
Fall 1999   Course 513-697: Applied Linear Models

Highlights / Key Concepts in NKNW4 Chapter  7

Ideas unique to Multiple Regression - no analogy with Simple Linear Regression.
A number of important sub-topics are introduced in this Chapter (see also  "Chapter 9" notes in c678)

--Formal tests for Addition/Deletion of 1 or more terms in a regression model  (nicely done)

-- Collinearity -- very important -- should be in a chapter by itself!

-- Interaction terms  -- again, should be in a chapter by itself  ("Effect Modification" in Epidemiology)!

7.1 Extra Sums of Squares

Extra SS if focus on SSreg: Reduced SS if focus on SSresidual:

Same idea whether adding or removing 1 (or more) term(s)

EXAMPLE

Y: % Body Fat (by underwater weighing !! )

X1 Skinfold Thickness (by calipers:- some discomfort)

X2 Skinfold Thickness (by tape measure:- painless)

X3 Midarm Circumference (by tape measure:- painless)

IN COMPACT NOTATION (2 "X" terms)

SSR (short for SSReg) SSE (short for SSError) SST (short for SStotal)

SSR(X1) + SSE(X1) = SST

SSR(X1,X2) + SSE(X1,X2) = SST
---------------- -------------- --------

SSR(X1,X2) - SSR(X1) = SSE(X1) - SSE(X1,X2)

"Extra SSR due to X2" = "Reduced SSE due to X2"

SSR(X2| X1)

IN COMPACT NOTATION (3 "X" 's)

SSR(X1) + SSE(X1) = SST

SSR(X1,X2) + SSE(X1,X1) = SST

SSR(X1,X2,X3) + SSE(X1,X1,X3) = SST

=> SSR(X1) = SST - SSE(X1) Note: order matters!

SSR(X2| X1) = SSE(X1) - SSE(X1,X2) SSR(X2| X1) not same

SSR(X3| X1,X2) = SSE(X1,X2) - SSE(X1,X2,X3) as SSR(X1| X2)
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Different decompositions have different meanings
e.g. a b c

SSR(X1) SSR(X1) SSR(X3)
SSR(X2| X1) SSR(X3| X1) SSR(X2| X3)
SSR(X3| X1,X2) SSR(X2| X1,X3) SSR(X1| X2,X3)

These decompositions are referred to as "variables added in order SS" or "Type I SS"
(to distinguish them from "variables added last SS" or "Type III SS"  used below)

If labeling is not obvious, or if you forget what Type I means (I don't blame you, given the
imaginative choice of the label), one way to recognize it for what it is is that Type I SS count each
separate contribution just once .. so that the successive Type I SSR's add to the overall SSR.

Graphical Depiction of these decompositions ... see Figure 7.1 on page 265

( I find this diagram so helpful that I scanned it  and put it on the www page for c678 -- where we
used a different text)

Using SS decomposition in ANOVA Table => Decomposition of Degrees of Freedom

The above decomposition is for the Sums of Squares.

When the decomposition is done one term at a time, the SSR(X1), SSR(X2| X1), SSR(X3| X1,X2) ...
and the corresponding MS(X1), MS(X2| X1), MS(X3| X1,X2) are the same -- since each divisor
involves 1 df.
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7.2
and
7.3 "Extra Sums of Squares" to test coefficients of Multiple Regression

From Cochran's Theorem [ partitioning SS; each (1/σ2) MS ~  indep. central/non-central X2 ]

Single β [ H0: this β's = 0 ]

   t* = b / SE[b]  with df = df for residuals (e's) when this X & other X's in the model

or   (equivalently, since t*2 = F*)

   F* = SSR[this X | other X's] / 1 df
SSE[this X & other X's] / df for e's if this X & other X's  = MSR[this X | otherX's]

MSE[this X & other X's]

Several β's  [ H0: these β's = 0 ]

F* =  SSR[these X's | other X's] / # of these X's
SSE[these & other X's] / df for E if these X's & other X's =  MSR[these X's | other X's]

MSE[these & other X's]

All β's [ H0: all the β's = 0 ]

   F* =  SSR[all these X's ] / # of X's
SSE[these X's ] / df for e's if these X's  = MSR[ these X's]

MSE[ these X's]

IN GENERAL  [ H0: set of (linear) constraints on the β's ]

   F* =  
SSR[constrained  β's] / # of constraints

SSE[no constraints] / df for e's if no constraints  = 
MSR["due to" constrained  β's]

MSE[no constraints]

  i.e.

   F* =  {SSReg[larger model] - SSReg[smaller model] } / # of constraints
SSE[no constraints] / df for e's in larger model

= 
MSR["due to" constrained  β's]

MSE[larger model]

Q: Why use the MSE from the larger model as the denominator of each test?

Even if some terms in larger model are unnecessary, this MSE is an unbiased estimator of σ2[ε].
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7.4 Coefficients of Partial Determination

Recall: Coefficient of Multiple Determination:

Reduction in Var(Y) through use of X1, X2, .. 

r2Y with X1, X2, X3, ...  =  Var[Y] - Var[Y | X1  X2  ... ]
Var[Y]    =   SSR[X1  X2  ... ] 

SSE[model with just b0]

 
By analogy:  Coefficient of Partial Determination (by X1 -- after already fitting X2):

Reduction in Var(residual Y | X2)

r2 Y with X1 given X2   = Var[Y | X2] - Var[Y | X1  X2]
Var[Y | X2]

 =   SSR[X1 | X2 ] 
SSE[model with just {X0 and} X1]

likewise...

r2 Y with X2 given X1   = Var[Y | X1] - Var[Y | X1  X2]
Var[Y | X1]

=   SSR[X2 | X1 ] 
SSE[model with just {X0 and} X2]

note:

r2 Y with X1 given X2   = r2 Y' with X1' ,

where Y ' = residual of Y after regressing Y on X2, and

X1' = residual of X1 after regressing X1 on X2 .

Going on to more X's ...

r2 Y with X4 given X1 , X2 and X3   =   SSR[X4 | X1 X2 X3 ] 
SSE[model with X1 X2 X3 ]

Coefficients of Partial Correlation (Square Root of Coefficient of Partial determination)

(Useful to those who think in correlations rather than regresssion coefficients)

r Y with X4 given X1 , X2 and X3

= sign[b4 in model of Y on X1 to X4] × r2 of Y with X4 given X1  to X3 

 (see eqns. 7.41 & 7.42 on how to calculate them from lower order partial correlation coefficients)
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7.5 Standardized Multiple Regression Model

- relevant also for Simple Regression model:- eliminates b's in different Y/X1 , Y/X2,... units
  (so don't have to worry if X1 is in cm or inches or metres, X2 in Kg or lbs or grams-- or $'s)

- issues of numerical accuracy no longer quite as relevant with high-precision facilities
  (accuracy issues if X's of very different magnitudes, or highly correlated so det[XTX] close to 0)

Correlation Transformation

- transform each X variable so that  each entry in XTX matrix is a correlation of 2 X's , i.e.

X ' = X '- Xbar
 Σ(X - Xbar)2

... X' T X' matrix = correlations of pairs of X's

(text formula makes transf. unnec. complex)
- transform Y variable in same way , i.e.

Y ' = Y '- Ybar
 Σ(Y - Ybar)2

(text formula makes transf. unnec. complex)

- fit model Y ' = β1'  X1 ' + β2' X2 ' + ... + e '     ( no intercept since ave[Y ' ]  now = 0 )

work back ...

βk  = βk'  SD[Y]
SD[Xk]

β0  = Ybar - ( β1 X1 + β2 X2  + ... )

X' T X' matrix = correlation matrix  of original X's = RXX

X' T Y' vector = correlation of Y with  each original X = RYX

LS Solution for b '  , the column vector  (β1' , β2' , ... )T

 b '  = (RXX)-1 RYX

For worked example, see text
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7.6 Multicollinearity and its Effects (see also item from Graybill on Ill-Conditioning)

Meaning: (high) intercorrelation among some or all of the X terms in a multiple regression

Implications:

- easiest to understand by examining just 2 Xs and just the two extremes:

- see "Confounding[in pictures and numbers]" in Chapter 8 material in c678 www page;
- see also the "hammock" spreadsheet

 X1 & X2 uncorrelated X1 & X2 perfectly (+ or -) correlated

• b1 (X1-only model) = b1 (X1 & X2 model) b1 (X1 only model) doesn't have
same meaning or value
as b1 (X1&X2 model)

• SSR(X1) = SSR(X1 | X2) SSR(X1 | X2) = SSR(X2 | X1) = 0

and vice versa (can fit b1 and b2 "marginally") different (b1,b2) pairs give same fit
(see Fig 7.2 in NWNW4)

uncorrelated estimates of β1 and β2 cannot "separate" β1 and β2
estimates:- (b1,b2) are unstable
• (b1+ve , b2 -ve) in one sample
• (b1-ve , b2 +ve) in another

Like hammock, fitted surface rests
on a "knife-edge"

BUT: can make predictions within
(X1,X2) data region

In practice, inter-correlations of X's (and effects of these) are usually somewhere in between.
but, more difficult to "see" if more than 2 X's. (Large SE's for b's can be a warning)

Chapter 9 will describe methods for detecting multicollinearity in "higher-D" X data.
Chapter 10 explains remedial methods (including "Ridge Regression").
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7.7 Polynomial Regression

(Use of higher powers of X (or products of two or more X's) as terms in a multiple regression)
Can be helpful for fitting Response Functions of a single X, or a Response Surface for 2 X's.

• INSIGHT (in SAS) has a dangerously-simple interface for fitting a polynomial in a single X.

• Polynomial regression is simply a multiple regression where the terms are powers of same basic
X variable; BUT one needs to be extra careful about overfitting and about extrapolation This will
remind me to relate one physician's use of a fitted polynomial of time (fitted in the original Lotus1-
2-3 software) to monitor (and ?? anticipate) a patient's White Blood Cell (WBC) count over time.

• On a related note: concerning Fig1 of the article " Changes in Alcohol Consumption With Age"
in Can J Public Health Vol. 82, July/August 1991  pp231-4  elsewhere on this www page. (see also
excerpts from article)

RESULTS (from text of the article)

Measures of consumption (based on a total of 3,304 interviews)

The top panel of Figure 1 shows mean alcohol consumption in drinks per month for males,
females and all respondents by age. The middle panel presents in a similar manner the
frequency of drinking occasions per month, and the bottom panel shows the quantity (mean
number of drinks consumed per drinking occasion).

These figures were derived by rank ordering all respondents by age. Each data point
represents the mean of successively older groups of 25 respondents. Plotting data in this
fashion provides information on the relative density of observations according to age and sex.
In order to reduce the scatter which could obscure trends, a 4253H, twice compound
smoother with endpoint adjustment was used. This consists of a series of running median
smoothers and the Hanning running weighted average smoother applied twice.

The top panel shows an age-related decline in total alcohol consumption per month for all
respondents. This line has a slope of -0.12. It is clear from these figures that the age-related
decrease seen in the top panel is largely due to a decrease in quantity which shows a rather
steady decline with age (slope = -0.26), rather than any change in frequency, which has a slope
of only -.04. The correlation between frequency and dose is -0.11 which is small, but statistically
significant (p < 0.0001).

• I question the choice of "smoothing" that the authors carried out. Although they are non-
parametric, they look like high order polynomials that seem to "follow" every little random
twist and turn in the raw data. To my eye, the patterns in the bottom panel are quite linear ---
the "join the dots" approach (even with each dot being a running median) over-accentuates
the random components -- what one wants first is the BIG PICTURE .. the clear
downwards "close to linear" trend. I believe the little ups and downs along the way are
random noise -- and that they are being over-emphasized. I cannot imagine that the
population medians actually behave like this.

• Polynomial models are often used for prediction. Thus, the meaning of individual β's is less
critical than when they are associated with different X's. Nevertheless, they are a good example of
the benefits of "centering" X variables in any multiple regression, and of the induced
collinearity if one uses "raw" powers of X, or -- for that matter --products of two different
X variables. If X is a positive RV, then X2 can be strongly correlated with it.
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7.8 Regression Models involving Interactions

See also: www material, Session 5, course 678: Interaction(Effect Modification) in Regression

Definitions ...

Interaction (statistical)
- "Non-additivity" of "effects" in regression
- need for product term in regression analysis (miettinen)
   note that need for product term  may be scale-dependent (e.g.  Y  vs log Y  scale)

(Effect) Modification (epidemiological)
- Inconstancy of a parameter of a relation over other subject characteristic (miettinen)
- "Different slopes for different folks" (jh)

"Modifier (of a relation)
- A characteristic (of individuals) on which a parameter of a relation depends (osm)

Examples... (first 4 are on course 678 www page)

Equation for Ideal Weight as function of Height - modification by Gender
Average Earnings as function of Education / Age - modification by Gender
Decline in Bone Density with Age - Different in 19th and 20th Centuries
Hit further with aluminum than wood baseball bat? - Depends on where on bat one hits
Changes over time in injury rates - Different in intervn. & ref. areas?

Comments on NKNW4 (and most  statisticians') terminology:

"regression model is not additive, or. equivalently, it contains an interaction effect "

"non-additive" is a more informative phrase;  it avoids possible over-interpretation of the
word interaction; it highlights the non constancy (over X2) of effect of X1  on (a specific
function of) µY.  It also plays down the interpretation of phrases like "... interaction effect is
of a reinforcement or synergistic type" or "of an interference or antagonistic type". (p311)

Oxford English Dictionary ...

interact:- "to act reciprocally, to act on each other"

interaction:- "reciprocal action,  action of persons or things on each other"

Interpretation of models that include interaction (product) terms

E[Y | X1 , X2 ] = β0 + β1 X1 + β2 X2  +  β3 X1 X2

= (β0 + β2 X2 )  +  (β1 + β3 X2 ) X1  ... if wish to think of E[Y] vs X1

= (β0 + β1 X1 )  +  (β2 + β3 X1 ) X2  ... if wish to think of E[Y] vs X2

mathematically symmetric in X1 and X2 (although seldom so in practice)
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Interpretation ...

If one of the two X's is the natural "modifier" of the "Y - other X" relation, easier to refer to
modifier by another symbol (M) and write equation as

E[Y | X , M ] = β0 + β1 X + β2 M  +  β3 X M

= (β0 + β2 M)  +  (β1 + β3 M ) X

Don't try to interpret  the β3  "in isolation". And, although the several different (M-specific)
X-Y relations can be represented in a single equation, remember that they must be separated
out when describing them.. i.e.

interaction <---> "Different Y vs X story" for each level of M
"no single summary that applies to all levels of M"

Think of β for product term as "additional Y-X slope for each unit difference in M"

If β for product term is small (in sense that Y-X slope isn't that different from one end of
the  M range to the other) , then the  Y-X slope obtained by dropping M from model is not
that misleading

( "105 lbs.  + 5.5 lbs. for every inch over 5 feet" ... for adults of either sex??)

"Removable" vs. "Non-Removable" Interactions

"Removable" "Non-Removable" "Non-Removable"Y

X XX

M=1

M=0

M=1

M=0 M=0

M=1

X & M both Binary  =>    associated with XM product is  a"double difference"

 [ y
_

X=1 – y
_

X=0 ]M=1 – [ y
_

X=1 – y
_

X=0 ]M=0

Statistical precision/power to measure/detect a double difference considerable lower than that to
measure a single difference. We often end up not being able to adequately statistically test if X
differences in response are M-specific, and so depend on analogy or other outside information
judgment when  deciding whether to report them separately (M-specifically).
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Warning in most textbooks: if put product term in model, then must also include each
component of the product (i.e. X1  and X2  as well as X1 X2 )

Absolutely must?  No. BUT  be careful to interpret coefficients carefully!  Helps to draw the lines e.g.
E[Y | X1,X2] =

     B0 + B3X1X2 B0 + B2X2  + B3X1X2      B0 + B1X1  + B2X2  + B3X1X2

E[Y]
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X2=0

X2=3
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E[Y]

X1

X2=1
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X2=0
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B0

00

5

10
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20

25

B2

Product Terms to test change in Y level or Y-time slope (or both) when changes  introduced
(serially)

Examples

- Prescriptions filled before and after the introduction of the Quebec Drug Plan
- Motor vehicle fatality rates before/after change back to 65 mph limits
- Asthma deaths before/after removal of certain asthma drug in New Zealand
- Numbers of Marriage Licences issued before/after HIV tests became mandatory
- What Does It Take to Heat a New Room? (see datasets on 697 www page)

Product Terms to test change in Y level or Y-time slope (or both) when changes  introduced
(parallel groups )

Example

-The Lidkoping Accident Prevention Programme -- a community approach to preventing childhood
injuries in Sweden (see www material in "datasets" in course 626)

Reducing Collinearity of Product Term and its Components ... by Centering

Example

-The Lidkoping Accident Prevention Programme   (X=Time   M = Program)
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7.9 Constrained regression

- See text
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