Matrix metalloproteinase-1 and skin ageing in smokers

Christine Lahmann, Jörg Bergemann, Graham Harrison, Antony R Young

Smokers look older than non-smokers of the same age. We have compared the concentrations of mRNA for matrix metalloproteinase 1 (MMP-1) in the buttock skin of smokers and non-smokers with quantitative real-time polymerase chain reactions. MMP-1 degrades collagen, which accounts for at least 70% of the dry weight of dermis. We report significantly more MMP-1 mRNA in the skin of smokers than non-smokers whereas no difference was seen for the tissue inhibitor of metalloproteinases 1 (TIMP-1) or the housekeeping gene GAPDH (glyceraldehyde-3-phosphate dehydrogenase). We suggest that smoking-induced MMP-1 might be important in the skin-ageing effects of tobacco smoking.

Solar ultraviolet radiation and smoking are known to have an ageing effect on human skin, especially in the facial region. Ultraviolet induction of matrix metalloproteinases (MMPs) could mediate the effect of sunlight on skin ageing (photoageing). MMPs are zinc-dependent proteases
that degrade dermal collagen and other extracellular matrix molecules. Collagen is the major extracellular matrix protein in dermis, accounting for at least 70% of its dry weight. The molecular basis of smoking-induced facial ageing is not known but in-vitro studies have shown that tobacco-smoke extract induces MMP-1 and MMP-3 mRNA in skin fibroblasts in vitro. However, tobacco smoke extract has no effect on tissue inhibitor of metalloproteinases 1 (TIMP-1) and TIMP-3 mRNA. TIMPs inhibit the proteolytic activity of MMPs.

We exposed buttock skin to solar-simulating ultraviolet radiation and measured the induction of MMP-1 mRNA in vivo. We noted that in some volunteers there was little or no MMP-1 mRNA in buttock skin before ultraviolet exposure, whereas in others MMP-1 mRNA was readily detectable. We retrospectively asked our volunteers about their smoking status and have compared concentrations of MMP-1 and TIMP-1 mRNA in smokers (three women, 11 men; mean age 29.9 years [SD 7.0]) and non-smokers (nine women, ten men; mean age 27.1 years [6.9]). Smokers generally reported having had about 10–20 cigarettes a day for at least 25 years.

Quantitative real-time reverse transcription polymerase chain reaction (TaqMan RT-PCR, PE Applied Biosystems, Foster City, CA, USA) was used to measure mRNA extracted from full thickness 4 mm skin biopsy samples. Analyses were done for MMP-1, TIMP-1, and the housekeeping gene GAPDH. The Table summarises the primer/probe sequences.

![Table showing primer/probe sequences and CT values](image)

The nested PCR method measures mRNA levels by determining the PCR product accumulation via an oligonucleotide probe labelled with a fluoroscent reporter dye and a quencher that inhibits dye fluorescence. The intact probe hybridises to its target DNA sequence but is cleaved by DNA polymerase as synthesis of new DNA strand progresses through the probe target sequence, which results in a separation of the reporter dye from its quencher giving rise to a fluorescent signal. To measure MMP-1, TIMP-1, and GAPDH mRNA while excluding detection of genomic DNA, TaqMan primers were developed to span exon junctions. The reporter dyes were 6-carboxyfluorescein for MMP-1 and TIMP-1 and VIC for GAPDH.

Sequence of PCR primers and sequence specific probes for different targets

![PCR primer sequences](image)

The lower the CT the greater the amount of PCR product.

MMP-1 mRNA Ct, in buttock skin of smokers and non-smokers

![Graph showing MMP-1 mRNA Ct values](image)

We have shown that smoking induces MMP-1 mRNA in skin in vivo but has no effect on TIMP-1 mRNA. Furthermore, our findings confirm and validate similar in-vitro results in dermal fibroblasts. A smoking-induced imbalance between MMP-1 and TIMP-1 could be important in the ageing effects of smoking. We did not measure MMP-1 at the protein level but other in-vivo studies have shown a relation between ultraviolet-induced MMP-1 mRNA and protein as well as protein activity.† Our volunteers never used sunbeds, thus avoiding any confounding effects of ultraviolet exposure. We suggest that the multiplicative effects of sunlight and smoking on facial ageing occur by induction of MMP-1.

4 Brink N, Szamel M, Young AR, Wittern KP, Bergemann J. Comparative quantification of IL-1β, IL-10, IL-10r, TNFα and IL-7 mRNA levels in UV-irradiated human skin in vivo. Inflamm Res 2000; 49: 290–96.

Beiersdorf AG, Paul Gerson Unna Skin Research Centre, Hamburg, Germany; C. Lahmann Dept Pathol, FH-Albstadt-Sigmaringen, Biomedical Engineering, University of Applied Sciences Sigmaringen, Germany; I. Bergemann Dept Environmental Dermatology, St John's Institute of Dermatology, Guy's, King's and St Thomas' School of Medicine, King's College London, St Thomas' Hospital, London, UK (G I Harrison BSc, Prof A R Young PhD)

Correspondence to: Prof A R Young (anthony.r.young@kcl.ac.uk)