
Kaplan–Meier Estimator
The Kaplan–Meier estimator is a nonparametric
estimator which may be used to estimate the sur-
vival distribution function from censored data. The
estimator may be obtained as the limiting case of
the classical actuarial (life table) estimator, and it
seems to have been first proposed by Böhmer [2].
It was, however, lost sight of by later researchers
and not investigated further until the important paper
by Kaplan & Meier [12] appeared. Today the esti-
mator is usually named after these two authors,
although sometimes it is denoted the product–limit
estimator (see Aalen–Johansen Estimator). Below
we describe the Kaplan–Meier estimator, illustrate
its use in one particular case, and discuss estimation
of the median and mean survival times. Furthermore,
we show how the Kaplan–Meier estimator can be
given as the product–integral of the Nelson–Aalen
estimator, and indicate how this may be used to study
its statistical properties. For almost four decades the
Kaplan–Meier estimator has been one of the key sta-
tistical methods for analyzing censored survival data,
and it is discussed in most textbooks on survival anal-
ysis. Rigorous derivations of the statistical properties
of the estimator are provided in the books by Fleming
& Harrington [7] and Andersen et al. [1]. In partic-
ular the latter presents formal proofs of almost all
the results reviewed below as well as an extensive
bibliography.

The Estimator and Confidence Intervals

Consider the survival data situation where we want
to study the time to death (or some other event) for
a homogeneous population with survival distribution
function S(t) representing the probability that an indi-
vidual will be alive at time t . Assume that we have
a sample of n individuals from this population. Our
observation of the survival times for these individuals
will typically be subject to right-censoring, meaning
that for some individuals we only know that their true
survival times exceed certain censoring times. The
censoring is assumed to be independent in the sense
that the additional knowledge of censorings before
any time t does not alter the risk of failure at t . We
denote by t1 < t2 < · · · the times when deaths are
observed and let dj be the number of individuals who
die at tj .

The Kaplan–Meier estimator for the survival dis-
tribution function then takes the form

Ŝ(t) =
∏

tj ≤t

(
1 − dj

rj

)
, (1)

where rj is the number of individuals at risk (i.e.
alive and not censored: in the risk set) just prior to
time tj . If there are no censored observations, then (1)
reduces to one minus the empirical distribution func-
tion. The variance of the Kaplan–Meier estimator is
estimated by Greenwood’s formula:

σ̂ 2(t) = Ŝ(t)2
∑

tj ≤t

dj

rj (rj − dj )
. (2)

In the case of no censoring, (2) reduces to Ŝ(t)[1 −
Ŝ(t)]/n, the standard binomial variance estimator.

In large samples the Kaplan–Meier estimator,
evaluated at a given time t , is approximately nor-
mally distributed so that a standard 100(1 − α)%
confidence interval for S(t) takes the form

Ŝ(t) ± z1−α/2σ̂ (t), (3)

with z1−α/2 the 1 − α/2 fractile of the standard
normal distribution. The approximation to the normal
distribution is improved by using the log-minus-
log transformation (see Quantal Response Models)
giving the confidence interval

Ŝ(t)exp{±z1−α/2σ̂ (t)/[Ŝ(t) ln Ŝ(t)]}. (4)

This interval is satisfactory for quite small sam-
ple sizes [3]. Confidence intervals with small-sample
properties which are comparable with (4), or even
slightly better, may be obtained by using the arcsine-
square-root transformation [3] or by basing the con-
fidence interval on the likelihood ratio test [5, Sec-
tion 4.3; 16]. Note that all these confidence intervals
should be given a pointwise interpretation. Simulta-
neous confidence bands for the survival distribution
function are considered below.

Right-censoring is not the only kind of data incom-
pleteness in survival analysis. Often, e.g. in epi-
demiologic applications, individuals are not followed
from time zero (in the relevant time scale, typically
age), but only from a later entry time (conditional
on survival until this entry time). Thus, in addi-
tion to right-censoring, the survival data are sub-
ject to left truncation. For such data we may, in
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principle at least still use the Kaplan–Meier estima-
tor (1) and estimate its variance by (2). The number
at risk, rj , is now the number of individuals who
have entered the study before time tj and are still in
the study just prior to tj . However, for left-truncated
data the numbers at risk, rj , will often be low for
small values of tj . This will result in estimates Ŝ(t)
which have large sampling errors and which therefore
may be of little practical use. What can be use-
fully estimated in such situations is the conditional
survival distribution function, S(t |t0) = S(t)/S(t0),
representing the probability of survival to time t
given that an individual is alive at time t0 < t . It
may be useful to estimate such conditional distri-
bution functions for several values of t0 (at which
there are reasonable numbers at risk), there being
nothing canonical about any particular value. The
estimation is performed as described earlier, the only
modification being that the product in (1) and the
sum in (2) are restricted to those tj for which t0 <
tj ≤ t .

An Illustration

As an illustration we use data from a randomized
clinical trial for patients with histologically verified
liver cirrhosis. Patients were recruited from several
hospitals in Copenhagen between 1962 and 1969
and were followed until death, lost to follow-up, or
until the closing date of the study, October 1, 1974.
The time variable of interest is time since entry into
the study. Patients are right censored if alive on
October 1, 1974, or if lost to follow-up before that
date.

We consider only the 138 placebo-treated male
patients. Their median age at entry was 57 years,
while the lower and upper quartiles were 51 and
66 years, respectively. Of the 138 patients, 88 died
during the study. The Kaplan–Meier estimate of the
survival distribution function for these patients is
shown in Figure 1 with 95% confidence intervals
computed according to (4). From the figure we see,
for example, that the five years survival probabil-
ity is estimated as 43.0% with a 95% confidence
interval from 34.0% to 51.9%, while the estimated
10 years survival probability is 18.4% with a con-
fidence interval from 9.7% to 29.3%. We return to
the liver cirrhosis example below in connection with
median and mean survival times and simultaneous
confidence bands. A further discussion and analy-
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Figure 1 Kaplan–Meier estimate of the survival distri-
bution function for 138 placebo-treated male patients with
liver cirrhosis with 95% log-minus-log-transformed confi-
dence intervals

sis of the data are given by Schlichting et al. [15].
The data were also used for illustrative purposes by
Andersen et al. [1].

Median Survival Time and Related
Quantities

The use of the Kaplan–Meier estimator is not
restricted to estimating survival probabilities for
given times t . It may also be used to estimate fractiles
such as the median survival time and related
quantities like the interquartile range (see Quantiles).

Consider the pth fractile, ξp , of the cumulative
distribution function F(t) = 1 − S(t), and assume
that F(t) has a positive density function f (t) =
F ′(t) = −S ′(t) in a neighborhood of ξp . Then ξp
is uniquely determined by the relation F(ξp) = p,
or equivalently, S(ξp) = 1 − p. The Kaplan–Meier
estimator is a step function and hence does not
necessarily attain the value 1 − p. Therefore a similar
relation cannot be used to define the estimator ξ̂p
of the pth fractile. Rather, we define ξ̂p to be the
smallest value of t for which Ŝ(t) ≤ 1 − p, i.e. the
time t where Ŝ(t) jumps from a value greater than
1 − p to a value less than or equal to 1 − p. In large
samples ξ̂p is approximately normally distributed
with a variance that may be estimated by

v̂ar(ξ̂p) = (1 − p)2σ̂ 2(ξ̂p)

[f̂ (ξ̂p)Ŝ(ξ̂p)]2
. (5)
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Here f̂ (t) is an estimator for the density function
f (t) = −S ′(t) (see Density Estimation). One may,
for example, use

f̂ (t) = 1
2b

[
Ŝ(t − b) − Ŝ(t + b)

]
(6)

for a suitable bandwidth b (corresponding to a kernel
function estimator with uniform kernel). Furthermore,
for p < q, ξ̂p and ξ̂q are approximately binormally
distributed, and their correlation may be estimated by

ĉorr(ξ̂p, ξ̂q) = σ̂ (ξ̂p)Ŝ(ξ̂q)

σ̂ (ξ̂q)Ŝ(ξ̂p)
. (7)

Note that Ŝ(ξ̂p) in (5) and (7) is equal to or only
slightly less than 1 − p, and that (5) could have been
simplified if we had used this approximate equality.
We have chosen not to do so since then Ŝ(ξ̂p) in (5)
and (7) cancels with the same factor in σ̂ (ξ̂p); cf. (2).

The above results may be used in the usual way
to determine approximate confidence intervals, e.g.
for the median survival time ξ0.50 and the interquar-
tile range ξ0.75 − ξ0.25, as illustrated below. For the
purpose of determining a confidence interval for a
quantile (fractile) like the median it is, however,
better to apply the approach of Brookmeyer & Crow-
ley [4]. For the pth fractile one then uses as a
confidence interval all hypothesized values ξ 0

p of ξp
which are not rejected when testing the null hypoth-
esis ξp = ξ 0

p against the alternate hypothesis ξp $= ξ 0
p

at the α level (see Hypothesis Testing). Such test-
based confidence intervals can be read directly from
the lower and upper confidence limits for the survival
distribution function in exactly the same manner as
ξ̂p can be read from the Kaplan–Meier curve itself
(see Median Survival Time).

For the liver cirrhosis data an estimate of the
median survival time is 4.27 years (standard error
0.66 years), while the lower and upper quartiles
are estimated as 1.46 years (0.35 years) and 8.97
years (1.13 years), respectively, with an estimated
correlation of 0.28. In these computations the
bandwidth b = 1 year was used in (6). An estimate
of the interquartile range of the survival distribution
function is 8.97 − 1.46 = 7.51 years, with standard
error (0.352 + 1.132 − 2 × 0.35 × 1.13 × 0.28)1/2 =
1.09 years. From this an approximate 95% confidence
interval for the median survival time is 4.27 ±
1.96 × 0.66, i.e. from 2.98 to 5.56 years, while 95%

confidence limits for the interquartile range are from
5.37 to 9.65 years. For the median survival time it
is, as mentioned earlier, better to read the confidence
limits directly from the pointwise confidence intervals
for the survival distribution function given in
Figure 1. This gives 95% confidence limits for the
median survival time from 3.02 years to 5.41 years.
Note that no estimate of the density function is
needed here.

Mean Survival Time

Owing to right-censoring, in most survival studies it
will not be possible to obtain reliable estimates for the
mean survival time µ =

∫ ∞
0 tf (t) dt =

∫ ∞
0 S(t) dt

(see Life Expectancy). This is one important reason
why, in survival analysis, the median is a more useful
measure of location than the mean. What may be
usefully estimated from right-censored survival data
is the expected time lived in a given interval [0, t],
i.e. µt =

∫ t

0 S(u) du. This is estimated by

µ̂t =
∫ t

0
Ŝ(u) du,

the area below the Kaplan–Meier curve between 0
and t . Such an estimate may be of interest in its
own right, or it may be compared with a similar
population-based estimate to assess the expected
number of years lost up to time t for a group
of patients. In large samples, µ̂t is approximately
normally distributed with a variance that may be
estimated by

v̂ar(µ̂t ) =
∑

tj ≤t

(µ̂t − µ̂tj )
2dj

rj (rj − dj )
,

a result which may be used to give approximate
confidence limits for µt . By letting t tend to infinity,
the above results may be extended to the estimation
of the mean µ itself [8]. However, the conditions
(mainly on the censoring) needed for such an exten-
sion to be valid are usually not met in practice.

In the liver cirrhosis study no patient was followed
for more than 13 years, making the estimation of the
mean survival time impossible. We may, however,
estimate the expected number of years lived up to a
given time t . In particular, estimates for the expected
number of years lived up to 5 years and 10 years after
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the start of the study are 3.29 years (standard error
0.17 years) and 4.73 years (0.33 years), respectively.

Redistribute-to-the-right Algorithm and
Self-consistency

We mentioned earlier the relationship between the
Kaplan–Meier estimator and the empirical distri-
bution function in the case of no censoring. The
redistribute-to-the-right algorithm and the concept of
self-consistency, both due to Efron [6], further illus-
trate this relation.

For notational convenience we assume that there
are no ties, and we denote by t0

1 < t0
2 < · · · < t0

n

the ordered times of deaths and censorings com-
bined. The redistribute-to-the-right algorithm is as
follows. First, we construct the ordinary empirical
(survival) distribution function which places proba-
bility mass 1/n at each of the observed times t0

j . If
t0
j1

is the smallest t0
j that corresponds to a censored

observation, then we remove its mass and redis-
tribute it equally among the n − j1 time-points to the
right of it. Then, if t0

j2
is the second smallest cen-

sored observation, we remove its mass, which will
be 1/n + 1/[n(n − j1)], and redistribute it equally
among the n − j2 time-points to its right, etc. This
algorithm will converge in a finite number of steps
to the Kaplan–Meier estimator (1) (with the modifi-
cation that it is set equal to zero after t0

n also when
this last time-point corresponds to a censored obser-
vation).

A self-consistent estimator S̃(t) for the survival
distribution function equals 1/n times an estimate for
the number of individuals who survive time t . More
precisely,

S̃(t) = 1
n



#(t0
j > t) +

∑

t0
j
≤t

aj (t)



 , (8)

where aj (t) = S̃(t)/S̃(t0
j ) if the observation at t0

j cor-
responds to a censored observation, and aj (t) = 0 if it
corresponds to an observed death. It turns out that the
Kaplan–Meier estimator (modified as just indicated)
is the unique self-consistent estimator. Turnbull [17]
(see Turnbull Estimator) used the idea of self-
consistency to derive an iterative procedure (a version
of the EM algorithm) for estimating the survival dis-
tribution function nonparametrically from arbitrarily

grouped, censored, and truncated data, while Gill [9]
showed that the self-consistency equation, (8), may
be interpreted as a generalized score equation.

Product–Integral Representation and
Relationship to the Nelson–Aalen
Estimator

Usually one assumes that the survival distribu-
tion function S(t) is absolute continuous with den-
sity function f (t) = −S ′(t), hazard rate function
α(t) = f (t)/S(t), and cumulative hazard rate func-
tion A(t) =

∫ t

0 α(u) du. However, the Kaplan–Meier
estimator is discrete in nature, and the same applies to
the Nelson–Aalen estimator for the cumulative haz-
ard rate function. This makes it useful to be able
to handle both discrete and continuous distributions
within a unified framework. Let us therefore review
how the survival distribution function S(t) and the
cumulative hazard rate function A(t) are related for
distributions which need neither to be continuous nor
discrete. For such distributions

A(t) = −
∫ t

0

dS(u)

S(u−)
, (9)

where S(t−) denotes the left-hand limit of the sur-
vival distribution function at t . For an absolute
continuous distribution, (9) specializes to A(t) =
− ln S(t) =

∫ t

0 α(u) du. For a discrete distribution it
gives A(t) = ∑

u≤t αu, where the discrete hazard, αt ,
is the conditional probability of death exactly at time
t given that death has not occurred earlier. To express
the survival distribution function by the cumulative
hazard rate function it is convenient to use the prod-
uct–integral !, defined as the limit of approximating
finite products in a similar manner as the ordinary
integral

∫
is defined as the limit of approximating

finite sums (see Product-integration). With the use
of the product–integral we may write

S(t) = !
u≤t

[1 − dA(u)]. (10)

For a continuous distribution, (10) specializes to
the well-known relation S(t) = exp[−A(t)], while
for a discrete distribution it takes the form S(t) =∏

u≤t (1 − αu).
The Nelson–Aalen estimator for the cumulative

hazard rate function is Â(t) = ∑
tj ≤t dj /rj . This

corresponds to a distribution with all probability mass
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concentrated at the observed failure times and with
discrete hazard α̂j = dj/rj at tj . Using (10), the
corresponding survival distribution function takes the
form

Ŝ(t) = !
u≤t

[1 − dÂ(u)] =
∏

tj ≤t

(1 − α̂j ), (11)

i.e. it is the Kaplan–Meier estimator (1). Thus
the Kaplan–Meier and Nelson–Aalen estimators
are related in exactly the same way as are the
survival distribution function and the cumulative
hazard rate function themselves. This fact is lost sight
of when one considers the relations A(t) = − ln S(t)
and S(t) = exp[−A(t)] which are only valid for
the continuous case. In fact, the latter relations
have led researchers to suggest the estimators
− ln Ŝ(t) and exp[−Â(t)] for the cumulative hazard
rate function and the survival distribution function,
respectively. The numerical differences between
these two estimators and the Nelson–Aalen and
Kaplan–Meier estimators will be of little importance
in most cases. But the fact that the Nelson–Aalen
and Kaplan–Meier estimators are related through
(9) and (10) indicates that they are the canonical
nonparametric estimators for the cumulative hazard
rate function and the survival distribution function.
This statement is supported by the fact that they
may both be given a nonparametric maximum
likelihood interpretation [11].

Martingale Representation and Statistical
Properties

The product–integral formulation (11) of the
Kaplan–Meier estimator shows its close relationship
to the Nelson–Aalen estimator, and it is the key to
the study of its statistical properties. In fact, these
are closely related to those of the Nelson–Aalen
estimator. We here indicate a few main steps and refer
to Andersen et al. [1, Section IV.3] for a detailed
account.

Let J (t) = 1 if there is at least one individual at
risk just before time t ; J (t) = 0 otherwise. Further-
more, introduce A∗(t) =

∫ t

0 J (u) dA(u), and let

S∗(t) = !
u≤t

[1 − dA∗(u)]. (12)

We note that (12) is almost the same as S(t) [cf. (10)]
when there is only a small probability that there is

no one at risk at times u ≤ t . By a general result
for product–integrals (Duhamel’s equation), we may
write

Ŝ(t)

S∗(t)
− 1 = −

∫ t

0

Ŝ(u−)

S∗(u)
d(Â − A∗)(u). (13)

Here Â − A∗ is a square integrable martingale
(see Nelson–Aalen Estimator). It follows that the
right-hand side of (13) is a stochastic integral and
hence itself a mean zero square integrable martin-
gale. As a consequence of this, E[Ŝ(t)/S∗(t)] = 1 for
any given t , so the Kaplan–Meier estimator is almost
unbiased. Furthermore, the predictable variation pro-
cess of the martingale on the right-hand side of (13)
may be used to arrive at an estimator for the variance
of Ŝ(t)/S∗(t). From this, Greenwood’s formula (2)
follows provided one adopts a general model, not nec-
essarily continuous. Greenwood’s formula may also
be derived through a standard information calcula-
tion starting with a binomial-type likelihood for such
a general model.

A further consequence of (13) is that
√

(n)(Ŝ −
S)/S is asymptotically equivalent to −√

(n)(Â − A)
and therefore converges weakly to a mean zero Gaus-
sian martingale. In particular, for a fixed t , the
Kaplan–Meier estimator (1) is asymptotically nor-
mally distributed, a fact that was used in connection
with the confidence intervals (3) and (4). Also, the
asymptotic distributional results of the estimators for
the median and mean survival times reviewed earlier
are consequences of this weak convergence result.

Confidence Bands

The weak convergence of
√

(n)(Ŝ − S)/S to a mean
zero Gaussian martingale also makes it possible to
derive confidence bands for the survival distribution
function, i.e. limits that contain S(t) for all t in
an interval [τ1, τ2] with a prespecified probability.
Two important types of such confidence bands are
the equal precision bands [14] and the Hall–Wellner
bands [10]. Borgan & Liestøl [3] derived transformed
versions of these confidence bands and compared
them with the nontransformed ones.

The standard and log-minus-log transformed equal
precision bands are obtained by replacing z1−α/2 in
(3) and (4) by d1−α(ĉ1, ĉ2), the 1 − α fractile in the
distribution of the supremum of the absolute value
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of a standardized Brownian bridge over the interval
from ĉ1 to ĉ2 (see Brownian Motion and Diffusion
Processes). Here

ĉi = n[σ̂ (τi )/Ŝ(τi )]2

1 + n[σ̂ (τi )/Ŝ(τi )]2
, i = 1, 2. (14)

The fractile d1−α(ĉ1, ĉ2) may be found (approxi-
mately) by solving (with respect to d) the following
nonlinear equation:

4φ(d)

d
+ φ(d)

(
d − 1

d

)
ln

[
ĉ2(1 − ĉ1)

ĉ1(1 − ĉ2)

]
= α,

with φ(d) the standard normal density. The equal
precision bands require 0 < ĉ1 < ĉ2 < 1, so they
cannot be extended all the way down to t = 0.
Typically, one will also omit the largest values of t .

The nontransformed Hall–Wellner band takes the
form

Ŝ(t) ± n−1/2e1−α(ĉ1, ĉ2)

{

1 + n

[
σ̂ (t)

Ŝ(t)

]2
}

Ŝ(t).

(15)

Here e1−α(ĉ1, ĉ2) is the 1 − α fractile in the dis-
tribution of the supremum of the absolute value
of a Brownian bridge over the interval from ĉ1

to ĉ2; cf. (14). For completely observed survival
data the Hall–Wellner band reduces to the well-
known Kolmogorov band Ŝ(t) ± n−1/2e1−α(ĉ1, ĉ2).
For the band (15), one will often let τ1 = 0, in
which case tables of e1−α(ĉ1, ĉ2) = e1−α(0, ĉ2) are
given, for example by Koziol & Byar [13] and Hall
& Wellner [10] for selected values of α and ĉ2.
We note that (15) is obtained from (3) by substi-
tuting n−1/2e1−α(ĉ1, ĉ2){1 + n[σ̂ (t)/Ŝ(t)]2}Ŝ(t) for
z1−α/2σ̂ (t). The same substitution in (4) gives the
log-minus-log transformed Hall–Wellner band. This
transformed band requires ĉ1 > 0, so it cannot be
extended all the way down to t = 0. Owing to the
approximation e1−α(ĉ1, ĉ2) ≈ e1−α(0, ĉ2), the above-
mentioned tables may also be used for the trans-
formed bands when ĉ1 is close to zero.

The nontransformed equal precision band tends
to achieve too high error rates when the number of
observations is low, and the use of transformed bands
is recommended, even for samples of a hundred or
more. The achieved error rates of the nontransformed
Hall–Wellner band are fairly close to the nominal
ones even in small samples, and the improvement
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Figure 2 Kaplan–Meier estimate of the survival distri-
bution function for 138 placebo-treated male patients with
liver cirrhosis with 95% confidence bands: log-minus-log
transformed equal precision band over the interval from 4
months to 8 years (- - - -); Hall–Wellner band over the
interval [0, 8] years (· · ·)

obtained by using transformed bands is of less
importance.

Figure 2 shows the Kaplan–Meier estimate for
the liver cirrhosis data with 95% confidence bands.
The bands shown are the log-minus-log transformed
equal precision band over the interval from 4 months
to 8 years and the nontransformed Hall–Wellner
band valid from time zero to 8 years. Since τ1 =
1/3 year and τ2 = 8 years correspond to ĉ1 = 0.090
and ĉ2 = 0.789, the fractiles d0.95(ĉ1, ĉ2) = 2.99 and
e0.95(0, ĉ2) = 1.36 were used. It is seen that the equal
precision band is narrower than the Hall–Wellner
band both for low and high values of t , while the
Hall–Wellner band is slightly narrower than the equal
precision band for intermediate values.
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