the 
following properties: 

1. Is statistically associated with the risk factor. 
2. Directly affects the outcome. 

The main problem is to verify part 2 of this definition. The judgment that a 
particular variable exerts a direct causal influence on the outcome cannot be 
based on statistical considerations; it requires a logical argument or evidence 
from other investigations. 

For example, supppose that we are investigating the effectiveness of an edu- 
cational program aimed at  improving the reading ability of elementary school 
children. Two classes are being compared, one receiving the new program and 
one utilizing the standard curriculum. The children have been rated on scales 
indicating the level of parent education and family economic circumstances. 
Suppose that the class receiving the new program contains a higher proportion 
of poor children. Then, if poverty is thought to have a direct influence on reading 
ability, it can be considered a confounding factor. But poverty may be closely 
linked to parent education in a complex causal relationship. Although some of 
the effect of parent education may be attributable to economic circumstances 
per se, there may be an independent component related to education itself. So 
even if we compared two equally poor children receiving identical treatments, 
we would still expect differences in parents’ education to result in different ex- 
pected reading abilities. That is, conditional on economic status, parent education 
still constitutes a confounding factor. 

Now it might seem that including either education or economic status as 
adjustment variables would be reasonable, even though using both would be 
better. Moreover, if there exist other unmeasured variables pediating the effects 
of these two variables in combination, failure to include them would not seem 
very serious. In randomized studies that is in fact the case. Omitting a relevant 
variable results in less precise estimation, but the estimate of effect is unbiased. 
In nonrandomized studies, however, serious problems can result. 

To see more clearly the nature of these problems, let us consider a hypothetical 
example. Suppose that in reality there are only two confounding factors, X1 and 
X2. Tables 5.1 and 5.2 display the joint frequency distribution of X I  and X2 and 
the average outcome values given X1 and X2 under the treatment and control 
conditions. From the calculations shown in Table 5.2, it is clear that if we do not 
adjust at  all, we will estimate the treatment effect as 

Estimate of effect = 5 1.25 - 61.25 = - 10. 

However, we can see that for each possible combination of X I  and X2 values, 



Table 5.1 Joint and Marginal Frequency Distributions of XI and Xza 

Treatment Group 

0 1 Total 
x2 

XI 

Total I 100 100 I 200 

Comparison Group 

0 I Total 
x2 

0 Each factor has two levels, denoted by 0 and 1. 

Table 5.2 Average Outcome Values 
~~ ~ 

Treatment Group Comparison 

Estimated average outcomes ignoring X I  and X2: 

lOO(10) + 50(90) t 50(90) + 25(10) = 51.25 
Treatment group: 

200 

lOO(90) + 50(10) + 50(10) + 25(90) = 6,,25 
Comparison group: 

Estimated average outcomes adjusting for X I  only: 

Treatment group: X I  = 0 

200 

IOO(10) + W 9 0 )  = 55.0 
100 

I oo(90) + 50( 10) = 95.0 Comparison group: XI = 0 
100 

the average outcome is equal for the two groups. That is, the treatment really 
has no effect, and our estimate is therefore incorrect. 

48 



5.1 OMITTED CONFOUNDING VARIABLES 49 

Now let us adjust this estimate, by conditioning on values of X I  alone. This 
simple method for correcting bias constitutes a special case of stratification, 
which is described in detail in Chapter 7. From the information at the bottom 
of Table 5.2, we obtain 

Estimate of effect = (estimate given XI = O)P(XI  = 0 )  
+ (estimate given XI = I)P(XI = 1 )  

100 100 
= (-40) - + (-20) - = -30. 

200 200 

In this example, adjustment by X1 alone has increased the bias from -10 to 
-30. 

This example is rather extreme. In most practical situations, we can expect 
the effect of omitted variables after controlling for a few key, identifiable vari- 
ables to be small. That is, inclusion of additional variables will not change the 
estimated effect enough to alter the interpretation of results. 

Of course, there is never a guarantee that all important variables have been 
considered. It is the analyst’s responsibility to present evidence that for indi- 
viduals who are equal in terms of variables included, there is no variable that 
still satisfies conditions I and 2 given at  the beginning of this section. More 
precisely, if  a variable does satisfy these conditions, its marginal effect must be 
very small. 

Note also that in our example, the marginal distributions of X I  and X2 are 
identical in the two groups. So it might appear that they are not confounding 
variables according to the definition given in Chapter 2. But if we apply the 
definition to the joint distribution, we see that it does apply to the pair ( X I ,  &), 
which together constitute a confounding factor. 

The dilemma posed by statistical adjustments is that no matter what variables 
we include in the analysis ( X I  in our example), there may be an omitted variable 
(X2 in our example) that together with the included variables constitutes a 
confounding variable. Moreover, it is not enough to demonstrate that all plausible 
confounding variables excluded have similar distributions across groups. As with 
our example, such a variable may still be important in combination with others. 
So the analyst must be fairly certain that no variable has been left out which 
mediates the causal effect of those variables included. 

It is clear that judgment and experience are necessary in selecting variables. 
Also, close collaboration between statisticians and scientists in both the design 
and analysis of a study is highly desirable. The problems in selecting variables 
are primarily substantive and not statistical, although there are some statistical 
guidelines that may often prove useful. 

Cochran (1965) suggests that the background variables be divided into three 
classes: 
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1.  A small number of major variables for which some kind of matching or 
adjustment is considered essential. These are usually determined by knowledge 
of the specific subject matter and review of the literature. 

2. Variables that may require matching or adjustment. 
3. Variables that are believed to be unimportant or for which data are not 

available. 

Decisions regarding the variables that fall in category 2 can be very difficult. 
The problem is similar to that of model specification in the context of multiple 
regression (see Cox and Snell, 1974; Mosteller and Tukey, 1977, Chap. 16). In 
regression analysis, we want to include enough relevant variables to ensure that 
the resulting model is a correct description of the relationship between an out- 
come variable and a set of input variables. A commonly used criterion for the 
importance of a particular variable, given a set of other variables, is the decrease 
in the proportion of explained variation when that variable is excluded. Since 
this number depends on which other variables are also included in the analysis, 
no unique measure of “importance” can be defined. However, by calculating 
this quantity for each variable in a proposed set and trying various plausible sets, 
it is often possible to get a sense of which variables play the most important causal 
roles. 

In choosing variables for statistical adjustment, a similar idea can be applied. 
for each variable of a given set, the change in the adjustment that would result 
from omitting it can be calculated. By examining various possible combinations, 
we can sometimes get a good sense of which variables are the confounding fac- 
tors. For example, suppose that one particular variable consistently makes a large 
difference in the estimated effect, regardless of which other variables are in- 
cluded, while all other variables have smaller effects that depend strongly on 
the composition of the whole variables set. In such a situation we would be sat- 
isfied to use only this one variable in our analysis. 

While part 2 of the definition given at the beginning of this section is hardest 
to verify, part 1 is also important. A variable that is strongly related to outcome 
is confounding only of its distribution differs appreciably across the treatment 
groups. So before tackling the more difficult task described above, the analyst 
may want to reduce the number of potential factors by eliminating those vari- 
ables with similar distributions across groups. However, as noted above, joint 
distributions as well as those of each variable separately must be considered. 

In this context, an appreciable difference among treatment groups is not 
necessarily the same as a statistically significant difference. Significance tests 
place the burden of proof on the rejection of the null hypothesis. As we indicated 
in Chapter 2, a large difference will not be statistically significant if it has an 
even larger standard error. In small studies, associations between background 
variables and the treatment which are large enough to dictate the estimate of 
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treatment effect may not be statistically significant. The opposite problem can 
occur in large studies. Weak association between treatment and background 
variables may be statistically significant and yet be too small to affect the esti- 
mate of treatment effect. 

A systematic method for examining the joint distributions of background 
variables is discriminant analysis. The discriminant function is defined as that 
linear combination of the background variables which maximizes the ratio of 
the “between-group’’ component of variance to the “within-group” component. 
Among all linear combinations of the original variables, the discriminant is the 
one which best separates the two groups. A thorough discussion of discriminant 
analysis is given by Lachenbruch (1975). 

Having obtained the discriminant function, we can examine the joint distri- 
butions of those variables which enter into it most prominently. Alternatively, 
we can take the discriminant function itself as a single new confounding factor. 
Since the discriminant will generally include small contributions from many 
relatively unimportant background variables, we may wish to screen out some 
variables at  the outset. 

Further discussion of the variable selection problem in the context of discri- 
minant analysis is given by Cochran (1964). He considers whether the effect 
of including specific variables in the discriminant functions can be assessed from 
the discriminating power of those variables considered individually. Although 
standard statistical theory warns that it cannot, an examination of 12 well-known 
numerical examples from the statistical literature revealed the following: 

1. Most correlations (among background variables) are positive. 
2. It is usually safe to exclude from a discriminant, before computing it, a 

group of variables whose individual discriminatory powers are poor, except for 
any such variate that has negative correlations with most of the individually good 
discriminators. 

3. The performance of the discriminant function can be predicted satisfac- 
torily from a knowledge of the performance of the individual variables as dis- 
criminators and of the average correlation coefficient among the variables. 

We close this section with a brief discussion of those variables for which data 
are not available (Cochran’s class 3). As noted above, failure to collect data on 
an important confounding variable can put the results of the study in serious 
question, particularly when the magnitude of the estimated treatment effect 
is small (even if it is statistically significant). However, when the magnitude of 
the treatment effect is large, one can often say that, even if an important con- 
founding factor had been overlooked, it could not have accounted for the size 
of the observed effect. Bross (1 966, 1967) has devised a quantification of this 
argument which he cails the “size rule.” The basic idea behind the size rule is 
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to specify, for a given observed association between treatment and outcome, how 
large the associations between treatment and confounding factor and between 
confounding factor and outcome must be to explain away the observed treatment 
effect. However, as noted by McKinlay (1 9 7 9 ,  the derivation of Bross’s rules 
requires assumptions that limit the applicability of his results. 

5.2 MEASUREMENT ERROR 

Many observed variables really reflect two kinds of information. In part the 
value of the variable is governed by some stable individual characteristic that 
can be expected to relate to other characteristics in a systematic way. In part, 
however, it is determined by “random” fluctuations related to the particular 
circumstances under which the observation happened to be taken. This error 
component can vary across measurement situations even if the individual has 
not changed. 

Measurement error is particularly troublesome in the fields of education and 
psychology, where the variables studied are often scores on psychometric tests. 
Many extraneous factors besides stable individual differences may influence 
test scores. Psychometricians have developed the concept of reliability as a way 
to quantify the amount of measurement error. Loosely speaking, the reliability 
represents the proportion of total variation comprised by variation in the 
underlying true score. The higher the reliability, the more confidence we can 
have that something real is being measured. 

However, true scores are not directly observable. So various indirect methods 
must be used to assess the reliability of a variable measured with error, orfallible 
variable. For example, under certain assumptions, the correlation between scores 
of the same test given individuals at two different points in time can be used to 
estimate the reliability. For our purposes, the general concepts of measurement 
error and reliability will suffice. The reader interested in more detail on these 
concepts is referred to Lord and Novick (1968). We now consider the effects 
of measurement error on statistical adjustments. 

One way to describe the effects of measurement error is in terms of omitted 
confounding variables. The presence of error in the observed variable means that 
there exists, in effect, an additional variable (error) that ought to be included 
along with the observed score as a confounding factor. To see this more clearly, 
suppose that theres exists a dichotomous confounding variable T (for true score) 
which can have values 0 and 1. 

The frequencies of the two possible values of T in the two groups are given 
in Table 5.3 together with the average outcome conditional on each T value. For 
simplicity, we assume that the real treatment effect is 0. Then if we knew T for 
each individual, we could calculate separate estimates of the treatment effect 
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within the two groups ( T  = 0; T = 1) .  Except for sampling fluctuation, the 
correct value of 0 would result. 

Table 5.3 Frequencies and Average Outcomes for T = 0 and T = 1 

Frequencies 
Treatment Comparison 

T 0 100 25 
I I00 175 

Total 200 200 
Average Outcomes 

T 0 I00 
I 50 

Now assume that T cannot be observed directly, but we can measure a variable 
X that reflects both T and measurement error E, where 

E = (  0 i f X = T  
1 i f X = l - T  

Then there is a joint distribution of X and E in each treatment group. For ex- 
ample, consider the distribution shown in Table 5.4. The relationship among 
T, X ,  and E can be expressed as in Table 5.5, and the average outcome values 
are as given in Table 5.6. From Table 5.6 it is clear that if we could obtain in- 
formation on E as well as that for X, the pair ( X ,  E )  would constitute a con- 
founding factor. Using X alone corresponds to the use of X I  in the example of 
Section 5.1, and E plays the role of X z .  

Table 5.4 Joint Frequency Distributions of Xand Ea 

Treatment Group 
E 

0 I Total 

0 

X 
1 1 

Total 

X 

Total 160 40 200 

Comparison Group 

0 1 Total 
E Fl 

160 40 200 

Each factor has two levels, denoted by 0 and I .  
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Table 5.5 Relationship among T, X, and E 

E 

X 

Table 5.6 Mean Outcome as a Function of X and E 

Treatment Group Comparison Group 
E E 

0 1  0 1  

1 

X 

The main point of this section is that measurement error constitutes one special 
form in which an omitted confounding factor can arise. By adjusting on the basis 
of a fallible variable, we are ignoring the variable E ,  which is the discrepancy 
between X and the true score T. If we knew both X and E,  we would know T and 
could adjust on it. 

Of course, there is an implicit assumption here that adjustment on T would 
eliminate all bias. If this is not the case, the relationship between adjustment 
on the basis of X versus T is more complicated. The reader interested in more 
details is referred to Weisberg ( 1  979). 

5.3 THE REGRESSION EFFECT 

Measurement error represents one very common example of omitted con- 
founding variables. Another is the phenomenon of regression effects (see 
Thorndike, 1942). Mathematically, regression effects can be easily explained, 
but heuristic interpretations are often confusing. Rather than attempt a general 
exposition, we will discuss regression effects in the context of a concrete ex- 
ample. 

Suppose that a remedial program is given to a group of children in a particular 
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school. The aim is to improve their reading ability. A pretest is given prior to 
the intervention and a posttest just after the program. A hypothetical data set 
is presented in Table 5.7. From these data we can calculate the mean score at  
the two testing points. 

Pretest mean = 10.0 
Posttest mean = 13.0 

So the children have gained 3.0 points during the course of the program. But 
this 3.0 points represents the sum of a treatment effect plus any uatural matu- 
ration that might have occurred anyway. In Chapter 12 we consider this par- 
ticular kind of confounding in more detail. Our purpose here is simply to illustrate 
how regression effects can occur. 

Table 5.7 Hypothetical Data on Treatment Group to Illustrate Regression 
Effecta 

Pretest Posttest Score 
Score 8 9 10 I I  12 13 14 15  16 

13 
12 
11 
10 
9 
8 
7 
6 
5 

~~ 

1 I 1 1 
1 1 2 1 1 

1 2 3 3 2 I 
1 1 3 4 3 1 1 
1 2 3 3 2 I 
I I 2 1 1 
I I 1 1 

~ ~ ~~~ 

Reprinted, by permission from Campbell and Stanley (1966), Fig. IA, copyright 1966, American 

Numbers indicate how many children received the particular combination of pretest and posttest 
Educational Research Association, Washington, D.C. 

scores. 

Instead of looking at the entire group of children, let us focus on those who 
are farthest from the mean. Children with scores of 7 on the pretest receive an 
average score of 11.5 on the posttest. Although they start out 3 points below the 
mean, they end up only 1.5 points below the posttest mean. Those scoring 13 on 
the pretest (3 points above the mean) end up with an average posttest score of 
14.5, which is only 1.5 points above the mean. 

In general, any group of children selected on the basis of their pretest scores 
will (on the average) have posttest scores closer to the mean. This phenomenon 
is known as regression toward the mean. It results from imperfect correlation 
between pretest and posttest. 
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To understand the effect of regression toward the mean on methods for con- 
trolling bias, imagine that a comparison group has been selected from a nearby 
school. The data on these comparison children are shown in Table 5.8. For this 
comparison group 

Comparison pretest mean = 8.0 
Comparison posttest mean = 10.0 

Because the groups started out at different levels (10.0 for treatment vs. 8.0 for 
comparison), a straightforward comparison of the posttest scores may be bi- 
ased. 

Table 5.8 Hypothetical Data on Comparison Group from a Different 
Schoola 

Posttest 
9 10 I I  12 13 14 15 Pretest I 8 

13 
12 
I I  I I I I 
10 I I 2 1 I 
9 1 2 3 3 2 I 
8 1 1 3 4 3 1 I 
7 I 2 3 3 2 1 
6 1 1 2 1 1 
5 1 1 I I 

0 Numbers indicate how many children received the particular combination of pretest and posttest 
scores. 

One common approach in such situations is to match individuals with identical 
scores in the two groups. (Matching is discussed in detail in Chapter 6.) For 
example, we could compare the average scores of individuals with pretest scores 
of 7. Then, because these individuals all start out equal, we might expect the 
comparison to yield an unbiased estimate of the treatment effect. To see what 
actually happens in this situation, suppose that the true treatment effect is really 
zero. That is, the changes between pretest and posttest are entirely the result 
of natural growth. 

Now consider what happens when we compare across groups. We have already 
seen that the 4 children scoring 7 on the pretest obtain an average of 1 1.5. What 
about the 12 children scoring 7 in the comparison school? These have an average 
posttest score of only 9.5. They have regressed toward the mean of their own 
population, which is 10.0 rather than 13.0. As a result, the estimated effect is 

ti = 11.5  - 9.5 = 2.0. 
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Because of differential regression to the mean in the two groups, a regression 
effect is generated. Even though there is no treatment effect, the treatment group 
appears to be doing better than the comparison group. Controlling for the pretest 
score in this manner does not eliminate bias completely. 

We have presented this example at  length because it represents the kind of 
explanation that is often given for biased estimates of effect after matching or 
statistical adjustment. Moreover, unlike our previous example, it illustrates the 
problem in the context of numerical confounding variables. However, the crux 
of the problem posed by the regression effect is simply that the variables used 
in carrying out the adjustment (e.g., a pretest or test on a related skill) represent 
an incomplete description of the differences between groups. That is, we have 
omitted some important confounding factors. The different joint distributions 
of pretest and posttest in the two groups represent another way to describe the 
fact that, conditional on the pretest, there still exist confounding factors that 
can bias the treatment comparison. Two children with identical pretest scores, 
but in different schools, do not have the same expectation on the posttest. For 
example, one school may already have a remedial reading program for younger 
children that tends to inflate pretest performance. Unless we include a variable 
that reflects the effect of this remedial program, the analysis can be seriously 
biased. 

5.4 SPECIFYING A MATHEMATICAL MODEL 

So far we have discussed possible problems relating to the variables used for 
adjustment, but have not focused on the particular method of analysis. For il- 
lustrative purposes, we have introduced simple forms of matching, or stratifi- 
cation, because they allow the basic issues to be seen clearly. However, the ad- 
equacy of statistical adjustment in an actual situation depends not only on using 
the correct variables, but also on applying a technique whose assumptions are 
valid. 

Most of the methods we present in this book assume a particular mathematical 
form for the relationship among outcomes, risk variables, and covariates. These 
mathematical models will be discussed in detail in later chapters. Our purpose 
in this section is to discuss the general issue of proper model specification. 

For simplicity we assume that only a single variable X is needed for adjust- 
ment. While in general the problems of model error and incomplete covariates 
are intertwined, we wish here to isolate the modeling problems. Let us define 

Y = outcome variable (numerical) 
ai = treatment effect for individual i 

Now in general the treatment effect may vary across individuals and may even 
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be systematically related to X (in Chapters 2 and 3 we discussed this issue of 
interaction). We shall assume here that the effect is the same for every 
subject. 

Further, to highlight the main issues, we assume that there is no treatment 
effect; that is ai = 0 for all individuals. Figure 5.1 is an illustration of a typical 
relationship between Y and X in this situation. Then there exists some mathe- 
matical function, g ( X ) ,  relating X and the expected value of Y. That is, the av- 
erage value of Y is given by g ( X ) .  Now, in general, this function may differ in 
the two treatment groups. But with no treatment effect this would mean that 
the groups differed on some additional factor besides X. So because we are as- 
suming X to be the only confounding variable, this function must be the same 
in both groups. 

~ 

X 

Figure 5.1 Typical relationship between average outcome and confounding factor. 

Now, g ( X )  is itself a variable. Moreover, because the distribution of X can 
differ in the two treatment groups, so can the distribution of g ( X ) .  Let 

El [ g ( X ) ]  = expected value of g ( X )  in treatment group 
E o [ g ( X ) ]  = expected value of g ( X )  in comparison group 

Then we can define the bias in estimating the (zero) treatment effect as 
- WI - Yo) = El[g(X)I - Eo[g(X)I = 9. 

That is, on the average, the difference between the group means depends on the 
distributions of X in the two groups and the functional form of the relationship 
between outcome and covariate. 

Because X can be measured in the two groups, its distribution can be deter- 
mined. So if the mathematical form of g can be specified, the amount of bias 
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can be estimated and subtracted from the raw mean difference. How, then, might 
this function be found? 

Recall that so far we have been assuming that the treatment effect is zero, 
so that the same functional form holds for both groups. Now, let us suppose that 
the treatment has an unknown effect we wish to estimate but that it is constant 
across individuals. Then 

y = g ( X )  
Y = a + g ( X )  

for comparison group 
for treatment group 

and 

E(Yl  - Yo) = a + q. 
So we want to divide the total mean difference into two components, a part (a) 
attributable to the treatment and a part (7) resulting from differences between 
groups on the distribution of X .  There are two possible ways to accomplish this: 
( a )  use the comparison group data only to estimate g and then calculate a, and 
(b) fit a model including both g ( X )  and a directly, using all the data on both 
groups. 

Although in general it is possible to estimate any functional form, there is one 
class of mathematical functions that is particularly convenient: the linear 
functions. With only one X ,  a linear relationship has the form 

g ( X )  = P + PX* 

The graph of such a function is a straight line. A useful property of linear 
functions is that the average value of a function of X is the function of the average 
value of X .  This means that 

E(Fl - Fo) = a + p + px, - ( p  + 0x0)- 
= a + @(XI -Xo) = a + q ’ 

f = p(x, - XO). 

iu = F1 - Yo - p(xl -XI)), 

E(&)  = a + 7) - q = a. 

that is, 

Therefore, we can form the estimate 

and we will have 

The details of this approach will be elaborated upon in Chapter 8, where we refer 
to it as the analysis of covariance. 

The assumption of linearity greatly facilitates the analysis of data from 
nonrandomized studies. This assumption is at the heart of several techniques 
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discussed in this book. Although it may seem that linearity is a very strong 
condition, it still allows a certain amount of flexibility when used in conjunction 
with transformation of the data. Even though the relationship between Y and 
X may not be linear, it may be possible to rescale either or both to bring about 
linearity. For example, if the relationship between Y and X is exponential, 

g ( X )  = e p + B X ,  

log g ( X )  = p + px. 
Then 

So by using the logarithm of Y as the outcome measure, a linear model analysis 
is possible. 

The estimation of g ( X )  as the basis for statistical adjustment allows a much 
more efficient use of the data than do such approaches as matching or stratifi- 
cation, which do not depend on a model. In matching, for instance, it may be 
difficult to find a large enough number of close matches to allow precise esti- 
mation. This issue is discussed in detail in Chapter 6. By assuming a mathe- 
matical structure, we may be able to estimate cy precisely using relatively small 
sample sizes. 

On the other hand, if the model used turns out to be incorrect, our results may 
be misleading. Suppose, for example, that we are using the comparison group 
data to estimate g ( X )  in the absence of the treatment, and that g ( X )  actually 
has the nonlinear form illustrated in Figure 5.2. The numbers at  the bottom of 
Figure 5.2 represent the X values for comparison (0) and treatment group (1 )  
subjects. Suppose that we estimate a linear model based on comparison group 

Average 
outcome, EfYJ 

Actual curve for comparison group 

1 = treated individual 
0 = comparison individual 

l o  0 01 01 1 1 1 1  
~~ 

X 

Figure 5.2 Model misspecification. 
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data. Then for individuals with high X values, the linear function underestimates 
their expected outcome. For those with low X values, the expected outcome is 
overestimated. I f  the treatment group tends to lie near the high end, as shown 
in Figure 5.2, and the control group near the low end, the actual outcome dif- 
ference 7 produced by this difference will be much larger than that estimated 
on the basis of linearity. The estimate of a will be correspondingly biased. 

It is hard to say how severe the departure from the assumed model must be 
to cause serious problems. Determining an adequate model requires judgment 
as well as a knowledge of particular statistical methods. In each of the subsequent 
chapters on individual techniques, more detail will be given on the model as- 
sumptions and how they can be verified. 

Finally, we note that problems of variable selection, including measurement 
error and regression effects, are intertwined with those of model selection. A 
correctly specified model must include appropriate variables and have a proper 
mathematical form. When we transform a variable, we change both the variable 
and the functional form. What matters is whether the model and variables 
ultimately employed in the analysis accurately represent the underlying phe- 
nomenon. 

5.5 SAMPLING ERROR 

Throughout the previous discussion we have largely ignored the fact that 
analyses are often based on small or moderate sample sizes. We have focused 
on problems that will cause the estimated effect to deviate from the actual effect 
even with very large samples. We now discuss an additional source of error, that 
attributable to sample fluctuation. 

For illustrative purposes, suppose that the true model underlying a set of data 
is given by the following equations: 

Treatment: 
Comparison: 

Average outcome = 5 + X 
Average outcome = 2 + X 

This situation is illustrated in Figure 5.3. The treatment effect is 3 in this ex- 
ample. 

Of course, in a real situation we will not know the exact relationship between 
X and the outcome. The problems in using the wrong mathematical model were 
discussed in Section 5.4. We showed, for example, that using a linear function 
when a nonlinear one is appropriate can lead to bias in estimating the treatment 
effect. Now let us assume that the functional form is in fact linear, but that we 
must estimate the slope and intercept from a given set of data. The sets of ob- 
served values may look as shown in Figure 5.4. The model states that on the 
auerage, for a given value of X ,  the treated individuals have a value 5 + X and 
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the control subjects 2 + X. However, the individual scores fluctuate randomly 
about these lines. If the number of subjects is very large, it is possible to estimate 
the true intercepts and slopes with great precision. However, with a sample of 
only 20 or 30 in each group, there can be substantial variation in these estimates 
from sample to sample. 

Without going into detail on statistical techniques, let us imagine that we are 
estimating the slope using the data from the two groups combined. The difference 
between the estimated intercepts is then the estimator of the treatment effect. 
For 10 independent samples with 20 in each group, we would obtain results that 
vary around the true value of 3, but differ from sample to sample. The estimator 
may be correct on the average and therefore be what is called by statisticians 
an unbiased estimator, as mentioned in Chapter 2. However, for any particular 
sample there will be a sampling error, which may be substantial. The sampling 
error will generally become smaller and smaller as the sample size increases, 
although for some estimators it is not negligible, even for very large samples. 
A precise consideration of these matters would involve technicalities beyond 
the level of this book. Unless otherwise stated, we can assume that sampling error 
will disappear for a large-enough sample size. 

5.6 SEPARATION OF GROUPS ON A CONFOUNDING 
FACTOR 

In order for a confounding factor to create substantial bias in estimating a 
treatment effect, its distribution in the two treatment groups must differ sig- 
nificantly. However, if the groups are very widely separated on a confounding 
variable used in the analysis, certain problems mentioned in the previous sections 
become particularly severe. Figure 5.5 illustrates the situation where the groups 
are widely separated on a variable X. We have mentioned that one basic ap- 
proach to bias control is the comparison of individuals with identical (or similar) 
values of X. This matching, if exact, will remove any bias attributable to X re- 
gardless of the functional form of the relationship between outcome and X. But 
it is clear that if the groups are completely separated, no matches can be found. 
More generally, if there is little overlap, matches may be found for only a small 
proportion of subjects. The feasibility of matching with different degrees of 
separation is discussed more completely in Chapter 6. 

A second problem is that extreme separation may be an indicator that the two 
groups are quite different in character. So there are likely to be other variables 
on which they differ that are related to the outcome. It may be difficult to find 
a few variables that capture all the relevant variation. For example, suppose that 
the treatment group includes only individuals under 35 years of age and the 
control group contains only individuals over 35. Then the groups represent dif- 
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Average outcome 

Outcome 

X 

Figure 5.5 Wide separation of groups on the confounding factor. 

ferent “generations,” with quite different experiences at comparable ages and 
quite different life-styles. It may be meaningless to compare such groups. 

A third problem is the loss of precision in estimating a model relating the 
expected outcome to the confounding variable. In Section 5.4 we mentioned that 
one approach is to estimate the function on the basis of the comparison group 
data only. However, when the groups are widely separated, there will be very 
few observations on comparison subjects in the range of X values occupied by 
the treatment group, and so it will be hard to obtain a precise estimate. In the 
case of complete separation, we must rely on extrapolation of the estimated 
function completely beyond the range of the data, a procedure that is always 
hazardous. 

If  we assume a known functional form and a constant treatment effect, we 
can, instead, estimate the treatment effect from the data on both groups. 
However, if there are very few observations in the range where the two distri- 
butions overlap, we must rely heavily on model assumptions, such as the as- 
sumption of no interaction. An incorrect model specification will be very difficult 
to detect. 

The problem of complete, or near-complete, separation may sometimes arise 
from the desire to give a certain treatment to those who are thought to need it 
most. Thus there may be a conflict between research design criteria and ethical 
considerations. Sometimes this conflict can be resolved by an imaginatively 
designed study. Mather et al. (197 1) report on a study of 1203 episodes of acute 
myocardial infarction (heart attacks). The purpose of the study was to compare 
home care by the family doctor with hospital treatment initially in an intensive 
care unit. Normally, such a comparison would be impossible-the less severely 
ill patients would be sent home, the emergency cases to the intensive care unit. 
We can imagine an index of “severity” being measured on each patient. This 
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would clearly satisfy our definition of a confounding factor, but the distribution 
of this factor within the home-care and hospital-care group would not have 
substantial overlap. 

Here, however, there was agreement between various hospitals and doctors 
participating in the study that while some patients would clearly need hospi- 
talization and others should clearly be treated at  home, there were some patients 
for whom the decision was not clear-cut. For these patients, randomization was 
used to decide between home care and hospitalization. The decision on accept- 
ability of a random assignment was made by the patient’sown doctor, before 
he knew what the result of the randomization would be. 

In all, 343 cases were allocated at random, and subsequent analysis confirmed 
that the randomized groups did not differ substantially in composition with 
respect to other background variables, such as age, past history of heart disease, 
and blood pressure when first examined. It was found that the randomized group 
treated at home had a 44% lower mortality than did the randomized group 
treated in the hospital. As might be expected, the experience of the other two 
groups was very different. The conclusion that home care is better than hospi- 
talization had only been firmly established for the randomized group, although 
we might speculate that it would also hold for at  least some other individuals. 

As a final comment, we note that when there are several potential confounding 
variables, it is possible that the two groups are completely separated on these 
variables considered jointly, although the distributions of each variable indi- 
vidually do have substantial overlap. Consider the situation illustrated by Figure 
5.6, where X I  and X2 represent two background variables: X I  = age (decades), 

I ncome, 
X, (thousands) 

1 = treatment Age. X, 
0 = comparison 

Figure 5.6 
overlap. 

Complete separation of joint distributions even though marginal distributions 
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X2 = income. Individuals in group 1 tend to have a higher income and lower age 
than those in group 0, but the distributions of each variable in the two groups 
have substantial overlap. However, the particular age-income combinations 
that occur in one group do not occur in the other. So the groups are separated 
on X I  and X2 jointly, even though they are not separated on XI and X2 indi- 
vidually. 

This problem can be very hard to recognize and emphasizes the need for a 
multivariate exploration of the potential confounding factors. In this example, 
the discriminant method might suggest that 

D = X l - X 2  

can be used to distinguish the treatment and control subjects. Note that all in- 
dividuals with values of D greater than 30 are in the control group, while those 
with D less than 30 are in the treatment group. 

5.7 SUMMARY 

In this chapter we have discussed the general problems that may affect sta- 
tistical adjustment strategies applied to nonrandomized studies. These problems 
may be seen as operating at three levels: 

1. Variable selection. 
2. Specifying form of mathematical model. 
3. Small-sample fluctuation. 

Variable selection involves knowledge of the substantive area under investi- 
gation. The aim is to include enough information to ensure that after adjusting 
for the measured variables, there will be no bias in the estimate of treatment (risk 
factor) effect. There will be no bias if the only systematic difference between 
two individuals with identical measured values is directly caused by the treatment 
(risk factor). In attempting to verify this assumption, statistical methods may 
be helpful, but only in conjunction with a careful analysis of possible causal 
relationships. Ideally, statisticians and substantive researchers should work 
together to select a variable set that can be defended on both statistical and 
conceptual grounds. 

Two particularly common problems are measurement error and regression 
effects. We have pointed out how these can be viewed as special cases of omitted 
confounding factors. As such, they do not pose different problems or require 
special solutions. If a proposed variable set includes fallible variables, or those 
subject to “regression,” it simply means that we must be sure to include enough 
other variables so that the total set is adequate. 



REFERENCES 67 

Having an adequate set of adjustment variables allows us in principle to obtain 
an unbiased estimate of the treatment effect. However, to obtain such an estimate 
we must employ one of the techniques described in the subsequent chapters of 
this book. Each analysis strategy is based on a particular set of assumptions about 
the mathematical form of relationships among variables. To the extent that these 
assumptions do not hold in a given situation, the results may be biased. 

Finally, even with an adequate set of variables and a correctly specified model, 
we are subject to problems arising from finite samples. That is, the estimate 
obtained from a particular analysis may contain a component attributable to 
random fluctuations. For very large sample sizes, we would expect these errors 
to be negligible, but for small samples we can expect the estimate to deviate 
substantially from the true effect. Where possible, confidence bounds should 
be provided in addition to a point estimate. 

In each of Chapters 6 to 1 1  we present the basic concepts and mechanics 
underlying one approach to statistical adjustment. Each of these techniques is 
vulnerable to the general problems described in this chapter, and we will not 
repeat in each chapter the general caveats given here. However, we will explain 
in some detail how these considerations apply to the particular technique, trying 
to indicate what problems are most likely to arise and how to deal with them. 

After reading these chapters, the reader should have a clearer understanding 
of the issues raised in this chapter. In Chapter 14 we will review some of these 
issues and present additonal areas related more specifically to the methods de- 
scribed in Chapters 6 to 1 1.  
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The major concern in making causal inferences from comparative studies is 
that a proper standard of comparison be used. A proper standard of comparison 
(see Chapter 1) requires that the performance of the comparison group be an 
adequate proxy for the performance of the treatment group if they had not re- 
ceived the treatment. One approach to obtaining such a standard is to choose 
study groups that are comparable with respect to all important factors except 
for the specific treatment (i.e., the only difference between the two groups is the 
treatment). Matching attempts to achieve comparability on the important po- 
tential confounding factor(s) at  the design stage of the study. This is done by 
appropriately selecting the study subjects to form groups which are as alike as 
is possible with respect to the potential confounding variable(s). Thus the goal 
of the matching approach is to have no relationship between the risk and the 
potential confounding variables in the study sample. Therefore, these potential 
confounding variables will not satisfy part 1 of the definition of a confounding 
variable given at the beginning of Chapter 2, and thereby will not be confounding 
variables in the final study sample. This strategy of matching is in contrast to 
the strategy of adjustment, which attempts to correct for differences in the two 
groups at  the analysis stage. 

We stated that matching “attempts to achieve comparability’’ because it is 
seldom possible to achieve exact comparability between the two study groups. 
This is especially true in the case of several confounding variables. To judge how 
effective the various matching procedures can be in achieving comparability 
and thus reducing bias in the estimate of the treatment effect, it is necessary to 
model the relationship between the outcome or response variable and the con- 
founding variable(s) in the two treatment groups. Since much of the research 
has been done assuming a numerical outcome variable that is linearly related 
to the confounding variable, we will tend to emphasize this type of relationship. 
The reader should not believe, however, that matching is applicable only in this 
case. There are matching techniques which are relatively effective in achieving 
comparability and reducing bias in the case of nonlinear relationships. 

Before presenting the various matching techniques, we shall illustrate in 
Section 6.1 how making the two treatment groups comparable on an important 
confounding variable will eliminate the bias due to that variable in the estimate 
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of the treatment effect. Section 6.1 expands on material presented in Section 
3.2. 

The degree to which the two groups can be made comparable depends on ( a )  
how different the distributions of the confounding variable are in the treatment 
and comparison groups, and (b) the size of the comparison population from 
which one samples. These factors influence the amount of bias reduction possible 
using any of the matching techniques, and are discussed in Section 6.2. 

In the last introductory section of this chapter, Section 6.3, we list and discuss 
the conditions under which the results for the various matching techniques are 
applicable. Although these conditions are somewhat overly restrictive, they are 
necessary for a clear understanding of the concepts behind the various tech- 
niques. 

Finally, the main emphasis of this chapter is on the reduction of the bias due 
to confounding. The other two sources of bias, bias due to model misspecification 
and estimation bias, however, can also be present. See Sections 5.4 and 5.5 for 
a discussion of these other sources of bias. All of the theoretical results that we 
present are for the case of no model misspecification. This should be kept in mind 
when applying the results to any study. 

6.1 EFFECT OF NONCOMPARABILITY 

For the sake of illustration, reconsider the example introduced in Chapter 
3, the study of the association between cigarette smoking and high blood pres- 
sure. Recall that cigarette smoking is the risk variable and age is an important 
confounding variable. This last assumption implies that the age distributions 
of the smokers and nonsmokers must differ: otherwise, age would not be related 
to the risk variable (i.e., the groups would be comparable with respect to age). 
We shall further assume that the smokers are generally older (see Figure 3.3) 
and that the average blood pressure increases with age at the same rate for both 
smokers and nonsmokers (see Figure 3.4). Let X denote age in years and Y de- 
note diastolic blood pressure in millimeters of mercury (mm Hg). The effect 
of the risk factor, cigarette smoking, can be measured by the difference in av- 
erage blood pressure for any specific age, and because of the second assumption, 
this effect will be the same for all ages. 

These two assumptions can be visualized in Figure 6.1. Suppose that we were 
to draw large random samples of smokers and nonsmokers from the populations 
shown in Figure 3.3. The sample frequency distributions would then be as il- 
lustrated in Figure 6. l by the histograms. The smokers in the sample tend to be 
older than the nonsmokers. In particular, the mean age of the smokers is larger 
than that of the nonsmokers, x s  > XNS. (Notice that the Y axis in Figure 6.1 
does not correspond to the ordinate of the frequency distributions.) 
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Blood A 
pressure 

Estimated 
effect, 

Fs - YNS 

* 
XNS xo XS Age 

Figure 6.1 Estimate ofthe treatment effect for the blood pressure-smoking example. 

The second assumption, specifying that the relationship between age and 
diastolic blood pressure in both groups is linear, is represented by the lines labeled 
“Smokers” and “Nonsmokers” (as in Figure 3.4). Algebraically, these rela- 
tionships are: 

Ys = as + /3X for smokers 

YNS = (YNS + /3X for nonsmokers, (6.1 ) 

where US and Y N S  represent the average blood pressure levels among persons 
of age X ,  and /3 is the rate at which Y, blood pressure, changes for each I-year 
change in X .  [Note that for simplicity of presentation, random fluctuations or 
errors (Section 2.2) will be ignored for now.] For a specified age, XO, therefore, 
the effect of the risk factor is 

YS - YNS = a S  - a N S  + b(X0 - XO) 
= as - (YNS (6 .2)  

(see Figure 6.1). 
Let us first consider the simplest situation, where there is only one subject 

in each group and where each subject is age XO.  We will then have two groups 
that are exactly comparable with respect to age. The estimate of the treatment 
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effect is the difference between the blood pressures of the two subjects. Since 
the blood pressures of these two subjects are as given in (6.1) with X = XO, the 
estimated treatment effect will be as given in (6.2). Thus exact comparability 
has led to an unbiased estimate of the treatment effect. (Note that the same result 
would also hold for any nonlinear relationship between X and Y.) 

Next consider the estimate of the treatment effect based on all subjects in the 
two samples. The estimate is found by averaging over all the values of Y in both 
groups and calculating the difference between these averages: 

(6.3) 

Thus because of the noncomparability of the two groups with respect to age, 
the estimate of the risk effect is distorted or biased by the amount ~ ( X S  - ~ N S ) .  

Since we do not know p, we cannot adjust for this bias. (An adjustment procedure 
based on estimating is analysis of covariance; see Chapter 8.) Notice, however, 
that if we could equalize the two sample age distributions, or in the case con- 
sidered here of a linear relationship, restrict the sampling so that the two sample 
means were equal, we would then obtain an unbiased estimate of the treatment 
effect. By making the groups comparable, one would be assured of averaging 
over the same values of X. 

There are two basic approaches to forming matches to reduce bias due to 
confounding. These are referred to as pair and nonpair matching. Pair matching 
methods find a specific match (comparison subject) for each treatment subject. 
It is clear that if we restrict the choice of subjects in the two groups such that 
for every treatment subject with age& there is a comparison subject with exactly 
the same age, then by (6.2) the difference in blood pressures between each 
matched pair is an unbiased estimate of the treatment effect. Hence the average 
difference will also be unbiased. 

Because of difficulties in finding comparison subjects with exactly the same 
value of a confounding variable as a treatment subject, various pair matching 
methods have been developed. For example, if the confounding variable is nu- 
merical, it is practically impossible to obtain exact matches for all treatment 
subjects. An alternative method, caliper matching, matches two subjects if their 
values of X differ by only a small tolerance (Section 6.4). In the case of a cate- 
gorical confounding variable, one can use a pair matching method called 
stratified matching (Section 6.6). However, these methods cannot always 
guarantee the desired sample size, so another pair matching method, called 
nearest available pair matching (Section 6.5), was developed by Rubin 
(1973a). 

In the second approach to matching, nonpair matching, no attempt is made 
to find a specific comparison subject for each treatment subject. Thus there are 
no identifiable pairs of subjects. There are two nonpair matching methods: 
frequency and mean matching. In frequency matching, Section 6.7, the distri- 

- 
ys - Y N S  = c!s - (YNS + p(xs - X N S ) .  
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bution of the confounding variable in the treatment group is stratified and one 
attempts to equalize the two distributions by equalizing the number of treatment 
and comparison subjects in each stratum. Mean matching, Section 6.8, attempts 
to reduce the amount of bias by equating just the sample means rather than 
attempting to equalize the two distributions as in the previous methods. The 
comparison group, which is of the same size as the treatment group, thus consists 
of those subjects whose group mean is closest to the mean of the treatment 
group. 

6.2 FACTORS INFLUENCING BIAS REDUCTION 

None of the matching methods requires the fitting of a specific model for the 
relationship between the response and the confounding variables. The effec- 
tiveness of a matching procedure, however, will depend on the form of the re- 
lationship between the response and the confounding variables. In addition, the 
effectiveness depends on the following three factors: (a) the difference between 
the means of the treatment and comparison distributions of a confounding 
variable, ( b )  the ratio of the population variances, and (c) the size of the control 
sample from which the investigator forms a comparison group. These three 
factors will now be discussed in detail. 

To understand how these three factors influence the researcher’s ability to 
form close matches and hence to achieve the maximum bias reduction, consider 
the slightly exaggerated distributions of a confounding variable, X, in the 
treatment and comparison populations shown in Figure 6.2. Both distributions 
are normal with a variance of 2.25. The mean of the comparison population is 
3, and the mean of the treatment population is 0. 

Treatment Comparison 
population population 

* 
- 4 - 3 - 2 - 1  0 1 2  3 4 5 6 7 

Confounding variable 

Figure 6.2 Nonoverlapping samples. equal variances, 

Suppose that we have small random samples from both the treatment and 
the comparison populations and we wish to find a matched comparison group. 
Because of the assumed distribution, the treatment group is most likely to have 
values between - 1 and + I ,  the middle 50% of the distribution (shaded area on 
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the left in Figure 6.2). The sample from the comparison population is called the 
comparison or control reseruoir; it is the group of subjects from which one finds 
matches for the treatment group. Based on the assumed distribution of the 
confounding variable, the comparison reservoir is most likely to consist of subjects 
whose values of the confounding variable lie between 2 and 4 (shaded area on 
the right in Figure 6.2). Thus there would be little overlap between these two 
samples. 

With virtually no overlap between our samples, it is impossible to form 
matched groups which are comparable. Using any of the pair matching tech- 
niques, we could not expect to find many comparison subjects with values of X 
closer than 1 unit to any treatment subject. Similarly for the nonpair matching 
methods, regardless of the way one stratifies the treatment frequency distribu- 
tion, there will not be enough comparison subjects in each stratum. In addition, 
the means of the two groups would be about 3 units apart. Any attempt to match 
in this situation would be unwise, since only a small proportion of the two groups 
could be made reasonably comparable. 

Continuing this example, suppose that another, much larger sample is drawn 
from the comparison population such that the values of X in the reservoir lie 
between zero and 6. The treatment group remains fixed with values of X between 
+1 and -1. The resulting overlap of the two samples is shown in Figure 6.3 
against the background of the underlying population distributions. Notice that 
by increasing the size of the comparison sample, we are more likely to have 
members of the comparison reservoir which have the same or similar values of 
X as members of the treatment group. The number and closeness of the possible 
pair matches has improved; for frequency matching we should be able to find 
more comparison subjects falling in the strata based on the treatment group; 
and the difference in the sample means, after mean matching, should be le’ss than 
the previous value of 3. Again, as was the case with nonoverlapping samples, 
we may still be unable to find adequate matches for all treatment group subjects. 
This “throwing away” of unmatchable subjects is a waste of information which 
results in a lower precision of the estimated treatment effect. 

Treatment Comparison 
DoDulation population . .  . .  

- 4 - 3 - 2 - 1  0 1 2  3 4 5 6 7 
Confounding variable 

Figure 6.3 Overlapping samples, equal variances 
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Now consider what would happen if the population variances of the con- 
founding variable were not equal. In particular, suppose that the variance of the 
treatment population, u!, remains at 2.25, while the variance of the comparison 
population, of, is 9.0. (Again, this is a slightly exaggerated example but is useful 
to illustrate our point.) With the treatment sample fixed, random sampling from 
the comparison population would most likely result in a sample as shown by the 
shading in Figure 6.4. Notice the amount of overlap that now exists between 
the treatment group and the comparison reservoir. There are clearly more 
subjects in the comparison reservoir, with values of the confounding variable 
between +1 or -1, than in the previous example (Figure 6.3). 

Treatment 
oo~ulation 

Confounding variable 

Figure 6.4 Overlapping samples. unequal variances. 

After comparing these examples, the relationship among the three fac- 
tors-the difference between the population means of the two distributions, the 
ratio of the population variances, and the size of the comparison reservoir- 
should be clear. The farther apart the two population means are, the larger the 
comparison reservoir must be to find close matches, unless the variances are such 
that the two population distributions overlap substantially. 

To determine numerically the bias reduction possible for a particular matching 
technique, it is necessary to quantify these three factors. Cochran and Rubin 
(1 973) chose to measure the difference between the population means by a 
quantity referred to as the initial difference. This measure, Bx, may be viewed 
as a standardized distance measure between two distributions and is defined 
as 

The eta terms, 11 and 10, denote the means of the treatment and the comparison 
populations, respectively. Similarly, a! and uf represent the respective population 
variances. 

In the first example of this section, the initial difference was equal to 2.0. With 
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the variance of the comparison population increased to 9, however, the initial 
difference was equal to 1.3 and the two distributions overlapped more. 

The ratio of the treatment variance to the comparison variance, u:/u& is the 
second important factor in  determining the number of close matches that can 
be formed, and hence the bias reduction possible. Generally, the smaller the ratio, 
the easier it will be to find close matches. 

The last factor is the size of the comparison reservoir from which one finds 
matches. In the previous examples we assumed that the random sample from 
the treatment population was fixed. That is, we wanted to find a match for every 
subject in that sample and the subjects in the treatment group could not be 
changed in order to find matches. Removal of a treatment subject was the only 
allowable change if a suitable match could not be found. This idea of a fixed 
treatment group is used in the theoretical work we cite and is perhaps also the 
most realistic approach in determining the bias reduction possible. An alternative 
and less restrictive approach assumes that there exists a treatment reservoir from 
which a smaller group will be drawn to form the treatment group. Such an ap- 
proach would allow for more flexibility in finding close matches. 

In the following methodological sections the size of the comparison reservoir 
is stated relative to the size of the fixed treatment group. Thus a comparison 
reservoir of size r means that the comparison reservoir is r times larger than the 
treatment group. Generally, r is taken to be greater than 1. 

6.3 ASSUMPTIONS 

In discussing the various matching procedures, we shall make the following 
assumptions: 

1. There is one confounding variable. 
2. The risk variable in cohort studies or the outcome variable in case-control 

studies is dichotomous. 
3. The treatment effect is constant for all values of the confounding variable. 

(This is the no interaction assumption of Section 3.3.) 
4. For cohort studies we wish to form treatment and comparison groups of 

equal size. (For case-control studies, we would construct case and control groups 
of equal size.) 

5. The treatment group (or case group) is fixed. 

The assumption of only one confounding variable is made for expository 
purposes. In Section 6.10 we will discuss matching in the case of multiple con- 
founding variables. The second assumption corresponds to the most common 
situation where matching is used. Matching cannot be used if the risk variable 
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in cohort studies or the outcome variable in case-control studies is numerical. 
The third assumption of no interaction, or parallelism, is crucial for estimating 
the treatment effect. Researchers should always be aware that implicitly they 
are making this assumption and when possible they should attempt to verify it. 
For example, in Section 5.2, we discuss how the assumption of parallelism may 
be unjustified when one is dealing with fallible measurements. If this assumption 
is not satisfied, the researcher will have to reconsider the advisability of doing 
the study or else to report the study findings over the region for which the as- 
sumption holds. The fourth assumption, that the treatment and comparison 
groups are of equal size, is also made for expository purposes. In addition, the 
efficiency of matching is increased with equal sample sizes for a given total 
sample size. In Section 6.1 1 we consider the case of multiple comparison subjects 
per treatment subject. The last assumption of a fixed treatment group is one of 
the assumptions under which most of the theoretical work is done. A fixed 
treatment group is typically the situation in retrospective studies where the group 
to be studied, either case or exposed, is clearly defined. 

While the type of study has no effect on the technique of matching, the forms 
of the outcome and confounding variables do. The various matching techniques 
can be used in either case-control or cohort studies. The only difference is that 
in a cohort study one matches the groups determined by the risk or exposure 
factor, whereas in a case-control study, the groups are determined by the outcome 
variable. Throughout this chapter, any discussion of a cohort study applies also 
to a case-control study, with the roles of the risk and outcome variables re- 
versed. 

The form of the risk or outcome variable and the confounding variables (i.e., 
numerical or categorical) determines the appropriate matching procedure and 
whether matching is even possible. If the confounding variable is of the unordered 
categorical form, such as religion, there is little difficulty in forming exact 
matches. We shall, therefore, make only passing reference to this type of con- 
founding variable. Instead, we shall emphasize numerical and ordered categorical 
confounding variables, where the latter may be viewed as having an underlying 
numerical distribution. Numerical confounding variables are of particular im- 
portance because exact matching is very difficult in this situation. Most of the 
theoretical work concerning matching has been done for a numerical con- 
founding variable and dichotomous risk variable (cohort study). 

6.4 CALIPER MATCHING 

Caliper matching is a pair matching technique that attempts to achieve 
comparability of the treatment and comparison groups by defining two subjects 
to be a match if they differ on the value of the numerical confounding variable, 
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X ,  by no more than a small tolerance, t. That is, a matched pair must have the 
property that 

1x1 -X,l I E .  

The subscript 1 denotes treatment group and 0 denotes comparison group. By 
selecting a small-enough tolerance t, the bias can in principle be reduced to any 
desired level. However, the smaller the tolerance, the fewer matches will be 
possible, and in general, the larger must be the reservoir of potential comparison 
subjects. 

Exact matching corresponds to caliper matching with a tolerance of zero. In 
general, though, exact matching is only possible with unordered categorical 
confounding variables. Sometimes, however, the number of strata in a categorical 
variable is so large that they must be combined into a smaller number of strata. 
In such cases or in the case of ordered categorical variables, the appropriate pair 
matching technique is stratified matching (Section 6.6). 

6.4.1 Methodology 

sociation of blood pressure and cigarette smoking. 
To illustrate caliper matching we shall consider the cohort study of the as- 

Example 6.1 Blood pressure and cigarette smoking: Suppose that a tolerance of 2 
years is specified and that the ages in the smokers group are 37,38,40,45, and 50 years. 
(We shall assume that the smoker and nonsmoker groups are comparable on all other 
important variables.) A comparison reservoir twice the size ( r  = 2) of the smoking group 
consists of nonsmokers of ages 25, 27, 32, 36,38,40,42,43,49, and 53 years. The esti- 
mated means of the two groups are 42.0 and 38.5 years, respectively. The ratio of the 
estimated variances, si/sks, is 0.37 = 29.50/79.78. 

The first step in forming the matches is to list the smokers and determine the corre- 
sponding comparison subjects who are within the 2-year tolerance from each smoker. 
For our example, this results in the possible pairing given in Table 6 . 1 ~ .  

Table 6.1a Potential Caliper Matches for Example 6.1 

Smokers Nonsmokers 

31 36,38 
38 38.40 
40 40,42 
45 43 
50 49 

It  is clearly desirable to form matches for all the treatment subjects that are as close 
as possible. Thus the matched pairs shown in Table 6 . l b  would be formed. 
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Table 6.lb Caliper-Matched Pairs 

Smokers Nonsmokers 

37 
38 
40 
45 
50 

36 
38 
40 
43 
49 

Notice that if  the 49-year-old nonsmoking subject had not been in the reservoir, we 
would not have been able to match all five smokers. We might then have decided to keep 
the first four matches and drop the 50-year-old smoker from the study. This results in 
a loss of precision, because the effective sample size is reduced. Alternatively, the tolerance 
could be increased to 3 years and the 50-year-old smoker matched with the 53-year-old 
nonsmoker. The latter approach does not result in lower precision, but the amount of bias 
may increase. Finally, had there been two or more comparison subjects with the same 
value of X .  the match subject should be chosen randomly. 

In Example 6.1 we knew the composition of the comparison reservoir before 
the start of the study. Often, however, this is not the case. Consider, for example, 
a study of the effect of specially trained nurses aids on patient recovery in a 
hospital. Such a study would require that the patients be matched on important 
confounding variables as they entered the hospital. When the comparison res- 
ervoir is unknown, the choice of a tolerance value that will result in a sufficient 
number of matched pairs can be difficult. The researcher cannot scan the res- 
ervoir, as we did in  the example, and discover that the choice of E is too small. 
For this reason, using caliper matching in a study where the comparison reservoir 
is unknown can result in matched sample sizes that are too small. In such a sit- 
uation, the researcher can sometimes attempt to get a picture of the potential 
comparison population through records (i.e., historical data). 

6.4.2 Appropriate Conditions 

Caliper matching is appropriate regardless of the form of the relationship 
between the confounding and outcome variables (or risk variable in case-control 
studies). In this section we demonstrate how caliper matching is effective in 
reducing bias in both the linear and nonlinear cases. 

Linear Case. To understand how caliper matching works in the linear case, 
let us consider the estimate of the treatment effect or risk effect of smoking on 
blood pressure based on a 45-year-old smoker and a 43-year-old nonsmoker in 
Example 6.1. Assume that blood pressure is linearly related to age and that the 
relationships are the same for both groups, with the exception of the intercept 
values. Figure 6.5 represents this situation. 



6.4 CALIPER MATCHING 81 

Blood pressure t 
Estimated effect 

Bias I-! ---- 

effect, 
ys - YNS 

43 

Smokers 

/ 
/ 

Nonsmokers 

Figure 6.5 Estimate of treatment effect-linear relationship. 

The estimate of the risk effect is shown by the large brace to the left in Figure 
6.5. The amount of bias or distortion is shown by the small brace labeled “Bias.” 
Relating this example to (6.3), we see that the bias is equal to the unknown re- 
gression coefficient p, multiplied by the difference in the values of the con- 
founding variable. In the case of these two subjects, the bias is 20. This is the 
maximum bias allowable under the specified tolerance for each individual es- 
timate of the treatment effect, and consequently for the estimated treatment 
effect, based on the entire matched comparison group. 

When we average the ages in Table 6.lb, we find that the mean age of the 
smokers is 42.0 years; of the nonsmokers comparison group, 41.2 years; and for 
the comparison reservoir, 38.5 years. Caliper matching thus reduced the dif- 
ference in means from 3.5 (= 42.0 - 38.5) to 0 .8  (= 42.0 - 41.2). In general, 
the extent to which the bias after matching, 0 . 8 p  in this case, is less than the 
maximum possible bias, 20 in this case, will depend on the quantities discussed 
in Section 6.2: the difference between the means of the two populations, the ratio 
of the variances and the size of the comparison reservoir as well as the toler- 
ance. 

Nonlinear Case. Let us now consider the case where the response and the 
confounding variable are related in a nonlinear fashion. To illustrate the effect 
of caliper matching in this situation, we shall assume that blood pressure is re- 
lated to age squared. Algebraically this relationship between the response Y and 
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age, X, can be written as 

Y = cy + 0x2 
where a is the intercept. The estimate of the treatment effect assuming that Y 
is numerical is 

- -  - -  
Ys - Y N S  = - a N S  + 0 (xi - xhs). (6.5) 

Hence any bias is a function of the difference in the means of age squared. Note 
that the means of the squared ages are different from the squares of the mean 
ages. Again let us visualize this relationship in Figure 6.6. 

1 Blood pressure 

-True 
Estimated I<.-_ 

Smokers 

Nonsmokers 

43 45 

Figure 6.6 Estimate of treatment effect-nonlinear relationship. 

Age 

The individual estimate of the treatment effect determined from the matched 
pair of a 45-year-old smoker and a 43-year-old nonsmoker is shown in Figure 
6.6 by the large brace to the left. This estimate can be compared to the true 
treatment effect shown by the topmost smaller brace. The bias is the difference 
between the two and is indicated by the second small brace. From (6.5) we obtain 
the bias as 

0(4S2 - 432) = p( 176). 

If we were using the matched groups from Example 6.1, upon averaging over 
the two groups we would find that the estimate of the treatment effect would 
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be biased by the amount 

p (z - ??s) = p(69.6). 

It is important to realize that equality of the means of the two groups is not 
enough to ensure an unbiased estimate of the treatment effect if the relationship 
between the response and the confounding variable is nonlinear. Equality of the 
means yields unbiased estimates only in the linear case. 

6.4.3 Evaluation of Bias Reduction 

So far we have only demonstrated how caliper matching can reduce the bias 
due to confounding. In this section we present theoretical results concerning the 
bias reduction one can expect using caliper matching in the linear case. The 
estimator of the treatment effect is the mean difference in response. The effec- 
tiveness of caliper matching and all other matching techniques is examined 
relative to estimating the treatment effect from random samples, where the 
confounding variable is not taken into account. (For a definition of the measure 
of effectiveness, the expected percent reduction in bias, see Cochran and Rubin, 
1973.) 

Table 6.2 gives an indication of the expected percent bias reduction for dif- 
ferent tolerance values. The results are independent of the sample size and res- 
ervoir size. They were derived assuming that the initial difference between the 
two populations is less than 0.5 (i.e., Bx < 0.5),  that the distributions of the 
confounding variable are normal, and that the outcome is linearly related to the 
confounding variable. Notice that the tolerance is specified in terms of a pro- 
portion, a. of a standard deviation. It appears that tight caliper matching (i.e., 
a = 0.2) can be expected to remove nearly all the bias in the treatment effect 
relative to random sampling. It also appears that the ratio of the variances (i.e., 
a:/,;) has a negligible effect on the percent reduction in bias. 

Table 6.2 Percent Bias Reduction for Caliper Matching* 

~ ~ ~~ ~~ ~~~ ~ ~ ~ ~ 

0.2 99 99 98 
0.4 96 95 93 
0.6 91 89 86 
0.8 86 82 I1 
1 .o 19 74 69 

Reprinted, by permission of the Statistical Publishing Society, from Cochran and Rubin (1973). . .  

Table 2.3.1. 
* Tolerance e = ud(c7 + a;)/2 . 
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One can use this table to get some indication of bias reduction to be expected 
for different tolerances if the values or estimates of the population variances are 
known and if BX C 0.5. Suppose we knew that &/a; = l/2, where 0: = 4; then 
if we took a = 0.8, we could expect about 86% of the bias to be removed. The 
tolerance would be 0.8 d m  = 1.96. If we used a = 0.4, we could expect 
to remove 96% of the bias over random sampling and the tolerance would be 
0.98. 

As we have mentioned previously, the major disadvantage of caliper matching 
is the need for the comparison reservoir to be large. In their theoretical work, 
Cochran and Rubin did not take into account the possibility that the desired 
number of matches would not be found from the comparison reservoir, although 
the probability of this occurrence is nonnegligible. Nor are the results known 
for distributions other than normal. Most likely, the results presented are ap- 
plicable to symmetric distributions, but the case of skew distributions has not 
been investigated for caliper matching. 

6.5 NEAREST AVAILABLE MATCHING 

In some situations when caliper matching is performed with a small tolerance, 
there is a nonnegligible probability that some individuals cannot be matched. 
To avoid this problem, Rubin (1973a, b) developed a method known as nearest 
available pair matching. We shall refer to this matching procedure as nearest 
available matching. This method ensures that the desired number of matches 
are obtained by being less restrictive in deciding what a match is. A match is 
formed by finding the closest possible comparison subject for each individual 
in the treatment group from the yet-unmatched individuals in the comparison 
reservoir. Since nearest available matching does not use a fixed tolerance as does 
caliper matching, the reservoir does not have to be larger than the treatment 
group. However, the matches are not guaranteed to be as close as those found 
under caliper matching. 

6.5.1 Methodology 

There are three variants of nearest available matching, each based on a par- 
ticular ordering of the subjects in the treatment group with respect to the con- 
founding variable. The specification of the ordering completely defines the pair 
matching method. In one variant of the method, referred to as random-order 
nearest available matching, the N treatment subjects are randomly ordered on 
the values of the confounding variable, X .  Let us denote these ordered values by 
X11 to X I N .  Starting with X11, a match is defined as that subject from the 
comparison reservoir whose value Xoj is nearest X I  1. The matches are therefore 
assigned to minimize 1x1 I - X O , ~  for all subjects in the comparison reservoir. 
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If there are ties (i.e., two or more comparison subjects for whom 1x1 1 - Xojl 
is a minimum), the match is formed randomly. The nearest available partner 
for the next treatment subject with valueXl2 is then found from the remaining 
subjects in the reservoir. The matching procedure continues in this fashion until 
matches have been found for all N treatment subjects. 

The other two variants of nearest available matching result from ranking the 
members of the treatment group on confounding variable values from the highest 
to the lowest (HL) value or from the lowest to the highest (LH) value. Matches 
are then sought starting with the first ranked treatment subject, as for the ran- 
dom-order version. 

Example 6.2 Nearest available matching: Suppose that in a blood pressure study, 
there are three smokers with ages 40,45, and 50, and five nonsmokers in the reservoir 
with ages 30,32,46,49, and 55. In addition, suppose that the randomized order of the 
smokers’ ages is 40, 50, and 45. Then the random-order nearest available matching 
technique will match the 40-year-old smoker with the 46-year-old nonsmoker, the 50- 
year-old smoker with the 49-year-old nonsmoker, and the 45-year-old smoker with the 
55-year-old nonsmoker. 

In the case of the other two variants, the following matches would be made: for HL, 
the 50-year-old with the 49-year-old, the 45-year-old with the 46-year-old, and the 
40-year-old with the 32-year-old; for LH, the 40-year-old with the 46-year-old, the 
45-year-old with the 49-year-old, and the 50-year-old with the 55-year-old. Notice in 
this example that each variant resulted in different matched pairs. 

6.5.2 Appropriate Conditions 

Nearest available matching is similar to caliper matching except that there 
is no fixed tolerance. Based on the prior discussion of caliper matching and some 
theoretical results, it follows that nearest available matching is effective in re- 
moving bias due to confounding if the relationship between the response and 
confounding variables is linear. For nonlinear relationships, no results are 
available. 

The main difficulty in discussing what conditions are most appropriate for 
using nearest available matching is the fact that the reduction in bias is so 
strongly influenced by the closeness of the distributions of the treatment group 
and the comparison reservoir. If there is a large overlap between the two groups 
of subjects, nearest available matching will be very similar to caliper matching 
with a suitably large tolerance. If, however,there is a moderate to small amount 
of overlap, the desired number of matches will be found, but the final amount 
of bias in the estimate of the treatment effect may be large. 

6.5.3 Evaluation of Bias Reduction 

In selecting a particular nearest available matching procedure, an investigator 
may want to base his or her choice primarily on the percent reduction in bias 
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obtainable. Assuming a linear relationship between the response and confounding 
variables, Cochran and Rubin (1973) performed a simulation study to determine 
which of the three nearest available matching estimators was least biased. They 
also assumed that the confounding variable was normally distributed with the 
mean of the treatment population greater than the mean in the comparison 
population ( T I  > T O ) .  Their results showed that the percent reduction in bias 
was largest for the low-high nearest available matching and smallest for the 
high-low variant. 

Because nearest available matching does not guarantee as close matches as 
are possible with caliper matching, Rubin (1973a) also compared the closeness 
of the matches obtained by the three procedures as measured by the average of 
the squared error ( X I  - within pairs. When the procedures were judged 
by this criterion, the order of performance was reversed. The HL nearest 
available matching had the lowest average squared error and the LH had the 
largest. This result is not too surprising, considering the relationship between 
the population means (771 > TO) .  The HL procedure would start with the treat- 
ment subject who is likely to be the most difficult to match: namely, the one with 
the largest value of X .  This would tend to minimize the squared within-pair 
difference. 

Since the differences between the three matching procedures are small on 
both criteria, random-order nearest available matching appears to be a rea- 
sonable compromise. In Table 6.3, from Cochran and Rubin (1973), results of 
the percent reduction in bias are summarized for random-order nearest available 
matching as a function of the initial difference, the values of the ratio of the 
population variances, and sizes of the reservoir. Results for the number of 
matches N = 25 and N = 100 (not shown) differ only slightly from those for 
N = 50. 

Table 6.3 Percent Bias Reduction for Random-Order Nearest Available 
Matching: X Normal; N = 50* 

2 99 98 84 92 87 69 66 59 51 
3 100 99 97 96 95 84 79 75 63 
4 I00 I00 99 98 97 89 86 81 71 

Reprinted, by permission of the Statistical Publishing Society. from Cochran and Rubin (1973), 
Table 2.4.1. 

* X = confounding variable; BX = initial difference; r = ratio of the size of the comparison res- 
ervoir and the treatment group; a: = variance of confounding variable in the treatment population; 
c$ = variance of confounding variable in the comparison population. 
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With this method, the percent reduction in bias decreases steadily as the initial 
difference between the normal distributions of the confounding variable increases 
from to 1 .  In contrast with results reported in Table 6.2 for caliper matching, 
the percent reduction in bias does depend on the ratio of the population variances. 
Based on Table 6.3, random-order nearest available matching does best when 
u:/uf = '/2, When QI > QO and uf > a:, large values of the confounding variable 
in the treatment group, the ones most likely to cause bias, will receive closer 
partners out of the comparison reservoir than if uf < a:. 

Investigators planning to use random-order nearest available matching can 
use Table 6.3 to obtain an estimate of the expected percent bias reduction. 
Suppose an estimate of the initial difference BX is l/2, with uf/a$ = 1, and it is 
known that the reservoir size is 3 times larger than the treatment group ( r  = 3). 
It follows that random-order nearest available matching results in an expected 
95% reduction in bias, 

6.6 STRATIFIED MATCHING 

Stratified matching is an appropriate pair matching procedure for categorical 
confounding variables. If, like sex or religious preference, the variable is truly 
categorical, with no underlying numerical distribution, the matches are exact 
and no bias will result. Often, however, the confounding variable is numerical 
but the investigator may choose to work with the variable in its categorical form. 
Suppose, for example, that in the study of smoking and blood pressure, all the 
subjects were employed and that job anxiety is an important confounding 
variable. The investigator has measured job anxiety by a set of 20 true-false 
questions so that each subject can have a score from 0 to 20. Such a factor is very 
difficult to measure, however, and the investigator may decide that it is more 
realistic and more easily interpretable to simply stratify the range of scores into 
low anxiety, moderate anxiety, and high anxiety. Having formed these three 
strata, the investigator can now randomly form individual pair matches within 
each stratum. An example of this procedure in the case of multiple confounding 
variables is given in Section 6.1 1. 

The only theoretical paper discussing the bias reduction properties of stratified 
matching is that of McKinlay (1975). She compared stratified matching to 
various stratification estimators (Section 7.6) for a numerical confounding 
variable converted to a categorical variable. She considered various numbers 
of categories and a dichotomous outcome. She found that the estimator of the 
odds ratio from stratified matched samples had a larger mean squared error and, 
in some of the cases considered, a larger bias than did the crude estimator, which 
ignores the confounding variable. (Stratified matching is compared with 
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stratification in Section 13.2.2.) The mean squared error results are due in part 
to the loss of precision caused by an inability to find matches for all the treatment 
subjects. This point is considered further in Section 13.2. 

6.7 FREQUENCY MATCHING 

Frequency matching involves stratifying the distribution of the confounding 
variable in the treatment group and then finding comparison subjects so that 
the number of treatment and comparison subjects is the same within each 
stratum. This is not a pair matching method, and the number of subjects may 
differ across strata. 

For the sake of illustration we shall concentrate on the case of a numerical 
response. This will allow us to demonstrate more easily how frequency matching 
helps to reduce the bias. Because frequency matching is equivalent to stratifi- 
cation with equal numbers of comparison and treatment subjects within each 
stratum, we leave the discussion of the various choices of estimators in the case 
of a dichotomous response to Chapter 7. 

6.7.1 Methodology 

Frequency matching is most useful when one does not want to deal with pair 
matching on a numerical confounding variable or an ordinal measure of an 
underlying numerical confounding variable. An example of the latter situation 
is initial health care status, where the categories reflect an underlying continuum 
of possible statuses. In either case, the underlying distribution must be stratified. 
Samples are then drawn either randomly or by stratified sampling from the 
comparison reservoir in such a way that there is an equal number of treatment 
and comparison subjects within each stratum. Criteria for choosing the strata 
are discussed in Section 6.7.3 after we have presented the estimator of the 
treatment effect. 

Example 6.3 Frequency matching: Let us consider the use of frequency matching 
in the smoking and blood pressure study. Suppose that the age distribution of the smokers 
was stratified into 10-year intervals as shown on the first line of Table 6.4, and that 100 
smokers were distributed across the strata as shown on the second line of the table. The 
third line of the table represents the results of a random sample of 100 nonsmokers from 
the comparison reservoir. Notice that since frequency matching requires the sample sizes 
to be equal within each stratum, the investigator needs to draw more nonsmokers in all 
strata except for ages 51 to 60 and 71 to 80. In  these two strata the additional number 
of nonsmokers would be dropped from the study on a random basis. (Note that stratified 
sampling, if  possible, would have avoided the problem of too few or too many persons 
in a stratum.) 
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Table 6.4 Smokers and Nonsmokers Stratified b.y Age 

Age 11-20 21-30 31-40 41-50 51-60 61-70 71-80 Total 

Smokers 1 3 10 21 30 25 10 100 
Nonsmokers 0 2 8 20 32 20 I8 100 

6.7.2 Appropriate Conditions 

Frequency matching is relatively effective in reducing bias in the parallel linear 
response situation provided that enough strata are used. We shall explain this 
by means of simple formulas for the estimator of the treatment effect assuming 
a numerical response. 

Recall from Section 6.1 that we can represent the linear relationship between 
the response Y and the confounding variable X by 

Y1 = a1 + PXl in the treatment group (6.6) 

YO = a,-, + 0x0 in the comparison group. 

In general, the estimator of the treatment effect in the kth stratum is 
- 
Ylk - Y O k  = (a1 - ao) + P(XIL - X O k ) .  (6.7) 

where a bar above the variables indicates the mean calculated for the kth stra- 
tum. The bias in the kth stratum is P ( x l k  - X o k ) .  

Clearly, the maximum amount of distortion in the estimate from the kth 
stratum occurs when x l k  - x o k  is maximized. The maximum value is then p 
times the width of the kth stratum. 

One overall estimate of the treatment effect is the weighted combination of 
the individual strata differences in the response means: 

where nk is the number of treatment or comparison subjects in the kth stratum 
( k  = 1,2, . . . , K) and N is the total number of treatment subjects. Rewriting 
(6.8) in terms of treatment effect and regression coefficients, we obtain, using 
(6.7), 

- -  1 K  

N & = I  
Y I - y O = -  c n k [ a l - ~ O + f l ( x I k - x O k ) l  

From (6.9) we see that the amount of bias reduction possible using frequency 
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matching is determined by the difference in the distributions of the two groups 
within each stratum. This, in turn, is a function of the manner in which the strata 
were determined. The more similar the distributions of the treatment and 
comparison populations are within each stratum, the less biased the individual 
estimates of the treatment effect will be. 

6.7.3 Evaluation of Bias Reduction 

Assuming that both distributions of the confounding variable are normal with 
equal variances but the mean of the treatment population is zero and the mean 
of the comparison population is small but nonzero, Cox (1 957) derived the 
percent reduction in bias for strata with equal number of subjects. Cochran and 
Rubin (1973) extended Table 1 of Cox, and these results are given in Table 6.5. 
The strata are based on the distribution of the treatment group. 

Table 6.5 Percent Bias Reduction with Equal-Sized Strata in Treatment 
Population: X Normal 

Number of strata: 2 3 4 5 6 8 10 

9i reduction in bias: 64 19 86 90 92 94 96 

Reprinted, by permission of the Statistical Publishing Society, from Cochran and Rubin (1973). 
Table 4.2.1. 

These percentages are at most 2% lower than the maximum amount of bias 
reduction possible using strata with an unequal number of subjects. Cochran 
( 1968) extended these calculations for some nonnormal distributions: the chi- 
square, the t, and the beta, and he concluded that the results given in Table 6.5 
can be used as a guide to the best boundary choices even when the confounding 
variable is not normally distributed. 

From this information we can conclude that if the distributions of the con- 
founding variable are approximately normal and differ only slightly in terms 
of the mean, and based on the distribution of the treatment group we form four 
strata with equal numbers of subjects, we can expect to reduce the amount of 
bias in the estimate of the treatment effect by 86%. 

We stated at the beginning of Section 6.7.2 that frequency matching was 
relatively effective in reducing the bias in the linear parallel situation. No the- 
oretical work has been done for the nonlinear parallel situation. Frequency 
matching does, however, have the advantage of allowing one to use the analysis 
of variance to test for interactions. One can test for parallelism as well as lin- 
earity, thus determining whether frequency matching was appropriate. 
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6.8 MEAN MATCHING 

A simple way of attempting to equate the distributions of the confounding 
variable in the study samples is to equate their means. This is called mean 
matching or balancing. The members of the comparison group are selected so 
that 1x1 - XOI is as small as possible. Although mean matching is very simple 
to employ, it depends strongly on the assumption of a linear parallel response 
relationship and we therefore do not recommend its use. One can employ analysis 
of covariance (Chapter 8) in this case and achieve greater efficiency. We include 
the following discussion of mean matching so that the reader can understand 
the basis for our recommendation. 

6.8.1 Methodology 

There is more than one way to form matches in mean matching. However, 
the only algorithm which is guaranteed to find the comparison group that 
minimizes 1x1 - Xol is to calculateX0 for all possible groups of size N from the 
comparison reservoir. This is generally far too time-consuming. An easier al- 
gorithm uses partial means, and we shall demonstrate its use with the following 
example. 

Example 6.4 Mean matching: Suppose that we decided to use mean matching on 
age in the blood pressure study, where we have three smokers, aged 40,45, and 50 years. 
First, we would calculate the mean age of the smokers, which is 45 years (Xs = 45). Next, 
we would select successive subjects from the nonsmokers such that the means of the 
nonsmokers ages, calculated after the selection of each subject (partial means), are as 
close as possible to 45. Suppose that the nonsmokers in the comparison reservoir have 
the following ages: 32,35,40,41,45,47,  and 55 years. The first nonsmoker selected as 
a match would be age 45; the second subject selected would be 47 years old, since the 
partial mean, (45 + 47)/2 = 46, is closest to 45. The last nonsmoker to be selected would 
be41 years of age, again since the partial mean, (*/d (46)+ ('h) (41) = 44.3, is closest 
toXs. Note that this algorithm did not minimize IXs - X N S I ,  since choosing the non- 
smokers aged 35,45, and 55 would give equality of the two sample mean ages [(35 + 
45 + 55)/3 = 451. 

6.8.2 Appropriate Conditions 

Mean matching can be very effective in reducing bias in the case of a parallel 
linear response relationship. Suppose in the blood pressure example that the 
population means 77s and QNS for smokers and nonsmokers were 50 and 45, re- 
spectively. Then, for large enough random samples, we might expect to find that 
XNS = 45. and x s  = 50. 

From (6.3) it follows that the estimated treatment effect is biased by an 
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amount equal to (XS  - XNS) = 5p. However, if mean matching had been used 
to reduce Ixs - ~ N S I  to, say, 0.7, as in Example 6.4, then the bias in (ys - ~ N S )  

would have been reduced by 86% (= 4.3/5.0). (The initial difference in the 
means due to random sampling is 5.0.) 

Mean matching is not effective in removing bias in the case of a parallel 
nonlinear response relationship (see Figure 6.7). Assume that in another blood 
pressure study three smokers of ages 30,35, and 40 years were mean-matched 
with three nonsmokers of ages 34, 35, and 36 years, respectively. Their blood 
pressures are denoted by X in Figure 6.7. Notice that unlike the previous linear 
situations, YS and FNS do not correspond to the mean ages Xs and ~ N S .  They 
will both be greater than the values of Y which correspond to the means due to 
the nonlinearity. Here (ys - ~ N S )  is an overestimate of the treatment effect. 
The estimate should be equal to the length of the vertical line, which represents 
the treatment effect. In general, the greater the nonlinearity, the greater the 
overestimation or bias will be, in general. 

Figure 6.7 
X. blood pressure for a specific age: 0. blood pressure corresponding to mean age in either 
group. 

Mean maiching in a nonlinear parallel relationship. 
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6.8.3 Evaluation of Bias Reduction 

Cochran and Rubin (1 973) have investigated the percentage of bias reduction 
possible using the partial mean algorithm presented in Section 6.8.1 under the 
assumptions of a linear parallel relationship, a normally distributed confounding 
variable, and a sample size of 50 in the treatment group. They found that, except 
in the cases where the initial difference BX = 1, mean matching removes es- 
sentially all the bias. In addition, its effectiveness increases with the size of the 
comparison reservoir. The bias that results from improper use of mean matching 
(i.e., in nonlinear cases) has not been quantified. 

6.9 ESTIMATION AND TESTS OF SIGNIFICANCE 

In this section we indicate the appropriate tests of significance and estimators 
of the treatment effect for each matching technique. Because the choice of test 
and estimator depends on the form of the outcome variable, we begin with the 
numerical case followed by the dichotomous case. Also, in keeping with the 
general intent of this book, we do not give many details on the test statistics but 
rather cite references in which further discussion may be found. The tests and 
estimators for frequency-matched samples are the same as for stratification and 
are discussed in greater detail in Chapter 7. 

In the case of a numerical outcome variable for which one of the pair matching 
methods (caliper, nearest available, or stratified) has been used, the correct test 
of significance for the null hypothesis of no treatment effect is the paired-t test 
(see Snedecor and Cochran, 1967, Chap. 4). This test statistic is the ratio of the 
mean difference, which is the estimate of the treatment effect, to its standard 
error. The difference between the paired-t test and the usual t test for inde- 
pendent (nonpaired) samples is in the calculation of the standard error. 

If  in the case of a numerical outcome variable, frequency matching has been 
used, the standard t test is appropriate, with the standard error determined by 
an analysis of variance. (See Snedecor and Cochran, 1967, Chap. 10, for a dis- 
cussion of the analysis of variance.) The treatment effect is estimated by the 
mean difference. If, however, the within-stratum variances are not thought to 
be equal, then, as in the case of stratification, one should weight inversely to the 
variance (see Section 7.7 and Kalton, 1968). In the case of mean matching, the 
correct test is again the t test. The standard error, however, must be calculated 
from an analysis of covariance (see Greenberg, 1953). 

When the outcome variable is dichotomous, as discussed in Chapter 3, the 
treatment effect may be measured by the difference in proportions, the relative 
risk, or the odds ratio. The estimator of the difference in rates is the difference 
between the sample proportions, p1 - PO. This is an unbiased estimator if the 
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matching is exact. For estimating the odds ratio, the stratification estimators 
appropriate for large numbers of strata are applicable (see Section 7.6.1), with 
each pair comprising a stratum. In this case the conditional maximum likelihood 
estimator is easy to calculate and is identical to the Mantel-Haenszel (1959) 
estimator. For each pair (stratum), a 2 X 2 table can be created. For thejth pair, 
we have four possible outcomes: 

Control 

Subject 

1 0 

Treatment Subject 1 aj 
0 cj $ I l  

For example, b, = 1 if, in thejth pair, the outcome for the control subject is 
$ and for the treatment subject it is 1. The estimator of the odds ratio, 9, is then 
$ = 2,b,/2,c,. The estimator will be approximately unbiased if the matching 
is exact and the number of pairs is large. 

Because of the relationship between these measures of the treatment effect 
(difference of proportions, relative risk, and odds ratio) under the null hypothesis 
of no treatment effect (Section 3.1), McNemar’s test can be used in the case 
of pair-matched samples, regardless of the estimator (see Fleiss, 1973, Chap. 
8). Similarly, when frequency matching is used, we have a choice of tests, such 
as Mantel-Haenszel’s or Cochran’s test, regardless of the estimator (see Fleiss, 
1973, Chap. 10). Since the analysis of a frequency-matched sample is the same 
as an analysis by stratification, the reader is referred to Chapter 7 for a more 
detailed discussion. 

6.10 MULTIVARIATE MATCHING 

So far we have limited the discussion of matching to a single confounding 
variable. More commonly, however, one must control simultaneously for many 
confounding variables. To date, all research has been on multivariate pair 
matching methods. To be useful, a multivariate matching procedure should 
create close individual matches on all variables. In addition, ideally, as in the 
univariate case, the procedure should not result in the loss of many subjects 
because of a lack of suitable matches. The advantage of constructing close in- 
dividual matches, as in the univariate case, is that with perfectly matched pairs 
the matching variables are perfectly controlled irrespective of the underlying 
model relating the outcome to the risk and confounding variables. 
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Discussions of multivariate matching methods in the literature are quite 
limited. References include Althauser and Rubin (1970), for a discussion of an 
applied problem; Cochran and Rubin (1973), for a more theoretical framework; 
Rubin (1976a, b), for a discussion of certain matching methods that are equal 
percent bias reducing (EPBR); Carpenter (1977), for a discussion of a modifi- 
cation of the Althauser-Rubin approach; and Rubin (1979), for a Monte Carlo 
study comparing serveral multivariate methods used alone or in combination 
with regression adjustment. 

In the following sections we first discuss straightforward generalizations of 
univariate caliper and stratified matching methods to the case of multiple con- 
founding variables. The methods included are multivariate caliper matching, 
and multivariate stratified matching. Then we discuss metric matching methods 
wherein the objective is to minimize the distance between the confounding 
variable measurements in the comparison and treatment samples. Several al- 
ternative distance definitions will be presented. 

Next we discuss discriminant matching. This matching method reduces the 
multiple confounding variables to a single confounding variable by means of 
the linear discriminant function. Any univariate matching procedure can then 
be applied to the linear discriminant function. 

In trying to rank the multivariate matching techniques according to their 
ability to reduce the bias, one is faced with the problem of how to combine the 
reduction in bias due to each confounding variable into a single measure so that 
the various methods can be compared. For example, the effectiveness of caliper 
matching depends, in part, on the magnitudes of all the tolerances that must be 
chosen. 

To partially circumvent this problem of constructing a single measure of bias 
reduction, Rubin (1976a, b; 1979) introduced the notion of matching methods 
of the equal percent bias reducing (EPBR) type. For the linear case, Rubin 
showed that the percent bias reduction of a multivariate matching technique 
is related to the reduction in the differences of the means of each confounding 
variable, and that if the percent reduction is the same for each variable, that 
percentage is the percent reduction for the matching method as a whole. EPBR 
matching methods are techniques used to obtain equal percent reduction on each 
variable and, hence, guarantee a reduction in bias. 

Discriminant matching and certain types of metric matching have the EPBR 
property, so that we can indicate which of these EPBR methods can be expected 
to perform best in reducing the treatment bias in the case of a linear response 
surface. 

6.10.1 Multivariate Caliper Matching 

Multivariate caliper matching, like its univariate counterpart, is effective in 
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reducing bias provided that the tolerances used for each confounding variable 
a re  small and the comparison reservoir is large, generally much larger than in 
the univariate case. 

Suppose that there are L confounding variables. A comparison subject is 
considered to be a match for a treatment subject when the difference between 
their measured Ith confounding variable ( l  = I ,  2, . . . , L )  is less than some 
specified tolerance, €1 (i.e.. I X , /  - X O / (  I 6,) for all 1.  

Example 6.5 Multivariate caliper matching: Consider a hypothetical study com- 
paring two therapies effective in reducing blood pressure, where the investigators want 
to match on three variables: previously measured diastolic blood pressure, age, and sex. 
Such confounding variables can be divided into two types: categorical variables, such 
as sex, for which the investigators may insist on a perfect match (6 = 0); and numerical 
variables, such as age and blood pressure, which require a specific value of the caliper 
tolerances. Let the blood pressure tolerance be specified as 5 mm Hg and the age tolerance 
as 5 years. Table 6.6 contains measurements of these three confounding variables. (The 
subjects are grouped by sex to make it easier to follow the example.) 

Table 6.6 Hypothetical Measurements on Confounding Variables for 
Example 6.6 

Treatment Group Comparison Reservoir 
Subject Diastolic Blood Subjeci Diastolic Blood 
Number Pressure (mm Hg) Age Sex Number Pressure (mm Hg) Age Sex 

1 94 39 F 1 
2 108 56 F 2 
3 100 50 F 3 
4 92 42 F 4 
5 65 45 M 5 
6 90 31 M 6 

1 
8 
9 

10 
I 1  
12 
13 
14 
15  
16 
I7 
18 
19 
20 

80 
I 20 
85  
90 
90 
90 

108 
94 
78 
I05 
88 

I00 
110 
100 
100 
110 
85 
90 
70 
90 

35 F 
37 F 
50 F 
41 F 
47 F 
56 F 
5 3  F 
46 F 
32 F 
50 F 
43 F 
42 M 
56 M 
46 M 
54 M 
48 M 
60 M 
35 M 
50 M 
49 M 
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In this example there are 6 subjects in the treatment group and 20 subjects in the 
comparison reservoir. Given the specified caliper tolerances, the first subject in the 
treatment group is matched with the fourth subject in the comparison reservoir. The 
difference between their blood pressures is 4 units, their ages differ by 2 years, and both 
are females. We match the second treatment subject with the seventh comparison subject 
since their blood pressures and sex agree exactly and their ages differ by only 3 years. 
The remaining four treatment subjects, subjects 3,4, 5, and 6, would be matched with 
comparison subjects 10,8, 19, and 18, respectively. Notice that if the nineteenth com- 
parison subject were not in the reservoir, the investigator would have to either relax the 
tolerance on blood pressure, say to 10 mm Hg, or discard the fifth treatment subject from 
the study. 

Expected Bias Reduction. Table 6.2 gives the expected percent of bias re- 
duction for different tolerances assuming a single, normally distributed con- 
founding variable and a linear and parallel response relationship. Table 6.2 can 
also be used in the case of multiple confounding variables if these variables or 
some transformation of them are normally and independently distributed, and 
if the relationship between the outcome and confounding variables is linear and 
parallel. The expected percent of bias reduction is then a weighted average of 
the percent associated with each variable. 

I f  the investigators know ( a )  the form of the linear relationship, ( b )  the 
population parameters of the distribution of each of the confounding variables, 
and (c) that the confounding variables or some transformation of them are in- 
dependent and normally distributed, then the best set of tolerances in terms of 
largest expected treatment bias reduction in Y could theoretically be determined 
by evaluating equation (5.1.5) in Cochran and Rubin (1973) for several com- 
binations of tolerances. In practice, this would be very difficult to do. 

6.10.2 Multivariate Stratified Matching 

The extension of univariate stratified matching to the case of multiple con- 
founding variables is straightforward. Subclasses are formed for each con- 
founding variable, and each member of the treatment group is matched with 
a comparison subject whose values lie in the same subclass on all confounding 
variables. 

Example 6.6 Multivariate stratified matching: Consider again the blood pressure 
data presented in Table 6.6. Suppose that the numerical confounding variable, diastolic 
blood pressure, is categorized as 180, 81-94, 95-104, and 1105, and age as 30-40, 
41-50, and 5 1-60. Including the dichotomous variable, sex, there are in total (4 X 3 X 
2 =) 24 possible subclasses into which a subject may be classified. In Table 6.7 we enu- 
merate the 12 possible subclasses for males and females separately. Within each cell we 
have listed the subject numbers and indicated by the subscript t those belonging to the 
treatment group. 
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Table 6.7 Stratification of Subjects on Confounding Variables 
in Example 6.6a 

Diastolic 
Blood Age 
Pressure 30-40 4 1-50 51-60 

Males 
-80 5,. 19 

8 1-94 61. 18 20 17 
95- 104 12,14 15 

-80 
8 1-94 
95- I04 

105- 

I ,  9 
1 1  

2 

Females 

~~ 

0 Within each cell the subject number from Table 6.6 is given. Those with a subscript t are the 
treatment group subjects. 

With this stratification, the second treatment subject is matched with the seventh 
comparison subject. The fifth treatment subject would be matched with the nineteenth 
comparison subject and the fourth treatment subject would be randomly matched with 
one of comparison subjects 3,4 ,5 ,8 ,  or 1 1.  The last treatment subject would be matched 
with the eighteenth comparison subject. Subjects 1 and 3 in the treatment group do not 
have any matches in the comparison reservoir and must therefore be omitted from the 
study, or else the subclass boundaries must be modified. 

I t  should be clear from this simple example that as the number of confounding 
variables increases, so does the number of possible subclasses, and hence the 
larger the comparison reservoir must be in order to find an adequate number 
of matches. 

The expected number of matches for a given number of subclasses and given 
reservoir size r have been examined by McKinlay (1974) and Table 6.8 presents 
a summary of her results. The number of categories in Table 6.8 equals the 
product of the number of subclasses for each of the L confounding variables. 
I n  McKinlay’s terminology we had 24 categories in Example 6.6. Her results 
are based on equal as well as markedly different joint distributions of the L 
confounding variables in the treatment and comparison populations (see 
McKinlay, 1974, Table 1, for the specific distributions). For example, in a study 
with 20 subjects in the treatment group and 20 in the comparison reservoir, 
stratified matching on 10 categories where the confounding variable distributions 
in the two populations are exactly the same will result in about 66 percent of the 
treatment group being matched (i.e., only 13 suitable comparison subjects would 
be expected to be found). Clearly, large reservoirs are required if multivariate 
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Table 6.8 Expected Percentages of Matches in Multivariate Stratified 
Matching 

N, 
Size of 

Same Distribution Different Distribution 
10 20 10 20 

Treatment Group r Categories Categories Categories Categories 

20 

50 

I00 

1 66.0 53.0 55.0 43.5 
2.5 94.0 84.5 84.5 72.5 

5 98.5 96.0 96.5 89.0 
10 100.0 99.0 99.5 96.5 

1 78.0 . 
2 97.0 
4 99.8 

10 100.0 

68.6 62.4 55.2 
91.6 86.6 78.0 
98.8 98.0 92.8 

100.0 100.0 99.0 

1 84.3 11.3 65.3 60.5 
2 99.1 96.8 90.3 83.7 
5 1oo.p 99.9 99.8 91.2 

Adapted, by permission of the Royal Statistical Society, from McKinlay (1974). Tables 2 and 
3. 

stratified matching is to be used effectively. With 20 treatment subjects one 
would need more than 100 comparison subjects for matching with only negligible 
loss of treatment subjects. 

No information is available on the bias reduction one can expect for a given 
reservoir size, r, and given population parameters of the joint distribution of the 
L confounding variables in the treatment and comparison populations. 

6.10.3 Minimum Distance Matching. 

Both multivariate caliper matching and stratified matching are straightforward 
extensions of univariate techniques in that a matching restriction exists for each 
variable. In  this section we discuss minimum distance matching techniques that 
take all of the confounding variables into account at one time, thus reducing 
multiple matching restrictions to one. For two subjects to be a match, their 
confounding variable values must be close as defined by same distance measure. 
The matching can be done with a “fixed” tolerance, as in univariate caliper 
matching, or as nearest available matching. We begin with the fixed tolerance 
case. Because distance is defined by a distance function or metric, these tech- 
niques are also referred to as metric matching. 

One distance function is Euclidean distance which is defined as 
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(6.10) 

where Xi /  is the value of the Ith confounding variable for a subject in the treat- 
ment ( i  = 1)  or the comparison (i = 0) group. A major problem with the use of 
Euclidean distance is that the measure (6.10) and hence choice of matched 
subjects strongly depend on the scale used for measuring the confounding 
variables. For example, measuring a variable in centimeters rather than in meters 
would increase that variable’s contribution to the Euclidean distance 10,000- 
fold. 

A common technique for eliminating this problem of choice of scale is to 
convert all variables to standardized scores. A standardized score (2) is the 
observed value of a confounding variable ( X ) ,  divided by that confounding 
variable’s standard deviation (s): Z = X/s.  Equation (6.10) then would be- 
come 

(6.1 1 )  

where Zi/ is the standardized score of the lth confounding variable ( 1  = 1,. . . , 
I!,) for a subject in the treatment ( i  = 1) or the comparison ( i  = 0) group. Use 
of (6.1 1 )  as a matching criterion has been termed circular marching (Carpenter, 
1977). 

To better understand circular matching and its relation to multivariate caliper 
matching, consider the case of two confounding variables shown in Figure 6.8. 
Suppose that the two confounding variables have been transformed to stan- 
dardized scores. Point A is a treatment subject with standardized scores of a1 
for the first confounding variable and a2 for the second. If we were to use mul- 
tivariate caliper matching with a common tolerance t, we would search for a 
comparison subject with a standardized score of the first confounding variable 
in the interval [al - t, al + €1, and at the same time, a value of the second 
standardized score in the interval [a2 - e ,  a2 + €1. Thus the search is for a 
comparison subject like subject B ,  with confounding variable values within the 
square shown in Figure 6.8. 

In circular matching with tolerance t, the search is for a comparison subject 
whose confounding variable values satisfy 

(211 - 2 o l ) 2  + ( 2 1 2  - Zo2l2 -< € 9  

that is, for values in the circle of radius t centered at A .  In Figure 6.8, subject 
B would not be a match for subject A if circular matching with tolerance E were 
used. 

There have been several suggestions for calculating the standard deviation 
to be used in the standardized scores. Cochran and Rubin (1973) suggest using 
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a z + e -  

‘12 

az - 

101 

- 

t -  

01 a1 + t i, a1 - E 

Figure 6.8 Caliper matching on standardized scores. c = tolerance. 

the standard deviations calculated from the comparison group only, while Smith 
et al. (1977) suggest using only the treatment group standard deviations. The 
advantage of the latter suggestion is that the standard deviations may be cal- 
culated before identifying the comparison subjects. Finally, a pooled estimate 
of the standard deviation can be used if one believes that the variances of the 
two groups are similar. All three suggestions suffer from the restriction that the 
measurements for calculating the standard deviations must be available prior 
to any matching. 

Equation (6.1 1 )  can be rewritten as 
L 

/= 1 
c (XI1 - &d2/s:. 

As can be seen from this, circular matching only takes the variances of the 
confounding variables into account and neglects possible correlations between 
these variables. An alternative metric matching technique which takes corre- 
lations into account is Mahalanobis metric matching, based on the following 
measure of distance in matrix notation: 

(XI - XO)’S’(XI - XO), (6.12) 

where S is the matrix of sample variances and covariances (specifically, the 
pooled within-sample covariance matrix) and Xrepresents a column vector of 
values of the confounding variables. This distance function can be used in the 
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same way as Euclidean distance using a fixed tolerance to define a match. 
Circular and Mahalanobis metric matching with tolerance c can result in a 

loss of information, however, since there is no guarantee of matching all treat- 
ment subjects, even when the comparison reservoir is large. One approach to 
overcome this potential loss of treatment subjects is to generalize the method 
of nearest available matching (Section 6.5). Cochran and Rubin (1973) suggest 
randomly ordering the treatment subjects and then assigning as a match the 
comparison subject who is not yet matched and who is nearest as measured by 
some distance function, such as (6.10), (6.1 I ) ,  or (6.1 2). Such methods are called 
nearest available metric matching methods. Smith et al. (1977) proposed nearest 
available circular matching. Rubin (1 979) compared the percent bias reduction 
of nearest available Mahalanobis metric matching with that of nearest available 
discriminant matching (Section 6.10.4). Rubin’s study is discussed in Section 
6.10.5. 

6.10.4 Discriminant Matching 

Another approach for dealing with multiple confounding variables is to 
transform the many variables to a single new variable and then to apply a uni- 
variate matching procedure to this single variable. One such transformation is 
the linear discriminant function. Basically, the linear discriminant function is 
a linear combination of the confounding variables that best predicts group 
membership. In a sense, it is the variable on which the groups differ the most.* 
By matching on this single variable, it is hoped to achieve the maximum amount 
of bias reduction. Using one of the univariate matching procedures described 
above on the linear discriminant function, those cases will be selected whose 
discriminant function values are the closest. For more detailed references on 
discriminant matching, see Cochran and Rubin ( 1  973) and Rubin ( 1  976a, b; 
1979). Snedecor and Cochran (1967, Chap. 13) show how to use multiple re- 
gression to calculate the discriminant function. 

6.10.5 Multivariate Matching with Linear Adjustment 

Rubin (1  979) empirically examined the nearest available Mahalanobis metric 
and nearest available discriminant matching methods, alone and in combination 
with regression adjustment on the matched pair differences for various sampling 
situations, and for various underlying models, both linear and nonlinear. (See 
Section 13.3.1 for a discussion of matching with regression adjustment.) Rubin 
selected these two methods because, under certain distributional assumptions, 

* A good survey paper on discriminant analysis is that of Lachenbruch (1979). In this paper a 
discussion is given of discriminant analysis on numerical variables, categorical variables, and 
multivariate data containing both numerical and categorical variables. 
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they are equal percent bias reducing (EPBR); that is, they yield the same percent 
reduction in bias for each matching variable. As a result, this percent bias re- 
duction is a straightforward criterion of how well the EPBR matching method 
has reduced bias in the estimate of the treatment effect. 

The broad conclusion of Rubin ( 1  979) is that nearest available pair matching 
using the Mahalanobis metric, together with regression adjustment on the 
matched pair differences, is an effective plan for controlling the bias due to the 
confounding variables, even for moderately nonlinear relationships.* Over a 
wide range of distributional conditions used in his Monte Carlo study, this metric 
matching method reduced the expected squared bias by an average of 12% more 
than did random sampling with no matching. (Notice that for univariate 
matching methods, the results given in  Tables 6.2, 6.3, and 6.5 all relate to 
percent bias reduction and not to percent squared bias reduction.) This metric 
matching reduces more than 90% of the squared bias. Without regression ad- 
justment, nearest available discriminant matching is equivalent to nearest 
available Mahalanobis metric matching, although Rubin finds that Mahalanobis 
metric matching is more robust against alternative model and distributional 
specifications. 

6.11 MULTIPLE COMPARISON SUBJECTS 

Occasionally, matched samples may be generated by matching each treatment 
subject with more than one comparison subject. Matching with multiple controls 
is especially advantageous when the number of potential comparison subjects 
is large relative to the number of available treatment subjects or when the unit 
cost for obtaining the comparison subjects is substantially lower than that of 
obtaining treatment subjects. 

The present discussion concentrates on the dichotomous outcome case. As- 
sume that each treated subject is matched with the same number, say q, of 
comparison subjects. The selection of a particular multivariate matching pro- 
cedure should be based on the same principles explained in previous sections for 
a single comparison subject. For an example of pair matching using multiple 
controls, see Haddon et al. (1961). 

Let the data from the j t h  matched group, j = 1,2, . . . , N ,  be represented in 
terms of a 2 X 2 frequency table, Table 6.9. Here a, = 1 if the treatment subjects 
have the outcome factor present and uj = 0 otherwise; b, is the number of 
comparison subjects who have the outcome factor present. 

* For univariate matching, an extreme example of a moderately nonlinear relationship is Y = 
exp (X), whereas Y = exp (X/2) is more reasonable. In multivariate matching, a similar statement 
can be made. 
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Table 6.9 Multiple Comparison Subjects Data from jth Matched Sample 

Treatment Comparison 
Outcome Subjects Subjects Total 

Factor present (= 1) aj bi a, + bj 
Factor absent (= 0) 1 -a, q - bj 1 + q - (0, + bj) 

Total 1 4 I + q  

For simplicity, let us make the following definitions: 

N 

j =  I 
A = C aj. 

where A is the total number of treatment subjects who have the outcome factor 
present, and 

N 

B = 2 bj, 
j -  I 

where B is the total number of control subjects who have the outcome factor 
present. Therefore, the rate at which the outcome factor is present among the 
treatment group is P I  = A/N, and the rate at  which it is present among the 
comparison group is PO = B/qN. The difference in rates, as a measure of treat- 
ment effect, is then estimated by pl - PO. 

To estimate the odds ratio, each set of q + 1 subjects is considered a stratum, 
and estimators appropriate to stratified samples are applied. (See Section 7.6.1 
for a more detailed discussion of estimators of the odds ratio that are appropriate 
when the number of strata becomes large.) Two such estimators, the conditional 
maximum likelihood and Mantel-Haenszel estimators, are given by Miettinen 
(1970). For q 2 3, the conditional maximum likelihood estimator becomes 
difficult to use because it requires an iterative solution. For the case of exact 
matching, the conditional maximum likelihood estimator will be approximately 
unbiased for large N;  Miettinen conjectures that the same is true for the Man- 
tel-Haenszel estimator. No comparison of these two estimators as applied to 
multiple comparison subjects has been made. McKinlay’s ( 1978) results for 
stratification (Section 7.6.2) imply that the Mantel-Haenszel estimator will 
be less biased than the conditional maximum likelihood estimator will be. For 
the case of a single comparison subject for each treatment subject (q = l ) ,  the 
two estimators are identical (and are given in Section 6.9). 

To test the null hypothesis of no treatment effect, we wish to consider the 
difference between P I  and P O .  An appropriate test statistic is 
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Pi  - P o  
SE@I - Po) 

T =  

qA - B - - 
N 

j =  1 
( 4  + 1 ) ( A  + B )  - C (aj - bj)*, 

where SE(p1 - P O )  is the standard error of the difference. Miettinen (1 969) has 
shown for large N that T has a standard normal distribution under the null 
hypothesis. He has also studied the power of the test and has given criteria, in 
terms of reducing cost, for deciding on an appropriate value of q, the number 
of comparison subjects per treatment subject. 

When the outcome variable is continuous, one could compare the value for 
each treatment subject with the mean value of the corresponding controls, re- 
sulting in N differences. For a discussion of this approach, see Ury (1975). 

Ury (1975) also presents an analysis of the statistical efficiency that can be 
gained by matching each case with several independent controls. For the di- 
chotomous as well as the continuous outcome variables, the efficiency of using 
q controls versus a single control is approximately equal to 2q/(q + I ) .  For ex- 
ample, using 2 controls would increase the efficiency by about 33%; using 3 
controls, by about 50%. 

6.12 OTHER CONSIDERATIONS 

This section includes three miscellaneous topics regarding matching. Sections 
6.12.1 and 6.12.2 present results for matching that relate to general problems 
discussed in Sections 5.1 and 5.2, respectively: omitted confounding variables 
and measurement error. Some ideas regarding judging the quality of matches 
when exact matching is not possible are given in Section 6.12.3. 

6.12.1 Omitted Confounding Variables 

A common criticism investigators must face is that all the important con- 
founding variables have not been taken into account. Unfortunately, with respect 
to matching, there are only very general indications of the effect of an omitted 
confounding variable. 

Should the omitted confounding variable Z have a linear, parallel relationship 
with the included confounding variable X in the two populations, then matching 
solely on X removes only that part of the bias which can be attributed to the linear 
regression of Z on X .  The amount of bias removed depends on the value of the 
regression coefficient of Z on X .  
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According to Cochran and Rubin ( 1  973), if the regression of Z on X are 
nonlinear but parallel, then in large samples, matching solely on X will remove 
only that part of the bias due to Z that corresponds to the linear component of 
the regression of Z on X .  These results generalize to the case of multiple con- 
founding variables. 

6.12.2 Errors of Measuremeht in Confounding Variables 

If we assume that the response is linearly related to the correctly measured, 
or true, confounding variable in  both populations, but that we can only match 
on values which are measured with error, then except under certain special 
conditions, the relationship between the response and fallible confounding 
variable will not be linear. 

As an indication of the effect of measurement error on matching, consider 
the case where the response and the fallible confounding variable are linearly 
related. Then matching on the fallible variable has the effect of multiplying the 
expected percent reduction in bias by the ratio of p* /p  (Cochran and Rubin, 
1973). In this ratio, p* is the regression coefficient of the response on the fallible 
confounding variable and p is the regression coefficient of the response on the 
true confounding variable. Since this ratio is usually less than 1, matching on 
a confounding variable measured with error results in less bias reduction than 
does matching on the corresponding accurately measured confounding vari- 
able. 

6.12.3 Quality of Pair Matches 

In the case of pair matching the investigator can be lead to significant errors 
of interpretation if the quality of the matches is poor. Quality is judged by the 
magnitude of the differences between the values of the confounding variables 
for the comparison and treatment subjects. In this section we discuss a general 
approach that uses stratification to investigate any imperfect matching and its 
effect. We also discuss two approaches suggested by Yinger et al. (1967) for 
the case of a numerical outcome variable. 

Perhaps the obvious first step in determining the overall quality of the pair 
matches obtained is to employ simple summary statistics such as the mean or 
median of the absolute differences between pairs for each particular confounding 
variable. Such statistics, however, do not give the investigator any indication 
of a relationship between the response and the closeness of matches. It is the 
existence of such a relationship which should be taken into account when in- 
terpreting the findings of a study. For example, if in a study on weight loss 
(numerical response) the pairs which show the greatest difference in weight loss 
were the pairs who were most imperfectly matched, the investigator should be 
suspicious of the apparent effect of the treatment. 
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How can investigators determine if there is any relationship between response 
and the quality of the matches? In the case of a categorical response, the in- 
vestigators can take one of two approaches, depending on the number of con- 
founding variables. If there are only a few variables, they can determine sum- 
mary statistics for each response category. This may be viewed as analyzing the 
effect of possible imperfect matching by stratifying on the response. The sum- 
mary statistics should be nearly equivalent for all response categories. 

If there are several confounding variables, the investigators may instead wish 
to determine a single summary statistic of the quality of the matches for each 
response category. This can be done in a two-step procedure. First, for each 
confounding variable, the differences between matched pairs are categorized 
and weights are assigned to each category. For example, in the weight-loss study, 
if age is one of the confounding variables, a difference of 0 to 6 months may re- 
ceive a weight of 0, and a difference of 7 to 1 1 months a weight of 1,  while a 
difference of 12 months or more may receive a weight of 3. For the second step, 
the weights are summed across all confounding variables for each matched pair 
in a response strata and again we could either take the mean or the median as 
a summary statistic of the closeness of the matches. These numbers should agree 
across response strata. We wish to point out that these weights are arbitrary and 
are only meant to be used for within-study comparisons. 

Yinger et al. (1967) have two methods for studying the effects of imperfect 
matching in the case of a numerical outcome. The first of their methods consists 
of forming a rough measure of the equivalence of the treatment and comparison 
groups by the weighting method discussed above for a categorical outcome. They 
call this measure the index of congruence. 

Consider a study of reading ability, where age, sex, and birth order are con- 
founding variables. Table 6.10 illustrates the calculation of the index of con- 
gruence for such a study. Here the index of congruence can range from 0 to 8 
points, where a score of 0 indicates close matching and a score of 8 indicates the 
maximum possible difference between a treatment and control subject. Again, 
these scores are arbitrary and only meant as descriptive measures for within- 
study comparisons. 

To determine if there is any relationship between the response and the quality 
of the matches, we can either calculate the correlation coefficient between the 
estimated treatment effect and the index of congruence, or plot the relationship. 
Ideally, both the correlation coefficient and the slope of the plotted curve should 
be close to zero, indicating no relationship. 

The index of congruence gives only a rough measure of the group equivalence, 
in part because it does not take into account any directional influences of the 
confounding variables. The second of the Yinger et al. methods forms a direc- 
tional measure of congruence which takes this factor into account. 

The investigator may have prior knowledge (e.g., from previous research) 
of the directional influence of the confounding variables on the outcome. Con- 
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Table 6.10 Index of Congruence Calculation 

Range of 
Possible Point 

Confounding Differences between 
Variable Score Matched Pairs 

Age difference 
0-6 months = O  
7-1 1 months = I  0-3 
12+ months 1 3  

Same = O  0-3 
Different = 3  

Both either firstborn 

Otherwise = 2  

Sex 

Birth order 

or not firstborn = O  0-2 

Total 0-8 

sider again the study of reading ability and suppose that increasing age had a 
positive influence while increasing rank of birth had a negative influence. In 
addition, suppose the matching on sex was exact, so that we need not consider 
the directional influence. For the directional measure of congruence we will use 
only scores - 1,0, and 1, where - 1 indicates that the treatment subject has a 
value ofihe confounding variable implying that the response for the treatment 
subject is expected to be inferior to that of the comparison subject; 0 indicates 
that they are expected to be the same, and 1 indicates that the treatment subject 
response is expected to be superior. Then, the directional index of congruence 
for matching a 12-year-old firstborn treatment subject with a 14-year-old sec- 
ond-born comparison subject of the same sex would be zero, since the treatment 
subjects superiority due to a lower birth order would be offset by his or her in- 
feriority due to a lower age. In contrast, the index of congruence based on Table 
6.10 for such a match would be 5. 

The investigator may also plot the estimated treatment effect versus the value 
of the directional measure of congruence for each pair. By considering the scatter 
diagram and regression curve, the investigator can judge to what degree the 
treatment effect is related to differences between the matched pairs. Ideally, 
the plot should again show no relationship. 

6.13 Conclusions 

The most practical of the pair matching methods is nearest available matching. 
It has the advantage that matches can always be found. However, because of 
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the varying tolerance, it will not be as effective as caliper matching in reducing 
the bias in the estimation of the treatment effect. 

The pair matching methods are the best methods to use when the relationship 
is nonlinear. Rubin (1973a) found that the percentage reduction in bias for 
random-order nearest available matching in the linear case (Table 6.2) was 
overestimated by less than 10 percent in most nonlinear cases. Pair matching 
methods do require a large control reservoir, however, and are therefore difficult 
to use in studies with a large treatment group or where it takes a long time to 
find comparison subjects. They seem to be the most effective when c~:/ai is 
approximately 1 and to be least effective when C T : / U ~  is approximately 2 or more, 
with ql > 70. Rubin also concludes that matching with r I 2 generally improves 
the estimate of the treatment effect, especially if the variance of the confounding 
variable is greater in the comparison population than in the treatment popula- 
tion. 

Nonpair matching methods-mean and frequency-are quicker than are pair 
matching methods. However, mean matching is not used often because of its 
strong dependence on the assumption of linearity. I f  the investigator feels very 
confident that the relationship is a linear parallel one, and if the treatment and 
comparison groups are about the same size, mean matching may be considered 
as a fast matching procedure which has the same precision as pair matching in 
such a situation. 

APPENDIX 6A: SOME MATHEMATICAL DETAILS 

6A.1 Matching Model 

The general mathematical model used to analyze the effect of matching with 

Y ; j = R i ( X g ) + e u  i =  1 , O ; j = l , 2  , . . . ,  ni, (6.13) 

where i = 1 represents the treatment group, i = 0 the comparison group, and 
j is thejth observation in each group. Furthermore, Yu is the response variable 
and is a function of the confounding variable Xi,. The residual e;, has mean zero 
and variance CT;, and Xu has mean q;. We assume that the Y and X are numerical 
variables. 

We now consider the specific forms of the response function Ri (a )  that cor- 
respond to the linear parallel and quadratic parallel relationships. 

a numerical outcome variable can be represented as 

6A.2 Parallel Linear Regression 

For the parallel linear regression, the model (6.13) becomes 
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Yij= + P(Xij - ~ i )  + eij i = 1,O;j = 1,2 , .  . . , ni (6.14) 

or 

Yo = ( ~ j  + PXij + ejj, 

where 

ai = pj - P V i .  

Notice that the slope is the same for both the treatment and the comparison 
groups. In this case the treatment effect a1 - a0 is defined as the difference in 
the intercept terms: 

a1 - a0 = (PI - Po) - P ( m  - V o ) .  (6.15) 

Since the estimator of the treatment effect (6.1 5) is the difference in the mean 
responses between the two groups, - YO, with mean response defined as 
E(YjlXj) = (Yi + @Xi, the expected value of the estimator is 

E(Fl - YolX,,  XI)) = a1 - a0 + p(x, - XO). (6.16) 

From (6.16) it follows that the estimator (Fl - TO) is biased by an amount 
P(x1 - xo). Thus a matching procedure that makes 1x1 - XO( as small as 
possible will be preferred. 

- -  

- -  

6A.3 Parallel Nonlinear Regression 

written as 
Consider a parallel quadratic relationship. Then the matching model can be 

~ i j  = + P ( ~ i j  - ~ i )  + S X ~  + eij. 

It follows that 
- - -  

E(YI - YOlXl,XO) = PI - Po - P(V1  - 170) I -_ + P(X1 -XI)) + qx:- X i )  + acs: - si). (6.17) 

where s,? = 2: I (Xu - fi;.)2/N for i = I ,  0. Comparing (6.1 7) with the treatment 
difference (6.15). we see that the bias equals 

@(XI - Xo) + S(2 - xf) + qs: - sf). (6.18) 

Clearly, in this nonlinear case, equality of the confounding variable means 
is not sufficient. (In particular, mean matching is not appropriate.) This em- 
phasizes the motivation of tight pair matching. By choosing pairs so that each 
treatment subject is very closely matched to a comparison subject, any difference 
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in the sample confounding variable distributions that may be important [such 
as means and variances in (6.18)] is made small. 
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I14 STANDARDIZATION AND STRATIFICATION 

Standardization and stratification are related adjustment procedures that are 
applicable when the confounding factor is categorical. The outcome and risk 
factors may be either categorical or numerical, except that for application to 
cohort studies, the risk factor must be categorical, and for case-control studies, 
the outcome must be categorical. 

The goal of any adjustment procedure is to correct for differences in the 
confounding factor distributions between the treatment groups. Standardization 
does this by estimating what would have been observed had the confounding 
factor distributions been the same in the two groups being compared. In the data 
to be presented in Section 7.1, for example, the rates of death due to breast cancer 
are compared for two groups of women. The two groups of women differ with 
respect to age, an important confounding factor when comparing death rates. 
Standardization in this case estimates death rates based on a common age dis- 
tribution. This common age distribution, or more generally, the common con- 
founding factor distribution is taken from some other group, known as the 
standard population; hence the term “standardization.” 

The term “stratification,” when applied to adjustment procedures, can be 
used in two ways. The first and more general use is to describe any adjustment 
procedure that divides the study population into groups (strata) based on the 
values of the confounding factors and then combines information across groups 
to provide an estimate of the treatment effect. In this general sense, standard- 
ization is a stratified procedure where the standard population provides the basis 
for combining information across strata. 

In this book, however, the terms “stratification” or “stratified analysis” will 
only be used in a second, more restrictive, way. This second usage is consistent 
with the first in that the study population is divided into strata and information 
is combined across groups. The restriction is that the basis for combining across 
groups be some statistical criterion, such as maximum likelihood or minimum 
variance, without reference to any standard population. 

Standardization and stratification are employed for two purposes: (a )  to 
provide summary statistics for comparing different populations with respect 
to such items as mortality, price levels, or accident rates; and (b) to yield esti- 
mators of the difference in rates or means between two populations or of the 
relative risk (0) or odds ratio (fi) that are unbiased, or at least approximately 

In Section 7.1 we present the principles of standardization for the simple case 
of a cohort study with dichotomous risk and outcome factors. Some consider- 
ations in the choice of a standard population and standardization procedure are 
given in Sections 7.2 and 7.3, respectively; the bias and precision of standardized 
estimators are discussed in Section 7.4; and the extension to case-control studies 
is considered in Section 7.5. General formulas for direct and indirect stan- 
dardization and more detailed bias considerations are given in Appendix 7A. 

Stratification is introduced in Section 7.6 with emphasis on estimators of the 

so. 
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odds ratio. The odds ratio estimators are considered in greater mathematical 
detail in Appendix 7B. The extension of standardization and stratification to 
numerical outcomes and multiple confounding factors is presented in Sections 
7.7 and 7.8. 

If the confounding variable is numerical, standardization and stratification 
can be applied by first categorizing the confounding variable (as in Table 7.1 
for the numerical confounding variable, age). The effects of this categorization 
on the bias of the stratified estimators are discussed in Chapter 13. For now, it 
is sufficient to note that the estimators will always be biased, even in large 
samples. Comments in this chapter on bias are for a categorical confounding 
variable (except when considering McKinlay’s work in Section 7.6.2). For the 
case of a numerical confounding variable, Cochran’s work (1968) for frequency 
matching (Section 6.7) gives some guidance for choosing the number and sizes 
of the strata. Logit analysis (Chapter 9) and analysis of covariance (Chapter 
8) are alternative procedures that do not require stratifying a numerical con- 
founding variable. 

7.1 STANDARDIZATION-EXAMPLE AND BASIC 
INFORMATION 

The data in Table 7.1 on breast cancer death rates among females aged 25 
or older is based on work by Herring (1936, Tables I and 11). In this case, the 
risk factor is marital status with two categories, single (never married) and 
married (including widows and divorcees), and the outcome is death due to breast 
cancer. The breast cancer death rates, per 100,000 population, of 15.2 for single 
women and 32.3 for women who were ever married are called crude (or unad- 
justed) death rates because they have not been adjusted for any possible con- 
founding. Crude rates are calculated by simply ignoring any possible confounding 
factors. For example, the crude rate for single women is found by dividing the 
average annual number of deaths due to breast cancer (1438) by the total pop- 
ulation of single women (94.73). The crude relative risk of death due to breast 
cancer is 2.1 = 32.3 + 15.2, purporting to indicate that women who marry are 
more than twice as likely to die of breast cancer as are women who never 
marry. 

An examination of the death rates by age-the age-specific rates-indicates 
that age is an important factor. Age is a confounding factor in this circumstance 
because death rates increase with age and the ages of married and single women 
differ; the married women tend to be older (8Wo of the single women are younger 
than 35 as compared to only 35% of the women who had married). (The defi- 
nition of a confounding factor is given in Section 2.1 .) A fair comparison of the 
cancer death rates requires that age, at least, be adjusted for. 

One approach to adjustment is direct standardization. This approach asks 
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Table 7.1 Breast Cancer Mortality in Females in the United States (1929- 
1931) 

Single Women 
Average 
Annual 
Breast 
Cancer 

death rate 
1930 (per 

Population 100,000 
Age (yr) (100,000’s) population) 

Ever-Married Women 
Average 
Annual 
Breast 
Cancer 

death rate 
I930 (per 

Population 100,000 
( 100,000’s) population) 

All Women 
Average 
Annual 
Breast 
Cancer 

death rate 
I930 (per 

Population IOO.000 
(100,000’s) population) 

15-34 76.15 0.6 
35-44 7.59 24.9 
45-54 5.22 74.7 
55-64 3.43 119.7 
65-74 1.88 139.4 

0.45 303.8 2 7 5  
Total 94.73 15.2 

- - 
Average annual 
Number of 1438 

deaths 

89.57 2.5 
6 I .65 17.9 
46.67 43. I 
31.11 70.7 
18.14 89.4 

137.7 
254.94 32.3 
- - 7.80 

8228 

165.72 I .6 
69.24 18.7 
51.89 46.2 
34.54 75.5 
20.02 94. I 

146.8 
349.67 27.6 
- - 8.25 

9666 

how many cancer deaths would have occurred if the age distribution for both 
the married and single women had been the same as in some standard population, 
but the age-specific rates were the same as observed? In this example, a natural 
standard is the 1930 age distribution of all women in the United States. The 
directly standardized cancer mortality rates are (per 100,000 population): 

Single women: 

(165.72) (0.6) + * - *  + (8.25) (303.8) 15,131.27 
= 43.3 - - 

349.67 349.67 

Married women: 

( I  65.72) (2.5) + * + (8.25) (1 37.7) 9257.95 =-- - 26.5. 
349.67 349.67 

Single women have a highe? age-adjusted mortality rate, and the directly 
standardized relative risk is OD = 26.5/43.3 = 0.6, indicating that, after cor- 
recting for age differences, women who marry actually have a loyer risk of dying 
of breast cancer than do women who remain single. Note that flD is the ratio of 
the expected numbers of cancer deaths in the standard population based on the 
age-specific death rates for married women (9257.95) to the expected number 



7.1 STANDARDIZATION-EXAMPLE AND BASIC INFORMATION 117 

of deaths in the standard population based on the rates for single women 
( 1  $ 1  3 I .27). 

An alternative approach is indirect standardization. This approach asks how 
many cancer deaths would have occurred among single women if the age dis- 
tributions for the single and married women were the same as observed, but the 
age-specific mortality rates had been the same as in some standard population? 
As we will see in Section 7.3, when applying indirect standardization, it is best 
to select the “standard population” to be one of the two groups being com- 
pared. 

The results of indirect standardization are often quoted as standard mortality 
(or morbidity) ratios, which are ratios of the observed deaths for each category 
of the risk factor to the expected deaths given the standard age-specific rates. 
The indirectly standardized rate for each risk factor category is then found by 
multiplying the standard mortality ratio for that category by the crude rate for 
the standard population. (The rationale for this round about calculation of a 
$andardized rate is given in Section 7A.2.) Indirectly standardized relative risks, 
O‘, are found as ratios of the indirectly standardized rates. In the special case 
where the standard rates are taken to be those corresponding to one of the two 
groups being compared, the standard mortality ratio itself turns out to be a 
relative risk. 

For our example, taking the standard rates to be the age-specific breast cancer 
death rates for married women, the expected deaths for single women are 

(76.15) (2.5) + + (0.45) (137.7) = 1023.8. 

The standard mortality ratio is then 1.40 = 1438 + 1023.8, indicating that there 
were 40% more deaths among single women than would have been expected if 
their age-specific rates had been the same as for married women. The indirectly 
standardized breast cancer death rate for single women is found by multiplying 
the standard mortality ratio by the crude mortality rate for the married 
women: 

(1.40)(32.3) = 45.2. 

The indirectly standardized relative risk comparing married to single women 
is then 

81=---- 32.3 1 - - 0.71. 
45.2 1.40 

The standard mortality ratio of 1.40 is the inverse relative risk, that is, of re- 
maining single compared to getting married. 

It is common for different standardization procedures to yield different 
standardized rates and estimates of relative risk as occurred here. This em- 
phasizes that the primary purpose of standardization is to provide a single 
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summary statistic (mortality rates here) for each category of the risk factor so 
that the categories may be compared. The numbers that are most meaningful 
are the age-specific mortality rates, and standardization is not a substitute for 
reporting the specific rates. 

To emphasize this point further, look again at the specific rates in Table 7.1. 
For women under the age of 35, married women have a slightly higher breast 
cancer death rate than do single women; for women age 35 or over, single women 
have the higher breast cancer mortality rate, and the difference and ratio of the 
rates varies with age. This is an example of interaction between the confounding 
factor age and the treatment effect (Section 3.3). This interaction is an important 
fact that is not conveyed by the reporting of a single relative risk, standardized 
or not. One consequence of this is that a different choice of a standard population 
could have resulted in standardized rates that, like the crude rates, were higher 
for married women than for single. The choice of standard thus becomes an 
important issue. Some guidelines for choosing the standard will be discussed 
in Section 7.2. Spiegelman and Marks (1966) and Keyfitz (1966) give examples 
of how different choices for the standard population can affect the standardized 
rates and relative risks. Keyfitz compares the 1963 female mortality rates in 
1 1  countries using three different standard age distributions and finds that the 
ranking of the countries depends on the choice of standard. 

The direct and indirect methods are the most important standardization 
procedures, but not the only ones. There are many standardized indices that have 
been developed for particular fields. Kitagawa (1964, 1966) discusses many of 
these alternatives, particularly with reference to demography. 

7.2 CHOICE OF STANDARD POPULATION 

The choice of standard population is, in general, a contextual decision. When 
standardization is being employed for comparison purposes, there are two 
commonsense guidelines for choosing the standard population. The first is to 
use the data for the entire population that the study subjects are chosen from. 
This was done for the breast cancer mortality example by using the data for all 
women in the United States in 1930 as the standard for direct standardization. 
If the population data are not available, an alternative is to combine all the risk 
factor groups (i.e., take the standard population to be the entire sample being 
studied). The rationale behind this alternative is that summing over the risk 
factor should yield a “population” that approximates the real population of in- 
terest. This approach will approximate the population well if the sampling 
fractions in the risk factor groups are equal, or nearly so; the approximation will 
be poor, if, for example, the subjects in one category of the risk factor are all 
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persons known to have been exposed to the risk factor and the subjects in the 
second category are only a portion of those not exposed. 

The second guideline is applicable in cases where all but one category of the 
risk factor correspond to a treatment of some sort, and the remaining category 
corresponds to the absence of a treatment. Then, the nontreatment category is 
a reasonable choice of standard population. For example, when Cochran ( 1  968) 
standardized lung cancer rates for age, he chose the nonsmokers to be the 
standard population. The cigarette smokers and cigar and/or pipe smokers were 
two “treatment” groups. 

As discussed in Section 7.1, the choice of standard can make a difference in 
the comparison of risk factor groups. Therefore, it is important to report the 
specific rates. If a single summary statistic is still required, the standard should 
be picked to resemble the risk factor groups as much as possible, so as to preserve, 
to the extent possible, the meaningfulness of the standardized comparison. For 
the data of Table 7.1, for example, the 1960 age distribution of males in Mexico 
would be an inappropriate choice of standard. 

7.3 CHOICE OF STANDARDIZATION PROCEDURE 

The choice of standardization procedure can depend on many considerations. 
If the total sample size and specific rates for the categories of the risk factor are 
known but the numbers of individuals at each level of the confounding factor 
are not known, then directly standardized rates can be calculated but indirectly 
standardized rates cannot. Conversely, indirectly standardized rates can be 
calculated if the specific rates are not known but the total number of deaths 
(outcomes) and the specific rates for the standard are known. 

There is one important caution regarding indirect standardization. It is pos- 
sible to have two categories of the risk factor with identical specific rates but 
different indirectly standardized rates. To see this, consider the artificial data 
in Table 7.2, with three risk factor groups and two categories in the confounding 
factor. The specific rates for the first two risk factor categories are identical so 
a proper adjustment procedure should yield a relative risk of 1 .O. The crude rates 
are 0.82 for the first category and 0.1 8 for the second, so the crude relative risk 
is 4.56, reflecting the very different confounding factor distributions in the two 
groups being compared. 

Now consider the direct and indirect standardized relative risks with the total 
of the three risk factor groups as the standard population. Following the pro- 
cedures of Section 7.1, the directly standardized rates for the first two risk factor 
categories are both 0.50, so the directly standardized relative risk is 1 .O. The 
indirectly standardized rates are 0.62 for the first risk factor category and 0.26 



120 STANDARDIZATION AND STRATIFICATION 

Table 7.2 Artificial Data to Demonstrate Comparability Problem of 
Indirect Standa rdiza tion 

Risk Factor Category 
1 2 3 Total 

Confounding Factor Sample Sample Sample Sample 
Category Size Rate  Size Rate  Size Rate Size Rate 

1 900 0.9 100 0.9 1000 0.5 2000 0.7 
2 100 .O.l 900 0.1 1000 0.5 2000 0.3 

for the second, yielding an indirectly standardized relative risk of 2.38. This result 
is more reasonable than the crude relative risk of 4.56, but still not good. The 
indirect method would only have worked in this example if the specific rates in 
the standard population happened to be the same as for categories 1 and 2 of 
the risk factor. 

Indirect standardization is best used only for comparing two groups when one 
of those groups is the standard. In that case, the two methods of standardization 
are equivalent, in the sense that equal estimates of 19 can be obtained by particular 
choices of the standard for each method. In addition, the indirectly standardized 
rates will be equal if all the specific rates are equal. Mathematical details are 
given in Sections lA.3 and lA .4 .  

7.4 STATISTICAL CONSIDERATIONS FOR 
STANDARDIZATION 

As with other adjustment techniques, standardized estimation of treatment 
effects is most meaningful when the treatment effect is constant over the con- 
founding factor strata [i.e., when there is no interaction (Section 3.3)]. In this 
section we will consider the bias and precision (variance) of the standardized 
estimators of the constant treatment effect, whether relative risk or difference 
of rates. 

7.4.1 Bias 

If the difference in risk factor rates is the same for each category of the con- 
founding factor, direct standardization yields unbiased estimates of the difference 
between the risk factor rates.*For estimating the relative risk, if the sample 
relative risks are the same, say 8, within each category of the confounding factor, 
then the directly standardized estimate of relative risk is also equal to I9 (as 
demonstrated in Section 7A.3.1). This implies that the directly standardized 
relative risk will be approximately unbiased in large samples. 

In general, the indirectly standardized estimators of both parameters are 
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biased. An exception occurs when comparing two groups by means of relative 
risk and one of these groups is the standard (see Section 7A.4). Indirect stan- 
dardization does not yield unbiased estimates of the difference between the rates 
because the standard mortality ratio is a ratio. 

7.4.2 Precision 

Indirect standardization has been found to be more precise than direct stan- 
dardization for estimating rates (Bishop, 1967) and relative risks (Goldman, 
1971). Goldman further showed that the precision of directly standardized 
relative risks could be improved by first applying the log-linear model technique 
(Chapter 10) and then directly standardizing using the fitted rates. Details are 
presented in Bishop (1967), Goldman (197 l) ,  and Bishop et al. (1974, Sec. 
4.3). 

7.5 EXTENSION OF STANDARDIZATION TO CASE 
CONTROL STUDIES 

Since we cannot estimate rates directly (see Section 3.1), much of the previous 
material is not applicable to case-control studies. We must instead ask how to 
obtain a standardized estimate of the odds ratio. Miettinen (1972) developed 
a procedure motivated by the idea, presented in Section 7.1, that the standardized 
relative risks are ratios of expected numbers of deaths (or other dichotomous 
outcomes). For case-control studies, Miettinen proposed using the ratio of the 
expected numbers of cases in the two risk factor groups, where the expectation 
is based on a standard distribution of numbers of controls. Letting c k ,  a r k ,  and 
Crk denote standard numbers of controls, observed numbers of cases, and ob- 
served numbers of controls, respectively, where k denotes the categories of the 
confounding factor and r the categories of the risk factor (r = 1 if the risk factor 
is present; r = 0 if not), the standardized estimator of the odds ratio is 

K c C k ( a l k / C l k )  

To see that $ M  is the ratio of the"expected" number of cases in the two risk 
factor groups, let A l k  be the number of cases corresponding to c k  controls in 
the risk factor present group. To find A ] k .  set the ratio of expected numbers of 
cases to controls equal to the observed ratio 

--- A l k  a l k  

c k  C l k  
- 
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and solve for A 1 k : 

Similarly, 

C 0 k  

Summing A l k  over the K confou9ding factor strFta yields the total number of 
expected cases, the numerator of #M. The ratio # M  then compares the number 
of cases expected in the risk-factor-present group to the number expected in the 
risk-factor-absent group, based on the same standard distribution of controls 
(the c k ) .  Considerations in the choice of standard, discussed in Section 7.2, apply 
here as well. 

Miettinen shows that $ M  can be written as a weighted average of the odds 
ratios from each of the K confounding factor strata (the specific odds ratios). 
Therefore, if the odds ratios, # k ,  are constant over all categories of the con- 
founding factor, $ M  will be an approximately unbiased estimator of # in large 
samples (within each stratum). 

7.6 STRATIFICATION 

The method of stratification differs from standardization in that a statistical 
criterion, such as minimum variance, rather than a standard population, is the 
basis for combining across confounding factor strata. In this section we will cover 
the best-studied case of stratification, that of estimating the odds ratio for di- 
chotomous risk and outcome factors in either cohort or case-control studies. 
Throughout Section 7.6 it will be assumed that the odds ratio is the same in all 
the confounding factor strata. The formulas for the various estimators are 
presented in Appendix 7B. Stratified estimation of the difference of means is 
covered in Section 7.7 

7.6.1 

A large number of estimators of the odds ratio have been proposed. Gart 
(1 962) presented the maximum likelihood estimator and (1966) a modification 
to Woolfs (1955) estimator (the “modified Woolf’ estimator). Birch’s (1964) 
and Gart’s (1970) estimators are approximations to yet another estimator, the 
conditional maximum likelihood estimator (Gart, 1970). Goodman (1 969) 
proposed approximations to the maximum likelihood and conditional maximum 
likelihood estimators. A well-known estimator is that of Mantel and Haenszel 
(1959). 

Estimators of the Odds Ratio 
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There are two different maximum likelihood estimators, usual and conditional, 
because there are two different sampling situations to be considered. As the 
theoretical properties of the various estimators depend on which sampling sit- 
uation is appropriate, we must begin with an explanation of the two cases, spe- 
cifically emphasizing what is meant by a large sample in each of the two 
cases. 

Consider the situation where, within each confounding factor stratum there 
is some number of subjects in each of the two study groups, and suppose that 
we wish to add more subjects so as to increase the total sample size. Then, there 
are two choices: more subjects can be added to the existing strata; or new strata 
can be added with corresponding, additional subjects. 

The first case is the most commonly considered. Often the number of strata 
is fixed by the nature of the situation. For example, if the confounding factor 
was sex, the number of strata are fixed at two and the sample size can be in- 
creased only by adding more males and females. In such a situation, “large 
sample” means that the sample sizes in each study group within each strata are 
large, regardless of the number of strata. 

Consider now a study that is conducted cooperatively in many institutions, 
and suppose that institution is the confounding variable of interest. Each stratum 
will then consist of the subjects from a particular institution. In this study a larger 
sample could be obtained in two ways. The first would be as above, namely 
adding subjects from each currently participating institution. The second is to 
add more institutions and select subjects from the new institutions. For every 
additional institution there will be an additional stratum for the confounding 
factor. “Large sample” in this second case means that the number of confounding 
factor strata is large, regardless of the sample sizes within each stratum. 

To summarize, there are two definitions of large sample. In the first, the 
sample sizes within each stratum are large; in the second, the number of strata 
are large. This distinction is important because estimators can behave differently 
in the two cases. In particular, the properties of the (usual) maximum likelihood 
estimator apply only in the first case. The second case requires a different esti- 
mator, the conditional maximum likelihood estimator. Each maximum likelihood 
estimator will be approximately unbiased and normally distributed in large 
samples as defined for the appropriate sampling scheme (Gart, 1962; Andersen, 
1970). 

The numerical difficulties in solving for the conditional maximum likelihood 
estimator led Birch (1  964) and Goodman ( 1969) to propose approximations 
that are easier to calculate. The Birch and Goodman estimators are unbiased 
in large samples only if the odds ratio is 1. In terms of bias considerations, the 
conditional maximum likelihood estimator is therefore preferable. Gart’s ( 1970) 
approximation to the conditional maximum likelihood estimator is applicable 
if the sample sizes within each stratum are large. This approximation will be 
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approximately unbiased when both the number of strata and sample sizes within 
each stratum are large. Although the unbiasedness holds for any value of the 
odds ratio, requiring both the number of strata and the sample sizes to be large 
is very restrictive. 

The (usual) maximum likelihood estimator that is appropriate when the 
sample sizes are large within each stratum is the basis of comparison for the 
remaining estimators. In the appropriate large samples, this estimator is ap- 
proximately unbiased and no other unbiased estimator has a lower variance. In 
large samples, then, this is a good choice of estimator. 

Woolfs (1955) estimator is equivalent, in the sense of having the same 
large-sample distribution, to the maximum likelihood estimator. However, as 
will be shown in detail in Section 7B.2, this estimator cannot be calculated if  
either of the observed proportions in any stratum is 0 or 1. In practice this means 
the Woolf estimator will be virtually useless when dealing with rare outcomes 
in cohort studies or rare risk factors in case-control studies. 

Gart (1966) suggested a modification to the Woolf estimator that does not 
suffer from this problem while retaining the large-sample equivalence to the 
maximum likelihood estimator. There are thus three estimators that are 
equivalent in large samples: the maximum likelihood, Woolf, and modified Woolf 
Estimators. What is known about their small-sample properties is considered 
in Section 7.6.2. 

The Mantel-Haenszel(l959) estimator is also approximately unbiased and 
normally distributed in large samples (large within each stratum), but its vari- 
ance is larger than that of the maximum likelihood estimator unless the odds 
ratio is 1 (Hawk, 1979). In large samples, then, one of the three equivalent es- 
timators noted above would be preferable to the Mantel-Haenszel estimator. 

7.6.2 Comparisons of Odds Ratio Estimators 

Using simulation, McKinlay ( 1975) compared the bias, precision, and mean 
squared error of the modified Woolf, Mantel-Haenszel, and Birch estimators 
for the case of a numerical confounding variable that is stratified into various 
numbers of strata. As mentioned earlier, all the standardized and stratified es- 
timators will be biased in such a case, even in large samples. McKinlay’s work 
is discussed in greater detail in Section 12.2.2. 

Based on the mean squared errors of the estimators, McKinlay recommended 
the modified Woolf estimator, but with some reservations. The modified Woolf 
estimator has a smaller variance than the Mantel-Haenszel estimator, and this 
is reflected in the mean squared errors. However, the bias of the modified Woolf 
estimator increases with increasing number of strata. McKinlay noted that “only 
Mantel and Haenszel’s estimator consistently removed bias in all the simulated 
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situations considered-a property which is masked in this investigation by the 
relatively large variance” (p. 863). In terms of bias removal, then, the Man- 
tel-Haenszel estimator is to be preferred. In addition, the difference in mean 
squared errors between the Mantel-Haenszel and modified Woolf estimators 
became negligible for the large samples (total sample size of 600) in McKinlay’s 
study. 

In an unpublished study, W. Hauck, F. Leahy, and S. Anderson addressed 
the question of whether McKinlay’s 1975 results are applicable to the case of 
a categorical confounding factor where the estimators would be approximately 
unbiased in large samples. This study was patterned after McKinlay’s 1975 study 
and compared the modified Woolf, Mantel-Haenszel, and (usual) maximum 
likelihood estimators. In terms of bias, the modified Woolf was least and max- 
imum likelihood most biased, except for increasing values of the odds ratio and 
large sample sizes where the Mantel-Haenszel estimator was the least biased 
and the modified Woolf the most. However, the bias was small for all three es- 
timators for the sample sizes and number of strata considered by McKinlay. In 
terms of variance and mean squared error, the modified Woolf was more precise, 
sometimes considerably so, than the other two and the maximum likelihood 
estimator least precise. 

In another simulation study with a numerical confounding factor and large 
samples (total sample sizes of 200 to lOOO), McKinlay (1978) compared the 
Mantel-Haenszel estimator, Gart’s ( 1  970) asymptotic approximation to the 
conditional maximum likelihood estimator, and the modified Woolf estimator. 
The results for the modified Woolf and Mantel-Haenszel estimators were similar 
to her 1975 results, namely that the Woolf estimator was usually most precise 
but that its bias tended to increase with increasing numbers of strata from 2 to 
10, while the Mantel-Haenszel estimator was preferable in terms of bias, par- 
ticularly for the larger number of strata. The Gart estimator, a close approxi- 
mation to the conditional maximum likelihood estimator in the cases considered 
by McKinlay, was never better than the Mantel-Haenszel estimator in terms 
of either bias or precision. 

The three studies agree that on purely bias considerations, the Mantel- 
Haenszel estimator is best, selected over the modified Woolf estimator on the 
grounds of consistency. If precision is taken into account by considering mean 
squared error, then, for the cases considered, the modified Woolf estimator is 
best. 

This is an example of a commop statistical problem of making a trade-off 
between bias and precision. Since the modified Woolf estimator is sometimes 
considerably more precise, and since the biases of all the estimators considered 
are not large, this would seem to be the estimator of choice. What is of concern, 
however, is the tendency for the bias of the modified Woolf estimator to increase 
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with increasing number of strata for a given total sample size and with increasing 
distance of the odds ratio from the null value of 1. This implies that the modified 
Woolf estimator is more sensitive to the sample sizes within each stratum than 
is the Mantel-Haenszel estimator. Consequently, the modified Woolf estimator 
can be clearly preferred only for a small number of strata with large sample sizes 
within each stratum; otherwise, the Mantel-Haenszel estimator is a good 
choice. 

7.7 STANDARDIZATION AND STRATIFICATION FOR 
NUMERICAL OUTCOME VARIABLES 

The standardization results of Sections 7.1 to 7.3 and Appendix 7A apply to 
numerical outcome variables with mean responses replacing the rates. The 
principal difference in using a numerical outcome is that interest generally shifts 
to differences, such as the difference in means, instead of ratios, such as the 
relative risk. If the mean treatment difference 7 = a1 - a0 is constant over all 
levels of the confounding factor, direct standardization will yield unbiased es- 
timates of the treatment effect. As with the difference of rates, indirect stan- 
dardization yields biased estimates. 

Stratified estimators of the mean treatment difference have the form of a 
weighted combination of the difference of means within each of the confounding 
factor strata: 

K - c u k ( 7 l k  - YOk) 
k= I 

k= I 

To minimize the variance of the stratified estimator, the weights, the U k .  are 
chosen, where possible, inversely proportional to the variance of Y l k  - 7 O k .  In 
the simplest case, the variance of each observation is constant in both risk factor 
groups and in all confounding factor strata. Then 

Kalton (1968) discusses the choice of the weights in detail, including the use 
of estimated variances. If the weights are constants, such as in (7. l), the stratified 
estimator will be unbiased. If the weights depend on the sample data, as by the 
use of estimated variances, the stratified estimators are biased, but the bias will 
become negligible in large samples. 
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7.8 EXTENSION TO MORE THAN ONE CONFOUNDING 
FACTOR 

More than one categorical confounding factor can easily be handled by 
treating them together as one confounding factor. For example, two dichotomous 
confounding factors can be combined to form a single four-category confounding 
factor. However, as the number of confounding factors increases, the number 
of categories in the com6ined confounding factor can grow very quickly. This 
leads to the problem of small numbers in each category of the confounding factor 
and consequently, poorly determined specific rates or means. 

There are really only two solutions to this problem. The first is to be selective 
in choosing confounding factors to adjust for. The second is to first apply the 
log-linear model technique (see Section 7.4.2). An extreme situation is that the 
number of categories in the combined confounding factor may be so large that 
some of the sample sizes on which the specific rates would be based are zero. 
Direct standardization cannot then be applied. Application of log-linear analysis 
eliminates the zeros. 

Indirect standardization is frequently advocated because it is more precise 
than direct standardization, particularly in the presence of small numbers. This 
is true because indirect standardization does not use the specific rates, which 
will be poorly determined in small samples. As elaborated upon earlier, the 
general use of indirect standardization is not recommended. However, if there 
are too many confounding factor categories and many zeros, precluding the use 
of direct standardization, indirect standardization can still be applied and be 
better than the crude rates. 

For purposes of stratification, Miettinen ( 1  976) has proposed a method for 
reducing a set of confounding factors, whether numerical or discrete, to a single 
numerical confounding factor. The resulting confounding factor, “confounder 
score” in Miettinen’s terminology, can then be categorized and the procedures 
of Section 7.1 or 7.6 applied. This method may be applied to either cohort or 
case-control studies, as long as both the outcome and risk factors are dichoto- 
mous. 

The basis of Miettinen’s proposal, as for discriminant matching (Section 
6.10.4), is to use a discriminant function to distinguish (discriminate) between 
cases and noncases. This discriminant function depends on the value of the risk 
factor and the confounding factors. (This is stated for cohort studies; for case- 
control studies, distinguish instead between the risk-factor-present and risk- 
factor-absent groups. The discriminant function will then depend on the values 
of the outcome and the confounding factors.) The confounder score for each 
individual is obtained by evaluating the discriminant function for that person, 
assuming that the person is in the risk-factor-absent group, regardless of which 
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risk factor group he or she is actually in. (For case-control studies, the function 
is evaluated assuming the person to be a control.) The motivation for this method 
is that the confounder score is a single variable that may be interpreted as a risk 
score that takes into account all variables except the risk factor. 

7.9 HYPOTHESIS TESTING 

In conjunction with the estimation problem, it is frequently desired to test 
the hypothesis that the risk factor has no effect on the outcome. Tests of 19 = 1 
based on standardized relative risks can be done by using a standard normal 
distribution test. The necessary standard error formulas are given by Chiang 
(1961) and Keyfitz (1966). 

Tests for the odds ratio related to stratified estimators are due to Mantel and 
Haenszel(l959) and Gart (1962), the latter being related to Woolfs estimator, 
and for the difference of rates due to Cochran (1954). The odds ratio procedures 
allow us to test whether the odds ratio is the same in all confounding factor strata 
(i.e., test whether the no interaction assumption is valid), and then whether the 
common value of the odds ratio differs from 1.  Cochran’s procedure does the 
same for the difference of rates, testing whether the common value of the dif- 
ference differs from zero. Alternatives are likelihood ratio tests in log-linear 
analysis (Chapter 10). Much of this material is reviewed by Gart (197 l), whose 
paper contains an extensive bibliography, and by Fleiss (1973, Chap. 10). 

APPENDIX 7A MATHEMATICAL DETAILS OF 
STANDARDIZATION 

At this point, the assumption of a dichotomous risk factor will be loosened 
to allow a general categorical risk factor. It will still be assumed that the response 
is dichotomous, so that the discussion will be in terms of rates, and that the data 
were obtained from a cohort study. No assumption is made regarding the choice 
of the standard population. It may, for example, correspond to one of the cate- 
gories of the risk factor. 

7A.1 Notation 

Let R and K denote the number of categories in the risk factor and con- 
founding factor, respectively. Lowercase letters, r and k, will be used as the 
corresponding indices. Let Prk denote the observed rate based on nrk individuals 
for the rth category of the risk factor and the kth category of the confounding 
factor. For the example in Table 7.1, there are R = 2 categories of the risk factor 
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marital status, K = 6 categories of the confounding factor age, and, for example, 
n I 1 = 76.15 X lo5 women in the group corresponding to the first category of 
marital status and the first category of age, and p26 = 137.7 X is the breast 
cancer death rate,for women in the second marital status category and sixth age 
category. The standard population has Nk individuals in the kth category of the 
confounding factor, with a corresponding rate of Pk. If an index is replaced by 
a dot, it indicates summation over that index. For example, 

K 
nr. = C nrk .  

k =  1 

The crude rate for the rth category of the risk factor is then found as 

and for the standard population it is 

7A.2 Computation of Directly and Indirectly Standardized Rates 

The directly standardized rate for the rth category of the risk factor is 

The standard mortality ratio (SMR) is 

and the indirectly standardized rate is 

pz  = SMR, X P. 

We can see here why the roundabout calculation of indirectly standardized 
rates, beginning with the computation of the standard mortality ratio, is nec- 
essary. The straightforward analog of direct standardization would be to use 

as the indirectly standardized rate. This, however, is the rate for the standard 
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population directly standardized to the confounding factor distribution in the 
rth category of the risk factor and so is not a rate that reflects the influence of 
the risk factor category. The standard mortality ratio acts as a correction factor 
to the standard population rate, P .  The standard mortality ratio is the ratio of 
observed to expected deaths in the rth risk factor group, where the expectation 
is with respect to the standard population specific rates. The standard mortality 
ratio, then, indicates how much P should be changed to reflect the specific rates 
in the risk factor group. 

7A.3 Bias of Indirect Standardization 

The bias and consequent interpretability problems of indirect standardization 
are sufficiently important to be elaborated further. Estimation of the relative 
risk, 8, and difference of rates, A, are considered separately. In Section 7A.4, 
the one case where the bias of the indirectly standardized relative risk can be 
eliminated is given. 

Relative Risk. We will show that when the relative risk is constant 
and equal to 0 within each category of the confounding factor category, direct 
standardization will be unbiased in large samples. On the other hand, the indi- 
rectly standardized relative risk can remain biased, no matter how large the 
samples.* 

Consider a two-category risk factor-present ( r  = 1) and absent ( r  = 0)-and 
an arbitrary standard population. From Section 7A.2 the directly standardized 
relative risk is 

7A.3.1 

and the indirectly standardized relative risk is 

* To be precise, direct standardization yields a consistent estimate of 0;  indirect standardization 
does not. 
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Suppose that the sample relative risks within each category of the confounding 
factor are all equal to 8, that is, PI& = epok for all k .  (This will be approximately 
the case in large samples within each stratum.) Then we have, from (7.2), 

K c Nk OpOk 

= e. fiD = 
K c NkPOk 

k= I 

regardless of the choice of standard population. Direct standardization is doing 
the right thing by yielding the common value, 8, as the standardized relative risk. 
For the indirectly standardized relative risk, on the other hand, we have from 
(7.3): 

which is not, in general, equal to 8.  If, instead, we take the standard population 
to be one of the risk factor groups, say r = 0, so that & = PO& for all k, we 
have 

K c n l k p l k  

K c n l k p O k  
k= I 

8 1  = k = l  

k =  I 

K c n l k p o k  
k =  I 

= e. - - 

The result of this section, taken together with the result to be presented in 
Section 7A.4, says that there is only one case where indirect standardization 
does the right thing in terms of properly estimating the relative risk, but in that 
case the same answer can be obtained by direct standardization. From a bias 
point of view, there is thus no reason for choosing indirect standardization. 

7A.3.2 Difference of Rates. Now consider direct and indirect standard- 
ization as estimators of the difference of rates. For direct standardization, 
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If the expected value of Plk  - POk is some constant A for each category of the 
confounding factor, then the difference of the directly standardized rates is an 
unbiased estimator of A for any sample size. 

For indirect standardization, the difference of standardized rates is 

P I  - P :  = P ( S M R 1  - SMRo) 

The expectation of this difference will be something other than A regardless of 
the sample size, except for one very special case. 

Take the standard to be the risk-factor-absent group, as in Section 7A.3.1. 
Although the difference of indirectly standardized rates is still biased, the form 
of the estimator is informative. Substituting POk for'pk and p g  for P in (7.4), 
we obtain 

Now suppose that, for all k, P]k - POk = A, as would be approximately the case 
in large samples. Then, 

This means that, in large samples, p f  - p b  will be biased unless A = 0, and that 
the greater the confounding, the greater the bias. [The term in brackets in (7.5) 
can be viewed as a measure of the extent to which the confounding factor dis- 
tribution in the two risk factor groups differ.] 

7A.4 Equivalence of Direct and Indirect Standardization 

Whether or not the relative risk is constant within each category of the con- 
founding factor, as was assumed in Section 7A.3, direct and indirect standard- 
ization are equivalent if the standard population is taken to be one of the risk 
factor groups. First, equivalent means that, by choosing the standard appro- 
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priately for each type of standardization, the two methods will yield the same 
estimate of the relative risk. 

Suppose that the risk-factor-present group ( r  = 1 )  is chosen as the standard 
for direct standardization. Then, 

Nk = nlk for all k ,  

and consequently, 

P? = PY-. 

For the risk-factor-absent group, 

and therefore 

K c nlkplk 
$D = k = l  

K c nl kPOk 
k= 1 

If  the other risk factor group, the risk-factor-absent group ( r  = 0 ) ,  is chosen as 
the standard for indirect standardization, then 

Pk = pok for all k 

and 

Pb = P &  

For the risk-factor-present group, 

and therefore 

K c nlkpok 
k =  I 

Note, however, that neither the two sets of standardized rates nor their differ- 
ences are equal; that is, p :  # pF, p !  # p p ,  and p t  - pb # p p  - pF. 
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APPENDIX 7B STRATIFIED ESTIMATORS OF THE ODDS 
RATIO 

In this appendix various mathematical details regarding the five principal 
estimators-maximum likelihood, conditional maximum likelihood, Woolf, 
modified Woolf, and Mantel-Haenszel-of the odds ratio will be given. The 
estimators due to Birch and Goodman will not be considered, since they are not 
approximately unbiased in large samples. 

The notation for sample quantities is given in Section 7A.1. In addition, the 
population rate for the kth confounding factor category and rth risk factor 
category is denoted f r k  (r = 0, 1 and k = 1, . . . , K). The no-interaction as- 
sumption is that the odds ratio is the same in each confounding factor 
stratum: 

7B.1 Maximum Likelihood and Conditional Likelihood Estimators 

The likelihood (ignoring the binomial coefficients) is 

where the Srk are the numbers of “successes” (Prk  = Sr&/&k). In this form there 
appear to be 2K parameters to estimate, the P r k ,  but actually there are only K 
+ 1 independent parameters, owing to the no-interaction assumption (7.6). To 
reparametrize, let y denote the natural log of the odds ratio + and let 

p k = l n ( z )  P l k  f o r k =  l , . - . ,K . 

The natural log of the likelihood is then 

K 

k= 1 
I = c [ S l k P k  + n l k  In Q i k  -k SOk(Pk - y)  + no& In Q o k ] ,  (7.7) 

where the Q , k  are functions of y and the P k .  

The (usual) maximum likelihood estimator of y is found by differentiating 
(7.7) with respect toy and the P k  and then solving for the K + I unknowns. If 
the sample sizes within each stratum, the n r k ,  are all large, the maximum like- 
lihood estimator of y, ~ M L ,  will be approximately normally distributed with 
mean y and variance W-l (Gart, 1962), where 
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K 

k =  1 
w =  c [ ( n o k P o k Q o k ) - l  + ( n ~ k P i k Q i k ) - l ] - ~ .  

$ML = exp(.j.ML), 

which will be approxiqately normally distributed with mean $ and variance 
$*/ W. The variance of $ML can be estimated by replacing each P r k  in (7.8) with 
the corresponding P r k .  

This maximum likelihood estimator is identical to that obtained by logit 
analysis (Chapter 9), using the method of Section 9.8 to handle a confounding 
factor with more than two categories. 

In the alternative asymptotic case, where the number of categories, K, in- 
creases, the maximum likelihood estimator given above is not appropriate; as 
the number of categories increases, the number of parameters also increases, 
violating one of the assumptions required for the properties of maximum like- 
lihood estimators to hold. In such cases, an alternative maximum likelihood 
estimator, the conditional maximum likelihood estimator, is appropriate. The 
term “conditional” comes from the fact that this procedure is based on the 
likelihood of $ conditioned on the sufficient statistics for the K nuisance pa- 
rameters, the P k .  This likelihood is (Gart, 1970) 

(7.8) 

The maximum likelihood estimator of the odds ratio $ is 

where t k  = s l k  + S0k is theAsufficient statistic for P k .  The conditional maximum 
likelihood estimator of $, $CML, is that value of $ which maximizes L’. Thomas 
(1975) considers the numerical problem of solving for the maximizing value. 

Andersen (1 970) considers the properties of conditional maximum likelihood 
estimators in general. Applying his results to this problem, we obtain that $CML 

will be approximately normally distributed with mean $ when K is large. The 
variance formula is not illuminating; the variance can be estimated as the re- 
ciprocal of the second deriva$ve of -L’. 

Birch (1964) showed that $CML is the solution of a polynomial equation that 
involves an expectation taken with respect to the conditional distributions in 
(7.9). Gart’s (1 970) approximation to the conditional maximum likelihood es- 
timator is based on approximating this exp%cted value by using a large sample 
(large n r k )  approximation. This estimator, $AML (A for asymptotic), is the so- 
lution to 

K 

k =  1 
$ 1  = i k  
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where S I  = C Kk= I S l k  and each s*k satisfies 

+gain, Thomas (1975) considers the numerical problems of solving for 
J/AML. 

Gart's approximation to the conditional maximum likelihood estimator does 
require large nrk to be valid, but, unlike the approximations due to Birch and 
Goodman, is valid for all value of the odds ratio, not just J /  = 1.  

7B.2 Woolf and Modified Woolf Estimators 

The estimator of the log odds ratio proposed by Woolf (1955) is a weighted 
average of the estimators of the log odds ratio from each of the strata: 

K c Wk?k 
k= I 

.i.w = 
W 

where 

(7.10) 

w k  = [ (nOkPOkqOk)- I  + ( n l k P l k q l k ) - l ] - '  

= [sOk(nOk - S O k )  S l k ( n l k  - S l k )  

K 

k= 1 
(7.1 1) 

wk' is an estimate of the variance of $k, so the Woolf estimator is based on 
weighting inversely proportional to the variance. 

From (7.10) it is clear that the Woolf estimator cannot be calculated if any 
P r k  or q r k  is zero. A modification that avoids this problem is based on work of 
Haldane (1955) and Anscombe ( I  956). They independently showed that a less 
biased estimator of the log odds ratio from the kth confounding factor stratum 
is 

n l k  I-! + nok 

w =  w k .  

(7.12) 

that is, just add 0.5 to each of the four quantities in the sample odds ratio formula. 
Gart (1966) suggested a modified Woolf estimator of the form 

n l k  - S l k  + O.S) (SOk + 0.5) 1- ' S l k  + O . 5 ) ( n o k  - S0k + 0.5) .i.; = In [: 
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(7.13) 

The results of Cart and Zweifel ( 1  967), who considered various estimators of 
the log odds and estimators of the variances of the log odds estimators, suggest 
that (w; ) - l  is generally the least biased estimator of the variance of +;. [An 
alternative modification to the weights, not considered here, was suggested by 
Haldane ( 1  955).] 

For the asymptotic case of large nrk. the Woolf and modified Woolf estimators 
have the same large-sample distribution as the maximum likelihood estimator. 
In particular, the asymptotic variances are equal, so the two Woolf estimators, 
as well as the maximum likelihood estimator, are asymptotically efficient. Es- 
timated variances for the Woolf and modified Woolf estimators are w - I  (7.1 1 )  
and (w’)-I  (7.1 3 ) ,  respectively. 

7B.3 Mantel-Haenszel Estimator 

Mantel and Haenszel(1959) proposed the estimator 

where 

K 

k= I 
m =  C mk. 

Hauck (1979) has shown that if the nrk are large, the Mantel-Haenszel estimator 
is approximately normally distributed with mean \c/ and variance 

k =  1 
V =  

M 2  
9 (7.14) 
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where 

STANDARDIZATION AND STRATIFICATION 

A sufficient condition for the variance of the Mantel-Haenszel estimator (7.14) 
to be equal to that of the maximum likelihood estimator (J,2/ W )  is J, = 1. 
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In this chapter we consider an adjustment strategy that is appropriate for cohort 
studies with a numerical outcome factor, a categorical treatment (or risk) factor, 
and a numerical confounding factor. Under these conditions, the general linear 
model can be applied to the problem of estimating treatment effects. The 
analysis ofcooariance (ANCOVA) represents the main application of the linear 
model for this -~ purpose. 

8.1 BACKGROUND 

The general linear model represents the outcome value as a linear combination 
(weighted sum) of measured variables. Generally speaking, when these variables 
are all numerical, the linear model is called a regression model. When the 
variables are all categorical, we refer to the analysis of oariance (ANOVA). 
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While both regression and analysis of variance can be formally subsumed under 
the general linear model, the two techniques have traditionally been treated as 
distinct. This historical separation occurred for two reasons. First, before 
high-speed computers were in general use, computational aspects of statistical 
techniques were of much interest. The most efficient computational procedures 
for regression and ANOVA were quite different. Second, the two methods 
tended to be applied to different sorts of problems. 

The analysis of variance is usually thought of as a technique for comparing 
the means of two or more populations on the basis of samples from each. In 
practice, these populations often correspond to different treatment groups, so 
that differences in population means may be evidence for corresponding dif- 
ferences in treatment effects. 

The ANOVA calculations involve a division of the total sample variance into 
within-group and between-group components. The within-group component 
provides an estimate of error variance, while the between-group component 
estimates error variance plus a function of the differences among treatment 
means. The ratio of between- to within-group variance provides a test of the null 
hypothesis that all means are equal. Moreover, the differences among group 
means provide unbiased estimates of the corresponding population mean dif- 
ferences, and standard errors based on the within-group variance provide con- 
fidence intervals for these differences and tests of their significance. 

Regression analysis, on the other hand, is primarily used to model relationships 
between variables. With it, we can estimate the form of a relationship between 
a response variable and a number of inputs. We can try to find that combination 
of variables which is most strongly related ,to the variation in the response. 

The analysis of covariance represents a marriage of these two techniques. Its 
first use in the literature was by R. A. Fisher (l932), who viewed the technique 
as one that “combines the advantages and reconciles the requirements of the 
two very widely applicable procedures known as regression and analysis of 
variance.” 

Combining regression and ANOVA provides the powerful advantage of 
making possible comparisons among treatment groups differing prior to treat- 
ment. Suppose we can identify a variable X that is related to the outcome, Y, 
and on which treatment groups have different means. We shall assume for 
simplicity that X is the only variable on which the groups differ. Then, if we knew 
the relationship between Yand X ,  we could appropriately adjust the observed 
differences on Y to take account of the differences on X .  

8.2 EXAMPLE NUTRITION STUDY COMPARING URBAN 
AND RURAL CHILDREN 

Greenberg ( 1  953) described a nutrition study designed to compare growth 
of children in an urban environment with that of rural children. Data were ob- 
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tained on the heights of children in the two samples: one from an urban private 
school and one from a rural public school. Differences in growth between these 
groups might be the result of the different environmental influences operating 
on the children. In particular, the rural children might be experiencing some 
nutritional deprivation relative to their urban counterparts. In the terminology 
of this book, height would be the response or outcome factor and nutrition the 
risk factor of interest. 

The data are shown in Table 8.1. An analysis of variance conducted on the 
height data reveals that the observed difference between the groups (2.8 cm) 
is not statistically significant. So it might be concluded that there is no evidence 
here for a difference in nourishment between the urban and rural school chil- 
dren. 

Table 8.1 Height and Age of Private and Rural School Children in a Study 
in North Carolina in 1948 

Private School Rural School 
Age Height Age Height 

Students (months) (cm) (months) (cm) 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 

Mean 

I09 
1 I3 
I15 
I16 
I19 
120 
121 
124 
126 
I29 
130 
I33 
134 
135 
137 
I39 
141 
I42 
126.8 

137.6 
147.8 
136.8 
140.7 
132.7 
145.4 
135.0 
133.0 
148.5 
148.3 
147.5 
148.8 
133.2 
148.7 
152.0 
150.6 
165.3 
149.9 
144.5 

121 
121 
I28 
129 
131 
132 
133 
134 
138 
138 
I38 
I40 
140 
140 

133.1 

139.0 
140.9 
134.9 
149.5 
148.7 
131.0 
142.3 
139.9 
142.9 
147.7 
147.7 
134.6 
135.8 
148.5 

141.7 
~~ 

Reprinted, by permission, from Greenberg (1953), Table I .  

Before reaching this conclusion, however, we should consider whether there 
are likely to be confounding factors. One variable that comes immediately to 
mind is age. The data on age are also presented in Table 8.1. The mean age for 
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the rural children is 6.3 months greater than that of the urban children. In a 
sense, then, the rural children have an “unfair advantage” conferred by their 
greater average age. Thus we might expect that if the age distributions were the 
same, the difference in average height between the groups would be even larger 
than the observed 2.8 cm. The analysis of covariance allows us to adjust the 
2.8-cm difference to obtain a better (less-biased) estimate of the difference 
between groups that would have been observed had the mean ages in the two 
groups been equal. As we shall see in Section 8.3, ANCOVA produces an esti- 
mated difference of 5.5 cm, which is significant at the .05 level. 

In addition to the bias reduction described above, anot.her benefit results from 
the combination of regression analysis and ANOVA. Suppose that within 
treatment groups, a substantial proportion of the variance in Y can be explained 
by variation in X. In carrying out an ANOVA, we would like the within-group 
variance to reflect only random error. Regression analysis can be used to remove 
that part of the error attributable to X and thereby to increase the precision of 
group comparisons. 

The Greenberg (1953) example mentioned above can be used to illustrate 
this point as well. It is clear from Table 8.1 that a substantial proportion of the 
variation in height is attributable to variation in age. Put differently, if all 
children in a group were of the same age, the variation in heights within that 
group would be substantially reduced. Since the relationship between height 
and age over this range is quite linear, we can estimate the pure error variation 
by taking residuals* around the regression line relating the two variables. In 
effect, this is what ANCOVA does, and when a high proportion of within-group 
variance is explained by the covariate, a large increase in precision results. 

In summary, then, ANCOVA combines the advantages of regression and 
ANOVA in comparing treatments by providing two important benefits. First, 
by estimating the form of the relationship between outcome and covariate, an 
appropriate adjustment can be made to remove biases resulting from group 
differences on the covariate. This advantage is of importance primarily in 
nonrandomized studies, where such group differences are likely to occur. Second, 
by reducing the variation within groups, the precision of estimates and tests used 
to compare groups can be increased. This advantage may be valuable in both 
randomized and nonrandomized studies. 

By combining the advantages of ANOVA and regression, ANCOVA provides 
a powerful tool for estimating treatment effects. As noted by Fisher, however, 
the technique also “reconciles the requirements” of the techniques. Thus, to be 
valid, the ANCOVA must be used in situations satisfying the requirements for 

* The residual corresponding to a given observation is defined as the difference between the actual 
observed Y and the value predicted by substituting the corresponding X value into the regression 
equation. 
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both techniques. Put differently, the usefulness of the ANCOVA rests on the 
validity of a certain mathematical model for the generation of data, which in 
turn rests on a set of assumptions. To obtain the advantages of both regression 
and ANOVA, we must be willing to assert that a somewhat restrictive model 
is valid. 

In the remainder of this chapter, we will attempt to provide enough under- 
standing of the rationale and assumptions underlying ANCOVA to enable the 
reader to understand when ANCOVA can be used and how to interpret the re- 
sults generated. Since the actual calculations involved in carrying out the analysis 
are complex, they are almost always performed by a computer, and it would be 
unnecessarily confusing to present the formulas here. For the reader interested 
in more detail, a technical appendix containing some basic formulas is included 
at  the end of this chapter. More extensive discussions can be found in Cochran 
( 1957) and Winer ( 197 1, Chap. 10). 

8.3 THE GENERAL ANCOVA MODEL AND METHOD 

To understand the rationale underlying the use of ANCOVA in nonran- 
domized studies, it is helpful to begin with a somewhat idealized situation. 
Suppose that on the basis of extensive prior research, the relationship between 
an outcome and confounding factor can be specified. For example, it might be 
known that for rural school children, the relationship between height and age 
over the age range being considered can be expressed as 

Average height = 75 + 0.5 (agk). 

Suppose that a particular group of rural children have been exposed to some 
special treatment, such as a dietary supplement. At the time they are measured 
this group has a mean age of 132 months and a mean height of 147 cm. Suppose 
further that another group has been exposed to a different treatment and is 
measured when the children are 120 months old on the average. The average 
height of this group is 133 cm. 

Since the groups differ on mean age, it is not obvious which treatment has 
been more effective. To make a fair comparison, we must remove the effect of 
the confounding variable age. However, using the relationship specified above 
we know that the expected height for the two groups without any special treat- 
ment is given by: 

Average height = 75 + OS(132) = 141 cm 
Average height = 75 + 0.5( 120) = 135 cm. 

Group 1: 
Group 2: 

Therefore, the effects of the treatments are: 
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Group 1 : 
Group 2: 

and the difference between them is 8 cm. 
Alternatively, we can say that because the groups differ by 12 months in age, 

the relationship predicts that they will differ by 6 cm. So we could effectively 
“adjust” the comparison between the two groups by subtracting 6 cm from the 
difference between them. Since the observed difference is 14 cm, this would leave 
8 cm attributable to the difference in treatments received.. 

Because we are assuming in this example a known baseline relationship against 
which to measure performance under the treatments, we can obtain an absolute 
measure of effect for each treatment (6 cm and -2 cm). I n  most practical sit- 
uations, we do not have available such an external standard, and we must use 
only data obtained during the study. Thus an absolute measure of effect for each 
group is impossible. On the other hand, it may still be possible to obtain from 
the data an estimate of the coefficient (0.5 cm/month in our example) relating 
outcome level to confounding variable. So it may be possible to adjust the ob- 
served difference to remove the effect of age from the comparison. In effect, this 
is how ANCOVA is used to estimate treatment effects in nonrandomized 
comparative studies. 

The basic model underlying the use of the standard analysis of covariance 
asserts that there is a linear relationship between the outcome Y and the covariate 
X with identical slopes in the two groups, but possibly different intercepts. With 
two treatment groups, we can write the basic model as* 

Effect = observed - expected = 147 - 14 1 = 6 cm 
Effect = observed - expected = 133 - I3 1 = -2 cm. 

Y = a1 + PX + e 

Y = a0 + PX +e 

in group 1 (treatment) 
in group 0 (control), (8.1) 

where 

ai = expected value of Y when X = 0 for group 1 

a. = expected value of Y when X = 0 for group 0 

e = random variable representing error 
(expectation 0 for any given X ) .  

Let x represent the sample mean of all the X observations in both groups,xl, 
the mean for group I ,  and xo the mean for group 0. Figure 8.1 illustrates this 
situation. Note that the direct comparison of rl and YO will be biased sincexi 

* For the reader familiar with regression analysis, this model can be represented as a two-variable 
regression model with variables X and a dummy variable taking the value 1 in group 1 and 0 in group 
0. 
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# XO. In  fact, taking means in (8.1) yields 
- 
YI = (YI + px, +el 
Yo = (Yo + pxo + eo, 

E(Fl - Yo) = a1 - (Yo + p(X1 -%). 

- 

so that 
- 

Group 1 regression 

Figure 8.1. Standard ANCOVA assumptions. 

Note that from (8.1), we can interpret (YI - (YO as the expected difference 
between the outcomes of the two individuals with the same value of X but in two 
different groups. This difference will represent the differential effect of the two 
treatments unless there is some other variable related to Y which distinguishes 
the two subjects. To estimate ( Y I  - (YO, we cannot simply subtract YO from TI, 
but must adjust each of these to move them, in effect, to a common X value, say 
X*. Let us define the “adjusted” mean of Y for group I as 

- - 
Yl, = YI - p(xl - X*) .  

- 
Y1, may be interpreted as an estimate of the mean outcome for members of 
group 1 whose X value is X*.  Similarly, 

- - 
Yo, = Yo - p(x0 - X * )  

estimates the mean outcome for members of group 0 whose X value is X*. To 
estimate the difference between the means of the two groups at  the same value 
of X (in this case X * ) ,  we can simply take the difference of these two adjusted 
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means: 
- - - 

Y1, - Yo, = Y1 - p(X1 - X * )  - [Yo - P(X0 - X * ) ]  - 
= Y1 - 7 0  - P(X-1 4 0 ) .  (8.3) 

This adjusted group mean difference is an unbiased estimator of a1 - ao. 
For simplicity, we have not discussed how the value of p necessary to perform 

the adjustments is actually obtained. In practice, we rarely have any a priori 
theoretical basis for dqtermining the value of p and must therefore use the data 
to obtain an estimate, p. The ANCOVA calculations provide us with an unbiased 
estimator based on the relationship between Y and X within the two groups. Thus 
the adjusted difference is of the form 

- - 
Y1, - Yo, = 71 - Yo - B(X, - XO). (8.4) 

It can be shown that the substitution of an unbiased estimate for the unknown 
true value f l  still yields an unbiased estimate of a1 - a0 under the model specified 
by (8.1). 

In Appendix 8A we present the formula usually used to compute 8. It is called 
a pooled within-group regression coefficient, because it combines data on the 
relationship between Y and X in both groups. This combination of data provides 
high precision and is valid under our assumption that the regression lines are 
parallel. 

We should mention in passing that this pooled coefficient is not found by 
calculating a regression coefficient from the data on both groups taken together 
as a single group, as is sometimes proposed. This latter approach may be viewed 
as comparing the mean residuals for the two groups around the overall regression 
line fitted to the entire sample. It is incorrect, however, in the sense that it does 
not yield an unbiased estimate of p or of the effect a1 - a0 under the model given 
by (8.1). 

Using the standard ANCOVA calculations (see Appendix 8A), we obtain 
for the Greenberg (1953) example: 

B = 0.42 cm/month, 

and because 

XI = 126.8 months 

and 

X o  = 133.1 months, 

the adjusted difference is 
- - 
Y I ,  - YO, = 2.8 - 0.42(126.8 - 133.1) = 5.5 cm. 
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The initial difference of 2.8 cm in favor of the urban children has, after adjust- 
ment, been nearly doubled. 

We may ask at  this point whether this adjusted difference is statistically 
significant. To answer this question, we can look at the standard error provided 
as part of the ANCOVA calculations. This standard error can be used to perform 
a t test of 

Ho : f f 1  = (Yo. 

More generally, when there are more than two treatment groups (say K groups), 
ANCOVA provides an F test of 

f f K .  H o  = (y, = (y2 = (y., = .  .. = 

If this test proves significant, we can reject the null hypothesis that all treatment 
groups have the same intercept. In this case we must conclude either that the 
treatments are differentially effective or that there is some unmeasured variable 
related to outcomes on which the groups vary (i.e., another confounding factor). 
In the Greenberg (1 953) example, a t test for the difference of adjusted means 
results in a t value of 2.12, which is significant at the .05 level. So when age is 
taken into account, there appears to be a significant difference in height between 
the two samples. 

8.4 ASSUMPTIONS UNDERLYING THE USE OF ANCOVA 

In Section 8.3 we presented the basic model underlying the use of ANCOVA 
in the simple situation with two treatment groups and one covariate. This model 
is summarized by (8.1). While this statement of the model appears simple, it 
implies a large number of conditions that must be satisfied. Since the user must 
verify that these conditions hold, we present in this section a listing of the as- 
sumptions. With each of these, we indicate the consequences of failures to satisfy 
the assumption and how these can be detected in practice. The next section 
considers some ways of reducing the biases introduced by such failures. 

Like any mathematical model attempting to represent reality, the ANCOVA 
model is never perfectly true. It is only a more-or-less accurate abstraction. So, 
although we may for simplicity discuss whether or not a particular condition 
holds in a particular situation, it should be remembered that such statements 
are only approximate. The real question is whether the ANCOVA model is good 
enough not to result in misleading results. With this caveat in mind, we now 
proceed to list the ANCOVA assumptions. 

1 .  Equality of regression slopes. ANCOVA assumes that the relationship 
between Y and X in each group differs only in terms of the intercept ( a ! )  but 
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not the slope (p). This assumption is essential if we are to have the possibility 
of interpreting the difference between the lines ( a ,  - a,,) as a measure of 
treatment effect. The problem of nonparallel regressions in different treatment 
groups is discussed in  Section 3.3 and is a general problem involved in all ad- 
justment strategies. The nature of the difficulty is illustrated in Figure 8.2. The 
expected difference between two individuals in different groups with identical 
X values depends on X. Thus there is no unique summary value which can be 
interpreted as the treatment effect. 

Y 

Figure 8.2. Nonparallel linear regressions in  two groups. 

In such a situation we say there is an interaction between the treatment effect 
and the covariate. If an interaction is suspected, it is worthwhile to examine 
carefully the graph of Y versus X in the two groups. Visual inspection will usually 
be adequate to detect serious departures from parallelism. 

A formal statistical test for the equality of slopes can also be conducted. If 
such a test is carried out, and the null hypothesis of slopes rejected, we cannot 
apply ANCOVA. If, on the other hand, the null hypothesis is not rejected, we 
still cannot be sure that the slopes are identical. This is a general property of 
statistical tests. Our ability to assert that the null hypothesis in fact holds if it 
is not rejected is related to the “power” of the test, which is difficult to compute. 
Generally speaking, however, the power increases with the sample size. So a 
statistical test can provide evidence on whether the slopes are equal, but no 
certainty unless the sample sizes are very large. 

2. Linearity. The ANCOVA assumes a linear relationship between Y and 
X. The simplest, and usually adequate, test of linearity is to plot a graph of Y 
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versus X in each group. Formal statistical tests of linearity are available if there 
is any doubt. The simplest involves calculating the regression line in each group 
and examining the residuals. Standard texts on regression analysis (e.g., Draper 
and Smith, 1966; Chatterjee and Price, 1977; Mosteller and Tukey, 1977) 
provide more detail. 

3. Couariate measured without error. In some situations, the variable thought 
to be linearly related to Y cannot be measured directly, and an imperfect sub- 
stitute containing some measurement error must be used. In Section 5.2 we 
discussed the issues of measurement error and reliability in some detail. When 
the observed X ,  consisting in part of error, is used in the ANCOVA model, both 
estimates and tests may be affected. In both randomized and nonrandomized 
studies, the precision of the estimated effect and the power of statistical tests 
will generally decrease as the reliability decreases. Further, in nonrandomized 
studies, measurement error will introduce bias in situations where using the true 
X yields an unbiased estimate (see Cochran, 1968; Elashoff, 1969). When even 
the true X would result in bias, the effect of measurement error is more complex. 
Sometimes a fallible variable may even be preferable to a corresponding true 
score (Weisberg, 1979), although such situations are extremely rare in practice. 
As a general rule, it is desirable whenever possible to use variables with high 
reliability. 
4. No unmeasured confounding variables. The existence of unmeasured 

variables which are related to the outcome and have unequal distributions in 
the treatment groups is a general problem in the analysis of nonrandomized 
studies (Section 5.1). Let us consider what happens when an ANCOVA is 
performed which does not consider such a variable. Suppose that there exists 
a variable Z with means 2, and ZO for the groups. Then, instead of (8.1), the 
true model might be described by 

Y =  p = aj -k p X +  72 + e i =  0, 1. (8.5) 

In this case, the appropriate adjustment becomes 

Thus if we adjust using X only as a covariate, and if zl # TO, we have adjusted 
for only part of the differences between groups which is related to Y .  Further 
discussion of this issue can be found in Cochran and Rubin (1973), Cronbach 
et al. (1977), and Weisberg (1979). 

5 .  Errors independent of each other. The error terms ( e )  in the model are 
random variables which are assumed to be probabilistically independent of one 
another. This means that the value of the error term corresponding to any ob- 
servation has no systematic relationship to that of any other error term. 

Nonindependence of errors can affect the validity of tests used to compare 
treatment groups, but will not introduce bias into the estimates of treatment 
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effects. Nonindependence is difficult to detect empirically, and there is usually 
no reason to suspect its occurrence. However, in some situations there may be 
theoretical considerations suggesting nonindependence. Suppose, for instance, 
that the rural children in our example actually came from a small number of 
families. Then we might expect high correlations between the error terms cor- 
responding to children in the same family. Roughly speaking, the effect of such 
intercorrelations is to reduce the effective sample size on which inferences are 
based. That is, the precision is lower than would be expected on the basis of the 
sample size used. 

6 .  Equality oferror uariance. Ordinarily, as in most applications of linear 
models, it is assumed that all error terms have the same variance. In an AN- 
COVA situation, it is possible that the treatment grops have different error 
variances. The estimates of treatment effects will still be unbiased in this case, 
but the validity of tests may be affected. If  there is some reason to suspect this 
inequality of error variances, the residuals from the fitted lines in the two groups 
can be compared. If the variances of these residuals differ greatly, caution in 
the interpretation of test results is advised (see Glass et al., 1972). 

7. Normality oferrors. For the ANCOVA tests to be strictly valid, it must 
be assumed that the errors follow a normal distribution. Departures from nor- 
mality may affect statistical tests and the properties of estimators in a variety 
of ways, depending on the actual form of the error distribution. The normality 
assumption can be tested by examining the distribution of residuals. While severe 
departures from normality may affect the properties of tests, ANCOVA appears 
to be generally rather robust (see Elashoff, 1969; Glass et al., 1972). Thus most 
researchers assume that the normality assumption is not critical. 

8.5 DEALING WITH DEPARTURES FROM THE 
ASSUMPTIONS 

As indicated in Section 8.4, several assumptions underlie the use of ANCO- 
VA. Departures from these assumptions may result in biased effect estimates 
and/or a loss of precision in statistical tests and estimates. While the precision 
of a statistical procedure is important when the sample size is not large, our 
primary emphasis in this book has been on the reduction of bias in nonran- 
domized studies. 

In this section we consider what can be done when various departures from 
the standard ANCOVA assumptions are suspected. Of the seven conditions 
discussed in Section 8.4, only four bear seriously on the possibility of bias: lin- 
earity of the relationship between Y and X ,  same slopes for regression lines in 
the two groups, absence of measurement error in the covariate, and absence of 
other unmeasured covariates. 
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8.5.1 Nonparallel Regressions 

As in Section 8.4, we consider first the case of linear but nonparallel regres- 
sions. This is the situation illustrated in Figure 8.2. Since the slopes of the lines, 
as well as their intercepts, differ in the two groups, the.basic model becomes 

Y +  at + Pix+ e i = 0 , l .  (8.6) 

From (8.6) the difference between the expected outcomes of the individuals 
with the same X but in different groups is given by 

a1 - a0 + ( P I  - P O M .  
That is, the treatment effect is a h e y  function of X. To estimate this function, 
we can compute estimates of b1 and PO separately from the two treatment groups 
and form 

- 
Y1, = Fl - bl(Tl - X )  

Yo, = Yo - p O ( x 0  - X), 

~ 1 ,  - Foa = Y I  - Y O  - D,(x~ - X )  + B O ( X O  - X I .  

- 

the treatment means adjusted to an arbitrary point X. Taking the difference 
yields an unbiased estimated of the treatment effect for any X: 

- - -  
(8.7) 

If  a single summary value is desired, some “typical” value of X must be in- 
serted in this expression. This might beX, the mean ofX in the two groups to- 
gether, or the mean from some other standard population. The choice of an X 
value at which to estimate the treatment effect must be guided by logical rather 
than statistical considerations. The value should be one that is of practical im- 
portance. For example, if we know that the treatment will be applied in the future 
to individuals with an average value that is at least approximately known, we 
may whish to estimate the effect at this value. 

In many situations, the individuals to receive treatment in the future are ex- 
pected to be similar to those receiving treatment during the study. So we might 
wish to choose X = XI in (8.7). We then obtain 

(8.8) 

This is of the same form as the standard ANCOVA estimate of the treatment 
mean differe;ce except that PO, the estimate based on control group data only 
has replaced p, the estimate based on pooling the data from both groups. This 
estimate, first suggested by Belson (1956) and later analyzed by Cachran ( 1  969), 
is not widely known but offers advantages over the usual estimate in some sit- 
uations. 

Suppose first that the usual ANCOVA model (8.1) holds. In this case the 
Belson estimate is unbiased but somewhat less precise (larger variance) than 

- - 
Yl ,  - Yo, = Y, - Yo - bo(lr;, - XO). 
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the usual estimate. On the other hand, particularly if the control group receives 
a traditional treatment mod@ity, there may be outside evidence and/or a large 
sample available to estimate PO. These factors may outweigh the loss of data from 
the treatment group. 

If the true slopes in the two groups are different, the Belson estimate still has 
a meaningful interpretation. As noted above, it represents an estimate of the 
difference in outcomes for individuals with an X value ofXl. That is, it estimates 
the effect for a typical individual in the group that received the treatment. 

Note that in one sense, (8.7) is more general than the usual ANCOVA model. 
The usual model represents the special case when P I  = PO. On the other hand, 
unless P I  = PO, we cannot use the pooled estimate of 0, based on combined data 
from the two groups. Estimating separate coefficients, as in (8.7), entails the 
use of smaller samples for each estimated coefficient. For modest sample sizes, 
this may lead to a slight decrease in precision. 

The methods we have so far considered for comparing treatments when re- 
gression lines are nonparallel involve specifying a particular covariate value and 
estimating the effect conditional on this value. If  we have some reason for fo- 
cusing attention on a particular X value, or set of values, this approach will be 
useful. I n  some situations, however, we may be more interested in identifying 
the set of X values for which each treatment is preferable. Figure 8.2 illustrates 
a situation where for all X values of practical interest, treatment 1 is superior. 
In Figure 8.3, however, we have a case where treatment 1 is superior for small 
values of the covariate but inferior for large values. Knowing even approximately 
where the break-even point is located could have important practical implica- 
tions. 

regression 

1 regression 

Figure 8.3. Crossing linear regressions in two groups. 
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Because our estimates of the regression coefficients and PO are subject to 
sampling variability, we cannot specify the crossing point exactly. However, it 
is possible to determine a region of X values where the treatment effect is sig- 
nificantly positive or significantly negative, at a specified level of statistical 
significance. For other values of X ,  we cannot make a useful statement about 
which treatment is superior. This approach is known as the Johnson-Neyman 
technique (Johnson and Neyman, 1936). A good exposition of the technical 
details and some refinements of the original procedure can be found in Potthoff 
(1964), and a less technical exposition in Walker and Lev (1959, Chap. 14). 

8.5.2 Nonlinear Regressions 

The second major threat to the validity of the ANCOVA is nonlinearity of 
the regressions of Y and X. There are essentially three cases to consider here. 
The first is illustrated by the solid lines in Figure 8.4: the regressions of Yon X 
are nonlinear but parallel in the two groups. The treatment effect is in principle 
clearly defined, but may be difficult to estimate in practice. 

Y 

.’ 

I 

// 
/ 

- - - - 
X - 

To Xl 

Figure 8.4. Parallel nonlinear regressions. 

Let us consider first what happens when we carry out a standard ANCOVA 
in this situation. Loosely speaking, if XI and XO are not too far apart, and the 
curvature of the regression not too great, the fitted lines will be approximately 
parallel and not too misleading. The farther apart and X o  are, the more dif- 
ferent will be the slopes of the curve at the X values in the two groups, and the 
greater will be the difference in the estimated slopes of the two regression lines. 
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(The dashed lines in Figure 8.4 illustrate the two different linear regressions.) 
So, we will be faced with all the problems of nonparallel regression described 
above. 

One way to handle suspected nonlinearity is to model the nonlinear regressions. 
By making a transformation of the X variable, we may obtain a much better fit 
to the observations. For example, we might find that a model of the form 

Y =  a; + P o +  e 

adequately describes the data. A standard ANCOVA can then be carried out 
using -\Tx rather than X as the covariate. 

The second case to consider is that of a nonlinear relationship between Y and 
X which is not necessarily parallel for the two groups, but which can be turned 
into a standard model by appropriate transformations of Y and/or X. For ex- 
ample, suppose that the model is given by 

Y = exp (a; + PX + e ) .  

Then 

log Y = a; + P X +  e 

Thus using a logarithmic transformation on Y will allow the standard ANCOVA 
to be employed. Of course, it must be remembered after the analysis that the 
effect is defined in transformed (in this case, logarithmic) units. So it may be 
necessary to transform back to the original units in order to interpret the esti- 
mated effect. For example, suppose that an ANCOVA on the log scale produces 
an estimate 

a1 - a0 = 3. 

Then in terms of the original model, we have 

exp (a0 + PX + e) 
exp (3 + a0 + PX + e )  

for treatment 0 
for treatment 1. 

Y = [  

Note that 
exp (3 + a0 + P X +  e) = exp (3) exp (a0 + P X +  e )  

= (20.1) exp(a0 + O X +  e). 

So the estimated effect of changing from treatment 0 to treatment 1 is to mul- 
tiply the response by a factor of about 20. 

Finding the appropriate transformations is largely a matter of trial and error. 
Standard statistical texts offer some guidance (see, e.g., Chatterjee and Price, 
1977; Draper and Smith, 1966; Mosteller and Tukey, 1977; Tukey, 1977). 

The third case involves nonlinear, nonparallel regressions where no suitable 
transformation can be found. In this case, both interpretational and technical 
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problems become very difficult. Some recent research has been conducted on 
the comparison of quadratic regressions (Rogosa, 1977; Borich et al. 1976; 
Wunderlich and Borich, 1973), but in general the analyst can do no better than 
to fit separate regressions for the two groups. 

8.5.3 Measurement Error 

The third possible threat to the validity of ANCOVA is measurement error 
in the covariate. Classical measurement theory (see Lord and Novick, 1968) 
defines the reliability of a variable as the percentage of its variance attributable 
to variation in the true characteristic of interest. This notion is meaningful if  
we think of the observed score as the sum of true and error components. In 
Section 5.2 we discussed measurement error as a general issue in statistical 
adjustment. 

Suppose that if we knew the true covariate scores, an ANCOVA model using 
them would accurately describe the data. Sometimes the equations relating 
outcomes to true (but unmeasurable) covariates are known as structural 
equatioFs. If we use our imperfectly reliable, but observable, covariate, the re- 
sulting p turns out to be a biased estimate of the p in the structural equation. 
A biased treatment comparison will result, with the nature of the bias depending 
upon the nature of the measurement error. An appropriate correction is possible 
if the reliability of the covariate is known or can be estimated (see Cochran, 1968; 
DeGracie and Fuller, 1972; Lord, 1960; Stroud, 1974). However, these methods 
are quite complex and heavily dependent on certain untestable assumptions. 
So it is probably wiser to focus attention on collecting reliable information rather 
than trying to assess precisely the degree of reliability and adjust for it in the 
analyses. 

8.5.4 Multiple Confounding Variables 

Finally, we discuss the situation when other differences between groups in 
addition to those related to our measured covariate are suspected. If we can 
identify and measure other confounding variables, we can adjust for several 
covariates at once. Suppose, for example, that the podel described by (8.5) holds. 
Then it is possible to obtain unbiased estimates p and 4 of both p and y to use 
these in our adjustment. For example, the adjustment treatment means would 
be given by 

- 
Yj - D(Xj - X) - +(Zj - Z). 

Combining the ability to use transformations of the data with the capability for 
multivariate adjustments allows great flexibility in fitting an appropriate model 
for the data. This flexibility must, however, be weighed against the need to verify 
that all assumptions are met in this more complex situation. 
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We discussed above the problems in the single covariate situation resulting 
from possible differences in regression slopes, nonlinearity, and measurement 
error. With multiple covariates these problems are compounded. When several 
covariates are involved, we cannot use simple graphical methods to help in as- 
sessing the validity of assumptions, and models for measurement error become 
extremely complex. 

The data analyst is faced with a dilemma. To obtain a good fit to the data for 
each group and include all potential confounding factors, he or she is tempted 
to include several covariates. But the more covariates included, the greater the 
potential problems in meeting and verifying the basic ANCOVA assump- 
tions. 

Now it might be though that the analyst should simply include the one or two 
most important possible confounding factors, expecting to eliminate most of 
the bias and avoiding the complexity of multiple covariates. While this procedure 
may often work well, there are situations where it can be quite misleading. It 
may even result in an estimate of treatment effect that is more biased than the 
unadjusted difference of group means. An artificial example of this phenomenon 
was given in Section 5.1. As another example of how this might occur, suppose 
that in the Greenberg (1953) data the rural children were not only older, but 
also tended to have shorter parents in such a way that the effects of these two 
factors, age and heredity, were exactly counterbalanced. Then, by using AN- 
COVA to adjust for age differences between groups, we would unwittingly create 
an artificial difference between the groups. 

This example illustrates the care which is necessary in drawing inferences 
on the basis of ANCOVA. While a preponderance of short parents in one group 
might be an obvious factor to take into account, a confounding variable may be 
much more difficult to identify in other practical problems. It would be nice to 
give some simple guidelines for dealing with this problem. Unfortunately, there 
is no way to guarantee that the ANCOVA model is correctly specified. As with 
other statistical adjustment strategies considered in this book, the investigator 
may be criticized for omitting a particular confounding variable thought by 
someone else to be important. The general discussion of this problem contained 
in Chapter 5 includes some broad guidelines on choosing an adequate covariate 
set. A more detailed discussion of the issues in the context of ANCOVA is 
presented by Weisberg ( 1  979), and some practical guidelines are offered by 
Cochran (1965). 

APPENDIX 8A FORMULAS FOR ANALYSIS-OF- 
COVARIANCE CALCULATIONS 

We consider the general situation where K treatments are being compared. 
These will be indexed by k = 1,2, . . ., K .  Let Xjk and Yik represent the covariate 
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and outcome values for individual i in group k. Let x k  and F k  be the means for 
the n k  individuals in group k. Then we can define the between-group (treatment) 
sums of squares and cross-products by 

K 

k =  I 

K 

k =  I 

T x x  = c n k ( X k  - X ) 2  

Tyy = c nk(Yk - Q2 

where x and r are the grand means of X and Y across all groups. Similarly, we 
define within-group (error) sums of squares and cross-products: 

K 
E x x  = c c ( X i k  - x k > 2  

k = l  i 

K 
E y y  = c c ( Y i k  - F k > *  

k = l  i 

where Zi indicates the sum over individuals within each group. We also define 
the quantity 

f = total number of subjects minus number of groups 

and, using the definitions above we define 

s x x  = T x x  + E x ,  

SYY = TYY + EYY 

s x y  = T x y  + E x y .  

Then we can calculate the residual mean squares for treatments and error: 

These can be used to calculate an F statistic to test the null hypothesis that all 
treatment effects are equal: 
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Under the null hypothesis this ratio has an F distribution with K - 1 and 
f - 1 degrees of freedom. The estimated regression coefficient of Yon X is 

From the definition$ of Ex, and Ex, given above, it is clear why this is called a 
pooled within-group estimator. The estimated standard error for the adjusted 
difference between two group means (say group 0 and group 1)  is given by 

when no and nl are the sample sizes of the two groups. A test of the null hy- 
pothesis that the adjusted difference is zero is provided by the statistic 

sd 

Under the null hypothesis, it has a t distribution with f - 1 degrees of 
freedom. 
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Logit analysis can be applied in comparative studies to estimate the effect of 
a risk factor on a dichotomous outcome factor as measured by the odds ratio. 
The usefulness of logit analysis is its ability to adjust for many confounding 
variables simultaneously. These confounding variables can be either categorical 
or numerical. 

We will begin by motivating the mathematical model that underlies logit 
analysis (Section 9.1) and showing how logit analysis can be used to control for 
a confounding variable (Section 9.2). Details of various aspects of implemen- 
tation are given in Sections 9.3 to 9.8 with some additional mathematical details 
in Appendix 9A. Initially, discussion is restricted to cohort studies; the differences 
applicable to case-control studies are presented in Section 9.6. 
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9.1 DEVELOPING THE LOGIT ANALYSIS MODEL 

Consider the problem of determining whether diabetes is a contributing (risk) 
factor to heart disease. To keep things simple, suppose that heart disease, the 
outcome factor, is a dichotomous variable (present or absent) as is the risk factor, 
diabetes (also present or absent). The confounding factors to be controlled for 
in this problem include the categorical variable sex and the numerical variables 
age, diastolic blood pressure, and serum cholesterol level. 

One technique that could be applied to this problem is stratification (Chapter 
7), but stratification requires that the confounding variables as well as the risk 
variable be categorical. This means that the numerical confounding variables 
would have to be categorized. (For example, blood pressure could be changed 
to a two category variable with categories high and not high.) As discussed in 
Chapter 7, this process generally leads to many strata and a resulting lowering 
of precision of the estimated effect. Moreover, it can only approximately control 
for the confounding variables; for example, persons whose blood pressure is just 
low enough so as to just miss being classified as having high blood pressure are 
treated the same as persons with much lower blood pressures. For these reasons 
it is desirable to have an adjustment technique that can deal with confounding 
factors such as blood pressure in their numerical form. Logit analysis does 
this. 

For ease of exposition, we will begin with a single confounding variable, and, 
for the time being, we exclude the case of a categorical confounding variable 
with more than two categories. The generalizations to multiple confounding 
variables and to categorical confounding variables with more than two categories 
are discussed in Section 9.8. 

Logit analysis is analogous to linear regression analysis or, more specifically, 
to analysis of covaraince (Chapter 8); in many cases logit analysis will accomplish 
for comparative studies with categorical outcome variables what analysis of 
covariance can accomplish for comparative studies with numerical outcomes. 
Specifically, both yield estimates of the treatment effect adjusted for a con- 
founding variable or variables. As we will see, issues such as parallelism that 
are important for analysis of covariance are also important for logit analysis. 

Linear regression is based on the assumption that the mean of the distribution 
of the response or outcome variable, Y, is a linear combination of the background 
(or “independent”) variables. For our applications the independent variables 
are the risk and confounding variables. For a single confounding variable X, the 
linear regression model is the analysis-of-covariance model (8.1): 

Y = arJ + px+ € (9.la) 

if the risk factor is absent and 
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Y = a1 + px + € (9.1 b) 

if the risk factor is present. Equations 9.la and 9.lb can be rewritten as a single 
equation by introducing a variable, R ,  for the risk factor, where R = 1 indicates 
the risk factor is present and R = 0 indicates the risk factor is absent. The re- 
gression equations (9.la and 9.1 b) then become 

(9.2) 
where r = al - (YO. 

If Y were a numerical variable, the analysis of covariance, based on (9.2), 
would be the proper means of estimating r as a measure of the effect of the risk 
factor after controlling for the confounding variable X. If, instead, the outcome 
is dichotomous, such as heart disease present-heart disease absent, Y would be 
a dichotomous variable taking the values 1 (heart disease present) and 0 (heart 
disease absent). With such a dependent variable, the linear regression approach 
would not be generally appropriate, for two reasons. First, the regression model 
(9.2) says that the mean of the distribution of Y for given values of X and R,  
denoted by E [  Yl R, XI, is a0 + r R  + PX. For a dichotomous Y, the mean of Y 
is bounded by 0 and 1, but a0 + r R  + PX is not. Therefore, the regression model 
can be at best an approximation over a limited range of X values, since it is 
possible to obtain estimates of a0 + r R  + PX that are less than 0 or greater than 
1. Second, the assumption of normally distributed error terms that is necessary 
for hypothesis testing is not even plausible, since the error term, 6, is itself di- 
chotomous, taking on the values 

-E[YIR,X] i f Y = O  and 1 -E[YIR,X] i f Y =  1. 

An alternative to linear regression is to say that some function of the mean 
of Y is a linear combination of X and R. If we let P(R, X), or just P, denote the 
probability that Y = 1 given the values of the risk variable R and the confounding 
variable X, then E [  YI R, XI = P(R, X). We will now consider functions of P(R, 
A'). A common choice for this function is the log odds, also known as the logit 
transform of P. The choice of the logit transform gives us what is known as the 
logit model: 

Linear regression model: Y = a0 + r R  + PX + c, 

P(R' 
In [ 1 - P(R, X) l  

= a + y R  + PX. (9.3) 

[The reason for replacing the r of (9.2) with y in (9.3) will be made clear in 
Section 9.2.1 The quantity on the left-hand side of (9.3) is the logit transform 
of P, commonly denoted by logit(P). The logit transform has the desirable 
property of transforming the (0, 1) interval for P to (--, +-), so that there is 
no longer any concern about a + y R  + PX lying outside the unit interval. 

The analysis-of-covariance model (9.1) for a numerical X corresponds to two 
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parallel lines, a0 + PX and a1 + PX,  as in Figure 8.1. The logit model (9.3) also 
corresponds to two parallel lines, a + PX and a + y + PX, but in a transformed 
scale (Figure 9.1 ). 

Figure 9.1 Logit model in transformed (logit) scale. 

In the untransformed, P, scale, the two straight lines from Figure 9.1 would 
appear as shown in Figure 9.2. The S-shaped curves in Figure 9.2 indicate the 
effect of the logit transform. In their center, around P = 0.5, the curves are nearly 
straight lines and the logit transform has little effect there. At either extreme 
the curves flatten out. The implication is that the change in X required to change 
P from 0.98 to 0.99, say, is much greater than the change in X required to change 
P from 0.49 to 0.50. 

There are, in general, no theoretical justifications for the form (9.3) (with 
the exception of some particular distributional assumptions that are discussed 
in Section 9.4). Many other choices for a transformation of P are possible, the 
most common being the inverse normal cumulative distribution function, leading 
to probit analysis; see, for example, Finney (1 964) and Goldberger ( 1964). As 
discussed by Hanushek and Jackson (1977, Chap. 7), there is little practical 
difference between the logit and probit curves. The principal appeal of the logit 
is the ease, relative to the probit and other choices of transformations, with which 
the estimates of the parameters may be found. The fact that logit analysis has 
been found to be useful in.many fields of application for both comparative studies 
(Cornfield, 197 I ,  for example) and other uses, such as predicting a commuter's 
choice of travel mode (Stopher, 1969; Talvitie, 1972), is no reason to expect it 
to be a universally good approximation to the relationship between P and the 
variables X and R. (Further discussion of this issue can be found in Gordon, 
1974.) Some methods for checking the appropriateness of a particular logit 
model are discussed in Section 9.7. 
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Figure 9.2 Logit model in untransforrned (P) scale. 

9.2 USE OF LOGIT ANALYSIS TO CONTROL FOR A 
CONFOUNDING VARIABLE 

The problem is to estimate the effect associated with a risk factor, controlling 
for a confounding factor. When using logit analysis, the odds ratio (Chapter 3) 
is usually chosen as the measure of the treatment effect, since, as we will see, 
it is very simply related to the parameters of the logit model (9.3). The logit 
model for the probability, P, that the outcome is a “success” is given by (9.3). 
(Following common practice, the two possible outcomes will be referred to as 
“success” and “failure.”) The odds ratio is then 

independent of X .  We may thus identify y as the (natural) logarithm of the odds 
ratio (so this use of y is consistent with other chapters). Logit analysis yields 
an estimate 9 of y and then estimates the odds ratio, $, by $ = exp(4). 

The logit model (9.3) implies that the odds ratio is constant over all values 
of the confounding variable X .  This is the usual no-interaction, or parallelism, 
assumption (Section 3.3), corresponding to the two parallel lines in Figure 9.1. 
In Section 9.7 we will consider how to check the validity of the no-interaction 
assumption. 
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Not minimally competent 214 61 
Minimally competent 91 36 

Total 37 I 91 

Example 9.1 Analysis ofdata from HeadStart Program: As an example, data from 
the Head Start Program (Smith, 1973; Weisberg, 1973) will be used. The data are from 
a cohort study consisting of two groups of preschool children-one group consisting of 
children who had taken part in Head Start, the other of children who had not. The risk 
variable R is defined to be 1 for children in the Head Start group and 0 for the other 
children. The outcome of interest is whether or not the child has attained minimal com- 
petency in general knowledge at  the time of entry to school as measured by the Preschool 
Inventory Test. The outcome variable Y is defined to be 1 if the child had attained minimal 
compentency and 0 if not. The results, ignoring any possible confounding, for a total of 
468 children in this study are shown in Table 9.1. 

335 
133 
468 

Table 9.1 Head Start Data, Ignoring Confounding 

Outcome Factor 
Risk Factor 

Not Head Start Head Start Total 

The estimate of the odds ratio without controlling for any confounding, denoted by 
$, where the superscript C stands for crude, is given by 

indicating that the odds of attaining minimal competancy are approximately 1.7 times 
higher for children who had participated in the Head Start Program than for those who 
had not. 

One important confounding variable in this study is the years of education of the head 
of household, a numerical variable. Letting X denote years of education, an estimate of 
the odds ratio controlling for years of education is found by fitting the logit model (9.3). 
This yields 

& = -2.93 1 

= 0.325 

b =  0.186. 

The logit analysis estimate of $ is then found as 

5 = exp(0.325) = 1.384. 

The estimate of @ is a measure of the effect of the confounding variable on the outcome. 
In this case it indicates that each additional year of education of the head of household 
is estimated to increase the log odds of a minimally competent child by 0.186 [or multi- 
plied the odds of a success by exp(0.186) = 1.2041. 
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The (Y in the logit model is like the intercept in the equation for a straight line. 
The value of a will depend on how the variables are defined. Consequently, the 
value of a or & is not generally interpretable. The quantity & is required for es- 
timating risks (probabilities), which is done by substituting the estimates of a, 
y, and /3 into (9.3) and solving for P(R,  X ) .  

9.3 PARAMETER ESTIMATION BY MAXIMUM 
LIKELIHOOD 

The standard procedure for estimating the parameters of the logit model (9.3) 
is maximum likelihood. This requires an iterative procedure. The mathematical 
and some computational details are discussed in Appendix 9A. The key as- 
sumption is that the responses or outcomes are observations of independent bi- 
nomial (or Bernoulli) variables. If there is dependence between the observations 
such as with matched samples, the usual logit analysis is not appropriate. (Logit 
analysis of matched samples is discussed in Section 13.3.2.) 

The known properties of the maximum likelihood estimates are based on 
large-sample theory. In large samples the maximum likelihood estimates will 
be approximately unbiased. The bias of parameter estimates from logit analysis 
in small samples is not known. 

When all the confounding variables as well as the risk and outcome variables 
are categorical, then, as shown by Bishop (1969), logit analysis is a special case 
of log-linear analysis (Chapter 10). Maximum likelihood estimation of the ap- 
propriate log-linear model would give the same estimates as maximum likelihood 
estimation of the logit model (9.3). (Presentation of the relation between the 
two models is postponed to Section 10.6.) However, the numerical procedures 
for finding the estimates differ for the two methods. So when all the factors are 
categorical, one can choose logit or log-linear analysis, depending on which is 
easier to use for the problem of interest. The choice will depend on the computer 
programs available as well as the statistics desired. Parameter estimates tend 
to be more easily obtained from logit analysis, whereas hypothesis testing can 
be much easier with log-linear analysis, particularly when the number of con- 
founding variables is large and there are many interactions between the risk 
variable and the confounding variables. 

9.4 OTHER PARAMETER ESTIMATION PROCEDURES 

There are two other estimation procedures that can be used for particular 
purposes and applications as alternatives to maximum likelihood. The most 
important of these is linear discriminant analysis. (See Snedecor and Cochran, 
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1967, Chap. 13, for a discussion of discriminant analysis.) Linear discriminant 
analysis assumes that there are two populations, denoted by Y = 1 and Y = 0, 
and that, within each population, X and R have a bivariate normal distribution, 
with the variances and covariances identical in the two populations, but different 
means. It can be shown (Welch, 1939) that these distributional assumptions 
lead to the form (9.3) for the conditional distribution of Y given X and R ,  where 
the logit parameters, a, y, and p, are functions of the normal distribution pa- 
rameters. [The form (9.3) can also be obtained for distributions other than the 
normal.] The normal distribution parameters are easy to estimate in the usual 
manner using the sample means, variances, and covariances. Estimates of the 
logit parameters are then found by substitution into the appropriate functions. 
See Cornfield et al. (1961), Cornfield (1962), and Truett et al. (1967) for the 
details of this procedure. 

Estimating the logit parameters based on the discriminant model is much 
easier than the maximum likelihood approach. For this reason many people 
prefer it to maximum likelihood, even when the assumption of normally dis- 
tributed X and R is known to be violated, as would be the case, for example, when 
the risk factor is dichotomous. Halperin et al. (1971) and Seigel and Greenhouse 
(1 973) discuss the consequences of using the linear discriminant approach when 
the normality assumption is violated. Essentially, the results are that the 
discriminant estimates of the odds ratio will remain biased in large samples. In 
terms of bias, maximum likelihood based on (9.3) is then preferable to the linear 
discriminant function approach unless the normality assumption is satisfied. 
On the other hand, when the normality assumption is appropriate, Efron ( 1  975) 
has shown that the discriminant estimates will be more precise than estimates 
obtained by maximum likelihood based directly on (9.3). Presumably, the ad- 
vantages of the discriminant function estimates will hold for small departures 
from the normality assumption, but it is not known for how much of a departure 
this will be true. 

When the normality assumption is untenable, the discriminant function ap- 
proach can still have some value, even though the parameter estimates will be 
biased. First, Gilbert (1968) and Moore (1973) have shown that the discriminant 
approach is still reasonable for discrimination purposes, that is, for predicting 
the outcome for given values of the risk and confounding variables. [This may 
just reflect that Fisher’s (1936) derivation of the linear discriminant function 
as a discriminator and not as a means of estimating logit parameters did not 
require normality.] Halperin et al. (1971) have also shown that the discriminant 
function works reasonably well for isolating important variables and so could 
be used to determine which of a set of confounding variables are important 
enough to include in the analysis. Some researchers have also found that, for 
their particular data, the parameter estimates from discriminant analysis were 
similar to those from logit analysis-Kahn et al. (1971) and Talvitie (1972). 
The implication of all this is that discriminant analysis, which is computationally 
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easier than maximum likelihood logit analysis, can be used as a variable selection 
procedure before using maximum likelihood. 

This variable selection procedure can be simplified. As shown by Fisher (1 936) 
(also see Anderson, 1958, Sec. 6.5.4), the ordinary (unweighted) linear regression 
of the dichotomous Yon X and R yields coefficients that are proportional to the 
linear discriminant function coefficients. (Regression with a 0- 1 dependent 
variable, as here, is frequently referred to as binary regression.) This means that 
simple linear regression can be used in place of discriminant analysis as a means 
for selecting important confounding variables to be included in a logit anal- 
ysis. 

The second alternative estimation procedure is applicable only if the subjects 
in the study fall into moderately large groups when classified by X and R (i.e., 
all members of a group have the same values of X and R ) .  This will generally 
require a categorical X but could also apply if there were replications at  each 
observed value of a numerical X. Then there is a noniterative linear regression 
procedure, frequently referred to as logistic regression, which will give ap- 
proximately the same results as maximum likelihood in large samples. An outline 
of this procedure follows; see Hanushek and Jackson (1977, Sec. 7.4) or Theil 
( 1970) for a more complete discussion. 

Let N(R,  X )  be the total number of subjects in the group determined by X 
and R,  and let p(R,  X) be the proportion of those subjects whose outcome is a 
“success.” The procedure is to fit the regression model 

In -- = a + y R + @ X + c .  
11 ”‘,“,xl:,l (9.4) 

[The quantity to the left of the equals sign in (9.4) is the natural logarithm of 
the sample odds, sometimes referred to as the empirical logistic transform.] Since 
the error terms in this model do not have equal variances, weighted regression 
is necessary with weights 

W =  N(R,  X)p (R ,  X)[1 - p ( R ,  X ) ] .  

[See Mosteller and Tukey ( 1  977, Chap. 14), for example, for a discussion of 
weighted regression.] If X is a categorical variable with more than two categories, 
the method of Section 9.8 must be applied to (9.4). 

A modification of the left side of (9.4) is necessary to handle cases where the 
proportion, p ( R ,  X), is 0 or 1. Berkson (1955) presented one such modification 
and a corresponding modification to the weight W. Based on the work regarding 
estimation of the log odds ratio (Section 7.6 and Appendix 7B), a better modi- 
fication would be (7.12). Cox (1970, Chap. 3) discusses the later modification 
to the empirical logistic transform and the corresponding choice of weights. The 
effect of the choice of modification to (9.4) becomes negligible in large sam- 
ples. 

In bioassay, the logistic regression procedure is called the minimum logit 
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chi-square estimator and was originally proposed by Berkson (1944) (see Ashton, 
1972). No study of the minimum logit chi-square estimator has been done for 
more than one independent variable and hence that would apply to the case of 
interest here (9.4). Still, the available iesults indicate that this procedure is a 
reasonable choice where appropriate. (Berkson (1955) and Hauck (1975) have 
shown, for the case of a single numerical independent variable [(9.4) with y = 
01, that the minimum logit chi-square estimator of the slope 0 is generally more 
precise and less biased than the maximum likelihood estimator in small samples.) 
The appropriateness issue is important. Fofming groups by stratifying a nu- 
merical confounding variable, for example, would not be appropriate, since that 
would be equivalent to errors of measurement in the independent variables in 
regression analysis, with the consequence that the minimum logit chi-square 
estimator would remain biased in large samples instead of becoming equivalent 
to the maximum likelihood estimator. 

9.5 HYPOTHESIS TESTING 

To test whether the treatment effect, here measured by the log of the odds 
ratio, is different from zero, two different large-sample tests are commonly used. 
The first is a likelihood ratio test. [See Hoe1 (1962, Chap. 9) or similar texts for 
a discussion of likelihood ratio tests.] This requires fitting the logit model (9.3) 
twice, once to estimate all three parameters and a second time to estimate a and 
/3 when y is restricted to be 0. 

The second test is due to Wald (1943). This test, “Wald’s test,” has the ad- 
vantage of being easier to compute. It is calculated in a manner similar to 
common t statistics, namely by dividing the estimate of y by the standard error 
of that estimate. (See Appendix 9A for the calculation of the standard error.) 
The distribution of the resulting statistic will be approximately standard normal 
in large samples when the null hypothesis, y = 0, is true. Even though Wald’s 
test and the likelihood ratio test become equivalent in sufficiently large samples 
and Wald’s test is easier to compute, the likelihood ratio test is preferable. Hauck 
and Donner (1977) found that, when applied to logit analysis, Wald’s test can 
behave in an aberrant manner, yielding apparently insignificant results when 
the likelihood ratio test strongly suggests rejecting the null hypothesis. 

9.6 CASE-CONTROL STUDIES 

Logit analysis can be applied to case-control studies in either of two ways. 
The first is to interchange the role of the risk and outcome factors in (9.3), that 
is, to work with the probability of being in the risk factor present group given 
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the observed outcome. (This is assuming a dichotomous risk factor.) Let P’( V, 
X) denote the probability that the risk factor is present given the values of the 
outcome, Y ,  and the confounding variable, X. Then the logit model would be 

The log of the odds ratio, y ,  can then be estimated by maximum likelihood just 
as for cohort studies. 

The only difficulty with using (9.5) is that it is not natural to think of proba- 
bilities of belonging to risk factor categories given the outcome. The model (9.3), 
on the other hand, is based on the more natural approach of treating the outcome 
as dependent on the risk factor. Mantel (1973) has shown that it is permissible 
to use the cohort model (9.3) even though the study is case-control, as long as 
the sample cases and controls are representative of the population cases and 
controls in the sense that the probability of being selected from the population 
cases (or controls, respectively) is independent of the risk and confounding 
factors. (Otherwise, there is a selection bias, as discussed in Section 4.5.2.) The 
estimates of y and @ will be unaffected. The only negative consequence is that 
the estimate of (Y will be biased by an amount that depends on the sampling 
fractions for the cases and controls. This later fact simply reflects, in terms of 
this particular statistical procedure, the general fact that risks [P(R,  X ) ]  are 
not estimable from case-control studies. However, if the two sampling fractions 
are known, the estimate of a can be corrected, making it possible to estimate 
risks. 

Breslow and Powers (1978) show that only if X (and R) are categorical 
variables and the categories of X are represented in the model using the method 
of Section 9.8 do the two approaches, (9.3) and (9.5), yield the same estimate 
of the odds ratio. Otherwise, the two approaches yield different estimates. 

9.7 CHECKING THE MODEL 

There are two questions to be answered in checking the model. The first is 
the general question of whether the model (9.3) fits the data well enough to serve 
as a basis for estimating the treatment effect. The second is the specific problem 
of checking whether the parallelism. or no-interaction, assumption holds, that 
is, checking whether the odds ratio is constant over all values of the confounding 
variable. To answer the first question requires a goodness-of-fit test. I n  those 
applications of logit analysis where log-linear analysis is also appropriate (i.e. 
where the data are in the form of a contingency table), usual goodness-of-fit 
statistics, Pearson and likelihood chi-squares, can be applied. See Section 10.4.2 
for goodness-of-fit testing in such cases. 
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If it is suspected or found that the model (9.3) does not fit well, the fit can 
sometimes be improved in a manner similar to that used in linear regression 
analysis, namely by the addition of other confounding variables. The added 
variables can be either new variables or transformations, such as polynomial 
terms, of the old ones. For example, blood pressure could be replaced by 
log (blood pressure). 

The question of checking for interaction is easier to handle. If the interaction 
between the risk and the confounding variables is such that the logarithm of the 
odds ratio is linearly related to the confounding variable (i.e., has the form 
y + AX), then the corresponding logit model is 

P(R* 
In [ 1  - P(R,  XJ 

= a + y R  + p X  + XRX. (9.6) 

To test for interaction of this form it is only necessary to fit the four-parameter 
model (9.6) in addition to the usual model (9.3) and test the null hypothesis 
X = 0 using a likelihood ratio test. 

Example 9.2 Testing for interaction in Head Start Program data: Consider Example 
9.1 and the problem of determining whether the odds ratio varies with level of head of 
household’s education. Fitting model (9.6) yields 

h = -2.609 

-2.522 

8 -  0.155 

f i  = 0.253. 

The estimated logarithm of the odds ratio is now -2.522 + 0.253 (years of education 
of head of household). The likelihood ratio test for testing the null hypothesis of no in- 
teraction (A = 0) yields a one degree-of-freedom chi-square of 2.542 (P = 0.1 1 l), so the 
null hypothesis is not rejected at the 11% level. 

9.8 MULTIPLE CONFOUNDING FACTORS 

For ease of exposition, the discussion to this point has assumed a single con- 
founding variable. The great usefulness of logit analysis, however, is that it can 
handle any number of confounding variables. 

Suppose that there are K confounding variables X I ,  . . . , X K .  (These K may 
depend on some smaller number of factors by including transformations, product 
terms, and the like.) The logit model then becomes 
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Everything said in this chapter about the single-confounding-variable case 
applies as well to the multiple variable case. In particular, y will still be the log 
of the odds ratio and estimation and hypothesis testing are done in the same 
way. 

Example 9.3 Analysis of Head Start Program data with two confounding variables: 
Consider again the Head Start data of Example 9.1 and let us now suppose that we wish 
to control in addition for confounding due to race. Letting 

XI = years of education of head of household 

X2 = race ( 1  = black and 0 = white), 

the right side of (9.7) becomes 

a + y R  + Pixi + 02x2. 

The estimated parameters are 

& = -2.388 

= -0.019 

p1 = 0.178 

p 2  = -0.850. 

Adjusting for both confounding variables, the estimate of the odds ratio is 
exp (-0.019) = 0.981. 

One situation that leads to multiple confounding variables even though there 
is only one confounding factor is if the one factor is categorical with more than 
two categories. This confounding factor must be represented in the logit model 
by a number of indicator (or dummy) variables. If there are m categories to the 
confounding factor, m - 1 dichotomous (0-1) indicator variables, X I ,  . . . , Xm-l 
are necessary. Each Xk corresponds to one category of the confounding factor. 
They are defined by 

1 if the subject is in category k of the confounding factor 
xk = (  0 otherwise. 

The P k  corresponding to Xk is then the increase in the log odds of a “successful” 
outcome given that the subject is in category k rather than category m of the 
confounding factor. (Category m is the category without a corresponding in- 
dicator variable.) 

The numbering of the categories of the confounding factor is arbitrary, so, 
statistically, any category can be specified as the mth. The mth category ought 
to be chosen, however, to make the coefficients (the P k ’ s )  as interpretable and 
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useful as possible. For example, suppose that the confounding factor is em- 
ployment status with three categories-unemployed, employed part-time, em- 
ployed full-time. A reasonable choice for indicator variables would be: 

1 if employed part-time 
0 

1 if employed full-time 
X 2  = (0 

if unemployed or employed full-time 

if unemployed or employed part-time. 

X I = (  

01 (corresponding to X I )  would then measure the increase in the log odds due 
to being employed part-time rather than unemployed; /32 would measure the 
increase due to being employed full-time rather than unemployed. 

In the case of a single confounding factor that is categorical, the methods of 
stratification given in Section 7.6 are also applicable. The maximum likelihood 
estimate of the logarithm of the odds ratio mentioned there is the estimate that 
would be obtained by logit analysis of the model that included the appropriate 
indicator variables for the confounding factor categories. 

APPENDIX 9A DETAILS OF THE MAXIMUM 
LIKELIHOOD APPROACH TO LOGIT 
ANALYSIS 

In this appendix we will present some of the mathematical details of the 
maximum likelihood approach to logit analysis. This begins with the likelihood 
and likelihood equations and includes some of the details for calculating standard 
errors. Again, for ease of presentation, results are restricted to a single con- 
founding variable. 

As mentioned earlier, obtaining the maximum likelihood estimates requires 
an iterative procedure. The choice and method of implementation of an appro- 
priate algorithm is a numerical analysis problem and will not be considered here. 
References on these topics include Walker and Duncan ( 1  967), and Jones 
(1975). 

9A.1 Likelihood Equations and Standard Errors 

Let Y, R ,  and X be defined as elsewhere in this chapter and let the subscripts 
i and j donate the ith subject in  thejth risk factor group ( i  = 1 , .  . . , nj a n d j  
= 0, 1). We then have that Pq = P(Rij, Xi,), the probability of a “sucess” for 
the ith subject in thejth group, satisfies 
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The basic assumption is that all the responses are independent. Consequently, 
the likelihood, L ,  is 

Taking natural logarithms and substituting (9.8) the log likelihood, I ,  is 

I = c 2 {yij(a + y~~~ + pxij) - In[] + exp(a + T R ~ ~  + (9.9) 

Taking partial derivatives of 1 with respect to the three parameters a, 7, and 
p, we obtain the likelihood equations 

1 n .  

j = O  i s  I 

(9.10) 

The maximum likelihood estimates, &, p ,  and are the values of a, p, and y that 
satisfy (9.10), and p ,  is P, with the three parameters replaced by their maximum 
likelihood estimates. 

A problem that can occur is the existence of solutions to (9.10) where one or 
more parameter estimates are infinite. This occurs when the variables included 
in the logit model are perfect predictors (or discriminators) of the outcome. 
Actually, it is a generalization of the fact that the maximum likelihood estimate 
of the logarithm of the odds ratio from a 2 X 2 table is infinite if any one of the 
four table entries is zero. This is not a common problem except when sample sizes 
are small or one of the two outcomes is very rare. Though the point estimates 
and their standard errors will not be meaningful in such cases, likelihood ratio 
tests may still be done. 

Standard errors are based on large-sample maximum likelihood theory that 
relates the variance of the estimates to the expected values of the second deriv- 
atives of the log likelihood. In practice, these variances can be estimated from 
the second derivatives of the sample log likelihood (9.9). The formulas for the 
standard errors depend on all six second derivatives, in the form of an inverse 
of a 3 X 3 matrix, so will not be given here. 
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Log-linear analysis can be used when the risk, outcome, and confounding vari- 
ables are all categorical so that the data may be presented in a multidimensional 
table of counts called a contingency table. The dimension of the table is equal 
to the total number of variables (including outcome), and the entry in a given 
cell of the table is the count of individuals possessing a specified level or value 
of each variable. The following two examples of contingency tables will be used 
throughout the chapter to illustrate the basic features of log-linear analysis. 

Example 10.1 UCDP data: The University Group Diabetes Program (UGDP) con- 
ducted a randomized trial to study the effectiveness and safety of different treatments 
for diabetes (this study was discussed briefly in Section 4.3). We concentrate here on 
two of those treatments-tolbutamide and a placebo-and relate them to one of the 
outcome variables measured by the UGDP investigators, cardiovascular mortality. Table 
10.1 comes from a report on the UGDP findings (UGDP, 1970): it is a two-dimensional 
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Table 10.1 UGDP Data 

Outcome 
Treatment Cardiovascular Death Other“ , Total 

Tolbutamide 
Placebo 

26 
10 
36 
- 

178 204 
205 I95 

373 409 
- - 

“Other” includes death from noncardiovascular causes and survivor. 
Adapted, by permission of the American Diabetes Association, Inc., from UGDP (1970). Table 

1.  

or two-way table, since the individuals are classified along two variables (treatment and 
outcome). The treatment has two levels (placebo and tolbutamide) and the outcome also 
(cardiovascular death and other). 

In the upper left-hand cell, for example, 26 indicates that there were 26 patients in 
the tolbutamide group who died due to a cardiovascular cause. The total number of pa- 
tients under each treatment was fixed by the design: 204 and 205, respectively. 

Exampre 10.2 HeadStartdata: In this cohort study (Smith, 1973; Weisberg, 1973), 
preschool children were divided into two groups, one receiving the Head Start program 
and the other not, and they were subsequently tested to assess the effect of the program. 
For each child the result of the test (pass/fail) was recorded along with program received 
and education of the head of household. 

Table 10.2 presents the records of 491 children in a three-way contingency table, where 
the education of the head of household has three levels (less than 9 years of school, 10 
and 1 1, or more than 12). There are, for instance, 28 children in the Head Start Program 
who failed the test and whose mothers had more than 12 years in school. 

Table 10.2 Head Start Data 

Education of the Outcome Treatment 
Head of Household Test Head Start Control 

9- Fail 16 119 
Pass 1 31 

10-1 1 

12+ 

Fail 
Pass 

Fail 
Pass 

23 
13 

28 
23 

83 
27 

86 
41 

~~ ~ 

Data from Head Start Program (Smith, 1973; Weisberg, 1973). 

Log-linear analysis can be viewed as a tool for understanding the structure 
of a contingency table such as Table 10.2 and more specifically for estimating 
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treatment effects via the odds ratio. Simple tools for analyzing a two-way table 
such as Table 10.1 are the chi-square test for independence and the calculation 
of simple odds ratios. We will show that these tools can be expressed in terms 
of log-linear models and, in the two-dimensional case with dichotomous variables, 
log-linear analysis will tell us no more than these two techniques will tell us. 
However, for three and more dimensions, log-linear models allow us to go beyond 
the simple model of independence and explore other kinds of relationships be- 
tween the variables. Indeed, we are concerned with the effect on cell counts not 
only of each. variable taken independently, as in the model of independence, but 
also of interactions among all the variables-risk, outcome, confounding-and 
we want to single out the relevant interactions to assess the treatment effect. 

The log-linear formulation is particularly appropriate in studies, case-control 
and cohort, where we want to measure the treatment effect by the odds ratio 
because, as we will show, there is a simple relationship between the odds ratio 
and the parameters of the log-linear model. Log-linear models derive their name 
from expressing the logarithm of expected cell counts as a linear function of 
parameters; these parameters represent the variables and their interactions, 
properly defined below. The use of logarithms will be justified below. 

The maximum number of parameters one can use in the model is equal to the 
number of cells in the table. When we fit a log-linear model to a set of data, we 
try to represent the data with a minimal number of parameters, just as in re- 
gression we often represent the relationship between two variables with just an 
intercept and a slope. 

We will first review the chi-square test for independence and the crude odds 
ratio and branch from there to log-linear models for two-way tables (Section 
10.2). The more interesting log-linear models for three and more variables will 
be explored next (Section 10.3 and 10.4) and various aspects of log-linear models 
will bediscussed (Sections 10.5 to 10.8). 

This chapter will introduce the basic features of log-linear models. A detailed 
account of log-linear analysis may be found in Bishop et al. (1975). Recently 
published introductory books are Everitt (1977), Fienberg (1977), and Reynolds 
(1977). On a much higher mathematical level, there is Haberman’s treatment 
of log-linear models ( I  974). 

10.1 LOG-LINEAR MODELS FOR A TWO-DIMENSIONAL 
TABLE 

We will introduce log-linear models with the simple 2 X 2 table from the 
UGDP study (Table 10.1) and spend some time on this very simple example in 
order to justify the use of the log transformation, to introduce notation and to 
explicate the connection with the odds ratio and the x2 test for independence. 
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The complexity of the log-linear approach will certainly appear disproportionate 
to the 2 X 2 situation, but the reader should remember that this is just a step 
toward understanding log-linear models for three and more variables, including 
confounding variables. 

Suppose that we want to use the UGDP two-dimensional table to assess 
whether tolbutamide has an effect on cardiovascular mortality. A familiar ap- 
proach is to use the chi-square test for independence. The idea underlying the 
chi-square test for independence is to assume that tolbutamide has no effect on 
mortality, to estimate expected numbers of individuals in each cell under that 
assumption, and to compare them with the observed counts through a Pearson 
chi-square statistic. The magnitude of the chi-square statistic indicates how far 
we are from the model of independence. 

We follow this process step by step for our example. I f  tolbutamide had no 
effect, the cardiovascular death rate would be the same in the placebo and tol- 
butamide groups, and we would estimate it  by 36/409, the ratio of the total 
number of cardiovascular deaths to the total number of individuals. We then 
multiply the death rate by the number of individuals in each treatment group 
to get estimated expected numbers of deaths. Table 10.3 presents the estimated 
expected table of counts for the model of independence or no treatment ef- 
fect. 

Table 10.3 Estimated Expected Table for UGDP Data under Model of 
Independence 

Cardiovascular Deaths Other Total 

Tolbutamide 
36 - X 204 = 17.96 

409 

373 - X 204 = 186.04 
409 

204 

205 
373 - X 205 = 186.96 

36 

409 409 
Placebo - X  205 = 18.04 

Total 36 373 409 

The reader can check that the odds ratio, defined in Chapter 3 as the ratio 
of the product of the diagonal cells, is equal to 1 in Table 10.3, as it should be 
since we computed it assuming no treatment effect. 

The next step is to compare the estimated expected counts in Table 10.3 with 
the observed counts in Table 10.1. We calculate the Pearson chi-square statistic 
by summing the following expression over all cells of the contingency table 

(observed cell count - estimated expected cell count)2 
estimated expected cell count 

9 
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which results in 

(26 - 17.96)2 (178 - 186.04)2 (10 - 18.04)2 (195 - 186.96)2 
x 2  = + + + 

186.96 17.96 186.04 18.04 

= 7.88. 

Reference to a chi-square table with 1 degree of freedom indicates that the 
fit of the model of independence is poor @ value < .01). Therefore, we need to 
find another model to describe more adequately the structure of the UGDP data 
(i.e,, by dropping the hypothesis of no treatment effect). 

Before turning to another model, we will show that the model of independence 
can be written as a log-linear model. We need first to introduce some notation. 
Let &, denote the estimated expected counts in Table 10.3, where the subscript 
i stands for the ith level of the outcome variable (i = 1 or 2 )  and j stands for the 
j th  level of the treatment 0’ = 1 or 2). Let xu denote the corresponding observed 
counts in Table 10.1. For example, we have f i 1 2  = 18.04 and x12 = 10. 

We see in Table 10.3 that htij is computed as 

(10.1) 

where a + stands for summation over the levels of the variable. For example, 
xi+ = xi1 + xi2. Taking natural logarithms (denoted by log) on both sides, we 
transform the multiplicative representation into an additive one: 

log k,. = -log x++ + log xi+ + log x+j. 

where log f i i j  appears as the sum of a constant (i.e., a term which depends on 
neither i norj), a term depending on i only and a term depending on j only. This 
suggests writing each expected log count as a sum of a constant parameter, a 
parameter depending on the ith level of the outcome and a parameter depending 
on thejth level of the risk variable: 

(10.2) log mjj = u + u r  + u;, 

where the superscripts Y and R refer to the outcome and risk variables, re- 
spectively, and the subscripts i and j refer to the levels of these variables. When 
talking of these parameters, u. ur, and u,”, we will sometimes simply refer to 
them as the u terms. 

We now establish the correspondence between the u terms and the log mu’s. 
We define u as the grand mean of the expected log counts, 

u + u y  as the mean of the expected log counts at level i of Y ,  
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1 2  

2 j = l  
u + u,?’= - C log mi,, 

and u + uf as the mean of the expected log counts at levelj of R, 
1 2  

2 i = I  
u + uf = - C log mo. 

Since u,?’ and up represent deviations from the grand mean u,  
2 2 

i= I j =  I 
C u,?’= 0 and C u f =  0. ( 10.3) 

Readers familiar with analysis of variance will have recognized at  this point 
notations and zero-sum constraints on the parameters in (10.3) similar to those 
used in analysis of variance. The parallelism with analysis of variance will 
continue as we define other parameters. 

Equation 10.2 represents the model of independence or of no treatment effect 
as a log-linear model for a two-way table. As there might be some confusion in 
terminology, we need to emphasize that treatment effect here has the same 
meaning as in the remainder of this book, namely the effect of the treatment or 
risk factor on the outcome. On the other hand, we also sometimes call the u terms 
in (10.2) effects; in particular, up is an effect of the risk factor on the expected 
log count: it has nothing to do with our usual “treatment effect.” 

Because of the zero-sum constraints (10.3), the representation (10.2) for the 
2 X 2 contingency table amounts to specifying three parameters, namely u ,  ur, 
and up. We found, via the Pearson chi-square statistics, that the model (10.2) 
of no treatment effect does not fit the data adequately. Therefore, we extend 
the log-linear model to estimate a nonzero treatment effect and we do that by 
adding a fourth parameter, UY, which is a two-factor effect between outcome 
and risk factor measuring the association between Y and R. The log-linear model 
is now 

Iogmij = u + u [ +  uf + ucR (1 0.4) 

with an additional set of zero-sum constraints 
2 2 

i= I j =  1 
C u;R = 0 fo r j  = 1 ,2  and C u;” = 0 for i = 1,2; (10.5) 

so that, for our 2 X 2 table, ur:, u r r ,  and uz’;” are determined once u r p  is 
specified. 

Model (10.4) with its zero-sum constraints (10.5 and 10.3) is called thesat- 
urated model because it contains the maximum number of independent pa- 
rameters (i.e., 4: u,  u r. up, and u r?) permissible to describe a set of four cells. 
In the saturated model, the estimated expected log counts are equal to the ob- 
served log counts and the fit is perfect. 
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Since the model of independence, with fewer parameters, did not fit the data, 
we select, for this example, the saturated model as the appropriate log-linear 
model. 

By computing an odds ratio, we can understand more clearly how uc" is re- 
lated to the treatment effect. By definition the odds ratio is 

$=--- m11m22 

m 1 2 ~ 2 1  

or, equivalently, 

log + = log r n l l  + log m22 - log r n 1 2  - log m21. 

log + = u y  + u p  - uy: - U z ' P .  

We can express log $J as a function of the u terms of (10.4): 

Using the zero-sum constraints in (10.9, we get 

log + = 4uy:. ( 10.6) 

The relationship (10.6) provides us with a clear interpretation of the two-factor 
effect u;": setting the two-factor effect equal to zero is equivalent to setting the 
log odds ratio equal to zero or the odds ratio equal to 1, which brings us back 
to the no-treatment-effect or independence model. 

Finally, since (10.4) is our model of choice for our example, we estimate the 
treatment effect via the odds ratio on the basis of (10.4). Since it is a saturated 
model, the estimated expected odds ratio is equal to the observed odds ratio: 

26 X 195 ' = 10 X 178 
= 2.85. ( I  0.7) 

The UGDP example has helped us to introduce two log-linear models for a 
2 X 2 table. The more complicated model (10.4) differs from the simple one 
(10.2) by a parameter which is proportional to the log-odds ratio, so that the 
simpler one corresponds to a no-treatment-effect model. In the two-way table, 
we have not learned from log-linear models anything more about the effect of 
the treatment than is told us by the test for independence and the crude odds 
ratio (10.7). With three variables we will discover the advantages of the log-linear 
formulation, since we will have models which are intermediate between the in- 
dependence model and the saturated model. 

10.2 LOC-LINEAR MODELS FOR A THREE-DIMENSIONAL 
TABLE 

Let us consider now a three-dimensional or three-way table where, besides 
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treatment and outcome factors, we also have a potential confounding factor such 
as education of the head of household in the Head Start data. We saw in Chapter 
3 that it is necessary to control for a confounding factor which otherwise would 
distort the estimate of treatment effect. To estimate the treatment effect, as 
measured here by the odds ratio, we will fit log-linear models of different com- 
plexity as in the two-dimensional case, pick one that fits the data adequately, 
and base our estimate on this appropriate model. 

In the process of fitting a model, we will check that the potential confounding 
factor is really a confounding factor and we will see whether the treatment effect, 
as measured by the odds ratio, can be assumed constant over all levels of the 
potential confounding factor or whether there is evidence of interaction (see 
Section 3.3).  We discuss here only a statistical technique for selecting a con- 
founding factor, keeping in mind that judgment and collaboration with scientists 
are important parts of this process (see Section 5.1). 

We extend the saturated model (10.4) to three factors by considering three 
main effects-one for each factor-three two-factor effects, and by introducing 
a three-factor effect. We will explain below the meaning of these effects that 
again we will call u terms. The saturated log-linear model for a three-dimensional 
table expresses the expected cell log count log m i j k  as 

log m i j k  = u + ~r + M? + ~f + M;" + uZx + uiRkX + u;fX,  (10.8) 

where the superscripts Y, R, and X refer to the outcome, risk, and confounding 
factors, respectively, and the subscripts i, j ,  and k refer to the levels of these three 
variables. Denote by I, J ,  and K the limits of these subscripts. For instance, in 
the Head Start data: 

i runs from 1 to 2 (fail/pass): 1 = 2  
j runs from 1 to 2 (Head Start/control): J = 2 

k runs from 1 to 3 ( 9 3 0  - 11/12+): K = 3 

J K I J I K 

i=: I j =  I k =  I i= I j =  I i= I k =  1 
c u Y R  = c u p  c uiyk" c c U R =  J c u f =  U Y R =  JJ Y 

Again, we have zero-sum constraints on the parameters that are generalizations 
of (10.3) and (10.5): 

I 

It is necessary to impose these relationships to avoid an excess of parame- 
ters-remember that the number of independent parameters must be no more 
than the number of cells in the table. With these zero-sum constraints, the u 
terms appear as deviations from u terms of lower order. 

All the log-linear models for three-dimensional tables are special cases of the 
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saturated model (10.8), with one or more parameters set equal to zero. Again 
the connection between odds ratios and the parameters of the model helps us 
in interpreting the different models. 

In a three-way table where I = J = 2, we can define an odds ratio for each level 
k of the potential confounding factor X. Say that 

m 1 1 k m 2 2 k  
$'k = 

m 1 2 k m 2 1  k 
(10.10) 

or, equivalently, 

1% $'k = 1% m l l k  + 1% m 2 2 k  - 1% m 1 2 k  - log m 2 1 k .  

With the log-linear model (10.8) we can express log $'k as a function of the u 
terms. We get 

log $'k = ur: + U!? - ur? - U r r  + urfix + Uf&' - Ur&x - U!$'. 
Using the zero-sum constraints (10.9) to simplify the formula, we get 

log $'k = 4uLR + 4u[$x. (10.1 I )  

Log $'k depends on the level k of the confounding factor X only through the 
three-factor effect u[4x.  The only way we can have a constant odds ratio (i.e., 
no interaction, see Section 3.3) is with the three-factor effect equal to zero. Thus, 
if a log-linear model with no three-factor effect fits the data adequately, the data 
are not inconsistent with a hypothesis of constant odds ratio. We can then esti- 
mate this constant odds ratio by 422 LR. The log-linear model with no three-factor 
effect is represented as 

log m i j k  = u + u:+ ~7 + u f +  uER + uGX+ ugX. (10.12) 

We will discuss in Section 10.5 the estimation of expected cell counts and 
thereby expected u terms in log-linear models. Let us just note at  this point that 
the log-linear model (10.12) does not admit simple expressions for the estimated 
cell counts as did, for instance, the model of independence in the two-way table 
[see (lO.l)]. 

The next level of simplicity is to assume one of the two factor effects equal 
to zero, keeping the three-factor effect equal to zero. Let the two-factor effect UY relating risk to outcome factor be equal to zero for all ( i ,  j). (We express 
this more concisely by u Y R  = 0.) The model is then 

l o g m j j k  = u + M i ' +  ui" + u f +  u;x+ U f y .  

From the formula for the log odds ratio (10.1 l ) ,  we see that setting u y R  = uYRX 

= 0 amounts to assuming the odds ratio equal to 1 for each level of the con- 
founding factor (i.e., independence between risk and outcome factors conditional 
on the confounding factor A'). In such a model, we estimate the expected cell 
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counts by 

Xi+kX+jk 

x + + k  
&tijk = 

In general, a two-factor effect set equal to zero means independence of the two 
factors for a fixed level of the third one. 

If we set two two-factor effects equal to zero, as in the model 

l o g m i j k = u + u y + u f + u ~ + u ~ R ,  

where both u yx and uRX are zero, then the omitted factor (here X) is jointly 
independent of the two others. 

Note that when we defined a confounding variable in Section 2.1, we required 
it to be associated both with the outcome and risk factors. In the log-linear 
framework, this means that u yx and u RX measuring the association of X with 
the two other variables should both be nonzero if X is really a confounding 
factor. 

Going a step further, we can set all three two-factor effects equal to zero: 

log mijk = u + u y +  uf + uf.  (10.13) 

This corresponds to a complete independence of the three factors. The estimated 
expected cell counts for such a model are familiar: 

&.. = xi++x+j+x++k 
(x+++)2 . 1Jk 

We have discovered in this section log-linear models intermediate between 
the simple model of independence between the three factors (10.1 3) and the 
saturated model (10.8) which fits the observed data perfectly. Interest in these 
intermediate log-linear models lies in particular in their ability to represent 
specific hypotheses about the treatment effect measured by the odds ratio. 

10.3 LOG-LINEAR MODELS FOR MULTIDIMENSIONAL 
TABLES 

Log-linear models give us a systematic way of analyzing contingency tables 
of any dimension. They can be defined for any number of factors. Let P be this 
number. We can in particular use log-linear models on a P-dimensional table 
with one outcome factor Y,  one risk factor R, and P - 2 confounding factors 
XI, X Z  and so on. The saturated model is an extension of (10.8) containing up 
to a P-factor effect, and the other log-linear models are special cases of the 
saturated model with one or more parameters set equal to zero. 

As in the two- and three-dimensional tables, we want to focus on the param- 
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eters involving the risk and outcome factors in order to estimate the treatment 
effect. We will get a single measure of treatment effect, that is, an odds ratio 
constant over all levels of the confounding variables if all the three-factor and 
higher-order effects involving Y and R are equal to zero: 

u Y R X  = 0 

YRXX’  = 0 

for all X in ( X I ,  X z ,  . . . , XP-2) 

for all (X, X’) in ( X I ,  X2, . . . , Xp-2)  etc. 

The parameters not involving Y ,  the outcome variable, reflect association 
between the background variables (i.e., risk variable and confounding variables). 
The u terms of order larger than three reflect associations which are difficult 
to interpret; therefore, we often try to fit only models with low-order u terms. 

10.4 FITTING A LOG-LINEAR MODEL 

In order to fit a log-linear model to a set of data, we need to be able to perform 
three tasks: 

We have to estimate the expected cell counts or the expected u terms under 

We have to assess the adequacy of the postulated model. 

We have to choose a satisfactory model. 

a postulated log-linear model. 

When we analyzed the simple two-way table of the UGDP study in Section 
10.2, we followed exactly that process. We assumed the model of independence, 
estimated the expected cell counts, rejected the model on the basis of the Pearson 
chi-square statistic and finally selected the saturated model as the only appro- 
priate log-linear model for this table. 

We discuss here the three steps involved in fitting a model and close this section 
by illustrating them with the analysis of the Head Start data. 

10.4.1 Estimation 

We restrict our attention to maximum likelihood estimation. For a given 
log-linear model, the estimates of the expected cell counts are the same whether 
we are dealing with a cohort or case-control study. The only concern related to 
the type of studies is to include in the model the parameters corresponding to 
the totals fixed by the design. In a case-control study the total number of cases 
and the total number of controls are fixed; in a cohort study, the numbers of 
individuals in the different treatment groups are fixed. For instance, in the 
UGDP data, an adequate log-linear model has to include up because the total 
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number of patients x+,  in each treatment group was fixed by the design. The 
derivation of this rule is beyond the scope of this chapter, but it can be viewed 
as a consequence of a more general rule which says that the u terms included 
in a log-linear model determine the constraints on the estimated expected counts. 
For instance, model (10.2) contains u, u r ,  and up. so that the estimated expected 
counts satisfy the constraints 

A++ = x++ because of u 

Ai+ = xi+ because of u r  (10.14) 

A+j = x + ~  because of uf 

For the UGDP study, once the x+j were fixed by the design, we want = x+j. 

This is accomplished by putting uf in the model. 
The estimates of the expected counts satisfy those marginal constraints im- 

posed by the u terms included in the model and satisfy the conditions imposed 
by the u terms set equal to zero. For instance, u Y R  = 0 in model (10.2) implies 
that 

log (E) = 0. 

Remember that for model (10.2), we have 

Aij = X i + X + i  

X + +  

(10.15) 

(10.16) 

The reader can check that these hV satisfy (10.14) and (10.15). 
The estimates of the expected counts cannot always be expressed as an explicit 

function of observed marginal totals as was done in (1 0.16). Consider again the 
model ( 1  0.12) with no three-factor effect for a three-dimensional table. The 
constraints imposed by the u terms in the model reduce to 

tho+ = Xi j+  

&+k = X i + k  

&+jk = x + j k .  

We have, moreover, 6 YRX = 0. The Aijk solutions of this set of equations do not 
have an explicit form. In this case we use an iterative process to estimate the 
expected counts. Computer programs for handling log-linear models are now 
commonly available. Besides carrying on the iterative process for computing 
the estimated expected cell counts, they also provide estimated expected u terms 
(which allows us to estimate odds ratios) with their estimated asymptotic vari- 
ances, goodness-of-fit statistics that we will discuss shortly, and other quantities 
of interest. 
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If the postulated model is true, and if the sample size is large, then the esti- 
mated u terms and in particular the estimated logarithm of the odds ratio will 
be approximately unbiased, since estimation is based on maximum likelihood. 
We do not know of any study of the bias of the estimated u terms in log-linear 
analysis for small samples. 

10.4.2 Assessing Goodness of Fit 

To assess goodness of fit of a postulated model, we follow the usual procedure 
of estimating expected values assuming that the model is true and comparing 
them with observed values. We compare them using either the Pearson chi- 
square statistic or the likelihood ratio statistic. Remember that the Pearson 
chi-square statistic is equal to the sum over all cells of 

(observed cell count - estimated expected cell count)* 
estimated expected cell count 

The likelihood ratio statistic is the sum over all cells of 

1. observed cell count ( estimated expected cell count 
Z(observed cell count) log 

These statistics both have an asymptotic chi-square distribution with degrees 
of freedom given by 

Degrees of freedom = 
number of cells in the table-number of independent parameters. 

Lack of fit of a model is indicated by large values of these statistics corresponding 
to small p values. 

10.4.3 Choosing a Model 

Selecting an appropriate log-linear model may be quite tedious if the di- 
mension of the table is four or more, since many possible models are available. 
Different strategies based on stepwise methods which look at estimated expected 
u terms and goodness-of-fit statistics have been proposed and compared via some 
examples (Bishop et al., 1975, Chap. 4; Goodman, 1971). 

The likelihood ratio statistic is particularly useful for comparing estimated 
expected counts under two different models where one model (the “simple” 
model) is a special case of the other one (the “complicated” model): some of the 
u terms of the complicated model are set equal to zero in the simple model (the 
models are said to be nested). Then the likelihood ratio statistic for the simple 
model can be expressed as the sum of two terms: one is the likelihood ratio sta- 
tistic for the complicated model, the other is a conditional likelihood ratio statistic 
testing how far the estimated expected counts under the two models are from 
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each other. This conditional statistic also follows asymptotically a chi-square 
distribution with degrees of freedom equal to the difference of degrees of freedom 
between the two models. If this chi-square value is small, the extra u terms in 
the complicated model are judged unimportant. Therefore, this approach that 
we will illustrate below allows us to judge the significance of u terms conditional 
on a complicated model. 

We now turn to fitting a log-linear model to the Head Start data. 

Example 10.2 (continued): The saturated model fits the data perfectly and, under 
that model, we estimate the treatment effect by the observed odds ratios, one for each 
level of the potential confounding factor, education of the head of household. We get 

23 27 - 0.58 510-11 = - - 13 X 83 

512+ = 28 - 41 - - 0.58. 
23 X 86 

Note that the odds ratio for 9 years or less of education is based on a table containing 
a 1 in  one cell. This makes the estimate, 4.17, quite imprecise. 

To simplify the model, we try the model with no three-way effect. Remember that 
we do not have direct estimates of the expected cell counts under that model, but must 
use an iterative procedure, usually performed by computer. This gives the estimated 
expected cell counts that appear in Table 10.4. The reader can check that the counts &ijk 

in Table 10.4 satisfy the constraints imposed by the u terms in the model. The two 
goodness-of-fit statistics are: 

Pearson x2 = 4.20 

Likelihood ratio x2 = 5.17, 

with 2 degrees of freedom each. Since thepvalue is greater than 0.075, we judge the fit 
of the model with no three-factor effect as adequate. Under this model, the treatment 
effect is constant over all levels of the head of household’s education. We estimate the 

Table 10.4 Head Start Example: Fitted Data for Model with u Y R X  = 0 

Education of the 
Head of Household Test Head Start Control 

9- 

10-1 1 

Fail 
Pass 

Fail 
Pass 

12.89 122.1 1 
4.1 1 27.89 

24.28 81.72 
11.72 28.28 

I 2 +  Fail 29.83 84.17 
Pass 21.17 42.83 
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constant odds ratio either directly from the fitted table or from the estimated u terms. 
From the first level of education of the head of household we have, for instance, 

.L 12.89 X 27.89 
!J!' = 4.1 1 X 122.1 1 

= 0.72. 

The reader should find the same number (e%cept for rounding errors) from the other two 
levels. We get li r: = -0.08 and from log $ = 4u r? [see ( I  0: I l)],  we have 

log 5 = 4 X (-0.08) = -0.32 4 = 0.73. 

We can now check whether education of the head of household is really a confounding 
factor, by trying successively the model with no outcome by confounding effect (u  yx  

= 0, still keeping u yRx = 0) and the model with no risk by confoundingeffecr ( u R X  = 
0, with u Y R X  = 0). The estimated expected cell counts under each model are given in 
Tables 10.5 and 10.6 together with the goodness-of-fit statistics. 

Table 10.5 Head Start Example: Fitted Data for Model with 
" Y R X =  ,,YX= 0 

Education of the 
Head of Household Test Head Start Control 

9- 

10-1 I 

12' 

Fail 
Pass 

Fail 
Pass 

Fail 
Pass 

~~ ~ 

10.95 1 1 1.63 
6.05 38.37 

23.19 81.86 
12.8 I 28.14 

32.86 94.51 
18.14 32.49 

4 degrees of freedom; p value < .01 t Pearson x2 = 13.52 

Likelihood ratio x2 = 15.39 

From the chi-squares and their associated p-values, we judge that neither of these 
models tits the data. We conclude that education of the head of household is a confounding 
factor. 

Let us now use Table 10.5 to illustrate the conditional likelihood ratio statistic. We 
choose the model with no three-factor effect ( u  Y R X  = 0) as the complicated model; the 
likelihood ratio statistic under that model is 5.17, with 2 degrees of freedom. The simple 
model is the model with no outcome by confounding effect (u  Y R X  = u yx = 0); the like- 
lihood ratio statistic under that model is 15.39, with 4 degrees of freedom. Therefore, 
the conditional likelihood ratio statistic is 15.39 - 5.17 = 10.22, with 4 - 2 = 2 degrees 
of freedom. A p value smaller than 0.01 associated with 10.22 leads us to judge that u yx 

is an important effect which should not be omitted from the model. 
Finally, note that if  we fit the model with no outcome by risk effect, we get the esti- 

mated expected cell counts in Table 10.7, which are acceptable based on the chi-square 
statistics. Under that model, the treatment effect, measured by the odds ratio, is equal 
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Table 10.6 Head Start Example: Fitted Data for Model with 
, , Y R X =  , , R X =  0 

Education of the 
Head of Household Test Head Start Control 

9- 

10-1 I 

I2+ 

Fail 25.48 109.52 
Pass 8.7 1 23.29 

Fail 20.01 85.99 
Pass 10.88 29.12 

Fail 21.52 92.49 
Pass 17.41 46.59 

4 degrees of freedom; p value < .O1 I Pearson x2 = 19.7 I 

Likelihood ratio x2 = 23.91 

to 1 .  We prefer to keep the mopel with no three-fsctor effect (Table 10.4) which yields 
the estimate of the odds ratio rC, = 0.73, but this rC, is not significantly different from 1,  
since the model of Table 10.7 fits the data adequately. The computer program we used 
for this example did not give standard deviations on the u terms. 

Table 10.7 Head Start Example: Fitted Data for Model with 
, ,YRX= , ,YR= 0 

~ ~~~~ 

Education of the 
Head of Household Test Head Start Control 

9- 

10-1 I 

I2+ 

Fail 
Pass 

Fail 
Pass 

Fail 
Pass 

13.74 121.26 
3.26 28.74 

26.14 79.86 
9.86 30. I4 

32.66 81.34 
18.34 45.66 

3 degrees of freedom; p value > .07 
Pearson x 2  = 6.57 

Likelihood ratio x2 = 7.03 

This log-linear analysis of the Head Start data is not meant to be a realistic 
analysis of the Head Start program, since it represents a small subsample of the 
larger data set and since many other data on this experiment are available. 
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However, we hope it has served the purpose of illustrating how log-linear models 
can be used. 

10.5 ORDERED CATEGORIES 

The log-linear models we have considered so far treat all the factors as 
unordered categorical and do not exploit any information from possible ordering 
of categories of some of the factors. For instance, in the Head Start data, there 
is a natural ordering of categories of the confounding factor, education of the 
head of household, which we may want to include in the analysis. Special log- 
linear models have been developed for handling these situations. To use them, 
we must assign scores to the categories of the ordered factor(s). Fienberg (1977) 
gives a simple and clear presentation of these models. 

10.6 RELATIONSHIP WITH LOCIT ANALYSIS ON 
CATEGORICAL VARIABLES 

We will show in this section that logit analysis on categorical variables is a 
special case of log-linear analysis. Suppose that we have a three-dimensional 
contingency table with an outcome factor, a risk factor, and a confounding factor. 
Then a logit model with two independent variables (risk and confounding) can 
be derived from a log-linear model on the three-dimensional table. Suppose, as 
was the case in our examples, that both the outcome and risk factors are di- 
chotomous and consider, for instance, the log-linear model with all the u terms 
included except the three-factor effect u;fx:  

log mijk = u + U: + uf + uf + ucR + u f f  + ~ 5 ~ .  (10.17) 

Remember from Chapter 9 that the logit of a probability p is defined as 
w 

logit p = log (J-). 
1-P 

Let us call “success” the first category of the outcome variable and “failure” 
the second. Then the probability of success pjk in thejth category of the risk 
factor and the kth category of the confounding factor is 

mlik 
m 1 j k  + m2jk 

Pjk = 
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Using the zero-sum constraints 

u:+  u2y= 0 

u1;" + 245" = 0 

u y +  ur:= 0,  

we get 

logit Pjk  = 2u + 2u y + 2u r,. (10.18) 

Since the index of Yis constant in (10.18) (i.e., equal to I) ,  we can reparametrize 
this relationship by 

w = 2u: 

wf = 2 u y  

wf = 2u::. 

Therefore, 

logit Pjk  = w + wf + w f  

and the zero-sum constraints on the u terms impose 

2 K 

j =  1 k= 1 
C w f =  0 and C w f =  0. 

(10.19) 

The correspondence between the logit model (10.19) and the logit model (9.7) 
can be easily established by treating R as a dummy variable and X as K - 1 
dummy variables X1, . . . , X K - I :  

1 
0 

1 

0 

for category 1 of the risk factor 
for category 2 of the risk factor 

for category 1 of the condounding factor 
for any other category of the confounding factor 

R = (  

x1=( 

XK-I = [o 1 for category K - 1 of the confounding factor 
for any other category of the confounding factor. 

(This method of creating K - 1 dummy variables to represent a K-category 
variable was presented in Section 9.8.) 

The model (9.7) is 
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which amounts to 

logitplk = a + y + P k  

logit p 1 ~  = (Y + y 
and 
and logit p2K = a 

logitpzk = a + P k  fork = I , .  . . , k - 1 

(10.21) 

Equating the right-hand sides of (10.19) and (lO.21), we obtain 

a = w + w f +  w p  

a + y  = w + w p +  wp 

a +  + /3k = W +  w ? +  W{ k =  I , .  . . , K - 1. 

Solving for the parameters in the logit model (10.20) yields 

a = w + w f + w p  = 2u [ + 2u [?!? + 2u [f 

P k  = w{- w $ =  2 ~ r f -  2 ~ [ f  k =  1 , .  . . , K -  1 

and using the zero-sum constraints and (10.1 l) ,  

y = w p  - wf = 2w;R = 44,: = log l). 

We now have a logit model with the logit parameters expressed in terms of 
the u terms of a log-linear model. To understand why logit analysis is a special 
case of log-linear analysis when all variables are categorical, note that in the 
derivation of the logit model passing from (1 0.17) to ( 1  0.18), all u terms in- 
volving only R and X dropped out. Therefore, other log-linear models than 
(10.1 7) lead to the same logit model (10.18). For example, one could set uRX 
= 0 in (10.17): 

(10.22) 

Fitting the log-linear models (10.17) and (10.22) would yield different estimated 
u terms and hence different estimates of y, the logarithm of the odds ratio. If 
y were to be estimated by the maximum likelihood procedure of Chapter 9, we 
would get the same estimate as that based on the log-linear model (1 0.17). So 
logit analysis implies a log-linear model with the ujRkx terms included. This is 
so because logit analysis by considering only the distribution of Y given the 
observed values of X and R is therefore implicitly treating all the marginal totals 
corresponding to the background variables as fixed (see Appendix 9A. 1). 

In large contingency tables in particular, we may want to fit log-linear models 
not including all the u terms involving all the backgound variables. By using a 
simpler model, we will reduce the variance of the estimated expected cell counts 
and u terms and, if the fit of the model is good, we can hope that their bias is 
small. Using a logit model approach does not give us this choice since it implicitly 
includes all the u terms involving all the background variables. The advantage 

log mi,k = u + u r +  u; + u f +  uy + uZx. 
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of logit analysis, on the other hand, is that numerical variables can be included 
in the model without being forced to stratify them. A more extensive discussion 
of the comparison between log-linear and logit models can be found in Bishop 
(1969). Additional remarks appear at the end of Section 9.3. 

10.7 OTHER USES OF LOG-LINEAR MODELS 

We have emphasized the use of log-linear models for estimating treatment 
effects, but we may want to fit log-linear models to contingency tables for other 
purposes: 

To check whether a suspected confounding factor is really a confounding 
factor, as we did in Example 10.2. In particular, when there are many po- 
tential confounding factors, log-linear analysis of the multidimensional table 
in conjunction with knowledge of the area under investigation (see Section 
5.1 ) provides a way to selecting the most important confounding factors. 
Bishop (1971) gives conditions for and implications of condensing the 
original table, (i.e., reducing its dimension by dropping potential confounding 
factors). 
To smoothe the observed data: whenever we are dealing with multidi- 
mensional tables, we may have very sparse data with large counts in a few 
cells and small ones elsewhere. One may improve the validity of a count in 
a particular cell by borrowing strength from neighboring cells, since they 
may contain information relevant to this particular cell (Mosteller, 1968). 
In  particular, log-linear analysis provides a way of obtaining nonzero counts 
for cells where zeros are observed. Such a smoothing can be performed as 
a first step before standardization (Bishop and Mosteller, 1969), as was 
mentioned in Section 7.4.2. 
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In many longitudinal studies the outcome variable is the time elapsed between 
the entry of a subject into the study and the occurrence of an event thought to 
be related to the treatment. The following are examples of such studies that will 
be referred to throughout this chapter. 

Example 11.1 Leukemia remission times: Freireich et al. ( 1  963) compare the times 
in remission of a group of leukemia patients treated with the drug 6-mercaptopurine, 
and of an untreated control group. The event of interest is the first relapse, that is, the 
end of the remission period. The outcome variable is the time from entry into the study 
(when all subjects were in remission) to the first relapse. 

Example 11.2 Stanford heart transplant program: Patients who are judged to be 
suitable recipitents of a transplanted heart enter a queue and receive a heart if and when 
a donor is found. The outcome variable is the elapsed time between the date the patient 
was judged suitable and the event of interest, death. The survival of patients who receive 
a heart is to be compared with that of patients who do not. 

Example 11.3 Duration of unemployment: Lancaster (1978) considers the effect 
of various risk factors such as age, ratio of unemployment benefit received to wage re- 
ceived in last job, and proportion of the labor force out of work, on the length of time 
unemployed. The outcome variable here is the time between the date of first interview 
and of getting a job. 

To achieve a uniform terminology we may refer to the event of interest as 
“death” and the outcome variable as “survival time,” recognizing that in many 
applications, such as Example 11.3, the event may not be death and may even 
be a desirable occurrence. 

Longitudinal studies may have subjects entering at various dates throughout 
the period of the study. For example, some subjects may enter a study lasting 
from January 1979 to January 1983 at its inception, others may enter at various 
times between these two dates. The date of entry of each subject into the study 
must be recorded since survival time for that subject is usually calculated from 
that date. In this chapter, unless otherwise stated, time means time from entry 
to the study. 

A serious complication in the analysis of survival times is the possibility of 
censoring, that is, of subjects not being observed for the full period until the 
occurrence of the event of interest. 
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This may happen for several reasons: 

I .  The study may be terminated while some subjects are still alive. 
2. If deaths from a specific cause are of interest, the subject may die of another 

cause, thought to be unrelated. For example, in Example 1 1.2 it may be thought 
that the death of a study subject from a road accident should not be counted as 
evidence for or against transplantation, yet it effectively terminates the study 
as far as that subject is concerned. 

3. The subject may be lost to follow up during the course of a study through 
relocating or changing treatment regime. 

Section 1 1.1 discusses the simplest form of analysis of survival data-using 
the concept of “total time at risk”-and the rather restrictive assumptions under 
which this method is valid. Section 1 1.2 shows how a life table, constructed from 
censored data, may be used to estimate the distribution of survival times in a 
homogeneous group of subjects. Methods of comparing life tables are discussed 
in Section 11.3, which also introduces the important proportional hazards 
model. In Section 1 1.4 we show how an extended proportional hazards model 
can provide estimates of treatment effect adjusted for confounding factors. The 
life-table estimate of the distribution of survival times can also be adjusted for 
confounding factors. This is discussed in Section 1 1.5. Analytical and graphical 
tests of the proportional hazards model are introduced in Section 1 1.6, after a 
short discussion of time-dependent background variables. 

The choice of appropriate starting point for the measurement of survival is 
as important as the choice of end point. In assessing the effect of a treatment 
on survival, it is natural to take as the starting point the date when the treatment 
was actually received. However, this can lead to biased assessments if there is 
an appreciable chance that a subject will die before the treatment is administered. 
Section 11.7 illustrates a special technique for handling studies such as the 
Stanford heart transplant program (Example 1 1.2) where there is a delay before 
treatment is applied. 

Serious problems of interpretation can arise, when, as in reasons 2 and 3 given 
above, the censoring may be related to the event of interest. Section 1 1.8 discusses 
these issues and briefly describes the competing risks model for the analysis of 
deaths from several causes. Section 1 1.9 mentions some alternative approaches 
to the analysis of survival data. 

In this chapter, as in the entire book, we focus on comparative studies which 
aim to assess the effect on survival of a specified treatment or risk factor. Our 
methods are well suited also to other kinds of study. Life tables (Section 1 1.2) 
provide useful summaries of the survival experience of single groups of subjects. 
This descriptive aspect has been extensively developed in actuarial work and 
in population studies, which use a rather different notation and terminology from 
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that of Section 1 1.2. Cox’s regression model (Section 1 1.4, Appendix 1 1 C) is a 
valuable technique in exploratory studies which try to sift through many different 
background variables for those which may influence survival. (As always, the 
results of such “fishing expeditions” need to be interpreted with great care.) 

The appendixes give a little more mathematical detail and some formulas. 
Appendix 11A gives precise definitions of the terms “hazard function” and 
“survivor function,” which are informally defined in Section 1 1.2, and states 
the relationships betwen the two functions in discrete and in continuous time. 
A slightly improved form of the life-table estimator of the distribution of survival 
times is given in Appendix 1 1 B. Cox’s regression model, which underlies the 
proportional hazards models of Sections 1 1.3 and 1 1.4, is specified in fuller 
generality in Appendix 1 1 C. We indicate how parameter estimates, standard 
errors, and significance tests may be obtained. Finally, Appendix 1 1 D describes 
Breslow’s estimator of the survivor function introduced in Section 1 1.5. 

Pet0 et al. (1976, 1977) include a nontechnical account of life tables and the 
log-rank test in a general discussion of the design and analysis of clinical trials. 
Texts such as those of Bradford Hill (1977), Colton (1974), and Armitage 
(197 1) also describe medical applications of life tables. A pioneering paper by 
Cox (1972) is the source for many of the methods discussed in Sections 1 1.4 to 
1 1.8. Two substantial texts, each requiring more mathematical background than 
we assume, are Gross and Clark (1975) and Kalbfleisch and Prentice 
(1 979). 

11.1 THE TOTAL TIME AT RISK 

The total time at  risk gives a simple procedure for comparing survival times 
in two groups subject to censoring. After describing the calculations, we discuss 
two assumptions necessary for the validity of the method: constancy of risk over 
time and homogeneity of the groups. Example 11 .I  (comparison of remission 
times of leukemia patients treated with the drug 6-mercaptopurine and of an 
untreated control group) will illustrate the technique. 

Table 1 1.1 gives the number of weeks each patient was under observation. 
The asterisks denote incomplete follow-up. For example, the entry 6* in the drug 
group represents a subject who was still in remission after 6 weeks and was not 
observed after that time. But the unasterisked 6 refers to a subject known to be 
in remission at 6 weeks but to have relapsed in the seventh week. Note that 
“relapse” here is the outcome of interest, corresponding to “death” in the ter- 
minology introduced in the introduction to this chapter, and survival times are 
here interpreted as times in remission. 

Although it is immediately clear from Table 1 1.1 that the treatment group 
have generally longer remission times than the control group, it is not obvious 
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Table 22.1 Remission Times of Leukemia Patientsa 

[Treatment group: 6*, 6 ,6,6,7,9* ,  lo*, 10, 1 I * ,  13, 16. 17*, 19*, 20*, 22,23,25*,  32*, 32*, 34*, 

[Control group: I ,  I ,  2, 2 , 3 , 4 , 4 ,  5, 5, 8,8,8, 8 , I l ,  11, 12, 12, 15, 17, 22, 231 
35*] 

An asterisk indicates incomplete follow-up. 

how a simple quantitative measure of the superiority of the treatment group can 
be derived. We could attempt to compare average remission times. Unfortu- 
nately, the censored remission times would bias such a comparison, whether they 
are included in the calculations or not. If the censored times are excluded, the 
treatment group average will be too low, as it will not include the longest re- 
mission times (25*, 32*, etc.). An average calculated ignoring the distinction 
between deaths and censored survival times would also be unfair to the treatment 
group, since most of the actual deaths occurred in the control group. 

Another approach often used in clinical studies is to calculate survival rates. 
Crude survival rates represent the proportion of patients who survive a specified 
length of time, for example, 5 years or, more appropriately in Example 1 1.1, 
10 weeks. Censoring again causes difficulties. The leukemia patient in the 
treatment group of Table 1 1.1 who was lost to follow-up after 20 weeks must 
be counted as a “survivor” in a calculation of a 10-week survival rate, but the 
subject who was lost to follow-up after 6 weeks could not be so counted, since 
although he or she was known to have survived 6 weeks, he or she may not have 
survived for the full 10 weeks. 

If  all censoring takes place at the end of a study, the time when each subject 
would be censored if he or she had not previously died would be known. Unbiased 
estimates of 5-year (say) survival rates can be obtained from those subjects who 
entered the study at least 5 years before its termination. For none of these 
subjects will have been, nor could have been, censored. Subjects who entered 
the study less than 5 years before its termination must be excluded from the 
calculation, even if they die, since they could not possibly have been observed 
to survive for the full 5-year period. Although the exclusion of the recent patients 
will avoid bias, it will also lose precision. Moreover, no crude survival rate can 
be calculated if some censoring occurs during the course of a study, as the ap- 
propriate denominator, the number of subjects who might have been observed 
to die before being censored, is unknown. For data subject to censoring we do 
not recommend the use of crude survival rates, preferring the life-table estimates 
to be discussed in Section 1 1.2. 

Returning to Example 1 1.1, a quite different approach is to estimate, for each 
group, the risk of death (relapse) of a “typical” patient during a “typical” week. 
We first calculate the total time at risk for each group as the sum of the censoring 
and survival (remission) times for that group. The average risk of death (relapse) 
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for each group is calculated as the number of deaths (relapses) in that group 
divided by the corresponding total time at risk. 

The treatment and control groups have total times at risk of 

6 + 6 + 
1 + 1 + - - . + 2 3 =  182, 

+ 35 = 359 

respectively. These are the numbers of person-weeks in which a relapse could 
have occurred. There were 9 relapses in the treatment group and 21 in the control 
group. The estimated risks for the two groups are 

9 21 
- = 0.025 and - = 0.1 15, 
359 182 

respectively. Note that censored observations contribute to the denominators 
but not to the numerators of these risk calculations. 

The ratio of the two risks, 0.025/0.115 = 0.22, is analogous to the relative 
risk discussed in Chapter 3. It indicates that the risk of relapse for a treated 
subject in any week is only 0.22 of the risk for a control subject. 

11.1.1 Assumptions 

The risk calculations just described attempt to estimate a probability of relapse 
(death in general) per person-week of observation in each group. For the esti- 
mates to make sense, in each group the probability of death must be the same 
for all person-weeks of observation. In the fanciful language of coin tossing, we 
assume that the survival experience of the two groups is determined by two biased 
coins, with probabilities XI and A0 of showing heads (death) on any toss. Each 
week independent tosses of the appropriate coin are made for each subject who 
survives to the start of that week. If the coin shows heads, the subject dies during 
that week; if it shows tails, he or she survives until the next week. [The calculated 
risks for each group (here 0.025 and 0.1 15) are estimates of these probabilities 
XI and A,.] Our assumption that these parameters do not vary can be split into 
two parts. 

Assumption 1: Risk of death is independent of time. The chance of death of 
a subject in any week does not depend on how many weeks he or she has survived 
up to the start of that week. 

Assumption 2: Homogeneity of groups. All subjects in each group have the 
same distribution of survival time. 

Assumption 1 would be violated, for example, in comparative studies of sur- 
gical procedures where the risk of death during or immediately following an 
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operation may be much higher than at a later time. A simple comparison of risks 
as presented above will give too much weight to the possibly very few long sur- 
vival times, and too little weight to the early deaths. 

The existence of measured or unmeasured background factors influencing 
survival will violate Assumption 2. Any such factor that is also related to the 
treatment will be a confounding factor and result in biased estimates of treatment 
effect. Section 1 1.4 discusses the derivation of estimates of treatment effect 
corrected for measured confounding factors. 

11.2 LIFE TABLES 

Life tables can describe the distribution of survival times experienced by 
homogeneous groups of subjects, when these survival times are subject to cen- 
soring. The risk of death need not be independent of time. Thus assumption 2 
of Section 11.1 must hold; assumption 1 need not. This section will discuss the 
construction and interpretation of a life table for a single group. We shall use 
the data of Example 1 1 . I ,  calculating the life table for both groups but con- 
centrating most of our attention on the treatment group. 

Notice that all remission and censoring times were reported as whole numbers 
of weeks. This has led to some ties in the data, which could have been resolved 
had the times been reported to a greater accuracy. The presence of such ties is 
a minor nuisance in survivorship data, and our discussion will include a simple 
correction procedure. We shall assume that the data were “truncated” rather 
than “rounded.” That is, a reported time to censoring or relapse of 6 weeks is 
taken to mean an actual time of between 6 and 7 weeks, rather than of between 
5’12 and 6’12 weeks. 

To describe the distribution in the absence of censoring of the remission times 
of the treatment group of leukemia patients of Example 1 1.1, we would like to 
determine the suruiuor function S ( t ) .  This function specifies, for each value of 
t ,  the probability that the remission time of a typical patient in the group would 
last beyond time t if there were no censoring. For example, S(  10) is the proba- 
bility that the remission of a typical patient lasts 10 weeks or more. If there were 
no censoring the value S ( t )  could be estimated, for each t = 1, 2, . . ., by the 
survival rate at  time t ,  that is, by the proportion of patients who survive for at  
least t weeks. In the control group, where there was no censoring, 8 patients out 
of a total of 2 1 have remissions lasting 10 weeks or more, so that S(  10) would 
be estimated by 8/21 = 0.3810. Unfortunately, as was shown in Section 1 1 . 1 ,  
this simple estimate cannot be used if there is censoring of the data. 

The life table is a method for estimating the survivor function S ( t )  from 
censored data. Let us first define the time-dependent risk of death or hazard 
function A ( t )  to be the (conditional) probability that a patient who is known 
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to be in remission at least until time t will relapse before time t + 1. In the 
actuarial literature, X(t )  is called the force of mortality; in other contexts it is 
sometimes known as the age-specific failure rate. The X ( t )  can be estimated from 
censored data. Consider the patients who are known to be in remission at time 
t, because they have neither relapsed nor been censored before time t. Let r ( t )  
be the number of such patients, the number “at risk” between times t and t + 
1.  A patient whose reported censoring time is t ,  and who therefore was actually 
censored at some time between t and t + 1, is counted as being at risk for half 
of the interval. Thus, in the treatment group of Example l l . l , r ( 7 )  = 17, since 
17 patients had remissions lasting 7 weeks or more and no subjects were censored 
in the eighth week. But r (6 )  = 201/2, since the patient reported as censored after 
6 weeks is counted as being at risk for half of the seventh week. Let m ( t )  denote 
the number of patients who relapse between t and t + 1 weeks. Then m(6) = 
3, m(7)  = 1 .  The hazard, X ( t ) ,  is estimated by the proportion of relapses among 
those patients at risk 

and in the example 

and 

between t and t + 1 weeks. That is, 

3 
20.5 

i (6)  =-=0 .1463  

1 
i ( 7 )  = 17 = 0.0588. 

Tables 11.2 and 1 1.3 present complete calculations of i ( t )  for the treat9ent 
and control groups of Example 1 1 . l .  However, our main interest is not in A(?) 
itself, but in estimates for the survival probabilities S ( t )  which may be derived 
from it. To see the relationship between X(t )  and S ( t ) ,  consider a large number 
n of patients in a situation where there is no censoring. In the first week, about 
n [ X ( O ) ]  patients will relapse, since the expected proportion of relapses is X(0) 
and in the first week, n patients are at risk. At the end of the first week, n - 
n [ X ( O ) ]  = n [  1 - X(O)] patients will still be in remission, so 

At the start of the second week there are n [  1 - X(O)] patients at  risk. The 
expected proportion of relapses in the second week is A( l), and the expected 
number of relapses is n[ 1 - X(O)]X( 1). At the end of the second week, the ex- 
pected number of patients still in remission is n [  1 - X(O)] - n [  1 - X(O)]X( 1) 
= n[ 1 - X(O)] [ 1 - A( l)]. So the expected proportion of the original n patients 
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Table 11.2 Life Table for Treatment Croup 

Time, At Risk, Relapses, Hazard 

I 40 m ( t )  k) 1 - i ( t )  S(I+ I )  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

21 
21 
21 
21 
21 
21 

17 
16 

14% 

12 
12 
1 1  
I I  
I 1  

9 

20% 

1 5 112 

12% 

9 '12 

8 'I2 
7 112 
7 
7 
6 
5 
4% 
4 
4 
4 
4 
4 
4 
4 
2 
1 'I2 
It2 

0 
0 
0 
0 
0 
0 
3 
I 
0 
0 
I 
0 
0 
I 
0 
0 
1 
0 
0 
0 
0 
0 
1 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0.1463 
0.0588 
0 
0 

0.0690 
0 
0 

0.0833 
0 
0 

0.0909 
0 
0 
0 
0 
0 

0.1429 
0. I667 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
I 
1 

0.8537 
0.9412 

1 
I 

0.93 10 
I 
1 

0.9 I67 
1 
1 

0.909 1 
1 
1 
1 
1 
1 

0.857 I 
0.8333 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

i 
1 
1 
1 
1 
1 

0.8537 
0.8034 
0.8034 
0.8034 
0.7480 
0.7480 
0.7480 
0.6857 
0.6857 
0.6857 
0.6234 
0.6234 
0.6234 
0.6234 
0.6234 
0.6234 
0.5343 
0.4452 
0.4452 
0.4452 
0.4452 
0.4452 
0.4452 
0.4452 
0.4452 
0.4452 
0.4452 
0.4452 
0.4452 
0.4452 

who are still in remission at the end of the second week is 

This reasoning may be extended to show that for any time t ,  

s(t + 1) = [ i  - X(O)][l - A(')] ... [ I  - '(t)]. 



208 SURVIVAL ANALYSIS 

Table 11.3 Life Table for Control Croup 

Time, At Risk, Relapses, Hazard 

I r ( t )  m ( t )  i ( t )  1 - i ( t )  S( t  + I )  

0 21 0 0 I 1 
1 21 2 0.0952 0.9048 0.9048 
2 19 2 0.1053 0.8947 0.8095 
3 17 1 0.0588 0.941 2 0.7619 
4 16 2 0. I250 0.8750 0.6667 
5 14 2 0. I429 0.8571 0.5714 
6 12 0 0 I 0.5714 
7 12  0 0 1 0.5714 
8 12 4 0.3333 0.6661 0.3810 
9 8 0 0 1 0.3810 

10 8 0 0 I 0.3810 
I I  8 2 0.2500 0.7500 0.2858 
12 6 2 0.3333 0.6667 0.1905 
13 4 0 0 I 0.1905 
14 4 0 0 1 0.1905 
15 4 1 0.2500 0.7500 0. I428 
16 3 0 0 I 0. I428 
17 3 1 0.3333 0.6667 0.0952 
18 2 0 0 1 0.0952 
19 2 0 0 1 0.0952 
20 2 0 0 I 0.0952 
21 2 0 0 I 0.0952 
22 2 1 0.5000 0.5000 0.0476 
23 1 I I .oooo 0 0 

The corresponding combination of the values of the estimated hazard function 
A(?) yields the life-table (or actuarial) estimate of the survivor function, as 

S ( t +  I ) =  [ l  -i(O)][l - i ( l ) ] - [ l  - i ( t ) ] .  

Tables 1 1.2 and 1 I .3 also present the full calculations for the survivor function 
for the treatment acd control groups of Example 11 . I .  Although it is only nec- 
essary to calculate A ( t )  and S( t  + 1) at times t where relapses occur, we have 
filled out the tables to emphasize the fact that implicit estimates of A(?) and S(t  
+ 1) are obtained for each time t up to the largest recorded relapse or censoring 
time. A nice feature-of the calculation is that S ( t  + 1) may be found by multi- 
plying S ( t )  by 1 - A ( t ) .  Figure 1 1.1 graphs the survivor functions for the two 
groups. In the control group, where there is no censoring, g ( t )  is just the pro- 
portion of the original 21 subjects who are still in remission at time f. 

If the largest observation is a relapse (death, in general), the estimated value 
of the survivor function reaches zero at that time. However, if the largest ob- 
servation is censored (as in Table 11.2), the estimated survivor function does 
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Figure 11.1 
of Example I I. I .  

Life table estimates of the survivor functions for the treatment and control groups 

not reach zero. It must be emphasized that the data provides no information 
concerning S ( t )  for values o f t  beyond the range of the data. 

11.2.1 Standard Errors 

A rather complicated approximate formula for the standard error of S ( t )  first 
given by Greenwood ( 1926) is often quoted. See, for example, Colton ( 1974, 
Chap. 9). Pet0 et al. ( 1  977) suggest a much simpler approximation, in our 
notation 

Standard error S ( t )  = s(t) 4 7 .  
This formula estimates the standard error of s( 10) in the treatment group (Table 
I 1.2) as 

4' - 1 0 "  
Standard error s( 10) = 0.8034 

= 0.0935. 

Pet0 et al. point out that this formula reduces to the usual expression for the 
standard error of a binomial proportion when there is no censoring. They state 
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that the estimate is usually slightly too large, unlike the Greenwood formula, 
which may grossly underestimate the standard error for large values of t .  

In any case, it should be noted that the values of S(r)  for large t are estimated 
with much less relative precision than are those for small t. This is because the 
life-table calculations for large t can be extremely sensitive to small changes 
in the data. For example, changing the censored remission time of 34* in Table 
1 1.2 to a relapse at 34 weeks would change the estimated survivor function s(35) 
from 0.4452 to (0.4452 X I/*) = 0.2226. 

To derive approximate confidence limits for the value of the survivor function 
S ( t )  at a single prespecified value oft ,  we can apply normal theory and use either 
Greenwood’s or Peto’s standard error formulas. However, this method cannot 
be used to give simultaneous confidence limits on several or on all values of S( t ) .  
Approximate confidence bands on the entire function S ( t )  can be derived, but 
this is beyond the scope of the book. Relevant references include Breslow and 
Crowley (1974), Meier (1975), Aalen (1976), and Gillespie and Fisher 
(1 979). 

11.2.2 Connection with the Constant Risk Model 

We stated that life-table calculations require homogeneous groups [as- 
sumption 2 of Section 1 1  .l] but not time-independent risks (assumption 1). If 
assumption 1 does hold, the true hazard function X(t)  will not depend on time 
and we may write X(t) = X for the risk of death, per unit of time, for each living 
subject in a homogeneous group. The survivor function for that group then takes 
the geometric form 

(11.1) 

S ( t )  = e - X f ,  (1 1.2) 

S ( t )  = (1 - X)f. 

The continuous-time version of (1 1.1) is the exponential 

where X now denotes the hazard rate per unit time. 
To see whether this model is a reasonable fit to the data, we can estimate X 

as in Section 1 1.1 and compare the survivor function computed from (1 1.1 ) with 
the life-table estimate S ( t ) .  Cox (1978, 1979) discusses this and other graphical 
methods for assessing the goodness of fit of the exponential function ( 1  1.2) to 
survival data. One useful technique, due to Nelson (1972), is to plot the ordered 
uncensored survival times ti against the estimated cumulative hazard, defined 
for data with no tied survival times as 

A(tj) = i(1) + i(2) + * * * + i(t,) 

r o d  d t 2 )  r(ti)’ 

1 +...+- +- 1 1 -- - 
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since i ( t )  = l / r ( t )  if there is a death at  t ;  i ( t )  = 0, otherwise. If the survival 
times follow the exponential distribution with hazard rate A, ( i ( t i ) ,  t i )  should 
fall close to a straight line of slope X through the origin. Tied survival times 
should be plotted as if they were (just) distinct (i.e., by arbitrarily breaking the 
ties). 

11.2.3 Effect of Grouping 

The grouping intervals used to calculate the life table should be as narrow 
as is consistent with the accuracy of the data. Had the data of Example 1 1.1 been 
recorded daily rather than weekly, many of the reported ties between censoring 
and remission times would have been avoided and more accurate estimates ob- 
tained. 

Kaplan and Meier (1958) show how an estimator of S ( t )  [although not of 
X ( t ) ]  may be obtained without any grouping of the survival times, provided that 
these have been recorded exactly. They call the resulting estimator the prod- 
uct-limit estimator, in contrast to the actuarial estimator discussed here. The 
two estimates will usually be very similar. Appendix 1 1B presents the formula 
for the product-limit estimator. 

Computationally, the difference between the two estimators is that in com- 
puting the numbers at  risk for the product-limit estimator, no “half-period” 
adjustment is made for the censored values. Thus in the product-limit estimator, 
r ( t )  counts all subjects whose reported death or censoring time is t or 
greater. 

11.3 COMPARISON OF LIFE TABLES 

We can assess the effect of treatment on survival by comparing the life tables 
of the different treatment groups. Often a graphical presentation will suffice 
to indicate the direction and approximate magnitude of major differences be- 
tween the groups. Figure l l  .1 graphs the survival functions calculated in Tables 
1 1.2 and 1 1.3 and clearly indicates the superiority of the treatment group. 

Various measures of survival calculated from a life table can be used to 
compare the survival of groups. Summary measures often quoted in the literature 
include: 

1. The median survival time. 
2. The estimated survivor function at t ,  where the time t must be specified 

in advance of seeing the data. 

Both these measures are easily calculated from the life table. The standard error 
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for 2 is given in Section 1 1.2. In comparing the estimated survival functions S ( t )  
from two independent life tables, the standard error of the difference between 
the two estimates is computed in the usual way as the square root of the sum of 
squares of the standard errors of each estimate. 

Unfortunately, these summary measures are generally inefficient since they 
use only part of the information in the life table. This section describes in detail 
the “log-rank‘’ significance test for the comparison of two lifetables and mentions 
some alternative tests. We then introduce the proportional hazards model and 
show how this permits the estimation of the relative risk 8 in a more general 
context than that of Section 1 1.1, 

11.3.1 The Log-Rank Test 

The idea behind the log-rank test for the comparison of two life tables is 
simple: if there were no difference between the groups, the total deaths occurring 
at any time should split between the two groups in approximately the ratio of 
the numbers at risk in the two groups at  that time. So if the numbers at risk in 
the first and second groups in (say) the sixth year were 70 and 30, respectively, 
and 10 deaths occurred in that year, we would expect 

70 lox-- 
70 + 30 - 

of these deaths to have occurred in the first group, and 

- 3  ]OX-- 
30 

70 + 30 
of the deaths to have occurred in the second group. 

A similar calculation can be made at  each time of death (in either group). By 
adding together for the first group the results of all such calculations, we obtain 
a single number, called the extent ofexposure (El), which represents the “ex- 
pected” number of deaths in that group if the two groups had the same distri- 
bution of survival time. An extent ofexposure (E2) can be obtained for the 
second group in the same way. Let 01 and 0 2  denote the actual total numbers 
of deaths in the two groups. A useful arithmetic check is that the total number 
of deaths 01 + 0 2  must equal the sum El + E2 of the extents of exposure. 

The discrepancy between the 0 ’ s  and E’s can be measured by the quantity 

For rather obscure reasons, x 2  is known as the log-rank statistic. An approximate 
significance test of the null hypothesis of identical distributions of survival time 
in the two groups is obtained by referring x 2  to a chi-square distribution on 1 
degree of freedom. 
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Example 11.1 (continued): Table 11.4 presents the calculations for the log-rank 
test applied to the remission times of Example 1 1.1. Note that the numbers at risk in each 
group and the number of deaths at each time come from the corresponding life tables, 
Tables 11.2 and 1 I .3. A chi-square of 13.6 is highly significant (P < .001), again indi- 
cating the superiority of the survival of the treatment group over that of the control 
group. 

Table 11.4 Log-Rank Calculation for the Leukemia Data 

Time, At Risk Relapses Extent of Exposure 
i T C Total T C Total T C Total 

1 
2 
3 
4 
5 
6 
7 
8 

10 
I 1  
12 
13 
15 
16 
17 
22 
23 

21 21 
21 19 
21 17 
21 16 
21 14 

17 12 
16 12 
14% 8 
12% 8 
12 6 
12 4 
1 1  4 
I 1  3 
9% 3 
7 2 
6 1 

20% 12 

Total 

42 0 2 2  
40 0 2 2  
38 0 1  1 
37 0 2 2  
35 0 2 2  
32% 3 0 3 
29 1 0 1  
28 0 4 4  
22112 1 0 1 
20% 0 2 2 
18 0 2 2  
16 1 0 1  
15 0 1  1 
14 1 0 1  

9 1 I 2 
1 1  2 7 

9 21 30 

12% 0 I 1 

- - -  

(01) ( 0 2 )  

6 I 
7 7 

Illustration: t = 23, 2 X - = I .7 143, 2 X - = 0.2857. 

Tesi of significance: 

1 .oooo 
1.0500 
0.5526 
1.1351 
1.2000 
1.8923 
0.5862 
2.2857 
0.6444 
I .2295 
1.3333 
0.7500 
0.7333 
0.7857 
0.7600 
1 S556 
1.7143 

19.2080 
(El) 

1 .oooo 
0.9500 
0.4474 
0.8649 
0.8000 
1.1077 

1.7143 
0.3556 
0.7705 
0.6667 
0.2500 
0.2667 
0.2143 
0.2400 
0.4444 
0.2857 

10.7920 

0.4138 

(E2) 

2 
2 
1 
2 
2 
3 
1 
4 
1 
2 
2 
1 
1 
1 
1 
2 
2 

30 
- 

Estimate of relaiive risk: 

91 19.2 

21110.8 
a=-- - 0.24 
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The log-rank test as presented by Pet0 et al. (1977) uses the product-limit 
life-table calculations (Section 1 1.2.3) rather than the actuarial estimators shown 
in Tables 1 1.2 and 1 1.3. As discussed in Appendix 1 1 D, the distinction is unlikely 
to be of practical importance unless the grouping intervals are very coarse. 

Pet0 and Pike (1973) suggest that the approximation in treating the null 
distribution of x2 as a chi-square is conservative, so that it will tend to understate 
the degree of statistical significance. Pet0 (1972) and Pet0 and Pet0 (1972) give 
a permutational “exact test,” which, however, is applicable only to randomized 
studies. In the formula for x2 we have used the continuity correction of sub- 
tracting ‘/2 from 101 -‘El I and 1 0 2  - 8 2 1  before squaring. This is recommended 
by Pet0 et al. (1977) when, as in nonrandomized studies, the permutational 
argument does not apply. Pet0 et al. (1977) give further details of the log-rank 
test and its extension to comparisons of more than two treatment groups and 
to tests that control for categorical confounding factors. The appropriate test 
statistics are analogous to the corresponding chi-squares for contingency tables 
(Snedecor and Cochran, 1967, Chap. 9). 

11.3.2 Estimation: The Proportional Hazards Model 

In the analysis of Example 1 1.1 by the tot$ time at risk approach of Section 
11.1, we were able to calculate an estimate 0 of the relative risk 8. Recall that 
0 is the ratio of the risk in the treatment group to that in the control group. When 
the hazard function A ( t )  for each group depends on time, the total time at risk 
approach is inappropriate. However, it may still be reasonable to assume that 
the hazard functions are proportional, that is, that, for each time t 

A d t )  = ~ A o W ,  (11.3) 

where the subscripts 1 and 0 refer to the treatment and control groups, respec- 
tively. This assumption implies that the effect of the treatment is to multiply 
the hazard at all times by the factor 0, which is assumed not to depend on 
time. 

It can be shown that when (1  1.3) holds, there is an approximate relationship 
between the corresponding survivor functions of the form 

which may also be written as 

The approximation here is due to the discreteness of the data; the relation would 
be exact if survival times were measured exactly (in continuous time). A more 
precise definition of the A(?) as instantaneous rates of failure given in Appendix 
11A avoids the need for approximation. 
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It is possible to derive various ad hoc procedures for the estimation of 0 in 
( 1  1.3). based on weighted and/or constrained linear regression applied to the 
estimated survivor functions from Tables 1 1.2 and 11.3. Cox (1972), who in- 
troduced the proportional hazards model, describes a better method for esti- 
mating 0, which is sketched in Appendix 11C. A computer will generally be 
required. A test of the null hypothesis that 0 = 1 is als? available. Cox’s method 
applied to, the leukemia data of Example 1 1.1 yields 0 = 0.19, here close to the 
estimate 0 = 0.22 obtained from the “total time at risk” approach. 

An alternative estimator suggested by Pet0 et al. (1977) uses the log-rank 
calculations. From Table 1 1.4 we form, for each group, the ratio of the observed 
number of deaths in each group to the total “extent of exposure to risk” in each 
group. The estimate of relative risk is the ratio of these two quantities, here 0 
= 0.24. Cox’s estimator is preferable to the log-rank estimator, although it re- 
quires more computation. Breslow (1975) indicates that the log-rank estimator 
of 0 is biased toward unity, even in large samples. He states, however, that the 
bias is minimal for ‘/2 S 0 < 2, only becoming noticeable for extreme values of 
0. 

Yet another approach is to apply the Mantel-Haenszel estimator (Sections 
7.6 and 7B.3) for the common odds ratio in a series of 2 X 2 contingency tables. 
The interpretation of the treatment effect 0 as an odds ratio rather than a relative 
risk is justified provided that the grouping intervals used to calculate the hazard 
functions A,-,(t) and A l ( t )  are sufficiently fine to ensure that these hazards are 
both small (see Chapter 3). In fact, the exact discrete-time proportional hazards 
model given in Appendix 1 1 C defines 0 to be an odds ratio. 

Each row of Table 1 1.4 can be reexpressed as a 2 X 2 contingency table: for 
example, Table 1 1.5 gives the final row, corresponding to t = 23. 

Table 11.5 Reexpression of the Final Row of Table 11.4 
_ _ ~  ~ 

Deaths Survivors Total 

Treatment group I (ail - .  
Control group 

Total 

5 (bi) 6 

The Mantel-Haenszel estimator of 0 is computed by the formula 

where the symbols are as defined in Table 1 1.5. For these data we find that 8 
= 0.194, in good agreement with Cox’s analysis. This calculation includes the 
“half-counts” corresponding to censored observations. Breslow ( 1975) quotes 
an unpublished remark of D. G. Clayton that the Mantel-Haenszel estimator 



216 SURVIVAL ANALYSIS 

closely approximates the maximum likelihood (Cox) estimator when 0 is near 
unity. 

Although the computational details of Cox’s method are beyond the scope 
of the book, it is worth noting that they are very similar to those of the logistic 
analysis of matched samples in case-control studies (Section 13.3.2). A death 
at time t is regarded as a “case” whose matched “controls” are all subjects still 
alive and in the study at time t .  Liddell et al. (1977) discuss this interpretation 
of the proportional hazards model in the context of a mortality study of asbestos 
workers. 

11.3.3 Other Significance Tests 

The log-rank test, apparently first proposed by Mantel (1 966), has many 
competitors in the literature. Cox (1953) derived an approximate F test under 
the constant risk model. Gehan (1965a, b) proposed a version of the Wilcoxon 
two-sample test applicable to censored data. Mantel (1967) gave an alternative 
procedure for computing this statistic. Efron ( 1967) modified Gehan’s test to 
achieve greater power and permit estimation of a parameter (not the relative 
risk 0) measuring the difference between the two survivor functions. Breslow 
(1970) extended Gehan’s test to the comparison of more than two samples. 

The choice of which test to use depends on whether the proportional hazards 
model is the likely alternative hypothesis. If so, then Cox’s (1 972) likelihood 
test or the log-rank test, which is closely related to it, should be used. According 
to Tarone and Ware (1977), who compared the two tests, the modified Wilcoxon 
statistic gives greater weight than the log-rank statistic to differences occurring 
near the beginning of a study and is less sensitive to events occurring when very 
few individuals remain alive. 

11.4 INCLUSION OF BACKGROUND FACTORS 

The straightforward comparison between the treatment and control groups 
discussed in Section 1 1.3 may be distorted by confounding factors. Fortunately, 
the proportional hazards model extends easily to include the effects of other 
factors besides the treatment of interest on the outcome. Cox’s method can test 
whether a background factor, or a combination of several background factors, 
affects the outcome, and it provides estimates of the treatment effect adjusted 
for confounding factors. Although an important feature of this regression ap- 
proach, like that of logit analysis with which it has much in common, is its ability 
to handle several background factors simultaneously, for ease of exposition we 
restrict ourselves to a single, numerical, confounding factor and a dichotomous 
treatment. Appendix 11C introduces the more general model. 
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The extended proportional hazards model assumes a risk of death at  time 

(11.4) 

t of 

AI(t)  = O A * ( t )  exp (PIX) 

for individuals in the treatment group and 

Ao(t)  = A*(?) exp ( P o w  (11.5) 

for individuals in the control group. Here x denotes the value of the background 
variable, which differs from individual to individual, and and 00 are coeffi- 
cients which measure the influence of this background variable on the hazards 
in the two groups. If the two groups differ on X ,  then X will be a confounding 
variable. The parameter 8 is the ratio of hazards for a treatment and control 
subject each with X = 0. The function A*( t )  is supposed unknown. Since (1 1.5) 
with X = 0 yields A&) = h*(t), we can interpret A*(t) as the hazard for a 
control subject with X = 0. 

The ratio of hazards for a treatment and control subject each with the same 
nonzero value of X is 8 exp ( P I X  - POX). This will vary with X unless 01 = PO 
when its value will be O irrespective of X. In the terminology of Chapter 3, PI 
= PO means no interaction between treatment and confounding variable, so that 
the effect of the treatment is to multiply the hazard by 8 regardless of the level 
of the background variable. 

If we set I$ = In 8 (0 = es) ,  define the treatment indicator variable R by 

0 for the control group 
1 for the treatment group, 

R = [  

and set 6 = 
tion, 

- PO, then (1 1.4) and (1 1.5) may be written as a single equa- 

A ( t )  = A * ( t )  exp ( 4 R  + POX + 6 X ) .  (11.6) 

Note that the term 6XR is zero for control subjects andis (01 - Po)X for treated 
subjects. 

The method of partial likelihood, discussed briefly in Appendix 11C and more 
fully in Cox (1972, 1975) can be used to fit the model ( 1  1.6). Specifically, a 
likelihood ratio test of the hypothesis of no interaction (6 = 0, or equivalently 
PI = PO) is available. I f  no interaction is found, a likelihood ratio test of the 
hypothesis of no treatment effect ( 4  = 0) may be performed. The partial like- 
!hood also gives estimates, with standard errors, of all coefficients. In particular, 
8 = e i  is an estimate, adjusted for the background variable, of the true ratio of 
hazards 8. 

Example 11.1 (continued): The initial white blood cell count is known to influence 
prognosis in leukemia. High white blood cell counts suggest short remission times. Table 
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11.6 presents hypothetical values for the common logarithm of the white blood cell count 
for the leukemia subjects of Example 1 1 .l.  (We use the logarithms to avoid giving undue 
weight to the very large counts.) These data raise the possibility that the tendency to longer 
remission times in the treated subjects may be due to their (on average) more favorable 
white blood cell counts. 

Table 11.6 Hypothetlcal Log ( White Blood Cell Counts) for the Leukemia 
Subjects of Table 11.1 

Treatment Group Control Group 

Survival Time' log (WBCC) Survival Time log (WBCC) 

61  3.20 1 2.80 
6 2.3 I 1 5.00 
6 4.06 2 4.91 
6 3.28 2 4.48 
7 4.43 3 4.01 
9* 2.80 4 4.36 

1 o* 2.70 4 2.42 
10 2.96 5 3.49 
1 I *  2.60 5 3.97 
13 2.88 8 3.52 
16 3.60 8 3.05 
I7* 2.16 8 2.32 
I9* 2.05 8 3.26 
20* 2.0 I 1 1  3.49 
22 2.32 I I  2.12 
23 2.57 12 1 S O  
25* I .78 12 3.06 
32* 2.20 I5 2.30 
32* 2.53 17 2.95 
34* 1.47 22 2.73 
35* I .45 23 1.97 
(mean) 2.64 (mean) 3.22 

~ ~ ~~ ~~ 

' An asterisk indicates incomplete follow-up. 

To test the hypothesis of no interaction, we compare twice the change in log likelihood 
when 6 is included in the model to a chi-square on 1 degree of freedom (Appendix 1 IC). 
Here the interaction term is clearly nonsignificant (x :  = 0.43). Maximum likelihood 
estimates of cj and 0 in the model 

A(?) = A*(?) exp (cjR + /?X) (11.7) 

without the interaction term are 

4 = -1.29 
6 = 1.60 

(standard error = 0.422) 
(standard error = 0.329). 
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This analysis confirms that the white blood cell count is a strong indicator of remission 
duration, but also shows that difference in the white blood cell counts of the two groups 
cannot explain away the apparent treatment effect. The adjusted estimate of the ratiq 
of hazards namely 8 = e-1.29 = 0.27, is closer to unity than the unadjusted estimate 8 
= 0.19 given in Section 11.3, but it is still highly significant (x: = 10.39). 

11.5 ESTIMATING THE DISTRIBUTION OF SURVIVAL 
TIME 

Although primary attention will usually focus on the estimator 8 = d of 
treatment effect, the corresponding survivor functions S , ( t )  and So(t)  may also 
be of interest. In Section 11.2 these were estimated by separate life-table cal- 
culations for the treatment and control groups. With heterogeneous groups as 
discussed in Section 1 1.4, the life-table calculations are not appropriate, as they 
do not control for effect of the background factor. Even with homogeneous 
groups, we may wish to derive estimates of S l ( t )  and S,( t )  which reflect and 
make use of the assumption (1 1.3) of proportional hazards. 

The method proposed by Cox (1972) for estimating survivor functions within 
the context of the proportional hazard model has not been widely used. In the 
discussion published with Cox’s paper, Oakes (1972) and Breslow (1972) pro- 
posed simpler approaches, which were later elaborated in Breslow (1974). 
Kalbfleisch and Prentice (1973) propose a slightly different procedure. The 
common idea behind all these methods is to approximate the underlying hazard 
function A*(?) by a function that is constant over suitably defined grouping 
intervals of the time scale. The constant for each interval is estimated separately 
by maximum likelihood. Appendix 1 1D discusses Breslow’s proposals in more 
detail. 

11.6 TESTING THE PROPORTIONAL HAZARDS MODEL 

For the life-table comparison of two homogeneous groups discussed in Section 

h ( t )  = O A O ( t ) ,  (11.3) 

is fundamental to the derivation of a single estimator of the realtive risk 8. 
Fortunately, this assumption can be tested in several ways and if the data suggest 
a particular form of departure from the assumption, a modified analysis can take 
this into account. Methods of testing for proportional hazards fall naturally into 
two types, analytical and graphical, and we consider each type in turn, after a 
brief discussion of time-dependent explanatory variables. 

1 1.3, we saw that the assumption of proportional hazards, 
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11.6.1 Time-Dependent Explanatory Variables 

The discussion of the Cox model so far has assumed that although the treat- 
ment and confounding variables differ among individuals, for each individual 
each variable is constant over time (i.e., has a single value). This assumption 
can be relaxed by including explanatory variables that depend on time. For ex- 
ample, if blood pressure were thought to influence survival, the blood pressure 
of a patient on a particular day may be more relevant to the patient’s risk of death 
on that day than the same patient’s blood pressure on entry to the study. Each 
patient would have a series of blood pressure readings, the series terminating 
when the patient dies, or is censored. 

Fortunately, Cox (1975) demonstrated that his method can cope with such 
time-dependent explanatory variables, provided that they also vary between 
individuals. Cox’s method cannot assess time-dependent effects common to all 
patients, as these are subsumed into the unknown function A*(?). 

Section 1 1.7 gives an example where primary interest centers on the effect 
of a time-dependent treatment variable. 

11.6.2 Analytical Tests for the Proportional Hazards Model 

Here we show how the inclusion in the hazard function of a suitably chosen 
time-dependent background variable in the manner of Section 11.4 leads to a 
simple test of the assumption of proportional hazards. The new variable repre- 
sents an interaction effect between the treatment indicator variable and 
time. 

Example 11.1 (continued): Cox (1972) defined a new variable 

t - 10 for the treatment group 
lo for the control group. 

z ( f )  = 

The hazard functions for the two groups become 

X,(r) = X*(r) exp [4 + P(t - lo)] 

X d r )  = A*( t ) ,  

where the coefficients 4 and 0 are to be estimated from the data. The ratio of hazards 
in the two groups becomes 

which, according as 0 is positive or negative, will be an increasing or decreasing function 
of time. The constant 10, close to the mean survival time in the two groups, is inserted 
for computational convenience. 

given by Cox’s procedure indicates the direction and The estimate of the coefficient 
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approximate magnitude of any time trend in the ratio of hazards. A test of the hypothesis 
that @ = 0 is also available. I n  this example no evidence of such a time trend was 
found. 

If desired, other time-dependent terms, for example quadratic functions of 
time, can be fitted to search for more complicated time trends in the ratio of 
relative risks. 

11.6.3 Graphical Methods 

Graphical methods for testing the proportional hazards model (1 1.3) proposed 
by Kay (1977) and Crowley and Hu (1977) rely on the notion of generalized 
residuals discussed by Cox and Snell (1968). If the underlying hazard function 
h(t) and the coefficient 8 were known, each time to death could be transformed 
to an exponentially distributed variable by a suitable reexpression of the time 
scale. Although the treatment and control groups will need separate formulas, 
the result would be a single series of independent exponentially distributed 
variables with the same mean. Censored times to death could similarly be 
transformed to censored exponential variables. 

Although the function x ( t )  and coefficient 0 are not generally konwn, they 
can be estimated by the methods of Sections 1 1.4 and 1 1.5, and reexpression 
formulas obtained using the estimates in place of the true values. A plot of the 
ordered values of the generalized residuals against their expected values under 
the exponential distribution gives some indication of the goodness of fit of the 
model. This approach is similar to the cumulative hazard plots mentioned in 
Section 1 I .2. 

Unfortunately, the sampling theory of generalized residuals is complicated 
and has apparently not been investigated in survival analysis. It would seem that 
departures from the model would have to be quite substantial before they could 
be detected in this way. 

11.6.4 Effect of Violations of the Model 

If the Rroportional hazardmodel does not fit the data, calculation of a single 
estimate 8 of treatment effect is inappropriate, as the relative risk of the treat- 
ment will vary and must be estimated by a function of time rathcr than by a single 
value. In Example 1 1.2 (Section 1 1.6.2), had the coefficient p of z ( t )  been sig- 
nificantly different from zero, we would have estimated the time-dependent 
relative risk as 

B(t) = exp [$ + &t - 1011, 

where $ and 8 are the estimated coefficients of R and z given by Cox’s anal- 
ysis. 
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11.6.5 Extension3 

Although this section has concentrated on testing the basic proportional 
hazards model (1  1.3), both the analytical and graphical methods generalize 
easily to the extended proportional hazards model introduced in Section 1 1.4 
to handle confounding factors. Following the analytical approach, we may in- 
clude in the fitted model terms representing interactions between confounding 
factors and time, as well as or instead of the term z ( t ) ,  which represents an in- 
teraction between the risk factor and time. The goodness of fit of the various 
models can be assessed by the likelihood ratio statistics, as described in Section 
I 1.4 and Appendix 1 1 C. 
Or, following the methods of Section 11.6.3, we may derive reexpression 

formulas to convert the survival times into a series of independent and identically 
distributed exponential variables. These reexpression formulas will involve the 
treatment variable, the confounding variable, and their estimated coefficients. 
Kay (1977) and Crowley and Hu (1977) give examples of this technique. 

11.7 ALLOWANCE FOR DELAY IN TREATMENT 

Scarcity of resources may enforce a delay between the entry of a subject into 
the study and the application of a treatment. If this delay results in an appreciable 
number of deaths or losses to follow-up before the treatment is applied, estimates 
of treatment effect that do not take into account the delay or the deaths before 
treatment may be biased, for the subjects who actually receive a treatment will 
have been selected from the original study population by their ability to survive 
the delay. This is also a difficulty commonly encountered when evaluating in- 
tensive-care units or other emergency services. 

In these situations the choice bf starting point for the measurement of survival 
becomes unclear, Pet0 et al. (1977) suggest that in randomized studies, survival 
should be measured from the data of randomization and that for the purposes 
of statistical analysis, all subjects allocated to a particular treatment should be 
regarded as having received that treatment on the date of the allocation. A 
comparison of one treatment against another becomes in effect a comparison 
of a policy of applying the first treatment where possible against a policy of 
applying the second treatment where possible. Provided that appropriate sta- 
tistical methods are used, as discussed in earlier sections, subsequent failure to 
administer the allocated treatment will not bias this comparison. 

Although a similar approach can sometimes be used in nonrandomized studies, 
often these will have no decision point comparable to the date of randomization. 
Sometimes the only control or comparison group for the evaluation of a treatment 
will be those subjects who were intended to receive the same treatment but who 
did not receive it; naive comparisons can then be very misleading. 
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Nontransplant 
patients 

Transplant patients 

Example 11.2 (continued): The study population consists of all patients judged 
suitable for heart transplantation. Although the conference date when the potential heart 
recipient is selected provides a natural starting point for the study of subsequent survival 
time, patients cannot be operated on until a donor is found. Since many patients will die 
before a donor can be found, there are two categories of patients: those who receive a heart 
and those who do not. Their respective case histories are summarized in Figure 1 1.2. Some 
patients are still alive at the end of the study. 

Death 
or 

IL 
U censoring 

V W 
a 

We label the survival time (in days) of a typical nontransplant patient by U. For a 
transplant patient the time is labeled V +  W. where Vis the waiting time between the 
conference date and transplant date, and W is the survival time after the transplant op- 
eration. Note that the times to death in each group may be censored. 
- The first published evaluations compared the values of Wand U .  The mean values, 
U = 108 and W = 709, were computed using the “total time at risk” approach discussed 
in Section 11 .l. (Ifpatients alive at the end of the study are excluded, the calculations 
give U = 29.2 and W = 203.8.) 

But there is a serious bias in this approach, as was pointed out by Gail (1972). The 
principal reason a transplant candidate does not receive a heart is that he or she dies before 
a donor is found. The patients who survive until transplantation might be hardier, and 
so likely to survive longer after transplantation, regardless of the merits of the opera- 
tion. 

Crowley and Hu (1977) give an ingenious alternative analysis which avoids this bias. 
They define a time-dependent treatment indicator variable R as follows: 

0 
1 

if the candidate has not at that time received a new heart 
if the candidate has at that time received a new heart. 

R = (  

For a nontransplant patient, R = 0 throughout the period U of Figure 11.2 between 
the conference date and censoring, or death, whereas a transplant patient would have 
R = 0 for the period V between the conference date and transplant, and R = 1 for the 
period W between transplant and death. If no other background variables are considered, 
the hazard at time t after the conference date becomes 

A ( t )  = A * ( t )  
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if the patient has not a t  that time received a heart and 

X(r) = eQ*(t )  

if the patient has by that time received a new heart. Transplantation will be beneficial 
if /3 <O. 

Crowley and Hu (1977) perform several analyses, including other important back- 
ground variables, in particular, age. Their tentative conclusion is that “transplantation 
can prolong survival for certain younger patients if a suitably matched heart can be 
found.” 

Earlier evaluations of the Stanford heart transplant program along similar lines were 
given by Turnbull et al. (1974) and by Mantel and Byar (1974). The problem of delay 
between the decision to apply a treatment and its actual application can occur in many 
studies. The method of analysis described here requires that the amount of delay (time 
V of Figure 1 1.2) be recorded for each subject who does receive the treatment and also 
requires knowledge of the survival and censoring times of the untreated patients. 

11.8 SELF-CENSORING: COMPETING RISKS 

An important strength of the methods discussed in this chapter is that they 
do not require equal patterns of censoring among treatment groups. The validity 
of the analysis is not affected if the censoring is more severe in one treatment 
group than in another. 

However, the analyses do require that the censoring not be related to the 
outcome. The prognosis for a censored subject at the time of censoring must not 
be affected by the knowledge that the subject is censored. In Example 11.1 
(leukemia data), the analysis assumes that a patient in the treatment group who 
is censored at 1 0  weeks (say) would have the same expected (future) remission 
time as a patient in the treatment group who has remained in remission for 10 
weeks and is not censored. In Example 11.2 (Stanford heart transplant program), 
the assumption is that a patient who is operated on (say) 10 weeks after the 
conference date is typical of all selected but not yet transplanted patients who 
are still alive 10 weeks after the conference date. 

If the censoring pattern is related to the outcome, serious difficulties can arise. 
As an extreme example, consider the hospital that transfers all its terminally 
ill patients to another institution just before their death. If these are treated as 
censored observations, the hospital can truthfully, if meaninglessly, claim a zero 
death rate among its terminally ill patients! 

A more realistic example is given by Fisher and Kanarek (1974). They quote 
a study concerning a medically supervised exercise program for people with 
cardiovascular problems, including those with a previous history of myocardial 
infarction. A subsequent follow-up study showed that those who drop out of the 
study are at an elevated risk for a heart attack, compared with those who stay 
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in. Failure to allow for this censoring bias in the analysis of the study would lead 
to an overoptimistic assessment of the effectiveness of the program. 

If the censoring is related to the outcome but not to the treatment, then Cox’s 
model may lead to valid comparisons between groups even if the life-table esti- 
mate for a single group is biased. For example, suppose that in the Cox model 
(1 1.3) there is a probability d ( t )  (which may depend on t )  that a death at  time 
t is recorded as a censoring. Although the true hazard rates are 

A&) = A * ( t )  

A , ( t )  = e A * ( t ) ,  

A&) = [ l  - d ( t ) ] A * ( t )  

& ( t )  = [ l  - d(t)]BX*(t). 

as before, the recorded hazard rates will be 

Cox’s method applied to the recorded death rates will estimate the ratio of these 
two hazard functions. Since the term [ 1 - d(t)]  cancels, this ratio equals the 
ratio 8 of the true hazard functions. Although the misrecording of deaths as 
censored values will reduce the precision of the estimate of 8, it will not introduce 
bias. 

When the censoring is related to both the risk factor and the outcome, a biased 
and inconsistent estimator of 8 will result. The only fully satisfactory solution 
is to obtain more data, perhaps by a further study, on the fate of the subjects who 
are lost to follow-up. If only a small proportion of the observations are censored, 
“optimistic” and “pessimistic” analyses for each treatment group may be con- 
structed by arbitrarily setting subsequent survival after censoring to be infinite 
or zero, respectively. Comparison of the optimistic analysis for one group with 
the pessimistic analysis for another group will yield a lower limit to the estimated 
relative risk, and an upper limit can be found similarly. 

11.8.1 Competing Risks 

More generally, we may consider deaths from several different causes, in- 
cluding by convention, censoring as one “cause.” A considerable literature has 
arisen on this topic, known as competing risks. [See, for example, Chiang (1961a, 
b; 1970) and Lagakos ( 1  978).] If  the different causes of death are unrelated 
(here we speak of independent risks), separate life-table estimates of the survival 
distribution corresponding to each cause of death can be obtained by applying 
the methods of Section 1 1.2, taking deaths from all causes other than the one 
under consideration as censored observations. 

If, as often happens, the different causes of death are related, so that a subject 
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with a higher-than-average risk of death from one cause is likely also to have 
a higher-than-average risk of death from other causes, the independent risk 
model may be inappropriate. For example, in a cancer study, a severely ill patient 
may commit suicide because of the cancer. This means that the distribution of 
cancer deaths that would have occurred among the suicides had they not com- 
mitted suicide would differ from the distribution of cancer deaths among those 
who did not commit suicide. Regarding the suicides as censored observations 
would result in an underestimate of the true cancer death rate. Thus in cancer 
studies it may be safer to estimate treatment effects using deaths from all 
causes. 

These issues have been discussed from a theoretical standpoint by Cox (1959), 
Gail (1979, Tsiatis (1979, and Williams and Lagakos (1977). A possible ap- 
proach is to identify prognostic factors related to the causes of death under study. 
Consider, for example, a study of deaths from lung cancer and from heart disease 
among a group of workers exposed to a suspected health hazard. The two diseases 
may not be related among nonsmokers, or among smokers, even if they are re- 
lated in the study group as a whole. The independent risks model could then be 
applied after stratification in the study group by smoking habit. 

It must be stressed, however, that without additional data there is no way of 
statistically testing the validity of the independent risks model. 

11.9 ALTERNATIVE TECHNIQUES 

Although it is both simple and flexible, the proportional hazards model is not 
the only approach to the analysis of survival data. Three other methods are 
worthy of mention. 

11.9.1 Modeling the Predicted Survival Time 

Zippin and Armitage (1966) model the predicted survival time in the absence 
of censoring as a linear function of explanatory (risk and confounding) variables. 
If  constant hazards are assumed, this amounts to expressing the reciprocal of 
the hazard function for each individual as a linear function of explanatory 
variables. A drawback of this approach is that it can lead to negative predicted 
survival times. 

11.9.2 Additive Hazards 

Further developing the idea of Section 11 -8, we may think of the risk and 
confounding factors as acting additively on the hazard function rather than 
multiplicatively. Each explanatory variable introduces a “competing risk” which 
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operates independently of the other competing risks, leading to a total hazard 
function of the form 

X(t )  = A*(t)  + v, 
where v depends on the explanatory variables and so varies from individual to 
individual, and A*(t) is a hazard function common to all individuals. 

Unfortunately, this model, although intuitively appealing, is hard to analyze, 
since the actual risk that results in death cannot be observed. Moreover, the 
possibility of negative estimated risks is still present. 

Drolette ( 1966) discusses survival models with additive hazards. 

11.9.3 Accelerated Life Testing 

In accelerated life testing it is assumed that the explanatory variables act on 
the risk of death by speeding up or slowing down the time scale. It can be shown 
that this leads to a hazard function 

A ( t )  = vX*(vt) (1 1.8) 

with v and A*(t) defined as in Section 1 1.9.2. This differs from the proportional 
hazard model, which has 

A ( t )  = vA*( t )  (11.9) 

It is easy to show however, that (1 1.8) and (1 1.9) define the same class of 
hazard functions if A * ( t )  takes the special form 

A * ( t )  = (Yrf l - ’  

where (Y and fl  are unknown constants. This is known as the Weibull hazard 
function and is of considerable importance in industrial applications of survival 
analysis. These often involve testing components to destruction after subjecting 
them to a stress which is assumed to speed up the aging process-hence the name 
and technique of accelerated life testing. 

Further discussion of acelerated life testing and Weibull hazard functions, 
including estimation of the constants (Y and fl ,  is given by Mann et al. (1974), 
Gross and Clark (1975), and Kalbfleisch and Prentice (1979). 

At least in applications where no theoretical form for survival distributions 
can be assumed, as is usual for studies involving human subjects, techniques 
based on the proportional hazards model appear superior to those introduced 
in this section. As shown by Kalbfleisch (1974), Efron (1977), and Oakes (1977), 
the relative efficiency of Cox’s regression approach, compared with likelihood 
methods that assume a fully parametric form for the hazard function, is generally 
good. 
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APPENDIX 11A SURVIVAL ANALYSIS IN CONTINUOUS 
AND DISCRETE TIME 

Using the notation of conditional probability, the discrete time hazard function 

A(?) = Pr {death between t and t + 1 I survival until r ) .  

defined in Section 1 1.2 may be written 

The survivor function 

S ( t )  = Pr {survival beyond t )  

is related to A(t )  by the equation 
t 

i = O  
S ( t  + 1) = n [ l  - A ( i ) ] .  

The use of the discrete hazard in the discussion of the proportional hazard 
model (Section 1 1.3) is not quite correct theoretically. If the survivor function 
S ( t )  is continuous, it is appropriate to define A( t ) ,  for all real t ,  as a hazard rate 
or density, 

1 

h--0 h 
A(t) = lim - Pr (death between t and t + h I survival until t ) .  

It can be shown that, with S ( t )  defined as above, 

In continuous time, the proportional hazard model of Section 1 1.3 is still 

x , ( t )  = exo(t), 

that is, as given in Section 11.3 but with the different interpretations of A o ( t )  
and Al(t ) .  The relation 

sl(t) = [ so( t ) le  

between the survivor functions of the two groups is now exact. 
For data in discrete time, the original definition of A ( t )  in Section 1 1.2 is re- 

tained, but the relation between the hazard functions in the two groups is 
modified to 

A l ( t )  - - 8AO(t) 

1 - A , ( t )  1 - A&) 
to aid in fitting the model (Cox, 1972). In this model B is interpreted as the odds 
ratio for the treatment effect rather than the relative risk. However, the treat- 
ment effect 8 as defined here will be close to that introduced in Section 11.3 
provided that the grouping intervals are not too wide. 
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APPENDIX 1 IB THE KAPLAN-MEIER (PRODUCT-LIMIT) 
ESTIMATOR 

Kaplan and Meier (1958) give a simple estimator of the underlying survivor 
function S ( t )  for the survival time of a homogeneous group of subjects, from 
censored data, which, unlike the actuarial (life-table) estimatFr introduced in 
Section 1 1.2, does not require preliminary calculation of the A(t). Let the ob- 
served times of death be denoted by t < t 2  < - - - < t,,. and suppose that there 
are exactly ri individuals who are known to survive untiltime ti. of whom mi die 
at time t i .  The estimated survivor function is defined as 

The Kaplan-Meier estimator, also known as the product-limit estimator, will 
usually be numerically similar to the actuarial estimator, but because of the 
arbitrary nature of the grouping needed to calculate the actuarial estimator, 
it possesses certain advantages. Breslow and Crowley (1974) point out that the 
actuarial estimator does not become unbiased in large samples, although they 
suggest that the bias is not likely to be serious unles. deaths occur in fewer than 
10 of the grouping intervals used to calculate the A(r). 

The Kaplan-Meier estimator is approximately unbiased in large samples 
provided that the survival times t i  are reported exactly (i.e., without rounding 
or truncation). 

APPENDIX 11C COX'S REGRESSION MODEL 

The regression model introduced by Cox (1972) specifies the hazard rate 
Aj( t ,  Xi) for the ith subject in terms of a vector of covariates Xi(t) = ( X i l ( t ) .  
Xj2(t). . . . , --Yip(?)) specific to that individual and a vector 0 = (01, 0 2 ,  . . . , O,,) 
of regression parameters common to all subjects, as 

Ai( t ,  Xi) = A*(t) exp ~ r x i r ( t ) ]  = A*(t)eoXi(t)  

where A*(t) is an unknown function of time. This generalizes the proportional 
hazards model by replacing the relative risk 6' by the exponential of a linear 
predictor which may depend on many different covariates. Model (1 1.7) of 
Section 1 1.4 is recovered by taking p = 2 and the two components of X to be the 
treatment indicator variable (R) and the confounding variable. 

The ratio of the hazard functions of two subjects, say the first and the second, 
becomes 

(11.10) 
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If, as often happens, theXir(t) do not depend on time but are constant for each 
subject, the hazard ratio ( 1  1-10) is also not dependent on time. 

Cox ( 1  972,1975) has shown how estimates of the coefficients PI, 0 2 , .  . ., Pp 
may be obtained. Let ti denote the time of death of patient i, let the patients be 
ordered so that t 1 < t 2  < < tn, and suppose that there are no ties (otherwise, 
a slightly more complicated procedure is needed). Let Ri denote the set of in- 
dividuals whose survival or censoring times equal or exceed ti. Then the condi- 
tional probability that subject i dies at  time t i ,  given that exactly.one subject 
from Rj dies at time t i ,  is 

(11.11) 

The estimate B of the vector 4 is chosen to maximize 

L = bxj(t) - c In c eBxi(r) , 
i =  I i:, lrRi ] 

the sum of the logarithms of (1 1.1 1). Efficient computer programs can achieve 
this quite rapidly provided that p and n are not too large. 

Cox ( 1  975) has indicated that L has the large-sample properties of a log- 
likelihood function, so that the estimates ) of B are asymptotically normally 
distributed with mean b and covariance matrix given by the inverse of the ex- 
pectation of the matrix of second derivatives of L with respect to @. Efron (1977) 
and Oakes (1977) have shown how this expectation can in principle be calculated. 
However, it is much simpler to estimate it by the actual matrix of second de- 
rivatives of L, calculated at the observed maximum b = b. The square roots of 
the diagonal elements of the inverse of this matrix give standard errors for the 
estimated parameters P,. To test the null hypothesis HO$, = ,& = - = PS = 
0, we can calculate the ratio v of the unconstrained maximum likelihood to the 
likelihood maximized under the constraint 81 = )2 = 9 9 = bs = 0 and refer 
2 In v to the chi-square distribution with s degrees of freedom. 

APPENDIX 11D BRESLOW’S ESTIMATOR OF THE 
SURVIVOR FUNCTION IN COX’S MODEL 

In this appendix we shall assume that no covariate function depends on time. 
Under Cox’s model the distribution function of the survival time of a subject 
with Xi1 = Xi2 = = Xip = 0 is 

F*( t )  = 1 - exp [- Jr X*(u)  du] = 1 - S*(t) .  

For a subject with a nonzero value X of the vector of covariates, the distribution 
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function is F ( t )  = 1 - S ( t ) ,  where 

= [S*(t)l*, 

where a = epx. 

after having obtained an estimate b of 6. Breslow (1974) suggests that 
As discussed in Section 1 1.5, we may wish to estimate these survivor functions 

where, as in Appendix 1 1 C, t 1 < t 2  < . - < tn denote the ordered times of death, 
and Ri and mi denote the risk set and number of deaths at  time t i ,  respectively. 
Breslow suggests interpolation between successive ti ,  making S* ( 2 )  a continuous 
function o f t ,  but it seems more natural to preserve the close analogy with the 
Kaplan-Meier estimate (Appendix 1 1 B) for a homogeneous group of subjects 
and write 

S * ( t )  = S*(t j )  t j  5 2 < Z j + l .  

For a nonzero value of X, the corresponding estimate is 

S(2) = [ S * ( f ) ] k .  

with & = eBx. 

by Tsiatis (1978a, b). 
The sampling theory of Breslow’s estimator has recently been investigated 
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The typical premeasure/postmeasure design consists of an assessment for 
each individual on the outcome variable prior to the treatment (the premeasure) 
and a remeasure of each case on the same outcome variable after the treatment 
(the postmeasure). For example, in medical research we might wish to compare 
a new drug therapy for hypertension with the conventional treatment. It seems 
natural to measure the blood pressure for each subject in both treatment and 
comparison groups prior to the therapy and again some time later (after, say, 
3 months of treatment). If  subjects are not randomly assigned to groups, ap- 
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parent outcome differences between the groups in blood pressure level may be 
attributable to the alternative drug programs, to differences in blood pressure 
prior to the treatment, or to other factors confounded with group member- 
ship. 

In one sense, the availability of a premeasure presents no new conceptual 
issues. The premeasure is simply a variable to be considered for use in the ad- 
justment procedures introduced in Chapters 6 to 10. On the other hand, the fact 
that the premeasure represents a pretreatment observation on the outcome 
variable suggests that it ought to be accorded some special status. An observed 
difference across groups on the premeasure constitutes evidence of relevant group 
differences prior to treatment. In order to assess the effect of the treatment, the 
analysis must adjust for this confounding factor. Moreover, because of the 
premeasure’s unique relationship to the outcome, it would seem to be an ideal 
variable for use in statistical adjustment. 

The Head Start Planned Variation Study (HSPV) (see Smith, 1973; 
Weisberg, 1973) provides a good example of a premeasure/postmeasure design 
that we will employ throughout this chapter. The purpose of the HSPV study 
was to examine the impact of alternative preschool curricular models on child 
development. Table 12.1 presents some data from the study on one of the main 
outcome variables, the Pre-School Inventory.* There is a mean difference of 
4.4 points between the “innovative” curriculum model and the comparison group 
(a sample of children from ordinary Head Start programs) at the postmeasure. 
This reflects a possible program effect. Notice, however, that there is a pre- 
measure mean difference of 2.5 points. This suggests a possible important dif- 
ference between the groups prior to the intervention. In such a case, it is not clear 
what part of the 4.4-point difference, if any, is attributable to the program. 

In order to generate a valid standard of comparison for assessing,the effects 
of the innovation, we must somehow adjust for premeasure differences across 
groups. How to utilize most effectively the premeasure data to reduce the bias 
in estimating treatment effects is the major theme of this chapter. Our discussion 
here will be somewhat different from that of previous chapters. Rather than 
emphasizing new methodological approaches, this chapter focuses more on 
developing a basic understanding of the special nature of the confounding 
problem in premeasure/postmeasure designs, and on identifying those situations 
where existing methods, such as those already introduced in Chapters 6 to 10, 
can be usefully applied. We conclude this chapter with a brief discussion of some 
recent developments based on individual subject growth curve models. 

* The Pre-School Inventory measures the general knowledge of pre-school-age children. I t  focuses 
on a diverse set of information that most children should possess by school entry (e.g., “What is your 
name?”). It consists of 32 items and is scored in  terms of number of items correct. Thus scores can 
range from 0 to 32. 
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Table 12.1 Data from HeadStart Planned Variation Study 

Correlation 
between 

Premeasure 
and 

Premeasure Postmeasure Postmeasure 

- - 
Innovative curriculum model Y , ( r , )  = 17.1 Y l ( f 2 )  = 23.3 r = .67 

s.d. = 6.1 
n = 157 

s.d. = 6.2 
n = 669 

s.d. = 4.6 

- - 
Standard Head Start programs YO(f1) = 14.6 YO(f2) = 18.9 r = .78 

s.d. = 5.8 

- 
Y l ( r l )  - Fo(fl) = 2.5 yl(fZ) - yo(f2) = 4.4 

12.1 REVIEW OF NOTATION 

We need to introduce at this point a notation reflecting the temporal nature of 
premeasure/postmeasure data. Let us define 

- 
Yl( t l ) [Yo( t l ) ]  

Y l ( t ~ ) [ Y o ( t ~ ) ]  

Yi(t2) 

as the observed mean for the treatment (control) 
group on the premeasure taken at time t 
as the observed mean for the treatment (control) 
group on the postmeasure taken at  time 1 2  

as the postmeasure mean that would have been 
observed in the program group had the treatment 
not been applied. 

- 

- 

Although, in principle, we cannot measure F;(r2) ,  this entity is a useful 
heuristic for thinking about the standard of comparison problem in pre- 
measure/postmeasure designs. We can now define the treatment effect, a, as 
the expected difference between the observed postmeasure mean for the treat- 
ment group and the postmeasure mean for this group that would have been ob- 
served in the absence of the treatment: 

- 
= ~ [ Y l ( t 2 )  - ~ ; ( t 2 ) ] .  (12.1) 

In premeasure/postmeasure designs, E [Ti( r 2 ) ]  represents the ideal standard 
of comparison for assessing the effects of the treatment. Note, if subjects had 
been randomly assigned to groups, we would have 

E [ Y o ( ~ ~ ) I  = E [ Y i ( t d I .  ( 1  2.2)  

As a result, in randomized - studies the simple unadjusted postmeasure mean 
difference, Yl(t2) - Yo(t2). is an unbiased estimate of the treatment effect, a. 
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Because of confounding on the premeasure, however, (12.2) does not hold. We 
examine in the next section several alternative strategies that have been fre- 
quently used to approximate the ideal represented in (12.1) and (12.2). 

To simplify the notation in this chapter, we assume large samples. As a result, 
we can drop the expectation symbols and refer simply to the sample statistics 
such as yl(t) and yo(t). The use of a more precise notation would only com- 
plicate the presentation, but would not alter the results. 

12.2 TRADITIONAL APPROACHES TO ESTIMATING 
TREATMENT EFFECTS IN PREMEASURE/ 
POSTMEASURE DESIGNS 

The simple gain or change score is the most natural approach to analyze the pre- 
and postmeasure data. We compute the mean gain for individuals in the treat- 
ment and control groups, and define the estimated treatment effect, &, as the 
difference in these mean gains: 

ti = [FlOZ) - Y,(t,)l - [yo(t2) - Yo(t1)l. (1 2.3) 
- 

For the HSPV data from Table 12.1, 

&simplegain = (23.3 - 17.1) - (18.9 - 14.6) = 1.9 points. 

Our estimate of the effect of the innovative curriculum is still positive, but 
considerably smaller than was suggested by simple inspection of the postmeasure 
means. 

The gain score has a long history in social science research, much of it tied 
up with problems of “measurement of change” (see Harris, 1967). Considerable 
interest has focused on estimating individual change over time and relating these 
changes to characteristics of individuals, such as their premeasure score and 
other background variables. Because of errors of measurement in the change 
scores, the estimation problem can be quite difficult, and interest in this problem 
persists (see Blomquist, 1977). Some other techniques for the analysis of pre- 
measure/postmeasure data-repeated measure ANOVA, and standardized 
gain scores-trace their existence back to this measurement of change literature. 
We note that with only two data points, the repeated measures ANOVA (see 
Winer, 1971) is mathematically equivalent to the simple gain score (12.3). 

Each of these techniques for analyzing data from premeasure/postmeasure 
designs falls under the general heading of linear adjustments. These methods 
share the following form: 

(1 2.4) 

where & is the treatment effect estimate. In each case, we adjust the postmeasure 
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- 
mean difference between groups, [Yl( t2)  - - Yo(tz)]. by some multiplier, B, of 
the premeasure mean differen$e, [Yl(t l)  - Yo(t I)], between groups. 

The adjustment coefficient fl  characterizcs the particular linear adjustment 
method. Simple gain scores, for e%ample, set fl  equal to 1. This can easily be seen 
by substituting a value of 1 for f l  in (1 2.4) and reorganizing the terms to get 
(1 2.3). 

Standardized gain scores are somewhat more empirical in that the,y use 
characteristics of the premeasure and postmeasure data to determine f l .  For 
standardized gain scores, 

(1 2.5) 

where 

s 1 = pooled within-group estimated standard deviation of premeasure 
s2 = pooled within-group estimated standard deviation of postmeasure. 

The adjustment coefficient for standardized gain scores is simply the ratio of 
the post- and premeasure standard deviations. If  the variability within groups 
on the outcome measure changes over the time between pre- and postmeasure- 
ment, this is reflected in the adjustment coefficient. For some specific situations 
described in Section 12.5, this property makes standardized gains a useful 
strategy. Applying (1 2.5) to the HSPV data, we compute 

5.6 
6.2 

The differences in resulis across the two types of gains analyses simply reflect 
the different values for f l  in each adjustment strategy. 

More recent efforts at analyzing data from premeasure/postmeasure designs 
(see Linn and Slinde, 1977; Reichardt, 1979) argue that the premeasure should 
not be granted special status, as in gain score methods, but rather simply treated 
as another confounding variable. In principle, any technique already described 
in the earlier chapters could be appropriate, depending of course on the particular 
types of variables present in a given application. For the HSPV example, where 
both the pre- and postmeasure are numerical variables, analysis of covariance 
would be the method of choice. Using the basic analysis of covariance (AN- 
COVA) model from Chapter 8, we have 

hStd = (23.3 - 18.9) - - (17.1 - 14.6) = 2.1 points. 

Y(t2) = p + a + flY(t1) + e. (1 2.6) 

As demonstrated in Chapter 8, this leads to an estimate of the treatment effect, 
a, as 

ii! = m 2 )  - YO021 - P[Yl(tl) - YO(tl)I> ( 1  2.7) 
- - 
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where f i  is the pooled within-group regression coefficient of the postmeasure 
on the premeasure (Appendix SA). Note that ( 1  2.7) is another example of a 
linear adjustment method. 

Applying ANCOVA to the HSPV data, we compute 

~ A N C O V A  = (23.3 - 18.9) - (.76)(17.1 - 14.6) = 2.5 points. 

Thus, we have a third estimate of the treatment effect. While all are positive, 
they cover a range from 1.9 points (simple gain scores) to 2.5 points (ANCOVA). 
Each technique resulted in a different amount of adjustment for the initial 
premeasure - differences between groups. Each used the observables, Yo( t2) .  
Y , ( t l ) ,  yo(tl). in slightly different ways, to approximate the ideal but unob- 
servable c(t~), the posttest mean for the treatment group that would have oc- 
curred in the absence of the intervention. 

12.3 THE BASIC PROBLEM 

In trying to evaluate the techniques mentioned above, we must attend to a 
distinctive feature of premeasure/postmeasure designs. Subjects are often 
growing or changing on the outcome measure even in the absence of a treatment. 
Further, individual subjects may be growing or changing at different rates. 
Depending upon the nature of the individual change phenomena, and how in- 
dividuals are assembled into treatment and comparison groups, this can pro- 
foundly affect the bias-reducing properties of each strategy. We illustrate with 
two examples in this section the problems caused when subjects are growing at  
different rates. A more formal treatment is offered in Section 12.4. 

Campbell and Erlebacher ( 1  970), in their critique of the Westinghouse-Ohio 
evaluation of Head Start, suggest that in this particular premeasure/postmeasure 
data set the mean difference between groups on the premeasure is probably the 
result of differential mean growth rates prior to the premeasure point. They 
hypothesize that this differential mean growth between groups simply reflects 
the different growth rates of individuals within the groups. The mean gap be- 
tween the groups should increase over time as the individuals within the groups 
spread farther apart. Assuming that, in the absence of a treatment, the differ- 
ential individual growth rates would continue undisturbed results in the “fan 
spread” hypothesis illustrated in Figure 12.1. The asterisks represent the data 
observed by the evaluators. The dashed lines represent the hypothesized mean 
growth trends for each group in the absence of an intervention. Thus we have 
the data given in Table 12.2. 

The true treatment effect is reflected in 
- - 
Y1(12) - Y;( t z )  = 27.0 - 23.0 = 4.0 points. 
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Figure 12.1 Fan spread hypothesis. 

Table 12.2 Data from Fan Spread Illustration 
- 
Y , ( f l )  = 19.0 
Y o ( f l )  30.0 
- 

- 
Yl(r2)  = 27.0 
yO(r2) = 38.0 
- 

I f  we computed a simple gain score, however, the estimated treatment effect 
would be 

& = 27.0 - 19.0 - (38.0 - 30.0) = 0 points, 

and this analysis would result in a 4-point bias in favor of the comparison group, 
suggesting no treatment effect when in  fact a positive effect had occurred. 

A second example derives from the national evaluation of Project Follow 
Through*-a nonrandomized study of alternative curricula for the early ele- 
mentary grades. Following a positive preschool (Head Start) experience, it was 
argued that well-designed elementary school programs were needed in order 
to solidify these early gains. The Follow Through curricula were developed in 
response. Many of the children in the Follow Through program group had had 
prior instruction in Head Start. Most of the control group had not received Head 
Start, however. The premeasure data were collected at  entry into Follow 
Through, and so include for the Follow Through children the program effects 

* The example as presented here somewhat oversimplifies the data analysis difficulties in the 
Follow Through evaluation. We present only a small segment that is useful for this illustration. 
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40 

30 
Achievement test means 

20 

10 

of the Head Start experience. This situation is illustrated in Figure 12.2. Again, 
the asterisks represent the data observed by the evaluators. The dashed lines 
represent the hypothesized growth trends for each group in the absence of the 
Follow Through intervention. Thus we have the results shown in Table 12.3. The 
true effect of Follow Through is 

Yl(t2) - Yi(t2) = 35.0 - 30.0 = 5.0 points, 
- - 

but simple gains scores would estimate 

& = 35.0 - 25.0 - (40.0 - 25.0) = -5.0 points. 

Curiously, since there is no mean difference between the groups at  entry into 
Follow Through, the premeasure would not by itself be identified as a major 
confounding variable. 

4t Fo(t2) - 

q V t 2 J  1 -  - \ /' 

- 0 /&@ 

GO0 4t 6 ( t2J c p y  
0 

0 

y ( t , )  = y& 
Program 

# 
0 /  

- - 
// 1 

// 0 
# 

&@/  Head 
#//@ start 

0 - 
0 J 

- 
0 

# 

I 1 1 O A  

Age of child 

Problems associated with prior treatment effects-Head Start/Follow Through Figure 12.2 
evaluation. 

Table 12.3 Hypothetical Data based on Head Start/ Follow Through 
Evaluationa 

~~~ ~~ ~~ - - - 
Yl(f2) = 35.0 Yi(t2) = 30.0 - Yl(rl) = 25.0 

Y o ( r l )  = 25.0 

= premeasure time point a t  age 5; r2  = postmeasure time point a t  age 7. 

- 
Y0(r2) = 40.0 

,I 
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12.4 HEURISTIC MODEL FOR ASSESSING BIAS 
REDUCTION 

The subjects in premeasure/postmeasure designs are often changing over time 
on the outcome variable even in the absence of a specific treatment. The pre- 
and postmeasure values for any subject represent two snapshots of a subject’s 
growth trajectory. We can model the change on the outcome variable over time 
with an individual growth curve. The trajectories for these curves will vary across 
subjects, reflecting individual differences in growth rate. When we select subjects 
for a treatment and a comparison group, we create a distribution of growth curves 
for each group. If the selection process is nonrandom, however, the characteristics 
of the growth curve distribution may vary across groups. Specifically, the non- 

Outcome, 

~ 

t .  = Dremeasure t ,  = Dostmeasure 

Time 

Figure 12.3~ Individual growth curves in the context of a premeasure/postmeasure design (as- 
suming no treatment effect). Solid lines. treatment group (Sl to S3); dashed lines, control group 
(s4 to S6). 
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random assignment of subjects to groups may result in differential mean growth 
trajectories across groups in  the absence of any treatment. This constitutes the 
major confounding factor that analytic methods for premeasure/postmeasure 
designs must address. We can clarify this point through an illustration. 

We present in Figure 12.30 a hypothetical set of individual growth curves. 
For simplicity we assume that each individual's growth over time can be ade- 
quately modeled by a straight line. The resulting pre- and postmeasure data are 
plotted in Figure 12.3b. If we assume that the first three subjects constitute the 
treatment group, and the remaining three the control, we can observe mean 
growth trajectories for the two groups in the absence of any treatment inter- 
vention. These are represented by the solid lines in Figure 12.40. Notice that 
while on the average the treatment group starts out higher at the premeasure 
point, it has fallen behind the control group at the postmeasure point. Thus even 
in the absence of an intervention, it would appear that the treatment has a 
negative effect. 

Postmeasure, 

25 

20 

Y'f t , )  
15 

10 

Premeasure, Y f t l )  

Figure 12.36 Scatterplot of data. Dots, treatment group data; asterisks, control group data. 

Now let us assume that we apply an intervention to the treatment group and 
it has a positive effect (as represented by the dashed line in Figure 12.4b): In 
this case the true treatment effect, a, is 3.5 points: 

- 
= Yl(t2) - Yi(t2) = 21.0 - 17.5 = 3.5 points. 

If  we performed a simple gain score analysis, however, we find that 

& = (21.0 - 18.5) - (9.5 - 7.0) = 0 points. 



Mean growth, vft) 

f l  

Time 

Figure 12.4a Mean growth trajectories in the absence of a treatment intervention. 

25 

20 

15 

Mean growth, VftJ 

i o  

- 

f - -- -?y’ 

Time 

Figure 12.46 Mean growth trajectories with a positive treatment effect. Solid lines, mean growth 
trajectory in the absence of a treatment intervention; dashed line, mean growth trajectory for 
treatment group under the presence of a treatment effect a; a, true treatment effect. 

245 
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P 

Thus the gain score analysis underestimates the true treatment effects, resulting 
in a bias of 3.5 points. 

Most generally, if we think simply of two curves, one each for a treatment and 
control group, representing the mean growth trajectories of the group over time 
in the absence of any intervention, one of four mean growth patterns must 
emerge: ( a )  the mean growth curves could be parallel over time; (b) the mean 
growth curves may close together as time passes (the fan close case): (c) the mean 
growth curves may be spreading apart as time passes (the fan spread case); and 
(d) in the duration between the pretest and posttest the mean growth curves may 
cross (the crossover case). These four situations are illustrated in Figure 12.5. 

Time 

Figure 12.5 Four general classes of mean growth trajectories. 
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We should emphasize that these cases represent the expected growth trajectories 
for each group in the absence of a treatment. 

Notice that while the initial mean difference between the groups, rl(tl) - 
V o ( f , ) ,  is the same in each case, the amount and direction of adjustment nec- 
essary varies across the four cases. If we limit consideration to linear adjustment 
methods [see (1 2.4)], it is easy to show that the theoretically correct adjustment 
coefficient, p*. is defined as 

- 

( 12.8) 

Note that p* is simply the ratio of the expected postmeasure mean difference 
in the absence of the treatment to the observed premeasure mean difference. 

Applying ( 1  2.8) to each of the four general cases defined in Figure 12.5, we 
see that 

( 1 )  For parallel mean growth, p* = 1 .O. 
(2) For mean growth fan close, 0 < p* < 1 .O. 
(3) For mean growth fan spread, p* > 1 .O. 
(4) For mean growth crossover, p* < 0. (1 2.9) 

Thus Figure 12.4 is an example of case 4. In the absence of an intervention, 
the mean growth curves would have crossed over. For our analysis to adjust 
appropriately when there is an intervention in the treatment groups, it requires 
a negative value for the coefficient p. With the use of simple gain scores (0 set 
equal to l) ,  however, we actually adjusted in the wrong direction and created 
a more biased estimate of the treatment effect than if we had ignored the pre- 
measure data! Only if the mean growth curves in the absence of a treatment had 
been parallel would the simple gain score approach have been correct. 

In the context of a real premeasure/postmeasure study, however, we cannot 
directly apply (12.8) since we have no information on f i ( t 2 ) ,  the postmeasure 
mean for the treatment group that would have occurred in the absence of the 
intervention. Nevertheless, this equation, in combination with the four classes 
of mean growth trajectories in Figure 12.5, is helpful in understanding the ap- 
propriateness of a specific analysis strategy in a given case. 

12.5 EXAMINING THE BEHAVIOR OF LINEAR 
ADJUSTMENTS 

As we have already indicated, the simple gain score strategy is appropriate 
only under situations of parallel mean growth [case 1 of (12.9)]. The “stable 
state,” where we expect no mean growth for either group in the absence of a 
treatment, represents a special instance from this class. 
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Consider again a study of therapies for hypertension. For most adults, blood 
pressure increases with age, so we have a potential “growth” problem. However, 
the change in blood pressure is gradual. I f  the hypertension study is such that 
the postmeasure, after drug therapy, is only I or 2 months later than the pre- 
measure, on the average no change would be expected in the absence of the 
treatment. In this case, the use of a gain score analysis would be appropriate. 
Alternatively, if the study were of the effect of behavioral modification on blood 
pressure and there were, say, 5 to 10 years between the pre- and postmeasures, 
the growth trend problem would have to be considered. 

As for linear adjustment methods other than gain scores, they all use, in one 
fashion or another, aspects of the across-subject variation and covariation in 
the pre- and postmeasures to estimate /3. The variance in the pre- and post- 
measure, and the covariance between them, are sensitive, however, to the nature 
of the individual growth curves and how they are distributed across groups. The 
importance of this can be seen in a rather extreme case. 

Figure 12.6 contains two mean growth trajectories, each representing the 

Outcome. 

V Time 

Figure 12.6 Differences between individual growth within groups and mean growth between groups. 
Single heavy line, mean growth; multiple light lines, individual growth. 
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aggregation of a set of parallel individual growth curves. Notice that in this very 
simple illustration the individuals maintain the same relative rank order, no 
matter where we slice the process. For any arbitrarily chosen t I and 22 the pooled 
within-group correlation between the two measures is always 1 .O, and the pooled 
within-group variance is constaqt. As a result, if we apply ANCOVA to such 
data, it can easily be shown that ,8 = 1 .O for any t I and t 2 .  A standardized gains 
analysis would also estimate the same value. 

Notice, however, that the magnitude and direction of the bias depend on the 
specific choice of t 2 .  Further, the magnitude and direction of the appropriate 
adjustment coefficient depend upon the choice of both tl and t 2 .  We have re- 
produced the mean growth trajectories from Figure 12.6 in Figures 1 2 . 7 ~  and 
12.76, where we consider different choices of t I and t 2 .  In Figure 1 2 . 7 ~  the mean 
growth fan close implies that ,8* < 1 .O. The mean growth fan spread in*Figure 
12.7b requires that ,8* > 1 .O. Incidentally, in no case will the estimate, ,8 = 1.0, 
constitute the correct value! 

In short, the bias that we are attempting to reduce is represented by the dif- 
ferences in the mean growth trajectories, which is essentially a between-group 

Mean growth, FftJ 
(in the absence 
of treatment) 

t ,  = premeasure time t 2 =  postmeasure time 

Time 

Figure 12.7a Mean growth fan close. 
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Mean growth, %% 
(in the absence o 
a treatment) 

Time 

Figure 12.78 Mean growth fan spread. 

time 

phenomenon. The analysis methods, however, use individual subject variation 
around these mean growth trajectories, or within-group information, to estimate 
the adjustment coefficient, 0. Only when there is some congruence between these 
two phenomena can we use the within-group variation/covariation on the out- 
come measure to adjust for the between-group differences. 

For example, in typical educational applications, premeasure/postmeasure 
correlations usually range between 0.5 and 0.9. Further, because of the nature 
of the tests commonly employed, the variances in premeasures and postmeasures 
are often quite similar. As a result, we usually find that the 6 estimated through 
methods such as ANCOVA will range between values of 0.5 and 0.9. Thus, 
despite the fact that the mean growth fan spread or crossover might be a rea- 
sonable hypothesis in a given case, the adjustment methods are appropriate only 
under mean growth fan close. It can be shown that similar results also occur with 
standardized gains. 

There are some situations where consistency of between- and within-group 
phenomena can occur. For example, under a strong fan spread model, where 
the mean growth trajectories (in the absence of the intervention) are spreading 
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apart at the same rate as the trajectories within groups are spreading apart (see 
Figure 12.8), standardized gains should be an effective bias-reducing strategy 
(see Kenny, 1975). We could also postulate a corresponding strong fan close 
model, where the mean growth curves are closing together at the same time as 
the individual trajectories within each group are coming together. Standardized 
gains should be effective here, too. 

I 
Age 

Figure 12.8 Strong fan spread model. Longer dash lines, individual growth curves for subjects in 
the control group; shorter dash lines, individual growth curves (in the absence of an intervention) 
for subjects in the treatment group. 

More formally, Weisberg (1 979) has shown that only under a very special 
case will ANCOVA totally eliminate the bias resulting from differential mean 
growth trajectories. For this to occur, the premeasure must be perfectly corre- 
lated with the slope of the individual trajectory that would have occurred between 
premeasure and postmeasure in the absence of treatment. In this case, the mean 
growth trajectory for each group is just a linear function of the premeasure 
mean. 

Bryk and Weisberg (1977) have investigated the bias-reduction properties 
of several linear adjustment strategies under models of linear individual growth 
such as those illustrated previously in Figure 12.3. Similarly, Bryk (1977) has 
explored some nonlinear individual growth curve models. It is possible in prin- 
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ciple to use their formal results to determine an exact percent bias reduction for 
a particular strategy under specific assumptions about the individual growth 
model. These formulas require, however, specification of a functional form for 
individual growth, and parameters of the growth curve distributions for each 
group. Since these are not known in the typical premeasure/postmeasure study, 
these formulas have little practical utility. Further, if the information were 
available, we probably would not use an adjustment strategy, but rather a pro- 
cedure based on the growth curve methodology discussed later in Section 
12.7. 

We are left at this point with one general conclusion. The routine application 
of adjustment methods, based on the variation/covariation in the pre- and 
postmeasures, does not guarantee effective bias reduction. While for simplicity 
we have focused here on linear adjustment methods, it can be shown that 
matching and standardization methods yield similar results. Thus our conclusion 
applies with equal force both to gain score strategies and to all methods intro- 
duced in Chapters 6 to 10. 

12.6 DATA ANALYTIC ADVICE 

The individual growth trajectory in the absence of an intervention often 
represents a major confounding variable in premeasure/postmeasure studies. 
While the premeasure may be highly correlated with the slope of the growth 
trajectory, the premeasure will not contain full information about it. Thus we 
have a confounding variable, the individual trajectory, part of which, the slope, 
remains unmeasured. As discussed in Chapter 5, such an unmeasured con- 
founding variable can produce a biased estimate of treatment effects. 

The bias that we seek to reduce is formed by a selection or assignment process 
which allocates subjects differentially to groups depending upon their individual 
growth characteristics. This process creates differences among the groups on 
the premeasure and postmeasure means even in the absence of a treatment. In 
order to analyze these data appropriately, we must identify a model that can 
adequately describe the growth in the absence of any intervention. 

Unfortunately, the pre- and postmeasure alone provide insufficient data to 
identify such a model correctly. We must therefore look outside these data for 
information on the actual process of selecting subjects for the treatment and 
comparison groups. On this basis, we might, for example, begin to build some 
logical arguments favoring one of the four cases discussed above. For example, 
Campbell and Erlebacher in their critique of the Head Start evaluation (pre- 
viously discussed in Section 12.3) built some persuasive arguments that this was 
a fan spread situation [case 3 of ( 1  2.9)]. Conditional on this assumption, one 
could then choose an analytic strategy for these data that generated an adjust- 
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ment coefficient consistent with this model. Clearly, the validity of the estimated 
program effects is conditional upon the validity of the selection process as- 
sumptions. 

This approach, however, will not work in some instances. For example, if the 
trajectories cross over, or if prior treatment effects are present, such as in the 
Head Start/Follow Through example, no linear adjustment method is likely 
to generate an appropriate program effect estimate. In  these cases, the analyst 
may be forced to set an a priori value on either the adjustment coefficient or the 
actual amount of adjustment. This ,may seem quite arbitrary, yet a simple gains 
analysis does the same (i.e., it sets /3 = 1). Again, substantive knowledge of the 
setting, in this case information on the selection and change process, seems es- 
sential if the adjustments are to be performed in an appropriate manner. A va- 
riety of adjustments should be tried, and the analyst should assess the sensitivity 
of the estimated treatment effects to these alternatives. 

At the very least, when we-analyze a premeasure/postmeasure data set, we 
should examine the resultant /3 to see what it implies about the form of the mean 
growth trajectories in the absence of the intervention. If we cannot justify this 
assumption on the basis of our knowledge about the growth and selection pro- 
cesses operant in this case, the results of the analysis should be viewed with 
caution. 

In many applications, information exists on other background variables in 
addition to the premeasure. While the individual growth trajectories are still 
the major confounding factor in the study, these other variables can sometimes 
be usefully incorporated in the analysis. For example, in the HSPV study, ethnic 
membership was considered an important background variable. A simple gains 
analysis might use this discrete variable as a blocking factor, essentially per- 
forming separate gains analyses for each group. More generally, all the methods 
introduced in Chapters 6 to 10 can be employed with confounding variables in 
addition to the premeasure. While such analyses can be very effective in specific 
cases, they do not “solve the problem.” I f  anything, these strategies may simply 
obfuscate the nature of confounding in the complexities of multivariate anal- 
ysis. 

For the present, the best advice we can offer is to let the heuristic framework 
of Sections 12.4 and 12.5 and knowledge of the specific context guide the 
analysis. No empirical strategy currently exists that allows us to remove the 
substantive and “data analytic skill” components from this effort. It should be 
noted that some recent work (Cain, 1975; Kenny, 1975; Rubin, 1977, 1978; 
Cronbach et al., 1977) has focused on building models of the selection process 
and gathering data on it. This can be used as a basis for developing new methods 
to estimate treatment effects in premeasure/postmeasure data sets. Although 
this holds promise for the future, the work to date has been limited to some very 
specialized cases. 
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12.7 NEW DIRECTIONS: DESIGN AND ANALYSIS 
STRATEGIES BASED ON INDIVIDUAL GROWTH 
CURVES 

12.7.1 Individual Growth Curve Models 

Another promising approach in the design and analysis of premeasure/ 
postmeasure studies focuses on developing new methods based on individual 
growth curve models (Bryk and Weisberg, 1976; Strenio et al., 1977; Strenio 
et al., 1979). Traditional analysis methods use the adjusted postmeasure mean 
for the control group as the standard of comparison for assessing the effects of 
the - treatment. In terms of linear adjustment methods, we use yo(t2) + ~ [ ~ ~ ( f  1) 

- Yo(tl)] to estimate the correct standard of comparison, F(f2). Analysis 
strategies based on individual growth curve models, however, develop their 
standard of comparison from a different perspective. Rather than using the 
adjusted mean of a comparison group, this alternative focuses on the natural 
growth of subjects prior to exposure to treatments, attempting to project ex- 
plicitly a postmeasure status for the treatment group as if they had been subject 
to the control condition. The actual growth is then compared with projected 
growth, the difference representing the effects of the treatment. 

The model assumes that over the duration between premeasure and post- 
measure each individual’s growth consists of two components: ( I )  systematic 
growth, which can be characterized by a growth rate and a corresponding growth 
curve; and (b) an individual noise or random component, which is specific to 
a particular subject at a certain point in time. Thus we can represent the observed 
score for individual i at any time t as 

Y i ( t )  = Gi(t) + Rj(t) .  (12.10) 

where Gi( t )  represents systematic growth and & ( t )  represents the random 
component. 

The individual’s systematic growth, Gi(t) ,  is represented as a function of age 
(or some other time metric). While in principle this function may take any form, 
it may often be adequate to assume that it is linear: 

(12.1 1) 

where xj represents the slope, 6i represents the Y intercept, and ai( t )  is the age 
for subject i at time t. Individuals may vary in terms of a growth rate, r, and 
an intercept parameter, 6. The model assumes that x and 6 are distributed with 
means p, and pb, variances a: and af. and covariance ax& 

Note that this represents the simplest model for G(t ) .  which incorporates 
varying individual growth. While too simple to fully describe many growth 

Gi( t )  = r ia i ( t )  + 6i, 
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processes, linear individual growth may be a reasonable analytic approximation 
over a short term even if long-term growth has a more complex form. 

As for the random component, the model assumes that 

E [ R i ( t ) ]  = 0 

v a r [ ~ ~ ( t ) ]  = CT; ( 1 2.1 2) 

(i.e., fixed over subjects and time) and 

C O V [ R i ( t ) ,  7r] = Cov[R;(t), 61 = 0. 

Thus we represent the observed premeasure ( t  = t l )  as 

Yj( t l )  = wiai ( t l )  + 6 ,  + Ri(t1). (12.13) 

For convenience, let us define 

A; = ai(t2) - ai( t l )*  ( 1 2.1 4) 

where Ai represents the time duration between pre- and postmeasure for subject 
i .  Note that we are assuming that t l  and t 2  may differ across subjects, but are 
dropping the subscript i for notational convenience. 

At the postmeasure point ( t  = 2 2 ) .  in the absence of a treatment, we would 
have 

Yi(t2) = ~ j a i ( t 2 )  + 6j + Ri(t2) 

= Gi(t1) + *iAi + Ri(t2). (12.15) 

where Ti Ai represents the expected growth between pre- and postmeasure due 
solely to natural maturation. 

In the presence of a treatment, we assume that over the time interval 2 1  to t 2  

the treatment increases each subject’s growth by an amount ui. This increment, 
ui, has been termed the value added by the treatment (Bryk and Weisberg, 1976). 
Thus we can represent the measured growth subject i achieves by time 22  under 
an intervention as 

Yj(t2) = Gi(t1) + ~ i A i  + ~i + Ri(t2). ( 1 2.1 6) 

Under this model, the treatment effect is fully described by the distribution 
of the vi. We assume that u is a random variable with mean pu, and variance ui. 
Normally, we are interested in a summary measure of the treatment effect. This 
suggests that we estimate pu,  the average of the individual treatment effects. 
During the period between the pre- - and postmeasure, the observed change in 
the tr_eatment group is Bl( t2)  - Yl(t l ) .  The expected growth under the model 
is pSp. If we knew the value of pz, a natural estimator of pu  would be 

( 1  2.1 7) 
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Bryk et al. (1980) have shown, under the assumption that w and 6 are inde- 
pendent of a ( t l )  and that w and A are independent, that the ordinary least 
squares regression of Y(t1)  on a(t1) yields an unbiased estimate of pT, and as 
a result, 

v = Y l ( t 2 )  - Y l ( t l )  - ii,& ( 1  2.1 8) 
- 

represents an unbiased estimate of pLu. 

12.7.2 An Illustration 

We illustrate the technique using a different set of data from the Head Start 
study. The outcome measures are again child scores on the Pre-School Inventory. 
We have the following information: 

n = 97 - 
Yl(t l )  = 14.12 
Y l ( t z ) =  20.45 
- 

A = 7.40 months. 

Figure 12.9 presents a scatterplot of the premeasure scores on age. The ordinary 
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Figure 12.9 Scatterplot of PSI pretest by age. 
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least squares regression of Y( t1 )  on a(t1) yields 

Pi(t1) = -13.9 + 0.48[~(tl)] .  

and we have b, = 0.48. From ( 12.18), the estimate of the treatment effect, p”, 
is given by 

V = 20.45 - 14.1 2 - .48(7.40) = 2.75 points. 

While Bryk et al. (1980) do not derive an estimate of the standard error of 
V, they suggest the use of the jackknife technique (described in Chapter 8 of 
Mosteller and Tukey, 1977) to provide both a test statistic and standard error 
of V. Using the jackknife on the Head Start data resulted in a test statistic of 
2.76 and a standard error of I .  19. The resultant z value of 2.32 with 96 degrees 
of freedom is significant beyond the .05 level. 

12.7.3 Analysis of Model Assumptions 

The technique can generate an unbiased estimate of a treatment effect con- 
ditional upon some important assumptions. The method as illustrated above uses 
the cross-sectional relationship between status and age at a particular point in 
time, t l ,  to estimate the mean growth rate for the program group. This approach 
requires the important assumption that individual growth characteristics (re- 
flected by ri and 6i in our model) are independent of age. 

Nonindependence can occur in at least two different ways. First, in the pop- 
ulation from which individuals are sampled, there may be historical trends 
causing age-related differences among the cases. For example, if there had been 
a major outbreak of rubella, the children conceived during that period might 
be developing at  different rates than their counterparts who are either slightly 
younger or older. Second, even if this stable universe assumption is true for the 
population being studied, the process of selecting the sample may introduce an 
age by growth parameter relationship. For example, in analyzing the Planned 
Variation Head Start data, we were initially concerned that both the oldest and 
youngest children might be somewhat different from the rest. It was hypothesized 
that the oldest might be a delayed entry into the school group (i.e., slower growth 
rates) and the youngest perhaps somewhat more precocious than average (i.e., 
faster growth rates). 

Another possible problem is that individual growth may be nonlinear. With 
extreme nonlinearity, the linear approximations will not be trustworthy even 
in the short term. I f  the analyst has reasons to suspect such nonlinearity, a 
transformation of the outcome [e.g., In Y ( t ) ]  may suffice. Finally, we should 
note that while the growth curve strategy does not require data on a comparison 
group, if one is available it could prove useful in the process of identifying an 
appropriate growth model. 
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12.7.4 Further Developments with Individual Growth Curve Models 

The basic model can be extended in a number of directions. One is the in- 
corporation of background variables (e.g., information on sex, social class, ethnic 
membership, etc.) into the model. A natural strategy here is to assume that the 
individual growth rate, xi. is a linear function of the background variables: 

J 

j =  I 
ai = PO + C pjXu + j = 1 , .  . . , J ,  (1  2.19) 

where Xu is the value on variable j for subject i. Bryk et al. (1980) illustrate how 
the basic estimation procedure introduced above can be applied in this context. 
The assumptions discussed in Section 12.7.3, however, are still required. 

Perhaps the most promising extensions of the model are to designs involving 
multiple premeasure points. Regardless of whether we have comparison group 
data or not, the validity of results from a single premeasure/postmeasure design 
will remain questionable for reasons discussed in previous sections. In the case 
of strategies based on individual growth models, we have gone quite far with only 
two cross sections of data. The first, the premeasure, we use as a proxy for lon- 
gitudinal information to project future status. The second, the postmeasure, we 
use to assess actual progress. Clearly, the major weakness is in the first area. 
The next logical step is designs with two or more premeasure points on each 
subject. Through combination of the cross-sectional data and the longitudinal 
trajectories on each case, we should be able to estimate more precisely both the 
mean effect pu and the other aspects of the distribution of individual effects. 
Recent work (Fearn, 1975; Strenio et al., 1979) are first steps in this direc- 
tion. 

12.8 SUMMARY AND CONCLUSIONS 

In the course of this chapter we have outlined a number of pitfalls in the 
analysis of data from premeasure/postmeasure designs. We have focused pri- 
marily on how one uses the premeasure information. We wish to remind the 
reader of our earlier discussion in Chapter 5 about the problems resulting from 
errors of measurement in the independent variables. In many applications, 
particularly in education and psychology, these errors can be quite substantial. 
In these instances, they further limit the bias reduction achieved with techniques 
such as ANCOVA. 

While analyses of premeasure/postmeasure studies may appear quite pre- 
carious, such designs do represent a qualitative improvement over nonran- 
domized studies lacking premeasure information. These data often provide some 
sense of the likely magnitude and direction of bias in the posttreatment measures. 
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The one point we wish to emphasize strongly, however, is that the blind appli- 
cation of the statistical techniques cannot guarantee valid inferences. While such 
data can be effectively analyzed, they require considerable care. 

Similarly, considerable care should be exercised in the process of study design 
and data collection. It is unfortunate that many past efforts with premeasure/ 
postmeasure designs have been very haphazard in this regard. Although random 
assignment may not be possible, effort should be expended to equate the treat- 
ment and control groups on variables thought to be strongly related to outcomes. 
Where this is not possible, the investigator should attempt to gather as much 
information as possible on the actual selection process, and perhaps even attempt 
to build empirical models for it. Such information would prove invaluable in 
helping either to select an appropriate method or to develop one of the alternative 
approaches discussed in the last section. In short, we should try to minimize the 
burden placed on the statistical adjustment, while maximizing our reliance on 
understanding and knowledge of the particular research data. 

Finally, a few words of caution are offered about the models suggested in the 
last section. While they may be helpful in some circumstances, they do not 
constitute a simple answer. Each requires a number of assumptions that in 
general are untestable. While, in principle, they compensate for many of the 
problems raised earlier, their ability to achieve this depends entirely on the le- 
gitimacy of the assumptions in each case. A wise approach in many cases is to 
consider multiple analysis strategies. The data analysis should not be limited 
to a single preconceived plan. It should be firmly rooted in exploratory analysis 
to examine what the data suggest about possible biases. This should be followed 
by alternative analyses, perhaps based on several of the methods described above. 
Finally, sensitivity analyses associated with each method should be conducted 
where feasible to ascertain the range of treatment effect estimates possible. 
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Given the procedures described in previous chapters, it is natural to ask which 
procedure is appropriate for a given situation. Unfortunately, this question has 
no simple answer. At the very least, the answer will depend on the number and 
type of variables, the population distributions of these variables, the quantity 
of data that are or can be collected, and whether the outcome variable (or risk 
variable in case-control studies) is already recorded or not. 

For simplicity, we shall discuss this question for the special situation of a single 
confounding variable. Table 13.1 presents the eight cases that can arise, de- 
pending on whether the outcome variable, the risk variable, and confounding 
variable are categorical or numerical. For each case the appropriate adjustment 
procedures are listed along with applicable matching techniques. 

With the exception of regression, all the procedures listed in Table 13.1 have 
been discussed in this book. In this chapter we provide guides to aid the inves- 
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Table 13.1 Summarv of Appropriate Adjustment and Matching Procedures 

Form of Variablesa 
Outcome Risk Confounding Adjustment 

Case Variable Variable Variable Procedure Matchingb 

I C  C C Standardization, Type 1 
stratification, 
log-linear, logit 

I I  c C N Logit Type 2 

I l l  N C C Standardization, Type 1, 
stratification, (cohort only) 
ANCOVA (cohort only), 
logit (case-control only) 

IV N C N ANCOVA (cohort only), Type 2, 
logit (case-control only) (cohort only) 

v c  N C Logit (cohort only) Type 1. 
(case-control 
only) 

(case-control 
VI c N N Logit (cohort only) Type 2, 

only) 

V I I  N N C Regression None 

Vlll N N N Regression None 

C, categorical; N. numerical. 
Type 1: frequency or stratified matching; type 2: mean, frequency, stratified, caliper, or nearest 

neighbor matching. 

tigator in choosing among these procedures. These guides, discussed in the fol- 
lowing three sections, fall into three categories: 

1 .  Whether to treat a given variable as categorical or numerical. 
2. Whether to match or adjust. 
3. Whether to use a combination of procedures. 

13.1 CATEGORICAL OR NUMERICAL VARIABLES 

Although a variable may be recorded as numerical, the experimenter always 
has the choice of changing it to a categorical variable by stratification. The 
standardization example in Section 7.1 is an example of such a change; we re- 
placed the numerical variable age by a series of age categories “ 15-34,” “35-44,” 
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and so on. This is known as stratifying age. Similarly, a categorical variable 
whose categories are ordered, for example nonsmoker, light smoker, and heavy 
smoker, can be treated as categorical or the categories may be scored numeri- 
cally: nonsmoker = 1, light smoker = 2, and heavy smoker = 3. Therefore, al- 
though we may really be in Case I1 of Table 13. l ,  for example, we may opt for 
treating the numerical confounding variable as a categorical one, and so use 
methods appropriate for Case 1. 

This choice leads to two questions: Why would we change the form of a 
variable? What are the effects of such a change? It is usually undesirable to 
change the form of the outcome variable, since the validity of the underlying 
statistical model will be affected. Accordingly, we shall discuss changing the 
form of the risk and confounding variables only. 

13.1.1 Why Change the Form of a Variable? 

“Why?” is the easier question. The investigator may be more familiar with 
the methods for analyzing numerical variables or may only have access to 
computer programs for doing so. On the other hand, appropriate analysis of a 
numerical variable may require too stringent assumptions, such as linearity of 
the response relationship. The analysis of a numerical variable made categorical 
by stratification no longer requires linearity. For example, it is known that cancer 
mortality is related to age, but the form of the relation is not known. By stra- 
tifying age, as done in Section 7.1, we avoid the necessity of specifying the re- 
lationship of mortality to age. 

13.1.2 What Is the Effect of a Change in the Form of a Variable? 

The effect of changing the form of the variable is the more important statistical 
question. Unfortunately, very little research has been conducted on this topic. 
Treating the stratification of numerical variables first, it is clear that the cate- 
gorical variable is only an approximation to the underlying numerical one. 
Therefore, some penalty must be paid since information is being lost. Two im- 
portant investigations concerning the size of the penalty are those of Cochran 
( 1968) and McKinlay ( 1975). 

Cochran (1968) considers the consequences of making 
a numerical confounding variable categorical, that is, moving from Case IV 
(categorical risk variable and numerical confounding and outcome variables) 
to Case I11 (categorical risk and confounding variables and numerical outcome 
variables). Specifically, he considers the effectiveness of stratification in re- 
moving the bias in the estimators of the difference in means, as compared to 
analysis of covariance (ANCOVA). 

Cochran assumes that the regression of the response (Y) on the confounding 

Case IV to Case 111. 
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variable (X) is linear with identical slopes in the two risk factor groups, but that 
the distribution of X is different in the two groups. If the response relationship 
is nonlinear, Cochran then assumes that the variable, X, represents an appro- 
priate transformation of the confounding variable so that the regression is linear 
in X. Next, he stratifies the distribution of X into K strata, and computes the 
bias before and after stratification for various choices of distributions for X and 
for various values of K .  He finds that stratifying the population distribution of 
the numerical confounding variable of one of the groups being compared into 
six strata of equal numbers of subjects generally leads to a removal of 90 to 95% 
of the bias. Cochran found these percentages to be quite consistent over the 
various choices of distributions for X he investigated-normal, chi-square, t ,  
and beta distributions-and even for a nonlinear regression of Y which is ap- 
proximately a cubic function of X. These results are based on a known population 
distribution; however, similar results would be expected for stratification based 
on a large sample distribution. 

Cochran’s results can be interpreted as follows. Although for a parallel linear 
response function, ANCOVA is the appropriate adjustment procedure for Case 
IV of Table 13.1, and, as such, is preferable to stratification, stratifying the 
confounding variable is an alternative method that performs adequately under 
a variety of situations. Regardless of the form of the regression of Yon X, as long 
as the regressions in  the two risk factor groups are parallel, the experimenter 
can expect to remove 90 to 95% of the bias when stratifying the confounding 
variable into six strata of equal numbers of subjects. 

Cochran’s results also indicate that the percentage of bias removed critically 
depends on the number of strata used. For a variety of frequently encountered 
distributions of the confounding variable, Cochran found that with five strata 
with equal numbers of subjects, the percentage bias reduction is in excess of 88% 
with four strata in excess of 84% with three in excess of 77%, and with two strata 
in excess of 60%. (See Table 6.5 for the exact percentages based on a normally 
distributed confounding variable.) Five or six strata would appear to be the 
minimum number necessary, and little extra reduction is gained by having more 
than six strata. Cochran points out that these percentages also apply approxi- 
mately if X is an ordered categorical variable representing a grouping of an 
underlying numerical variable. We will return to this study in Section 
13.2.2. 

Case I1 to Case I. McKinlay (1975) looks at the effect of moving from Case 
I1 to Case I (i.e., stratifying a numerical confounding variable). With the out- 
come variable categorical and the confounding variable numerical, the adjust- 
ment procedure to use is logit analysis, which yields an estimate of the odds ratio. 
As discussed in Chapter 9, the logit estimator of the odds ratio is biased, although 
this bias will be small when the sample size is large. Therefore, in contrast to 
ANCOVA examined by Cochran, logit analysis will not remove 100% of the 
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bias, so it is more difficult to judge the effectiveness of the procedures studied 
by McKinlay for analyzing Case I 1  as a Case I type of situation. 

The major part of McKinlay’s work is a Monte Carlo study of the mean 
squared errors* of the modified Woolf, Mantel-Haenszel, and Birch estimitors 
as applied to stratified samples versus the crude estimator, which ignores the 
confounding variable by not stratifying (the stratified estimators are given in 
Section 7.6). McKinlay considered up to four strata. With few exceptions, pri- 
marily for the Birch estimator, the mean squared errors of the stratified proce- 
dures were substantially lower than for the crude estimator. However, only the 
Mantel-Haenszel estimator consistently removed bias in all the cases considered. 
For the other estimators, the bias was actually increased in some cases, but this 
was masked in the mean squared error. McKinlay concludes that the modified 
Woolf estimator is best, particularly when the bias in the crude odds ratio esti- 
mator, before stratification, is not large. Unfortunately, McKinlay did not obtain 
results for the logit analysis estimator. We will also discuss this study in Section 
13.2.2. 

Numerical Scoring of Categorical Variables. Treating an ordered categorical 
variable as numerical (e.g., low = I ,  medium = 2, and high = 4) presents a more 
difficult problem, since it is usually not clear exactly how to recode such a 
variable. For the categorical variable with only two categories, this is not a 
problem, since all choices of recoding are equivalent. However, for more than 
two categories, we must select coded values that meaningfully reflect relative 
magnitudes, so we must know something about the variable in question. Fre- 
quently, the ordered categorical variable reflects some underlying numerical 
variable that could not be or was not measured. Recoding such a variable requires 
identifying this underlying numerical variable or at least some approximation 
to it. There may be little justification for arbitrarily recoding “low-medium- 
high,” for example, as “1 -2-3.” Recoding as “ 1  -2-3” should only be done if 
the difference between a “high” and a “medium” value is judged approximately 
equal to the difference between a “medium” and a ‘‘low.’’ If, for example, the 
difference between “high” and “medium” is judged to be roughly twice the 
difference between “medium” and “low,” it would be better to recode the values 
as “1 -2-4.” I f  age has been recorded in intervals, yielding an ordered categorical 
variable, we could recode the ordered variable as a numerical one by using the 
interval midpoints. 

The effect on the bias in the estimated treatment effect of using an ordered 
categorical variable as numerical has not been studied. However, because the 
application of ANCOVA to such a variable is a special case of regression with 
grouped data, we can refer to Haitovsky ( 1  973). Haitovsky showed that using 

* The mean squared error equals the variance plus the bias squared. For a derivation of this result, 
see Appendix 2A. 
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information on grouped data as an approximation for the underlying unobser- 
vable data will lead to biased estimates of the slope, p. As ANCOVA depends 
on an unbiased estimate of B, we infer that ANCOVA on grouped data will yield 
biased estimates of the treatment effect, a1 - ag. 

13.2 COMPARISON OF MATCHING AND ADJUSTMENT 
PROCEDURES 

In comparing matching with an adjustment procedure, such as ANCOVA, 
we are faced with the problem of unequal sample sizes. As pointed out by 
McKinlay ( 1  974), often it would be more realistic to account for the loss of the 
unmatched units when comparing matching with adjustment techniques. This 
issue is important in answering the question: Should we match or use an ad- 
justment procedure? We return to this topic in Section 13.2.3. In Section 13.2.1 
and in the beginning of Section 13.2.2, however, we will first assume that there 
are no losses due to matching. In these latter two sections, we will compare 
matching versus ANCOVA and matching versus stratification. 

13.2.1 Matching versus Analysis of Covariance 

In this section we compare matching methods and analysis of covariance in 
estimating the treatment effect for Case IV studies (seeTable 13.1), where both 
the response and confounding variable are numerical and the risk variable is 
categorical. Matching methods and ANCOVA have been compared both from 
an analytic point of view, Cochran (1 953), and via Monte Carlo studies, Billewicz 
(1965) and Rubin (1973a, b). For a summary and some extensions of Rubin’s 
work, see Cochran and Rubin ( 1  973). The specific matching techniques con- 
sidered are primarily various pair matching methods, with some references to 
frequency matching (see Section 6.7). 

I n  the Monte Carlo studies the values of the confounding variable are simu- 
lated from distributions approximating “real-life” situations and an effort is 
made to compare the different methods over a wide range of conditions. Rubin 
concentrated on an evaluation of the bias reduction obtained by the different 
techniques, whereas Billewicz investigated the difference in precision with which 
the treatment effect is estimated. 

In  the literature we encounter comparisons between matching, ANCOVA 
on random samples, ANCOVA on matched samples ignoring the matching, and 
regression adjustment on matched samples. (Regression adjustment on matched 
samples is presented in Section 13.3.1 .) In our discussian we will assume a cohort 
study and that the relations between the outcome and confounding variables 
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in the two treatment groups are parallel. The linear and nonlinear cases are 
considered separately. 

Linear Regression. In the case of linear parallel regressions, ANCOVA and 
regression adjustment on matched samples yield unbiased estimates of the 
treatment effect. Since exact matching of numerical variables is not possible, 
any matching method will yield biased estimates although the bias may be small 
if the matches are close. 

In addition, Billewicz (1965) found that stratified matching using three 
categories was less precise than ANCOVA or ANCOVA on frequency-matched 
samples. Carpenter (1 977) considered a multivariate case where close matches 
are likely. He found ANCOVA on circular matched samples to be more precise 
than either circular matching or ANCOVA alone. Whether ANCOVA was 
more precise than circular matching alone depended on the number of con- 
founding variables and the control reservoir size. Fewer variables and larger 
reservoir sizes favored matching. 

On these bases, ANCOVA on random or matched samples is preferred to 
matching alone in the linear parallel case. However, this presupposes that the 
response relations are known to be linear and parallel, an assumption that is 
rarely valid in practice. We emphasize again that neither Cochran, Billewicz, 
nor Carpenter considered the potential loss of sample size due to matching. 

Nonlinear Regression. With a nonlinear but parallel relationship between 
the confounding and outcome variables, one might intuitively expect that pair 
matching would be superior to ANCOVA. The investigator might reason that 
it is better to match subjects and make no assumptions as to the exact nature 
of the model than to rely on analysis of covariance and possibly use an inap- 
propriate model to eliminate the effect of the confounding variable. 

Empirical examination of this comparison has been conducted only for the 
case where the relationship is moderately nonlinear in the range of interest. [As 
mentioned in Section 6.10.5, an extreme example of what might be termed 
moderately nonlinear is exp (X), and a more reasonable example would be 
exp ( X / 2 ) . ]  This is intended to exclude the violent nonlinearity that an alert 
investigator should be able to detect and realize that ANCOVA is not appro- 
priate. 

Both Rubin ( 1  973b) and Billewicz ( 1965) came to the conclusion that AN- 
COVA was preferable to matching. Rubin found that ANCOVA was more 
effective in removing bias than was random-order nearest available matching. 
But he also found that regression adjustment on nearest available matched 
samples was generally superior to ANCOVA, although the difference was 
usually small. Similarly, Rubin (1979) found that the same general conclusion 
held for multivariate metric matching (see Section 6.10.3). On the basis of 
precision, Billewicz also preferred ANCOVA to matching (stratified matching 
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with three strata), and he found that ANCOVA on frequency-matched samples 
resulted in the same precision as ANCOVA. 

In conclusion, for moderately nonlinear response relationships, ANCOVA 
or matching followed by ANCOVA would be preferred to matching alone. 

13.2.2 Matching versus Stratification 

In comparing matching with stratification, we will distinguish two situations: 
the categorical and the numerical confounding variables. In both situations, we 
bring to bear the earlier discussion in Section 13.1 of the effect of changing the 
form of the confounding variable, more specifically, the effect of treating a 
numerical confounding variable as categorical. 

Because all categories are exact for a 
categorical confounding variable, all bias due to such a confounding variable 
can be removed in a comparison of responses, at least in large samples, whether 
through stratification or matching. Therefore, the choice between matching and 
stratification in large samples must be based on precision. There are two con- 
siderations. First, matching pays a penalty because of the possible reduction of 
the sample size. Conversely, the stratified estimator will be less precise than an 
estimator based on frequency-matched samples of the same size, particularly 
if the numbers in some of the strata are small (Cochran, 1965). Consequently, 
in large samples we favor matching for categorical confounding variables, if there 
would be little or no reduction in sample size. Otherwise, stratification is to be 
preferred. 

For estimation of the odds ratio from small samples where the estimates are 
biased, further research is needed before firm recommendations can be made. 
McKinlay’s ( 1  975) results, reported below, do suggest, however, that stratifi- 
cation may be preferable. 

In many situations the confounding 
variable is numerical, or a categorical confounding variable has so many values 
that categories are collapsed before stratification can be used. In these situations, 
bias is never completely removed. Therefore, the relative effectiveness of 
matching and stratification in removing bias is an issue in these cases. 

McKinlay (1975) investilgated the properties of estimators of the odds ratio 
for a numerical confounding variable and a dichotomous outcome variable. In 
this Monte Carlo study, first described in Section 13.1.2, she compared the bias, 
variance, and mean squared error of the odds ratio estimators from unstratified, 
stratified (with several estimators), and stratified matching methods. Of par- 
ticular importance is that she explicitly evaluated the effect of reduced sample 
size when forming matched pairs. 

McKinlay’s (1975) results showed that the matched estimator was less de- 
sirable than the stratified estimators. The matched pair estimator was subject 

Categorical Confounding Variable. 

Numerical Confounding Variable. 
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to an inflated bias and a larger variance relative to other estimators. McKinlay 
concluded that the sample losses and the extra costs incurred through pair 
matching (in terms of time needed to form matches) cannot be justified. 

For a numerical outcome variable we again refer to analytic and Monte Carlo 
results given in Cochran ( 1  968), discussed in part in Section 13.1.2, that compare 
frequency matching with stratification. Cochran found that if, after stratifica- 
tion, the within-strata distributions of the confounding variable do not greatly 
differ from the treatment and comparison groups, frequency matching and 
stratification will be almost free of bias (due to the confounding variable). In- 
deed, results based on a normally distributed confounding variable divided into 
six strata show that more than 90% of the bias would be removed by either 
method. 

Based on Cochran’s results, we conclude that there is not much difference 
in the percentage bias reductions between frequency matching and stratification, 
with frequency matching favored because of slightly more precise estimators 
in small samples. In this comparison Cochran did not take into account the po- 
tential reduction in sample size due to matching. 

13.2.3 Should We Match? 

All the foregoing discussion comparing matching to an adjustment procedure 
still leaves unanswered the question of when should one match. An important 
consideration in answering this question is whether or not matching will ulti- 
mately result in a smaller sample size being used. 

In conducting a comparative study, two situations can be recognized. In the 
first, we have a reservoir of subjects from each of two groups and have recorded 
the measurements on all relevant variables, including the outcome variable in 
cohort studies or the risk variable in case-control studies. In the second, we again 
have a reservoir of subjects and measurements on the confounding variables, 
but we have not yet measured the outcome variable (cohort study) or risk vari- 
able (case-control study), possibly because this measurement is expensive or 
time-consuming. (We may have to wait until something has happened.) In  the 
first situation, matching as compared to ANCOVA or stratification will gen- 
erally result in a reduction of final sample size as the number of matched pairs 
can be no larger than the size of the smallest reservoir. Therefore, matching 
should be compared to an adjustment procedure that uses a larger sample. 
McKinlay’s (1975) results indicate that if this is done, matching will come in 
a poor second. The conclusion is not to match if it means throwing away a large 
fraction of the data. 

I f  recording the value for the outcome variable (or risk variable in case-control 
studies) is very time-consuming or expensive, we may only want to record such 
information for a limited number of units, and the issue then is how to select these 
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units in order to obtain the best estimate of the treatment effect. Indeed, 
matching is a method to be recommended for such a situation. Assuming that 
the reservoir is large enough that the desired number of pairs can be found, 
matching is a particularly good choice in small samples because of the precision 
with which the treatment effect can still be estimated. If the sample size is too 
small, adjustment procedures cannot be used with any accuracy. For example, 
if one attempts to use stratification on small samples, there is a good chance that 
many of the strata will be empty for one or the other group. Frequency matching, 
on the other hand, would ensure members of both groups within each stratum 
(see Cochran, 1953, and Fleiss, 1973). The precision advantages of matching 
can be substantial; Carpenter ( 1  977) found that under reasonable assumptions, 
matching (specifically circular matching) can double the precision of the esti- 
mated treatment effect as compared to ANCOVA for the same sample sizes. 

The problem of reduced sample size led Rubin to develop the nearest available 
matching techniques (Section 6.5). When matching on a numerical confounding 
variable, the nearest available matching procedure can be used with no loss of 
sample size. Unfortunately, the relative merits of this matching technique versus 
stratification have not been studied. Nearest available matching does well in 
comparison to ANCOVA, so we can infer that this method will compare more 
favorably to stratification than did the stratified matching technique considered 
by McKinlay (1975). 

Matching does have one clear advantage over such techniques as ANCOVA 
and logit analysis, which assume a particular functional form for the relation 
between the outcome and confounding variables. With the exception of mean 
matching, matching (and stratification) makes no assumptions about the 
functional form, and as such the researcher is protected against model specifi- 
cation errors. For reasonably large samples and if there is no loss of sample size 
due to matching, for example, by using nearest available matching, matching 
compares favorable to ANCOVA. If the researcher is unwilling to assume lin- 
earity, matching would certainly be a good choice. 

13.3 COMBINING PROCEDURES 

In many cases it is desirable to apply more than one bias-reduction procedure 
to the same data. The larger and more complex the data, the more likely this 
will be, as it will be difficult to find one procedure that can properly handle all 
types of confounding variables. For example, the more confounding variables 
one must deal with, the harder it will be to assume that the outcome variable 
or some transformation is linearly related to all the confounding variables, a 
necessary assumption for ANCOVA. 

There are basically two ways that we can apply two procedures to the same 



13.3 COMBINING PROCEDURES 271 

data. First, apply the two procedures to the same confounding variable; second, 
apply the two procedures to different confounding variables. An example of the 
first is log-linear analysis prior to standarization. As discussed in Chapter 7, this 
increases the precision of directly standarized rates. Another example, discussed 
in Section 13.2, is regression adjustment on pair-matched samples as a combi- 
nation of ANCOVA and matching. 

Although other combinations are possible, the discussion of using different 
procedures for different confounding variables will be restricted to the problem 
of applying adjustment procedures to pair-matched samples. This is both a useful 
and a nontrivial case-useful because additional confounding variables that arise 
only after the sample is chosen obviously cannot be accounted for in the matching 
process by which the samples were chosen; nontrivial because matching intro- 
duces dependence, so the adjustment procedures must take the dependence into 
account. 

13.3.1 Regression Analysis of Pair-Matched Samples 

For a numerical outcome let us define Yq as the response for the ith member 
of the j th  matched pair and X as a confounding variable that was not taken into 
account in the matching process. The treatment group is represented by i = 1 ,  
and the comparison group by i = 0. The ANCOVA model is 

Yi, = ai + PXi, + eu i = 0, 1 ; j  = 1,2 , .  . ., N ,  (13.1) 

where eq includes the effect of the matching variable. Because of the matching, 
el, and eo, are not independent, and thus the ANCOVA assumptions are vio- 
lated. The standard approach to circumvent the problem, as is done for example 
with the paired-t test, is to work with the differences: 

Ylj  - YO, = (a1 - ao) +  XI, - XO,) + (el, - eo,) j = 1,  2, . . . , N .  
(13.2) 

The regression of Yl, - YO, on X I ,  - Xoj then yields an unbiased estimator of 
a1 - (YO.  Rosner and Hennekens (1978) give a hypothetical example of the 
application of this procedure. 

Rubin (1 970) motivates this procedure differently. He assumes that the re- 
gression of Y on X is nonlinear, but parallel in the two groups, and that the 
nonlinear terms in the regression are dominated by the linear terms. He then 
shows that the procedure of matching on X and then estimating a1 - a0 based 
on ( 1  3.2) is less affected by the nonlinearity than is ANCOVA. This is the 
procedure termed regression adjustment on matched samples that has been 
discussed earlier (Section 13.2.1). Note that in Rubin’s situation, the matching 
and regression adjustment are performed on the same confounding variable. 
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13.3.2 Logit Analysis of Pair-Matched Samples 

For a dichotomous response variable, logit analysis serves the same function 
as ANCOVA does for numerical responses. The logit model discussed in Chapter 
9 can be generalized as, see Cox (1  970, p 56) 

(1 3.3) 

where R ( = 0 or 1 )  is the risk variable; y is the logarithm of the odds ratio, the 
parameter of interest; Sj is a parameter that reflects the effect of thejth pair; 
and P(R, X ,  j )  is the probability of a “successful” outcome given R, X andj. (The 
meaning of Sj will be further discussed below.) The parameter 0 indicates the 
effect of the Confounding variable not taken into account during the matching, 
and XR, is the value of the confounding variable in thejth pair with risk factor 
value R. Straightforward application of logit analysis to this model is not ap- 
propriate because the number of parameters increases as the number of obser- 
vations (pairs) grows. This violates an assumption required for the large-sample 
properties of maximum likelihood estimators to hold. 

With a binary outcome variable with values denoted 0 and I ,  the possible 
responses on a pair of cases are then 00, 10,01, and 1 1, writing the response of 
the comparison group first and of the treatment group second. Since the re- 
sponses 00 and 1 1 do not affect the comparison between the two levels of the risk 
variable, we have only to consider the discordant pairs (i.e., those pairs for which 
the response is 01 or 10). 

The probability, Pi, of a 01 response for thejth pair, given that the pair is 
discordant, satisfies 

(1 3.4) 

The logarithm of the odds ratio y can then be estimated by fitting the logit model 
( 1  3.4) in the usual way by treating a 0 1 pair as Y = 1, a 10 pair as Y = 0, and 
ignoring all 00 and 1 1 pairs. The procedure based on (13.4) is referred to as the 
conditional likelihood method (Cox and Hinkley, 1974), as it only analyzes the 
discordant pairs. Holford et al. ( 1978) and Rosner and Hennekens ( 1  978) discuss 
the procedure further and give an example, and Breslow et al. ( 1978) consider 
the extension to more than one matched control. 

The usual analysis of matched pairs when the response is dichotomous (see 
Chapter 6) is to estimate y by 

number of 01 pairs 
number of 10 pairs 

-$J = In ( 1  3.5) 

From ( 1  3.4) it follows that if we have perfect matching on X ( X I ,  = Xoj, for all 
j) or if p equals zero, the logit estimator of y equals -$J of (1 3.5). 
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It is sometimes possible to analyze matched samples as if they were not 
matched. The idea is to introduce the matching explicitly into the model. In  the 
case of pairing on the basis of a set of confounding variables, the 6, of (1 3.3) may 
be replaced by a set of parameters corresponding to the matching variables. For 
example, in the case of stratified matching on age and sex, the Sj could be re- 
placed by parameters for each of the age and sex categories and, to allow for 
age-sex interactions, various combinations of these variables. As the number 
of parameters in the model, although possibly large, would then not change as 
the number of pairs increases, maximum likelihood could be applied in the usual 
way and the conditional likelihood approach would not be necessary. An example 
of the use of this procedure is Smith et al. (1975). 

However, this alternative method would not work, for example, in the case 
of natural pairing, such as in the case of siblings, where there may not be an 
explicit set of confounding variables. Matching is intended to control for such 
variables as experience and inheritance, which are clearly relevant but not re- 
ducible to a few simple variables. Also, note that, unlike the conditional likelihood 
approach, the alternative method described above requires knowledge of the 
relationship between the response and the matching variables. 
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Up to now we have concentrated on methods which, when properly used, will 
provide relatively undistorted estimates of the treatment effect or association 
between two factors of interest. The phrase “treatment effect” will correctly 
designate this association if causality can be established. In this chapter the 
discussion emphasizes criteria which, when combined with informed judgment, 
can be used to assess causality from significant associations. Undistorted esti- 
rtiates of association are necessary if one is to accurately assess cause and effect. 
Tests of significance when applied to the estimates serve to determine the effect 
that chance can play but do not, in and of themselves, provide “proof” of cau- 
sality. 

We begin in Section 14.1 by discussing criteria by which to assess the quality 
of an estimate of the treatment effect. Some of this section repeats material first 
presented in Section 5.1; however, the emphasis now is on considerations ap- 
plicable after the study has been completed and the first analysis has been done. 
In Section 14.2 we present six criteria which can help in assessing causality: ( a )  
the strength of the association, (6) consistency of the association, (c) specificity 
of the association, (d) temporality, ( e )  gradient of effect, and U, coherence. 
The discussion of these criteria is brief since they are meant to be used as a 
“checklist.” 
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276 CONSIDERATIONS IN ASSESSING ASSOCIATION AND CAUSALITY 

14.1 ASSESSING THE QUALITY OF THE ESTIMATE OF 
THE TREATMENT EFFECT 

The major criterion for assessing the quality of the estimate of the treatment 
effect is the adequacy of the model. All the results presented concerning the 
expected amount of bias reduction are conditional on there being no model 
misspecification (i.e., on the assumptions such as linearity or parallelism being 
satisfied). These assumptions can often be tested. For example, the chi-square 
goodness-of-fit test can be used to test the fit of a log-linear model and the F test 
can be used to test for the parallelism of slopes for the ANCOVA model. 

The lack of model misspecification also implies that all important confounding 
variables have been taken into account; that is, all the variables which have a 
significant effect on the estimate of the treatment effect. If a variable is suspected 
of confounding and data are available, the importance of the variable can be 
checked by including it in the chosen analysis. Its importance can be evaluated 
either in terms of the change in the estimate of the treatment effect or, in 
parametric analyses, by testing the statistical significance of the suspected 
confounder. 

Another way to check for model misspecification in the case of nonmatching 
techniques is to compare the estimate of the treatment effect from the unadjusted 
data to that from the chosen analysis. A large difference in magnitude between 
these two estimates, while indicating that an adjustment procedure is needed, 
also indicates that the final estimate may be strongly influenced by the choice 
of adjustment procedure. 

In addition to parametric and confirmatory statistical techniques, an “ex- 
ploratory analysis” in the manner of Tukey (1977) is sometimes useful. His 
methods do not rely as heavily on parametric models and specific distributional 
assumptions. 

14.2 ASSESSING CAUSALITY 

Once the magnitude and direction of an association has been determined as 
accurately as possible, the previously listed six criteria can be considered before 
making any causal inferences. Each of these criteria is important in assessing 
the plausability of a cause-and-effect hypothesis, but the lack of any or all of 
them being satisfied does not reject the hypothesis. 

The first criterion is the strength of the association or the magnitude of the 
treatment effect. The stronger the association, the stronger the evidence for 
causation. Consider the results from the studies of lung cancer and smoking. 
The death rate from lung cancer in cigarette smokers is 9 to 10 times the rate 
for nonsmokers, and in the case of heavy smokers the rate is 20 to 30 times as 
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great. In  the case of such a strong association, it is difficult to dismiss the like- 
lihood of causality. 

One can sometimes examine the strength of an association by assessing the 
effects of possible confounding variables. Under some special distributional 
assumptions, Bross ( 1966, and 1967) and Schlesselman ( 1978) have discussed 
methods to determine whether an apparent association is due in part or in whole 
to a variable that was not measured or controlled for in the study. (See Section 
5.1 for a discussion of the “size rule.”) 

The second criterion is consistency of the association. Has the association been 
observed by several investigators at different times and places? As an example 
of a consistent association, observed under varied circumstances, consider the 
findings of the Advisory Committee’s Report to the Surgeon-General of the 
United States (United States Department of Health Education and Welfare 
( 1  964), Smoking and Health: Report of the Advisory Committee to the Sur- 
geon-General of the Public Health Service, Washington, DC: Public Health 
Service Publication No. 1103). The Committee found an association between 
lung cancer and smoking in 29 of the 29 case-control studies and in 7 of the 7 
cohort studies. 

An association that has been observed under a wide variety of circumstances 
lends strength to a cause-and-effect hypothesis. After all, the only way to de- 
termine whether a statistically significant result was indeed not due to only 
chance is by repetition. There are some situations, however, which cannot be 
repeated, and yet conclusions concerning cause and effect can be made. Hill 
( I  965) discusses the experience of nickel refiners in South Wales with respect 
to lung cancer and nasal sinus cancer. The large number of cancer deaths in the 
population of workers in the nickel refineries was far above that expected in the 
general population. With such a large difference in death rates, it was clear, even 
without any biological information to support the statistical evidence, that 
working in these nickel refineries was a grave hazard to health. 

The third criterion is specificity of association. Has the association been 
limited to only certain populations, areas, jobs, and so on? If an association 
appears only for specific segments of a population, say only in nickel refinery 
workers, and not in other segments, then causation is easier to infer. However, 
the lack of specificity does not negate the possibility of cause and effect. 

Specificity can be sharpened by refining and subdividing the variables of in- 
terest. As an example, consider again the Advisory Committee’s report on 
smoking in Smoking and Health. The overall analysis showed an increase in 
the risk of death from all causes in smokers. However, specificity was increased 
and causal inference improved when causes of death such as cancer were sub- 
divided into specific-site cancers. By examining the association between smoking 
and forms of cancer, the specificity of smoking and lung cancer become apparent. 
In addition, smoking was refined by considering the method and frequency of 
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smoking. This allowed the various researchers to identify cigarettes as a major 
causal factor. 

The fourth criterion is temporality or time sequence of events. This criterion 
is most important in diseases or processes which take a long time to develop. In 
order to assign cause to any variable, it is necessary to know that the exposure 
to the potential causal variable happened sufficiently before the effect or response 
to indeed be considered causal. I n  some situations, it is a case of the chicken or 
the egg-which came first? For example, as Hill (1965) cites: “Does a particular 
diet lead to a disease or do the early stages of the disease lead to that particular 
dietetic routine?” 

Both cohort and case-control types of studies suffer from problems in deter- 
mining temporality. In a cohort study based on nonrandom assignment, one can 
sometimes argue that an apparent association may be due to the fact that, in 
the words of Susser (1973), “pre-existing attributes lead the cases to select 
themselves for the supposedly casual experience.” Fisher ( 1  958) proposed such 
an argument in the smoking and lung cancer controversery. He suggested that 
persons may be genetically predisposed to lung cancer as well as smoking. In 
case-control studies, however, since the information is obtained in retrospect, 
the precedence of the various factors may not be ascertainable. For example, 
unless a patient’s medical records are available, the time of a patient’s exposure 
to a suspected causal medication may not be ascertainable. The investigator 
would have to rely on a patient’s potentially faulty recall. 

The fifth criterion is the existence of a biological gradient or dose-response 
relationship. Causal inference can be strengthened if a monotonic relationship 
exists between the effect or response and the level of the hypothesized causal 
variable. In the smoking and lung cancer studies, the death rate from lung cancer 
rose linearly with the number of cigarettes smoked daily. Combining this in- 
formation with the higher death rate for smokers than nonsmokers provided 
strong causal evidence. While the existence of an ascertainable dose-response 
relationship will strengthen causal inference, the lack of such a relationship will 
not weaken the hypothesis. A relationship may exist but in fact be so complex 
that it cannot be determined from the observed levels of the hypothesized causal 
variable. 

The final criterion is coherence of the association. Do the results conflict with 
known facts concerning the development of a disease or condition being studied? 
I f  the results do conflict, however, one need not dismiss the apparent association, 
since the coherence of the result is conditional on the present state of knowl- 
edge. 

For further more detailed discussion of these six criteria and additional cri- 
teria, the reader is referred to Hill (1965) and Susser (1973). 

Our final advice to the investigator is to maintain some degree of skepticism 
for the duration of the study, so that objectively one can attempt to eliminate 
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all other plausible explanations of a hypothesized result other than one’s own. 
In the words of Sherlock Holmes, “when you have eliminated the impossible, 
whatever remains, however improbable, must be the truth” (Sir Arthur Conan 
Doyle, The Sign ofFour, Chapt. 6 ) .  
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