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Abstract

Although the terms mortality, hazard rate, incidence (rate), and incidence
density all involve the same concepts, those that involve continuous
functions and mathematical limits, and conversion of incidence functions to
cumulative incidence rates, make many epidemiologists uncomfortable.
Some of this has to do with the role of integrals and derivatives in the
definition of these quantities, and in tasks such as converting an injury rate
of say 0.095 percutaneous injuries per intern-month into a 12-month
cumulative incidence or risk. Indeed, few textbooks present, and fewer still
fully explain, the “exponential’ formula linking incidence and risk.
Increased understanding of this link is all the more critical nowadays, as the
familiar Kaplan-Meier estimate of a cumulative incidence proportion or risk
is gradually being being replaced by the Nelson-Aalen one, and as
investigators use parametric statistical models to calculate profile-specific
x-year risks, risk differences, and numbers needed to treat, and to test
proportional hazards via log[survival] plots.

We use actual force of mortality (hazard function, incidence density) func-
tions to illustrate how x-year risks are calculated from them. We revisit
an early definition of the force of mortality – a term coined by an actuary
colleague of William Farr – and describe how he viewed of a person-year.
We take advantage of his conceptualization, and a probability of a specific
realization of a Poisson random variate, to de-mystify the formula linking an
incidence function and risk. We suggest ways to reduce confusion caused by
variations in terminology.
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0 Introduction and outline

Although the terms mortality, hazard rate, incidence (rate), and incidence

density all involve the same concepts, those that involve a mathematical limit

(derivative) or integral make many epidemiologists uncomfortable. Indeed,

although epidemiologists are comfortable with the concept of full-time equiv-

alents in measuring staff sizes, this comfort level does not always extend to

the concept of an intern-month or intern-year, or to converting an incidence

function to a cumulative incidence proportion or risk. As a result, epidemiol-

ogists may be unsure as to how to turn an injury rate of say 0.095 needle-stick

injuries per intern-month into a 12-month cumulative incidence or risk, and

of what assumptions are involved. Indeed, few textbooks present, and fewer

still explain, the formula linking incidence and risk.

Increased understanding of this links is all the more critical nowadays, as

the familiar Kaplan-Meier estimate of risk is gradually being being replaced

by the Nelson-Aalen one, and as investigators use non-parametric and para-

metric statistical models to calculate profile-specific x-year risks (Schröder

2009), risk differences, and numbers needed to treat (Ridker, 2008).

Section 4 addresses our main objective – demysifying the formula used

to convert an incidence function to a cumulative incidence rate. By way or

orientation, section 1 reviews the concept of a hazard or an incidence density

in a single interval defined by a timepoint t. We use data from a dynamic

population experience to measure the force of mortality (hazard function,
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incidence density) over the life course, and comment on some 19th century

attempts to fit it using smooth parametric functions.

Since the role of time, and time-units, in the measurement of the inci-

dence function is often neglected, section 2 presents a striking time-graph to

illustrate how critical time units are, and how easily they are overlooked, or

even misunderstood.

Section 3 revisits the first definition of the force of mortality, a term coined

by TR Edmonds, an actuary colleague of William Farr. Whereas most of us

think of a person-year as the unit by which we measure an aggregated amount

of experience of different persons, this actuary’s concept of a person-year was

somewhat different.

In section 4, we first review how the ‘exponential’ formula linking inci-

dence and risk has been presented in various epidemiology textbooks, and

why it needs to be further de-mystified. We then take advantage of Edmonds’

conceptualization, and a little-used property of the Poisson distribution, to

de-mystify this 200 year old formula. We illustrate how easy and unforget-

table it is once its single input is fully understood, and how it is also the

basis for the Nelson-Aalen estimator of survival or risk. We end, in section

5, with some recommendations about terminology.
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1 Incidence rate; incidence density; hazard

rate; force of mortality

Epidemiology texts tend to define an incidence rate or incidence density

using ‘numbers of events’ and person-time denominators, in intervals of time.

Statistical texts define their equivalents, hazard rate or force of mortality, as

mathematical limits involving probability distribution functions and survival

functions measured in continuous time. The twain seldom meet.

The 2009 Wikipedia1 entry for the ‘instantaneous hazard rate’, presum-

ably prepared by a statistician, is a case in point. It defines it, in words first,

as “the limit of number of events per unit time divided by number at risk as

time interval decreases”, and then in symbols:

h(t) = lim
∆t→0

observed events in interval [t, t+ ∆t) / N(t)

∆t
.

The entry did not define N(t), but presumably it was used to denote the

number at risk at time t, and allowed for the possibility that it might be

different at time t + ∆t, and at intermediate times. But if we consider a

finite interval [t, t + ∆t), replace N(t) by N, the average no. persons being

observed during the interval (t, t+∆t),2 and then move it to the denominator,

1The entry has since been edited.
2N ×∆t is also the integral of the N(t) function over the interval in question.
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then we get, for this finite interval, the quantity

no. events in (t, t+ ∆t)

N ×∆t
=

no. events in (t, t+ ∆t)

Population-Time in (t, t+ ∆t)

which takes the form of incidence density, a term introduced to epidemiology

by Miettinen (1976):

Incidence density (“force of morbidity” or “force of mortality”)

– perhaps the most fundamental measure of the occurrence of

illness – is the number of new cases divided by the population-

time (person-years of observation) in which they occur.

In light of this, is the hazard rate or force of mortality the same as the

‘short-term incidence density’? A concrete example in which we calculate

the hazard rate or force of mortality at a given age t, based on the numbers

of deaths, and person-years of observation in the USA population over the

period 2000-2006, shows that it is, and that there is no need to be frightened

by the mathematical limit, or to actually carry out the calculation using a

tiny interval.

The ‘almost-raw’ data for our calculations, as well as the full ID function

derived from it, are shown in Figure 1. The population sizes and numbers

of deaths were only available for 1-year age bins; thus, in order to display

them as a continuous function of age, the numbers were smoothed out using

a spline function, so that the integral under the curve over any specific age-

interval is the numbers of person-years lived in, or the numbers of deaths
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Figure 1: (A) Age structure of, and age-specific numbers of deaths recorded in, the USA population

followed from January 1, 2000 to December 31, 2006, along with the death rates derived from them.

Source: Human Mortality Database, http://www.mortality.org/. For each (continuous) value of age

(t), shown is N(t), the number of persons who were ‘exactly t years of age’ on some date in the 7 calendar

years. Thus the numbers of person-years lived in any age-interval is the integral of (area under) the

N(t) curve over the interval in question. Most residents contributed 7 person-years each to the overall

total of 2,000 million person-years; some contributed fewer – mostly to either the younger or older end of

the person-years distribution. The numbers of deaths for any age-interval is the integral of the ‘deaths

per 1-year-of-age time slice’ curve over the interval in question. The full ID(t), or force of mortality or

hazard rate function, ranges from a nadir of 0.000014 year−1 at approx. t = 10, to 0.51 year−1 at age

t = 105. The ID(t) function below age 60 is shown in a separate blown-up scale, and the log – to the

base 2, so that we can easily measure doubling times – of the ID(t) function is shown on yet another

scale. Gompertz’ Law of Mortality, in which the rate ‘doubling time’ is approximately constant (the logs

of the rates are approximately linear) appears to hold true for the age range 30-90. For historical interest,

Edmonds piecewise-linear log(ID) curve, based on data from early 1800s, is also shown on this scale. (B)

The expected numbers of deaths “if 1 person (not necessarily the same person for the entire span) were

constantly living for a 20-year span” are shown for 3 selected such spans. The different shaded areas

represent the population-time for generations 0, 1, . . . . The 20-year risk for a person 79.25 years old is

the (Poisson) probability that there is at least one replacement, where 3.22 replacements are expected.
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Table 1: Incidence density (ID), calculated for (successively smaller) inter-
vals, of width ∆t, centered on 3 different timepoints

t = age 39.25 t = age 59.25 t = age 79.25
∆t P-T* Deaths ID . P-T Deaths ID . P-T Deaths ID
1 year . 31.255 55,590 177.9 . 19.520 177,133 907.5 . 9.578 486,785 5,082.3
1 month . 2.605 4,629 177.7 . 1.626 14,772 908.6 . 0.798 40,567 5,082.5
1 week . 0.601 1,068 177.7 . 0.375 3,409 908.6 . 0.184 9,362 5,082.5
1 day . 0.086 152 177.7 . 0.053 486 908.6 . 0.026 1,334 5,082.5

*P-T Units: 1 million person-years ID Units: deaths / 100,000 years

Based on polulation-sizes and numbers of deaths, USA 2000-2006.
Source: Human Mortality Database, http://www.mortality.org/

recorded for, the age-interval at issue. Over the age span 0-105, there were

approximately 17 million deaths in just over 2,000 million person-years.3

We take as illustration the ID or force of mortality or hazard rate at the

(deliberately selected to be a non-integer) age t = 39.25. Technically, persons

are only exactly 39.25 for a moment (infinitesimal, since a moment has no

duration) and so we can only consider the calculation over say the finite

interval (t− ∆t
2
, t+ ∆t

2
), of width ∆t, that includes t = 39.25.4 Table 1 shows

the calculations with successively shorter intervals. The IDs would ultimately

become unstable if we considered intervals as short as 39.25y ± 3 hours, say

or 79.25y ± 1 hour. However, even as we narrow the intervals from a year

to a day – or to minutes and seconds and nanoseconds if we ignore sampling

3Thus, the overall ID was 0.0085 year−1; its reciprocal – 118 years – reflects the fact
that this population experience is younger than in the current lifetable (expectation of life
at birth: 77 years) calculated from these data.

4Since it doesn’t fundamentally alter the concept, readers will find it easier, as we do
here, to take t to be the center, rather than the left boundary, of the interval. The use of
successively smaller intervals centered on a does cause some mathematical difficulties at
t = 0, and explains why the limit is typically approached from the right.
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variability and restrict our focus to the theoretical (i.e., abstract, expected)

values – the ID’s are practically unchanged. As Figure 1(A) shows, the

ID(t) function does not change abruptly; it changes slowly and continuously.5

Thus, the only reasons to be ‘instantaneous’ about it are if one wished to

have a continuous smooth curve, especially one with a functional form, to

shorten tedious annuity calculations or to compute an x-year risk (cumulative

incidence), or to be able to provide an accurate break-even premium for 1-day

term insurance for a large group of people.

We suspect that part of the ‘divide’ between statisticians and epidemiolo-

gists in this matter has to do with two different – but operationally equivalent

– ways they define the hazard and the incidence density. Statisticians tend

to first view it as a theoretical quantity and define it – in the abstract – as a

(conditional) ‘probability per unit time’ for those who have reached t

Prob[transition in next ∆t]

∆t

Indeed, Clayton and Hills (1993, chapter 5 (Rates), p40) give it a yet-another

name:

As the bands get shorter, the conditional probability that a sub-

ject fails during anyone band gets smaller. When a band shrinks

5over the 1-year interval centered on t = 39.25, the ID increases by about 0.021% per
day or 8% in a year; for the 1-year interval centered on t = 59.25, the ID increases by
about 0.024% per day or just over 9% over the year. These almost-constant year-over-year
hazard ratios of 1.08 or 1.09 for much of the age-range are similar to those that Gompertz
observed in the material he studied, and bear out the log-linearity of mortality rates with
respect to age that he termed a Law of Mortality.
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towards a single moment of time, the conditional probability of

failure during the band shrinks towards zero, but the conditional

probability of failure per unit time converges to a quantity called

the probability rate. This quantity is sometimes called the instan-

taneous probability rate to emphasize the fact that it refers to

a moment in time. Other names are hazard rate and force of

mortality.

Epidemiologists tend to first view it as an empirical quantity and define it

using data. Indeed, Clayton and Hills estimate the rate parameter using the

familiar incidence density measure:

In general, then, as the bands shrink to zero, the most likely value

of the rate parameter is

Total number of failures

Total observation time
.

[...] This mathematical device of dividing the time scale into

shorter and shorter bands is used frequently in this book, and we

have found it useful to introduce the term clicks to describe these

very short time bands. Time can be measured in any convenient

units, so that a rate of 1.11 per year is the same as a rate of 11.1

per 10 years, and so on. The total observation time added over

subjects is known in epidemiology as the person-time of observa-

tion and is most commonly expressed as person-years. Because
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of the way they are calculated, estimates of rates are often given

the units per person-year or per 1000 person-years.

One way to reconcile the two is to recognize that Prob[transition in next ∆t]

is the expected number of transitions6 as a fraction of the number of can-

didates. Thus, just as with the Wipipedia definition, when we divide this

probability by ∆t to get what Clayton and Hill call the probability of failure

per unit time, it becomes

No. transitions in next ∆t

Ave. no. candidates
÷∆t =

Ave. no. transitions in next ∆t

(Ave. no. candidates)×∆t
,

which has the the same form as Clayton and Hills’ estimator.

Although statisticians and epidemiologists understand that “time can be

measured in any convenient units, so that a rate of 1.11 per year is the same

as a rate of 11.1 per 10 years, and so on,” the next section shows that they

sometimes forget how critical this point is, especially when one wishes to

convert an (incidence-type) rate function into a risk.

6Since not all events in epidemiology involve movement from a more desirable (initial)
state to a less desirable one, we use the more general term ‘transition’ instead of the term
’failure.’
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2 The units in which incidence rate, incidence

density, hazard rate, and force of mortality

are measured

Figure 2 depicts the water demand time curves for (and presumably, the

degree of exclusively-television-viewing by the residents of) the city of Ed-

monton the afternoon (and the afternoon before) the U.S.A. ice-hockey team

played the Canadian team in the gold-medal game at the 2010 Vancouver

Winter Olympic Games. The graph has been viewed by more people than

has Minard’s classic portrayal of the losses suffered by Napoleon’s army in

the Russian campaign of 1812.7.

While the behavior pattern is striking, one omission from the label “Con-

sumer Water Demand, ML” for the vertical axis is notable. After they realize

that ‘ML’ is a measure of volume (it is short for ‘megalitre’ or millions of

litres) aggregated over all consumers, people with engineering-type training,

or physicians who measure lung function, whom this author has consulted

have quickly responded that “it is missing a time-dimension.” Curiously,

epidemiology- and biostatistics-types have been slower to notice this omis-

sion. But even more interesting has been the split as to what they think the

units of the missing dimension are. A number are quite confident that it must

be ‘ML per-hour’ because “the time scale for the horizontal axis is marked

7http://www.edwardtufte.com/tufte/posters
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The water utility in Edmonton, EPCOR, published the most incredible graph of water

consumption last week. By now you’ve probably heard that up to 80% of Canadians were

watching last Sunday’s gold medal Olympic hockey game. So I guess it stands to reason that

they’d all go pee between periods.

But still—the degree to which the water consumption matches with the key breaks in the

hockey game is stunning.

It’s been 20 years since my days as a beat reporter at CFRN (old screen shot below) and CITV

in Edmonton, so it was nice to get an Edmonton news tip. Thanks to @robertgorell @tcollen
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Figure 2: Minute-by-minute numbers of television-viewers of a major sports
event. Q: What time units are missing from the label for the vertical axis?

off in hours”. Others are equally adamant that it must be ‘ML per-minute’

because “the graph fluctuates by the minute.” I leave it to readers to form

their own opinions as to what the missing time unit is: those who like to

calculate can use the following data: 400ML is approximately 106 million

U.S. gallons; the population of Edmonton is approximately 700,000 people;

“the average Edmonton resident uses 230 litres/person/day for indoor and

outdoor use.”8

To decide which unit most closely matches the reported usage, they will

probably compute the total volume over the 6 hours, by taking the (approx-

imate) integral of (area under) the water-demand curve over this time-span.

8http://www.epcor.ca/
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But in order to do so, each ∆t on the t-axis must be in the same units as

the ML/timeunit on the demand-axis: the volume for each subinterval is

ML
timeunit

×∆t timeunits. Thus, the total volume of demand for a given 15m

interval is

V ol15min =?
ML

hour
× 0.25 hours =?

ML

min
× 15 min =?

ML

day
× 0.010416̇ days

with ? ML
timeunit

denoting the average demand per time-unit over the interval

in question.

The reaction that the demand must be ML per minute because the time

scale is in minutes is similar to the one which says that if we are to graph

the velocity of a car over a period of minutes, we have to measure the speed

in miles per minute rather than in mph– or that we cannot express heart

rate in beats per minute if we only measure for 15 seconds. We can scale

the velocity to any time unit we wish, but if the integral is to represent the

total distance travelled, we need to calculate the distance travelled in each

different subinterval of time as the (average) distance per time unit over that

subinterval × the time-length of that subinterval – with the time-duration

expressed in the same units as was the velocity.9 This issue of time units

9For a striking example of improper use of units, and by the confusion caused by the
statement that the “venous thromboembolic incidence was 3.6% and 1.5% in the first and
second weeks postpartum, respectively, similar to the 2% to 5% incidence of symptomatic
venous thromboembolism after elective hip replacement in patients not receiving prophy-
laxis” (when “only 105 maternal cases of venous thromboembolism were diagnosed during
pregnancy or postpartum in 50 000 births”), see the correspondence regarding “Incidence
of Pregnancy-Associated Venous Thromboembolism and family history as major risk fac-
tors” begun by MacCallum et al. in the Annals of Internal Medicine, 21 March 2006
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becomes paramount in section 4, when we convert an incidence function into

a risk.

3 Edmonds, the continuous force of mortal-

ity, and the concept of a person-moment

and a person-year

Benjamin Gompertz used the word ‘intensity ’ of mortality in his 1825 arti-

cle.10 We believe that the first person to use the term ‘force’ of mortality in

writing was T.R. Edmonds, a political economist and actuary, and a neigh-

bor and collaborator of William Farr (Eyler 2002; Turner and Hanley, 2010).

Edmonds put the term in italics and in quotes in the first paragraph of his

1832 book. He begins his theoretical treatment with the words (emphasis

ours)

The force of mortality at any age is measured by the number of

deaths in a given time, out of a given number constantly living.

The given time has been here assumed to be one year, and the

Annals of Internal Medicine Volume 144(6). pp 453-460.
For an striking example of how different units can make an incidence function look larger

or smaller, epidemiology students might wish to convert the army losses in Napoleon’s
Russian campaign into incidence densities, as a function of elapsed time (d −1, or
m−1, or y−1 ) or distance (mile−1, or Km−1, or ◦long.−1 ). The data are available at
http://www.math.yorku.ca/SCS/Gallery/re-minard.html.

10Linder (1936) tells us that in 1765, “mathematician Johann Heinrich Lambert, (1728-
1777) was the first to direct attention to what he calls ‘Lebenskraft,’ that is, the force of
vitality or the reciprocal of the force of mortality”.
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given number living to be one person;

Whereas he defined the force of mortality as “the quantity of death in

one year for a unit of life at the assumed age” he conceded that “the force

is changing continually” and so he gives a more hypothetical definition “the

quantity of death on a unit of life which would occur by the action of this force

continued uniform for the space of one year. Edmonds employed infinitesimal

calculus to use the “relation of Dying to Living for large intervals of age to

deduce and interpolate the relation corresponding to small intervals of age”:

“[S]ince this relation for annual intervals is continually varying,

it is manifest, that the same principles which have led to the

conclusion, that the variation is continued and annual, must lead

to the conclusion, that the variation is monthly, and also to the

conclusion, that the variation is diurnal, and even momental.11

It may be assumed, therefore, that all Tables of Mortality rep-

resent the relation of Dying to Living as changing continuously,

- that this relation is never the same for any two successive in-

stants of age. I have used the term ‘force of mortality,’ to denote

this relation at any definite moment of age. It would evidently

be improper to use this term to express the relation of Dying to

Living in yearly intervals of age; for the force of mortality at the

11The word ‘person-moment’ is used in Miettinen OS. Etiologic research Needed re-
visions of concepts and principles Scand J Work Environ Health 1999;25 (6, special
issue):484-490.
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beginning, at the middle, and at the end of any year of age, are

all different.”

Edmonds found a very simple law to describe the continuous change in the

force of mortality “during the succession of years and moments, measured

from the birth of any individual.” Starting at the nadir – an incidence

density of 1 death / 160 years in the age span 8-12 – “it is expressible as

three consecutive geometric series, or by the ordinates of three contiguous

segments of three logarithmic curves. He presented the rate of increase or

decrease of the force of mortality, in a given time, assumed to be one year”

as a Table in numbers and in logs (I have added the logs to the base e and

base 2):

In Numbers In Logarithms

base 10* base e base 2 Period over which Constant presides.

0.6760830 - 0.1700 -0.3914 -0.5647** Infancy (from birth to 8 years of age).

1.0299117 + 0.0128 +0.0295 +0.0425** Manhood (from 12 to 55 years of age).

1.0796923 + 0.0333 +0.0767 +0.1106** Old Age (from 55 to end of life).

* Used by Edmonds; **Doubling times 1/ 0.0425 ≈ 24 years, and 1/0.1106 ≈ 9 years, respectively

This is similar to the Law discovered by Gompertz.12 The smooth para-

metric function for the force of mortality, and the mathematical relationship

between the integral of this function and the cumulative incidence propor-

tion, allowed actuaries such as Edmonds and Gompertz, and ‘vital statisti-

12Gompertz’ actuary colleagues never forgave Edmonds for not giving greater credit to
Gompertz for “the honour of first discovering that some connection existed between the
Tables of Mortality [the proportion alive at age x] and the algebraic expression abt

.”
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cians’ such as Farr to make considerably shorten their annuity and lifetable

calculations (Eyler; Turner and Hanley).

In the next section, we will exploit Edmond’s idea of “one person ‘con-

stantly living’ for one year” to derive the fundamental relationship between

an incidence function and the cumulative incidence proportion (risk) that

seems to have been neglected or made unnecessarily complicated in modern

textbooks.

4 Link between ID functions and cumulative-

incidence-rate / risk

4.1 Definition; formula; previous heuristics

Incidence density refers to the rate of transition from a specific initial state

(usually, but not necessarily, a health state) to a different specific state of

interest. This is typically a function of age or time. As was done using the

USA data from 2000-2006, it can be estimated from a dynamic population

experience13 , in which “a population of a given size but with turnover of

membership moves over calendar time, with all members being candidates

throughout (so that the transition at issue is among the mechanisms of re-

moval of individuals from the candidate population).” Alternatively, it can

be estimated from a cohort experience, “in which an enumerable set of indi-

13Some of the wording in this section is adapted from that in Miettinen 1976 and Miet-
tinen 1985.
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viduals, all candidates initially, moves over the risk period.”

The cumulative incidence rate is a proportion-type rate. It refers to a

cohort (fictional or real) – all members of which are candidates initially – for

a specified period or span of time [or age]. It is the proportion which, in the

absence of attrition, makes the transition in that period. When the proportion

is used as the probability of transition for an individual, it is usually referred

to as a risk. Typical applications are the 30-day mortality rate, the 1-, 5-

and x-year risks of various illnesses, etc.

When a cohort experience is available, and each member has been followed

up to the event at issue or to the end of the risk period, the cumulative

incidence rate can be directly calculated as the proportion of the population

of candidates, defined as of some zero time (T = t0), who experience the

transition during the risk period at issue. If there is attrition due to loss to

follow up or extraneous mortality, the proportion can be calculated as the

complement of the Kaplan-Meier or Nelson-Aalen survival function evaluated

at the end of the risk period at issue.

But what if we wish to calculate the 20-year risk of death for persons aged

39.25, using the USA data from 2000-2007? Since this source population of

subjects is dynamic – with new people continually entering at the lower bound

(and within the range) of each age-interval and others exiting it (within the

range and) at the upper bound, and a maximal membership duration of 7

years – it is not possible to directly calculate the proportion of the population

of candidates, defined as of t0 = 39.25, who would die during the 20-year risk
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period at issue. However, it is possible to do so indirectly using the statistical

methods used to make ‘current’ lifetables. In this synthetic approach, the

data from successive age categories (say 1 year wide) are ‘spliced together’

to project the experience of the hypothetical cohort. If data are abundant,

the curve formed by joining the ‘lx’s – the projected percentages still alive at

the end of each year– by straight lines will be relatively smooth. But what

if we had fewer data, and wish to calculate a smooth survival curve [S(t)]

from a smooth incidence density curve ID(t), such as the one displayed in

Figure 1? Or what if we wish to convert an incidence density of 0.0975 (first)

percutaneous injuries per month —assumed constant over a 12-month risk

period, into a 12-month cumulative incidence (proportion-type) rate or risk?

Chiang (1984, p198) tells us that the equation that converts a smooth

ID(t) function into a risk “has been known to students of the lifetable for

more than two hundred years. Unfortunately, it has not received much atten-

tion from investigators in statistics, although various forms of this equation

have appeared in diverse areas of research”.

The coverage of this equation in the modern epidemiology era begins with

Miettienen 1976. His worked example addressed the 30 year risk of bladder

cancer for a 50 year old man, and Miettinen’s calculations assumed that

“without bladder cancer he would survive that period.” Since our exam-

ple addresses the 20 year risk of death – from any cause – for 39.25, 59.25

and 79.25 year old persons, competing risks are not relevant. Thus, the for-

mula given by Miettinen can be used without qualification: the cumulative
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incidence-rate (CIR) for the age span a′ to a′′ is (in his notation, but with

his IDa changed to ID(a)),

CIRa′,a′′ = 1− exp

[
−
∫ a′′

a′
ID(a)da

]

Miettinen gave, without commentary, the source for this equation as Chi-

ang (1968). In his 1985 textbook, Miettinen again describes “the direct [al-

gebraic] relation between incidence density (ID) and [the conceptual] cohort

(cumulative) incidence (CI).

Specifically, incidence density determines for a cohort (defined

at T = t0) the proportion which in the absence of attrition ex-

periences the event before some common, quantitatively defined

subsequent point in the time (T = t1). With IDt the ID at

T = t, the CI for the interval t0 to t1 is (Chiang, 1968, Miettinen

1976a)

CIt0,t1 = 1− exp

[
−
∫ t1

t0

(IDt)dt

]
.

As he had done in 1976, he also gave the version where the integral is replaced

by a finite sum, but provided no insight into the ‘anatomy’ of either the

continuous or the step-function version.

Rothman (1986, pp 29-31) defines cumulative incidence, as “the propor-

tion of a fixed population that becomes diseased in a stated period of time.”

He tells us that “it is possible to derive estimates of cumulative incidence from
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incidence rate.” – again with the proviso that “there are no competing risks

of death,” and provides the mathematical formula that links cumulative inci-

dence with the integral of the incidence rate function. Several epidemiologic

textbooks since then have provided this mathematical expression, However,

of the 15 modern texts JH has examined, only Rothman’s 1986 textbook

mathematically derives the relationship. Unfortunately, the formal geomet-

ric and calculus-based derivation it uses14 does not provide any insight into

‘why’ or ‘how’ the ‘exp’ function comes into it. Thus, to may epidemiolo-

gists, especially in the absence of any worked examples, it remains a purely

mathematical result.

Rothman’s introductory textbook (2002, pp 33-38) uses heuristic argu-

ments, but does not show the full-blown formula. Instead, it uses two worked

examples. One assumed a mortality rate (incidence density) that remains

constant – at 11 deaths per 1000 P-Y – over a 20-year age span, and, by pro-

ceeding year by year, as in a life-table, produced a cumulative incidence or

risk of 19.7%.15 The other addressed the risk, from birth through age 85, of

dying from a motor-vehicle injury, assuming no competing causes of death,

and ‘piecewise-constant’ rates of 4.7, 35.9, 20.1, 18.4 and 21.7 deaths per

100,000 person-years in the 5 age spans 0→ 15→ 25→ 45→ 65→ 85. The

product of the 5 interval-specific conditional survival probabilities yielded an

14the same one – with S(t) as the solution of a differential equation – typically used in
survival analysis textbooks.

15The 20 year-by-year calculations in the first example (Table 3.2) would not have
been any more complicated had the mortality rate changed from year to year rather than
assumed to remain constant.
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85-year survival probability of 0.984 and thus a 85-year risk of 1.6%

In each example, the textbook used “the simplest formula to convert an

incidence rate to a risk”

Risk = Incidence rate× Time

However, it offered the following cautionary remarks [italics added] :

It is a good habit when applying an equation such as [this] to

check the dimensionality of each expression and make certain

that both sides of the equation are equivalent. In this case, risk

is measured as a proportion and has no dimensions. Although

risk applies for a specific penod of time, the time period is a de-

scriptor for the risk but not part of the measure itself. Risk has

no units of time or any other quantity built in, but is interpreted

as a probability. The right side of [the] equation is the product

of two quantities, one of which is measured in units of the recip-

rocal of time and the other of which is simply time itself. This

product has no dimensionality either, so the equation holds as far

as dimensionality is concerned.

The text also urges end-users to check the range of the measures. Risk is

“a pure number in the range [0,1]”; the product of incidence rate and time

(both of which have “a range of [0,∞]) can exceed 1.” Thus, “the [above]

equation is not applicable throughout the entire range of values for incidence
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rate and time,” it is merely “an approximation that works well as long as

the risk calculated on the left is less than about 20%.”

We second these comments on units. However, rather than present an

approach in which the product of ID and time is sometimes ‘close to the

numerical value of risk’ and sometimes not, we prefer to explain that the

product has the same meaning no matter whether it is large or small, and

that a simple transformation of it will always turn it into a risk (proportion).

Chapter 3 in the 2nd and 3rd editions of Modern Epidemiology (1998,

2008) gives the discrete (i.e., summation) version of this 200-year old formula

and tells us that it is sometimes referred to as the exponential formula. It

is illustrated using a small numerical example. First, the Kaplan-Meier esti-

mator is used to arrive at a 19-year risk of 0.56. The exponential estimator

yields a risk of 0.52, but a reader may wonder which is an approximation to

which.

We now give the product of ID and time (or more generally, the sum

of products, i.e. the integral) in this 200-year old ‘exponential formula’ a

concrete meaning. This in turn will unveil the anatomy of the Nelson-Aalen

estimator.

4.2 A different heuristic, inspired by Edmonds

To do so, we will take up Edmonds’ concept of a given number of persons

constantly living. Whereas he was concerned to keep the intervals small (in

fact to use infinitesimal calculus) because he did not want the force to vary
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within the interval, ultimately we will consider much wider intervals, such as

20 years, where his assumption of a force continued uniform for that long –

as is the one by Rothman2002 – would be unrealistic.

4.2.1 Less complex: constant-in-time ID

We begin with a simpler shorter-term example, in which we wish to convert

an incidence density of 0.0975 (first) percutaneous injuries per month —

assumed constant16 over a span of 12 months – into a 12-month cumulative

incidence (proportion-type) rate or risk.

As Edmonds did, we assume that the ‘given number of interns’ is one

(1). We ask readers to imagine a ‘chain’, starting at t′ = 0 and extending

for 12 months until t′′ = 12. The chain is begun with a randomly selected

intern. That intern continues until he/she either reaches 12 months or is

injured before then. If the latter, and if the intern is first injured at say

age t, he/she is immediately replaced by a a randomly selected never-injured

intern. The chain proceeds, ‘with further replacements as needed,’ until it

reaches t′′ = 12. Throughout, there is 1 candidate, constituting a dynamic

population with a constant membership of 1.17

The number of replacements required is a random variable, with possible

values 0, 1, 2, . . . . Its expected value (mean) is µ = 0.0975 m−1 × 12 m =

16Data from Ayas et al. 2006. We treat an intern-year as 3000 working hours, so that
the ID= 0.00039 h−1.

17Another realistic ‘chain’ might be the experience, over a period a′′−a′, of a computer-
server formed from a pool of exchangeable computers, all of the same age at time a′: if
the computer currently acting as the server fails, it is immediately replaced by another
from the pool of computers still operating.
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Figure 3: An average of 1.17 transitions (percutaneous injuries) in 1 intern-year (I-Y) of experience

(117 in 100 I-Y), so that ID = 1.17 year−1. 100 ‘chains’ start at t = 0; each continues for 12 months,

each using as many replacements (Gen. 1, 2, . . . ) as necessary to complete the chain. The different

shaded areas represent the population-time for generations 0, 1, . . . . The proportion of chains that are

completed using the initial (Gen. 0) intern is exp[−1.17] = 0.31, i.e., 31%, so the 1-year risk is 100% -

31% = 69%. The proportion of chains in which, by time t, the initial (Gen. 0) intern has been replaced,

i.e., the cumulative incidence rate up to time t, is 1 − exp[−ID × t] = 1 − exp[−(integral up to time t)]

The straight line (the product of ID and time, scaled up by 100) involves a constant number of candidates

at each time point, and thus overestimates the cumulative incidence rate – substantially so as generation

0 is replaced.
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0.00039 h−1×3000 h = 1.17 first injuries. Readers will recognize µ as integral

of the ID(t) function over the 12-month age-span. The probability that the

chain is completed by the same intern who initiated it is the probability that

0 replacements are required. The probability that it is not is the complement

of this ‘survival’ probability. Since the number of replacements (transitions,

first injuries) in the 12 months is a Poisson random variable.18, we can first

calculate the probability that the chain is completed by the same intern

who initiated it as the Poisson probability of observing 0 events when 1.17

events are expected, i.e., as exp[−1.17] = exp
[
−
∫ t′′

t′
ID(t)dt

]
= 0.31. The

probability that the initial intern fails to complete the chain, i.e., is injured

before the 12 month period ends is 1−exp
[
−
∫ t′′

t′
ID(t)dt

]
= 1−0.31 = 0.69.

Thus the 12-month risk of injury is 69%.

Fig 3, modeled on Fig 1 in Miettinen 1976, shows the expected values

for 100 separate such chains, and illustrates why the product of ID and time

(the 1.17, the integral) is not a risk per se, but rather an expected number

of events (transitions, turnovers, injuries) in a dynamic population of size

1. To accumulate 100 intern-years of service, an average of 217 interns is

required. Of the 100 who initiated the chains (the average service of these

100, whom we might call ‘generation 0’, is 0.596 P-Y per intern) 31 complete

them and 69 do not. Thus, the 12-month risk is 69%. On average, of their

69 replacements (generation 1), 36 complete the chains and 33 do not; and

18Thus, it takes an average of 2.17 interns to provide the 1 intern-year of experience
(in the computer- and other mission-critical examples, the years of experience – service –
would be called ’up-time’.)
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so on, so that in all – over the initial and replacement generations, totaling

100 P-Y – 117 do not and 100 do.

The proportion of chains in which, by time t, the initial (Gen. 0) in-

tern has been replaced, i.e., the cumulative incidence rate up to time t, is

1− exp[−ID × t] = 1− exp[−(integral up to time t)] The straight line (the

product of ID and time, scaled up by 100) involves a constant number of can-

didates at each time point, and thus overestimates the cumulative incidence

rate – substantially so as generation 0 is replaced.

Table 3.2 and Figure 3.3 of Rothman 2002 show a 20-year cumulative

incidence rate, but using an incidence density of 0.011 yr−1, so that the

expected number of transitions in a dynamic population of 1 is 0.011yr−1 ×

1 yr = 0.22. That curve is identical to the first 0.22/0.0975 = 2.3 months of

the curve for the percutaneous injuries.

The expected numbers of ‘cumulative deaths’ column in Rothman’s Table

3.2 can be (and probably were) arrived at using the ‘exponential’ formula

1000× { 1− exp[− 0.011yr−1 × (number of years)] }.

The quantity 0.011 yr−1 × (number of years) is the integral of the ID func-

tion, i.e., the expected number of transitions, over the number of years in

question.
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4.2.2 More complex: when ID varies over t

We deal now with the 20-year risk of death from any cause for a person aged

a′ = 79.25, based on the – clearly non-constant – ID function shown in Figure

1(A). Again, as Edmonds did, we imagine a 1-person ‘chain’ that starts with

a randomly selected living person aged a′ = 79.25 and extends – with ‘with

further replacements as needed’ – for 20 years until a′′ = 99.25.

The number of replacements (deaths) in the 1-day-wide interval centered

on age t, is a Poisson random variable with expected value ID(t)×(1/365.25).

The sum of 7305 independently distributed daily Poisson random variables,

each with a different expected value, is again a Poisson random variable with

expected value equal to the sum of these daily expected values.19 This sum

– effectively the integral, from 79.25 to 99.25, of the ID function in Figure

1(A) – is µ = 3.22 transitions/replacements/deaths. The sum of a number

of Poisson random variates is again a Poisson variate. Thus, we can first

calculate the probability that the chain is completed by the same person

who initiated it, as the Poisson probability of observing 0 events when 3.22

events are expected, i.e., as exp[−3.22] = exp
[
−
∫ 99.25

79.25
ID(t)dt

]
= 0.04. The

20-year risk is the complement of this, namely 1 - 0.04 = 0.96, or 96%. The

full risk curve is shown in Fig 1(B).

19This (‘closed under addition’) property of the Poisson distribution is well known to
statisticians, but seldom exploited. Indeed, most epidemiologists – and many statisticians
– insist that a Poisson random variate can only arise from single ‘homogeneous’ process.
Yet, they – correctly – used the sum of observed numbers of cases over different age strata
with very different incidence densities, as a Poisson random variate. In doing so, they are
implicitly using the ‘closed under addition’ property of the Poisson distribution.
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To obtain the 20-year risk for a person aged 59.25, we calculate 1 minus

the Poisson probability of observing 0 events when 0.47 events are expected,

i.e., 1 − exp[−0.47] = 0.37. The 40-year risk for a person aged 59.25 is 1

minus the Poisson probability of observing 0 events when 3.22+0.47 = 3.59

events are expected, i.e., 1− exp[−3.69] = 0.98, or 98%.

In Rothman’s 2002 example on the risk of dying of a motor-vehicle injury,

the expected number of such deaths in a continuous 1-person chain (dynamic

population) is

4.7

105Y
× 15Y +

35.9

105Y
× 10Y +

20.

105Y
× 20Y +

18.4

105Y
× 20Y +

21.7

105Y
× 20Y = 0.016335.

and so we arrive at the 85-year risk of 1 − exp[−0.016335] = 0.016 or 1.6%

with even fewer calculation steps that using the method he employed.20

4.3 Approximation to CI

From the expected value of 0.09 in Figure 1, the 20-year (all-cause mortality)

risk for a person aged 39.25 is 1−exp[−0.09] = 0.086 or 8.6%. This example,

and the one involving the expected value of 0.016335, are a reflection of the

fact that, with a small expected value (E), so that exp[−E] ≈ E,

Riska′,a′′ ≈ Expected no. (E) of events in (a′, a′′) span, if E is small.

20Although it is small enough to be a probability, the 0.016335 is not a probability per
se. Rather, it is the expected number of deaths from injury if 1 person (not necessarily
the same one) was constantly living’.
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The 1 − exp[−E] function can be closely approximated by E over the

range E = 0 to E = 0.1, but this approximation becomes less accurate

thereafter, as is shown by the following table21

Expected no. of events, E: 0.02 0.05 0.10 0.20 0.30 0.50 1.00

Risk = (1− exp[−E]) : 0.0198 0.049 0.095 0.181 0.259 0.393 0.632

% by which E overestimates Risk: 1 3 5 10 16 27 58

The percentage over-estimation by using Riskapprox = E, rather than the

exact expression Riskexact = 1− exp[−E], is close to 50×E. Large values of

E can arise from a low event rate operating over a longer time-interval, (e.g.,

0.47 from mortality rates in the 20 year age span 59.25 to 79.25) or higher

ones over a shorter one (e.g. 0.37 from mortality rates in the 1 year age span

99.25 to 100.25).

4.4 The Nelson-Aalen estimator

The Nelson-Aalen estimator of the survival function (see Collett, 2003) has

still to find its way into epidemiology texts. It is usually presented as an ‘al-

ternative to’ the Kaplan-Meier estimate. It is now included in most software

packages and is increasingly found in the medical literature. It requires few

mathematical operations than the Kaplan-Meier estimator. However, the

most commonly presented heuristics – – that the Kaplan-Meier estimator is

21Miettinen1976 merely states that “when the cumulative incidence-rate is small, say
less than 10 per cent, it may be reasonably approximated by” this expected number;
Rothman1986 explains: “because ex ≈ 1 + x for |x| less than about 0.1, it is a good
approximation for a small cumulative incidence (less than 0.1). All of the textbooks that
present the exponential formula caution about the limited range (some say E ≤ 0.1, some
E ≤ 0.2) in which the approximation works.
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an ‘approximation to’ the Nelson-Aalen one – do not give the full story, or

explain why the Nelson-Aalen one is a natural estimator.

Both estimators are calculated for survival data that have been reduced

to J very narrow event-containing sub-intervals of the full [0, t] interval of

interest. Interval j is defined by distinct event-time tj. Intervals in [0, t] that

don’t contain events are ignored.22 The jth riskset is the set the ‘candidates’

(nj in all) just before the event(s) in interval j. Some sj ‘survive’ event-

containing interval j, while the remaining dj do not.

In the Kaplan-Meier Product Limit Estimator, each of the J empirical

conditional probabilities s1/n1, . . . , sJ/nJ is treated as a surviving fraction

of the previous fraction, and so, ultimately, the estimator is simply the overall

product of these:

Ŝ(t)KM =
s1

n1

× · · · × sJ

nJ

=
∏

j

sj

nj

=
∏

j

{
1− dj

nj

}
The Nelson-Aalen Estimator is often merely presented, without justifica-

tion, as

Ŝ(t)NA = exp
{
−
∑

j

dj

nj

}
,

Curiously, sometimes, it is justified by the statement that “the Kaplan-Meier

Product Limit Estimator is an approximation to it.” This approximation

holds true when each dj/nj is small, so that 1 − dj/nj ≈ exp[−dj/nj], and

22Intervals with no events contribute multipliers of 1 to the product.
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so that

Ŝ(t)KM =
∏

j

{
1− dj

nj

}
≈
∏

j

{
exp

[
− dj

nj

]}
= exp

{
−
∑

j

dj

nj

}
= Ŝ(t)NA

But the Nelson-Aalen Estimator of the survival function can also be

thought of as the Poisson probability of 0 events when E are expected.

This probability is exp[−E], where E is the number of events that would

be expected if a certain ÎD function i.e., a certain fitted force of morbid-

ity/mortality function, were applied to a dynamic population with a constant

membership of one (“one person constantly living”), over the time-span (0, t).

As above, E =
∫ u=t

u=0
ÎD(u)du. This rectangular wave function takes on J pos-

itive values ÎD1 to ÎDJ inside the J small event-containing intervals, and

the value ÎD(t) = 0 everywhere outside of these intervals If the width of

interval j is ∆t, then for all values of u within interval j, the fitted ID is

ÎD(u) =
dj

nj×∆t
. Thus, the overall integral is a sum of J non-zero integrals:

E =
∑

j

{∫
ÎDj(u)du

}
=
∑

j

{
dj

nj ×∆t
×∆t

}
=
∑

j

{
dj

nj

}
.

Fig 4 illustrates the heuristics using data on the frequency of IUD discon-

tinuation because of bleeding (Collet, p5). The fitted number of transitions

(discontinuations),
∑9

1(dj/nj) = 1.25, is the number of transitions we would

expect in a dynamic population of size 1 followed for 107 weeks. This fitted

number is obtained by scaling the observed population-time so that there is
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Figure 4: Heuristics for Nelson-Aalen Estimator, using data on IUD dis-
continuation because of bleeding (Collet, p5). 18 women began using an
intrauterine device (IUD) for contraception, and were followed until the end
of the study (entry was staggered) or until they discontinued it for unre-
lated reasons (total: 9 instances, treated as censored onservations), or until
they discontinued it because of bleeding ( 9 instances). The upper panel
shows the actual population-time using the function N(t), i.e., the number
of candidates at time t, and the timing of the 9 transitions. The lower panel
shows the population-time scaled so as to always have one candidate, and
the numbers of transitions scaled accordingly. Using the incidence density
pattern in the top panel, we would expect

∑9
1(dj/nj) = 1.246 transitions in

a dynamic population of size 1 followed for 107 weeks. Thus, the probability
that a person who begins using an IUD at t = 0 will have discontinued it by
t = 107 is 1− exp[1.25] = 0.71, or 71%.
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always 1 candidate, and scaling the numbers of transitions accordingly. The

107-week risk is therefore 1− exp[−1.25] = 71%.

4.4.1 Terminology

The Nelson-Aalen estimator is increasingly used, but unfortunately, it has

led to some confusion. This stems from the fact that the expected number

of events in a 1-person dynamic population is sometimes close to the risk,

and sometimes not, and that descriptions are not always clear as to which

of these two numbers is being reported. Statisticians tend to refer to the

expected number of events, i.e., the sum of products or integral, as the ‘inte-

grated hazard’ or the ‘cumulative hazard’. These terms should not confuse,

but – as Rothman et. al (1998, 2008) lament – the term “cumulative inci-

dence” certainly could. To avoid just this possibility, throughout I have used

Miettinen’s term “cumulative incidence rate”, but also tried to ensure that

readers know when I use the word “rate” in the ‘proportion’ sense.23 Stata

software can calculate and plot the “the Nelson-Aalen cumulative hazard”.

As the user can verify using a dataset with a large expected number of cases

(transitions) (e.g., the IUD one), what is indeed produced and plotted is an

increasing (cumulative) set of expected numbers – each one a sum of products

(an integral). Thus, they are not risks. But as Rothman 2002 and several

others explain, the expected number will, in low-expected number situations,

23I agree with Miettinen that epidemiologists do not have the right to proscribe use of
the word rate to describe a proportion, when the word is widely used this way in common
parlance; or to to restrict its use to a (time-based) transition rate.
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give a reasonable approximation to the risk. In such circumstances, the cu-

mulative hazard will not greatly overstate the risk. However, it will do so

when the expected number is high enough. Unfortunately, in the intermedi-

ate range where it is above say 0.1 but does not exceed unity, the user may

not recognize that it is not a risk.

5 Recommended practice and terminology

So what should users do? First, we live in an age when everyone has ready

access to the exponential function: it is even available on pocket calculators

and smart phones. So, unless we are in extreme and unusual situations where

we are forced to do the computations – division to get ID’s, and multiplication

and addition to get the expected numbers (integrals) – by hand, and cannot

remember the series for exp[−x]24 we should always convert the expected

numbers (the E’s) into risks, using the exact formula 1− exp[−E]. We have

to compute E anyway, so the conversion to risk is only a small additional

step.

Second, we should follow the advice of experts, and plot risk curves rather

than survival curves (Pocock et al. 2002). They recommend should plots go

‘up, not down’.

Third, if need be, we should either ourselves use the ‘exponential equation’

to convert the “the Nelson-Aalen” cumulative hazard values from Stata into

24exp[−x] = 1− x + x2/2− x3/6 . . . .
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risk values, or prevail on the Stata developers to make this an option.

Fourth, now that we know they are conceptually different – even if some-

times they have close to the same numerical value – we should not – as some

have done – label the vertical axis the “Nelson-Aalen cumulative hazard” but

entitle the figure the “Cumulative Risk of Death from Cancer.”

Last, should we consider avoiding altogether the words cumulative inci-

dence, or cumulative incidence rate, or cumulative incidence proportion, and

instead simply use the word risk? I can think of two reasons to do so. One,

it is the term used when referring to the output of ‘risk-prediction’ equa-

tions. There is no confusion when we see the words “Risk Assessment Tool

for Estimating Your 10-year Risk of Having a Heart Attack25. Two, even

though Miettinen teaches that (a) the cumulative incidence rate (or cumu-

lative incidence proportion) is a population concept, and that (b) risk refers

to the probability for an individual, in the end we use (a) as an estimate of

(b). So, why not just use (b) directly and avoid (a)? Doing so might not

be terminologically correct, but the amount of confusion that it would avoid

might be worth it, and it would be unlikely to do much damage. It would also

be good to reduce the use of the confusing word ‘cumulative’. In a ‘t-year

risk’ curve, plotted against t, the word ‘cumulative’ is probably redundant.

And in a ‘t-year cumulative survival’ curve (a common default wording in

software packages), the word ‘cumulative’ is an oxymoron – survival curves

(the estimated proportions/percentages still in the initial state) go down; it

25http://hp2010.nhlbihin.net/atpiii/calculator.asp
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is the transitions (from the initial state) that are cumulated.
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