
Nelson–Aalen Estimator

The Nelson–Aalen estimator is a nonparametric esti-
mator which may be used to estimate the cumu-
lative hazard rate function from censored survival
data (see Survival Distributions and Their Charac-
teristics). Since no distributional assumptions are
needed, one important use of the estimator is to check
graphically the fit of parametric models, and this is
the reason why it was originally introduced by Nel-
son [10, 11]. Independently of Nelson, Altshuler [2]
derived the same estimator in the context of com-
peting risks animal experiments. Later, by adopting
a counting process formulation, Aalen [1] extended
its use beyond the survival data and competing risks
setups, and studied its small and large sample proper-
ties using martingale methods. The estimator is nowa-
days denoted the Nelson–Aalen estimator, although
other names (the Nelson estimator, the Altshuler
estimator, the Aalen–Nelson estimator, the empiri-
cal cumulative hazard estimator) are sometimes used
as well. Below we present a number of situations
where the Nelson–Aalen estimator may be applied
and exemplify its use in one particular case. Further-
more, we indicate how counting processes provide a
framework which allows for a unified treatment of all
these diverse situations, and we summarize the most
important properties of the Nelson–Aalen estimator.
A detailed account is given in [3, Section IV.1].

Survival Data

Consider first the survival data situation, where we
want to study the time to death (or some other
event) for a homogeneous population with hazard
rate function α(t) and cumulative hazard rate function
A(t) =

∫ t

0 α(s) ds. Assume that we have a sample of
n individuals from this population. Our observation of
the survival times for these individuals will typically
be subject to right censoring, meaning that for some
individuals we only know that their true survival
times exceed certain censoring times. The censoring
is assumed to be independent in the sense that the
additional knowledge of censorings before any time
t does not alter the risk of failure at t (see Censored
Data). We denote by t1 < t2 < · · · the times when
deaths are observed and let dj be the number of
individuals who die at tj .

The Nelson–Aalen estimator for the cumulative
hazard rate function then takes the form

Â(t) =
∑

tj ≤t

dj

rj

, (1)

where rj is the number of individuals at risk (i.e.
alive and not censored) just prior to time tj . Thus
the Nelson–Aalen estimator is an increasing right-
continuous step function with increments dj/rj at
the observed failure times. The variance of the Nel-
son–Aalen estimator may be estimated by

σ̂ 2(t) =
∑

tj ≤t

(rj − dj )dj

(rj − 1)r2
j

. (2)

It may be shown (see below) that the Nelson–Aalen
estimator (1) as well as the variance estimator (2) are
almost unbiased. In large samples the Nelson–Aalen
estimator, evaluated at a given time t , is approxim-
ately normally distributed, so a standard 100(1 −
α)% confidence interval for A(t) takes the form

Â(t) ± z1−α/2σ̂ (t), (3)

with z1−α/2 the 1 − α/2 fractile of the standard nor-
mal distribution. The approximation to the normal
distribution is improved by using a log transform giv-
ing the confidence interval

Â(t) exp
[
±z1−α/2

σ̂ (t)

Â(t)

]
. (4)

This interval is satisfactory for quite small sample
sizes [5].

Right censoring is not the only kind of data incom-
pleteness in survival analysis. Often, e.g. in epidemi-
ological applications, individuals are not followed
from time zero (in the relevant time scale, typically
age), but only from a later entry time (conditional on
survival until this entry time). Thus, in addition to
right censoring, the survival data are subject to left
truncation. For such data we may still use the Nel-
son–Aalen estimator (1) and estimate its variance by
(2). The number at risk, rj , now is the number of
individuals who have entered the study before time
tj and are still in the study just prior to tj . For left-
truncated data the numbers at risk, rj , may be low
for small values of tj . This will result in estimates
Â(t) which have large sampling errors. But because
the increments of the Nelson–Aalen estimator are
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uncorrelated (see below), the uncertainty induced for
small time values has no influence on the increment
Â(t) − Â(s) of the Nelson–Aalen estimator over a
later time interval (s, t]. An estimator for the variance
of this increment is σ̂ 2(t) − σ̂ 2(s).

Quite often we want to estimate the survival distri-
bution function S(t) = exp[−A(t)], representing the
probability that an individual will be alive at time
t . This may be done from right-censored and/or
left-truncated survival data by the Kaplan–Meier
estimator. The relation A(t) = − ln S(t) suggests
that the cumulative hazard rate function alternatively
may be estimated as minus the logarithm of the
Kaplan–Meier estimator. Even though this estima-
tor numerically will be close to the Nelson–Aalen
estimator, the latter is the canonical one from a theo-
retical point of view. Furthermore, the Nelson–Aalen
estimator may be used in a number of different sit-
uations (see below) while the alternative estimator
applies only to the survival data situation.

An Illustration

To give an illustration of the Nelson–Aalen esti-
mator we use data from a randomized clinical trial
for patients with histologically verified liver cirrho-
sis. Patients were recruited from several hospitals
in Copenhagen between 1962 and 1969 and were
followed until death, lost to follow-up or until the
closing date of the study, October 1, 1974. The time
variable of interest is time since entry into the study.
Patients are right censored if alive on October 1,
1974, or if lost to follow-up before that date.

We consider only the 138 placebo-treated male
patients. Their median age at entry was 57 years,
while the lower and upper quartiles were 51 and
66 years, respectively. Of the 138 patients, 88 died
during the study. The Nelson–Aalen estimate for
these patients is shown in Figure 1 with 95% con-
fidence intervals computed according to (4). Even
though the cumulative hazard rate function provides
a useful summary measure (e.g. [6, Section 2.3]), it
is usually the hazard rate function itself which is the
entity of real interest. So when interpreting the esti-
mate in Figure 1, we mainly focus on the “slope” of
the curve. The estimate of the cumulative hazard rate
function is steeper for the first 9–10 months after
randomization than at later times. Therefore we have
evidence that the risk of dying for these patients is
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Figure 1 Nelson–Aalen estimate of the cumulative haz-
ard rate function for death for 138 placebo-treated male
patients with liver cirrhosis, with 95% log-transformed con-
fidence intervals

highest just after randomization. (This may, at least in
part, be due to heterogeneity which is not accounted
for in our simple analysis.) The hazard rate func-
tion is approximately 0.3 per year for the first 9–10
months and slightly below 0.2 per year thereafter
when estimated as the average slope of the curve
over the relevant time periods. More formal proce-
dures for smoothing the Nelson–Aalen estimate in
order to obtain an estimate for the hazard rate func-
tion itself are available but will not be considered here
(see Smoothing Hazard Rates). A further discussion
and analysis of the cirrhosis data is given in [12]. The
data were also used for illustrative purposes in [3].

Multi-state Models and Recurrent Events

The survival analysis setup considered above may
be generalized in two directions. More than one
type of event may be considered for each individual
under study, and/or the event in question may happen
more than once for each individual. Examples of
the first type are competing risks with two or more
causes of death and the Markov illness–death model
with the states “healthy”, “diseased”, and “dead”
(see Counting Process Methods in Survival Ana-
lysis). More generally, we may consider any Markov
process with a finite number of states which may be
used to model the life history of an individual. An
example of the second type is an inhomogeneous
Poisson process with intensity α(t) modeling the
occurrence of some recurrent event like episodes of
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angina pectoris in patients with coronary heart disease
or infections in AIDS patients. For both of these
two types of situations we observe the times when
events occur for a number of individuals (modeled
as iid copies of the relevant process) who need
not all be observed over the same interval of time.
The Nelson–Aalen estimator may then be applied to
estimate cumulative intensities.

To be specific, consider a finite-state Markov
process with transition intensities αgh(t) for g #= h.
Focusing on fixed g and h in what follows, we
drop the subscripts and write just α(t) for the g →
h transition intensity. Furthermore, we denote by
t1 < t2 < · · · the times when transitions from g to
h are observed. Let dj be the number of individ-
uals who experience a g → h transition at tj , and
write rj for the number of individuals in state g
(i.e. at risk for a g → h transition) just prior to time
tj . Then the cumulative g → h transition intensity
A(t) =

∫ t

0 α(s) ds may be estimated by (1) and its
variance by (2). Similarly, the integrated intensity of
an inhomogeneous Poisson process may be estimated
with the tj s denoting the times of observed events,
and the dj s and rj s being the corresponding num-
bers of events and numbers at risk, respectively. An
illustration of the use of the Nelson–Aalen estimator
to estimate integrated Markov transition intensities is
given by Keiding & Andersen [9].

Two Other Applications

For the situations considered so far, (1) and (2) apply
with rj the number at risk at tj for the event in
question. The use of the Nelson–Aalen estimator is,
however, not restricted to such situations. We mention
here two other applications and return to a general
discussion below.

Relative Mortality

Our first example considers right-censored and/or
left-truncated survival data, but they no longer come
from a homogeneous population. Rather, we assume
that the hazard rate function of the ith individual may
be written as the product α(t)µi(t), where α(t) is
a relative mortality common to all individuals and
µi(t) is the hazard rate function at time t for a person
from an external standard population corresponding
to the ith individual (e.g. of the same sex and age

as individual i). Typically the µi(t) will be known
from published life tables for the general population.
In this situation the Nelson–Aalen estimator may be
used to estimate the cumulative relative mortality
A(t) =

∫ t

0 α(s) ds. All that is required is that rj in
(1) be taken to denote the sum of the external rates
µi(tj ) for all individuals at risk just prior to tj . An
illustration of this use of the Nelson-Aalen estimator
is provided by Breslow & Day [7, Chapter 5].

An Epidemic Model

A simple model for the spread of an infectious dis-
ease in a community is the following (see Epidemic
Models, Stochastic). At the start of the epidemic, i.e.
at time t = 0, some individuals make contact with
individuals from elsewhere and are thereby infected
with the disease. There are no further infections
from outside the community during the course of the
epidemic. Let S(t) and I (t) denote the number of
susceptibles and infectives, respectively, just prior to
time t . Assuming random mixing, the infection inten-
sity in the community at time t becomes α(t)S(t)I (t),
where α(t) is the infection rate per possible con-
tact. We denote by 0 < t1 < t2 < · · · the times when
individuals are infected and let dj denote the num-
ber infected at tj . Then the cumulative infection
rate, A(t) =

∫ t

0 α(s) ds, may be estimated by the Nel-
son–Aalen estimator (1) where now rj = S(tj )I (tj );
see Becker [4, Section 7.6] for an illustration.

Counting Process Formulation and Small
Sample Properties

In general we consider the occurrences of some
events of interest (e.g. deaths, occurrences of a dis-
ease, infections), and denote by 0 < t1 < t2 < · · · the
times when an event is observed. We assume that two
or more events cannot occur at the same time, so that
there are no tied observations. (The handling of ties
is discussed briefly below.) Then the process N(t)
counting the number of observed events in the time
interval [0, t] is a (univariate) counting process. The
behavior of N(t) is governed by its intensity process
λ(t) given heuristically by

λ(t) dt = Pr(event occurs in [t, t + dt)|Ft−).
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Here Ft− represents all the information available to
the researcher just before time t . The counting pro-
cess satisfies Aalen’s multiplicative intensity model
if we may write its intensity process as

λ(t) = α(t)Y (t), (5)

for some unknown function α(t) and some observable
process Y (t) whose value at time t is known just
prior to t . All the situations considered above give
counting processes which fulfill (5). Survival data
from a homogeneous population, finite-state Markov
processes, and the inhomogeneous Poisson process,
all give a Y (t) process which is the number at
risk just prior to time t . For the model for relative
mortality, Y (t) is the sum of the µi(t) for those
at risk just before t , while for the epidemic model,
Y (t) = S(t)I (t). The common structure of all these
models when formulated as counting processes is
the reason why the Nelson–Aalen estimator may be
applied to all these diverse problems.

In fact, the counting process formulation provides
a framework which makes it simple to study the sta-
tistical properties of the Nelson–Aalen estimator. We
briefly indicate a few main steps and refer to [3,
Section IV.1.1] for a thorough treatment. First, we
note that, with rj = Y (tj ), we may write the Nel-
son–Aalen estimator (1) as

Â(t) =
∫ t

0

J (s)

Y (s)
dN(s), (6)

where J (s) = I (Y (s) > 0) and 0/0 is interpreted as
0. Then using (5), (6), and the decomposition N(t) =∫ t

0 λ(s) ds + M(t) of a counting process into a sum
of its integrated intensity process and a local square
integrable martingale M(t), we obtain

Â(t) = A∗(t) + M∗(t). (7)

Here A∗(t) =
∫ t

0 J (s)α(s) ds is almost the same
as A(t) when there is only a small probability
that Y (s) = 0 for some s ≤ t , while M∗(t) =∫ t

0 [J (s)/Y (s)] dM(s) is a stochastic integral and as
such is a local square integrable martingale. Relation
(7) is the key to studying the statistical properties
of the Nelson–Aalen estimator. Since M∗(t) has
expected value zero for any given t , we have EÂ(t) =
EA∗(t), so the Nelson–Aalen estimator is almost
unbiased. Furthermore, an unbiased estimator for the
variance of M∗(t) is its optional variation process

∫ t

0 [J (s)/Y (s)2] dN(s). Thus the variance estimator
(2) is almost unbiased when there are no ties. Finally,
a martingale has uncorrelated increments, and by
(7) this is (almost) the case for the Nelson–Aalen
estimator as well.

In the presence of ties, i.e. when the number of
events dj at tj exceeds one, the process N(t) count-
ing occurrences of events in [0, t] may have jumps of
size two or larger and is therefore no longer a count-
ing process. Often, however, we may write N(t) =∑n

i=1 Ni(t), where Ni(t) is a counting process reg-
istering the events for individual i. If we consider a
homogeneous population where the rates of occur-
rence of the events are the same for all individuals,
we may adopt the discrete extension of the model
described in [3, pp. 180–181]. For this extended
model, the arguments of [8, pp. 94–96], apply, to
show that the variance estimator (2) is almost unbi-
ased also in the presence of ties. This justifies the
use of the tie-corrected estimator (2) for all situa-
tions considered above, except for the model with
relative mortality and the epidemic model. Within the
framework of the extended model the Nelson–Aalen
estimator is a nonparametric maximum likelihood
estimator; see [3, Section IV.1.5] for details and fur-
ther discussion.

Weak Convergence and Confidence Bands

By (7) the martingale central limit theorem may be
used to prove that, considered as a stochastic process,
the Nelson–Aalen estimator (properly normalized)
converges weakly to a mean zero Gaussian martin-
gale. In particular, for a fixed t it is asymptotically
normally distributed, a fact that was used in con-
nection with the confidence intervals (3) and (4).
The weak convergence result also makes it possible
to derive confidence bands for A, i.e. limits which
contain A(t) for all t in an interval [τ1, τ2] with a
prespecified probability.

One important class of such confidence bands are
the equal precision bands. The standard and log-
transformed equal precision bands are obtained by
replacing z1−α/2 in (3) and (4) by d1−α , the 1 − α
fractile in the distribution of the supremum of the
absolute value of a standardized Brownian bridge
(over a certain time interval). This fractile may be
found (approximately) by solving (with respect to d)
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the nonlinear equation

4φ(d)

d
+ 2φ(d)

(
d − 1

d

)
ln

[
σ̂ (τ2)

σ̂ (τ1)

]
= α,

where φ(d) is the standard normal density function.
The equal precision bands require σ̂ (τ1) > 0, so they
cannot be extended all the way down to t = 0.
Typically, one will also omit the largest values of
t . The standard equal precision band has poor small
sample properties, so even with sample sizes in the
hundreds the use of the log transformed confidence
band is recommended [5]. As an illustration we use
once more the liver cirrhosis example. Considering
the interval from 4 months (1/3 year) to 8 years,
we have σ̂ (1/3) = 0.027 and σ̂ (8) = 0.163, so that
d0.95 = 2.99. Therefore the 95% log transformed
equal precision band for the cumulative hazard rate
function between 4 months and 8 years may be
obtained from (4) by using the fractile 2.99 instead
of the value 1.96 used for the pointwise confidence
intervals in Figure 1. A detailed study of the weak
convergence of the Nelson–Aalen estimator and the
derivation of confidence bands are provided by [3,
Section IV.1.2-3]. Here another class of confidence
bands, the Hall–Wellner bands, is also discussed.

We finally note that semi-Markov processes (or
Markov renewal processes), where the transition
intensities (only) depend on the sojourn times in the
states, do not give rise to counting processes which
fulfill the multiplicative intensity model (5). Thus the
results outlined above do not immediately extend to
such models. However, it turns out that enough of
the above structure is preserved to be able to define
Nelson–Aalen estimators also for such semi-Markov
processes and to derive identical asymptotic results
for these as for the case of Markov processes; see [3,
Section X.1] for a discussion and further references.
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