Preamble

- Should not be in same chapter with confounding...
- a very different topic !! (can have both, but ... see diagram)

Definitions ..

Interaction (statistical)

- "Non-additivity" of "effects" in regression
- need for product term in regression analysis (osm)
- scale dependent
(Effect) Modification (epidemiological)
- Inconstancy of a parameter of a relation over other subject characteristic (osm)
- Different slopes for different folks (jh)
"Modifier (of a relation)
- A characteristic (of individuals) on which a parameter of a relation depends (osm)

Examples...

- Equation for Ideal Weight as function of Height
- modification by Gender
- Average Earnings as function of Education / Age
- modification by Gender
- Decline in Bone Density with Age
- Different in 19th and 20th Centuries
- ?Can hit further with aluminum than wood baseball bat?
- Difference depends on where on bat one hits ball
- Changes over time in injury rates
- Different in intervention and reference areas?

Translating these into regression equations ...

- relation between Y and X
- "modifier" variable M
$E[Y \mid X, M]=B 0+B 1 . X+B 2 \cdot M+B 3 .(M . X)$
- Special cases..

X binary, M Binary

X continuous, M binary

Quantitative levels of Modifier M

Meaning of the coefficients

X continuous, M Binary

- helpful ways of rewriting the equation

$$
E[Y \mid X, M]=B 0+B 2 \cdot M+(B 1+B 3 \cdot M) \cdot X
$$

Special issues

- mathematical symmetry of equation

$$
\begin{aligned}
E[Y \mid X 1, & X 2]=B 0+B 1 \cdot X 1+B 2 \cdot X 2+B 3 \cdot(X 1 \cdot X 2) \\
= & B 0+B 2 \cdot X 2+(B 1+B 3 \cdot X 2) \cdot X 1 \\
& X 2 \text { modifies the } Y<->X 1 \text { relation } \\
= & B 0+B 1 \cdot X 1+(B 2+B 3 \cdot X 1) \cdot X 2 \\
& X 1 \text { modifies the } Y<->X 2 \text { relation }
\end{aligned}
$$

- to a regression program, X1.X2 product terms are just like any other terms.. but they tend to be correlated (collinear) with the components from which they are made, so...
*** user should "center" the components before **
*** making (or having computer make) products ***
(will see example in injury prevention study)

Translating equations back into lines ...

- If M is binary...
start with the $M=0$ case

$$
\begin{aligned}
& B 0+B 1 \cdot X+B 2 \cdot M+B 3 \cdot(M \cdot X) \\
= & B 0+B 1 \cdot X+B 2 \cdot 0+B 3 \cdot(0 \cdot X) \\
= & B 0+B 1 \cdot X
\end{aligned}
$$

$===>$ straight line in X with intercept BO and slope B1
"turn on" the $\mathrm{M}=1$ toggle...

$$
\begin{aligned}
& B 0+B 1 \cdot X+B 2 \cdot M+B 3 \cdot(M \cdot X) \\
= & B 0+B 1 \cdot X+B 2 \cdot 1+B 3 \cdot(1 \cdot X) \\
= & B 0+B 1 \cdot X+B 2+B 3 \cdot X
\end{aligned}
$$

collect terms that do not involve $X \&$ those that do..

$$
(\mathrm{B} 0+\mathrm{B} 2)+(\mathrm{B} 1+\mathrm{B} 3) \cdot \mathrm{X}
$$

$===>$ straight line in X with intercept $(B 0+B 2)$ and slope $(B 1+B 3)$

- If \mathbf{M} is continuous... as above with several M values

