Correlation M&M 8§2.2

References: A&B Ch 5,8,9,10; Colton Ch 6, M&M Chapter 2.2
Similarities between Correlation and Regression

* Both involve relationships between pair of numerical variables.

* Both: "predictability”, "reduction in uncertainty"; "explanation”.

 Both involve straight line relationships [can get fancier too].
Differences

Correlation
Symmetric

Regression
Directiona

(doesn't matter whichis
onY, whichon X axis)
Chose n 'objects;;
measure (X,Y) on each

(metterswhichison,
which on X axis)

(i) Choose n abjects on
basis of their X values;

measure their Y; or

(i1) Choose objects, (as
with correlation);
measure (X,Y)

Regard X value as

fixed'; .

Can be extended to non-
straight line relationships

CanrelateY to multiple
X variables.

Dimensionless (no units) DY/DX unitse.g., Kg/cm

(-1to+1)

Measures of Correlation

Loose Definition of Correlation:
Degreeto which, in observed (x,y) pairs, y vaue tendsto be
larger than average when x islarger (smaller) than average; extent
to which larger than average x's are associated with larger
(smaller) than averagey's

Pearson Product-Moment Correlation Coefficient

Context Symbol Calculation

sample of r S v Wy U

n pairs Xy a{xi—-xHyi—-y}
V(a{xi—X}2) (A{yi-1}2)

"universe' I x E{ (X —mx)(Y —nmy) }

of al pars VEL (X —-mO)Z} E{ (Y -my2 }

Notes: °r : Greek letter r, pronounced 'rho' ;

° E : Expected value;;
° M GreeK letter 'mu’; denotes mean in universe.
°> Think of r as an average product of scaled deviations[M&M

p127 use n-1 because the two SDsinvolved in creating Z scores
implicitly involve 1/Q(n-1); result is same as above]

Spearman's (Non-parametric) Rank Correlation Coefficient
x ->rank replace X's by their ranks (1=smallest to n=largest)
y ->rank replacey'sby their ranks (1=smallest to n=largest)
THEN calculate Pearson correlation for n pairs of ranks

(see later)
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Correlation

Positive: larger than ave. X'swith larger than ave. Y's;
smaller than ave. X's with smaller than ave. Y's;
Negative:  larger than ave. X's with smaller than ave. Y's;
smaller than ave. X'swith larger than ave. Y's;
None: larger than ave. X's'equally likely' to be coupled with larger as with
smaller than ave. Y's
d °
° d ° ° °
o o ° ° °
ave(Y) hd hd
A I ° o |o
° ° ° L
°
ave(X) ave(X) ave(X)

How r ranges from -1 (negative correlation) through O (zero correlation.) through +1

(positive correlation.) (r not tied to x or y scale)

X-deviation is —
Y-deviation is +

X-deviation is +
Y-deviation is +

PRODUCT is — PRODUCT is +
ave(Y)
X-deviation is — X-deviation is +
Y-deviation is — Y-deviation is —
PRODUCT is + PRODUCT is —
ave(X)
PRODUCTS
L -
ave(Y) +
. - +* |- + -_
'|-+ L ] -
ave(X) ave(X) ave(X)
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p? is a measure of how much the variance of Y is reduced by
knowing what the value of X is (or vice versa)

See article by Chatillon on "Balloon Rule" for visually estimating r. (cf.
Resources for Session 1, course 678 web page)

Var(Y | X)=Va(Y) (1-r2)
r2 called
"coefficient of
determination”

Var(X|Y)=Var(X)  (1-r2)

Large r2 (i.e.r close-1or+1) - > closelinear association of X and Y
values; far less uncertain about value of one variableif told value of
other.

If X and Y scores are standardized to have mean=0 and unit SD=1 it can
beseenthatr islikea"rate of exchange" ie the value of a standard
deviation's worth of X in terms of PREDICTED standard deviation units
of Y.

If we know observationis Zy SD's from m,, then the least squares
prediction of observation'sZ,, value (ierelaivetom,) isgiven by
predicted Zy, =T « Zy

Notice the regression towards mean: r isawayslessthan 1 in absolute
value, and so the predicted Zy, js closer to O (or equivalently make Y
closer tom,) than the Zy wasto O (or X wastom, ).




Correlation M&M 8§2.2

Inferencesrep [based on sample of n (x,y) pairs]

Naturally, the observed r in any particular sample will not exactly match
the p in the population (i.e. the coefficient one would get if one included
everybody). The quantity r varies from one possible sample of nto
another possible sample of n. i.e. r is subject to sampling fluctuations
about p.

1 A question al too often asked of one's datais whether thereis
evidence of anon-zero correlation between 2 variables. Totest this,
one sets up the null hypothesisthat p iszero and determinesthe
probability, calculated under this null hypothesisthat p =0, of
obtaining anr more extreme than we observed. If the null hypothesis
istrue, r would just be "randomly different” from zero, with the
amount of the random variation governed by n.

This discrepancy of r from 0 can be measured asri“n_2 and

1-r2
should, if the null hypothesisof p = 0 istrue, follow at distribution
with n-2 df.

[Colton'stable A5 gives the smallest r which would be considered
evidencethat p = 0. For example, if n=20, so that df = 18, an observed
correlation of 0.44 or higher, or between -0.44 and -1 would be
considered statistically significant at the P=0.05 level (2-sided). NB:
this t-test assumes that the pairs are from a Bivariate Normal
distribution. Also, itisvalid only for testing p = 0, not for testing
any other value of p.

JH has seen many the researcher scan a matrix of correlations, highlighting
those with a small p-value and hoping to make something of them. But very often,
that p was non-zero was never in doubt; the more important question is how non-
zero the underlying p really was. A small p-value (from maybe a feebler but a
large n!) should not be taken as evidence of an important p ! JH hasalso
observed several disappointed researchers who mistakenly see the small p-
values and think they are the correlations! (the p-values associated with the test
of p = 0 are often printed under the correlations)

Interesting example wherer = 0, and not by chance alone!

1970 U.S. DRAFT LOTTERY during Vietham War: See Moore
and McCabe pp113-114, along with spreadsheet under Resources for
Chapter 10, where the lottery is simulated using random numbers
(Monte Carlo method)
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2 Other common questions:. given that r is based only on a sample, what

interval should | put around r so it can be used as a (say 95%)
confidence interva for the "true" coefficient p ?

Or (answerable by the same technique): one observesacertain rq ; in
another population, one observesavaluers . Isthere evidence that the
p's in the 2 populations we are studying are unequal ?

From our experience with the binomia statistic, which islimited to
{0O,n} or{0,1}, itisno surprisethat ther statigtic, limited asit isto
{minus 1, plus 1}, aso has a pattern of sampling variation that is not
symmetric unless p isright in the middle, i.e. unlessp = 0. The
following transformation of r will lead to a statistic which is
approximately normal evenif ther ('s) in the population(s) we are
studying is(are) quite distant from O:

+
% In{ H} [where In islog to the base e or natural log].

It isknown as Fisher's transformation of r; the observed r,
transformed to this new scale, should be compared against a Gaussian
distribution with

_1 1+p _ 1
mean = 5 In{—l_p } andSD—\/n_B.
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Inferencesrep [continued... ]

e.g. 2a: TestingHp: p =05
Observe r=0.4 in sample of n=20.
1+0.5

b= 2'{1 0.5}
T

n-3°
and compare with Gaussian (0,1) tables. Extreme values of the
standardized Z are taken as evidence againgt Hg. Often, the
aternative hypothesis concerning p is 1-sided, of the form p > some
guantity.

1+04
-04

,|{

Compute

e.g. 2b: Testing Ho: p1 =p2

ri & ro inindependent samples of ny & ny

Remembering that "variances add; SD's do not", compute the test
satigtic

1 1+r 1+r

3 NI -3 In{1 o3 ~[0]
1 1
nN-3 np-3°

and compare with Gaussian (0,1) tables.
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e.g. 2c: 100(1-a)% ClI for p from r=0.4 in sample of n=20.
By solving the double inequality

fy-LingirtP

1
n-3-
so that the middle termis p , we can construct aCl for p:

1+r—{1-r1} e[i 2 zarz | Sgrt[n-3] ]
1+r+{1-n el £22za2/ Srt[n-3] ]

1+r
f|{1

—Zaj2 £ £ zap

Prigh, Low] =

Worked e.g. 95% ClI(p) based on r=0.55 in sample of n=12.
With a=0.05, z, ,, = 1.96, lower & upper bounds for p:

[+2+1.96/ (9]
[£2+1.967CO]

1+055-{1-0.55} e
1+055+{1-055} e

_ 1550450l 22196/ BT 45545 1307
T 15540456 £2°L967CO] T | g5, a5t 1307
_ 155-045:369 155-045/369 _ o,

1.55+0.45+3.69 ' 1.55+0.45/3.69

This Cl, which overlaps zero, agreeswith the test of p =0 described above.

055V 12 - 2

For if we evduate — —m——
V'1-0.552

which is not as extreme as the tabulated t10,0.05(2-sided) value of 2.23.

, we get avalue of 2.08,

Note: There will be some slight discrepancies between the t-test of p =0 and the z-
based ClI's. The latter are only approximate. Note also that both assume we have data
which have a bivariate Gaussian distribution.




Correlation M&M 8§2.2

(Partial) NOMOGRAM
for 95% ClI's for p

n =10, 15, 25, 50, 150

Itis based on Fisher's
transformation of r. In addition to
reading it vertically to get aCl for
p (vertical axis) based on an
observed r (horizontal axis), one
can also useit to test whether an
observed r is compatible with, or
significantly different at thea =
0.05 level, from some specific p
value, py say, onthe vertical
axis: simply read acrossfromp =
po and seeif the observedr falls
within the horizontal range
appropriate to the sample size
involved. Note that thistest of a
nonzero p is not possible viathe
t-test. Books of statistical tables
have fuller nomograms.

Shown: CI if observe
r=0.5 (o) with n=25.

Could aldo use nomogram to
gauge the approx. 95% limits of
variation for the correlationin a
draft lottery. The n=366 isalittle
more than 2.44 times the n=150
here. So the (horizontal) variations
aroundr = 0 should be only
1/OR.44 or 64% as wide as those
shown here for n=150. Thus the
95% range of r would be approx.
-0.1to +0.1. (since X and Y are
uniform, rather than Gaussian,
theory may be alittle "off").
Observed r was -0.23.
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Spearman's (Non-parametric) Rank Correlation Coefficient Correlations -- obscured and artifactual

How Calculated.: () Diluted / attenuated
(i) replace x's and y's by their ranks (1=smallest to n=largest)
(i1) calculate Pearson correlation using the pairs of ranks.

Advantages
e Easy to do manualy (if ranking not a chore);
. _,_ 64
Spearman n{ -1}

{ d =D between "X rank" & "Y rank" for each observation}

e Lesssensitiveto outliers (x -> rank
==> variance fixed (for agiven n). - ]
Extreme {x —x } or {y; —y} can exert considerable influence on (i) Artifact
"Pearson- Examples:

Pick i it th (i) Diluted / attenuated / obscured
* Picks up on non-linear patterns e.g. the rspearman . . . . . -
for the following datais 1, whereasthe rp, s 1 Reationship, in McGill Engineering students, between their first

less year university grades and their CEGEP grades

2 Relationship between heights of offspring and heights of their
y parents

s X = average height of 2 parents
i Y = height of offspring (ignore sex of offspring)
o Galton's solution

. ‘transmute’ female heights to male heights
‘transmuted' height = height ~ 1.08

(i) Artifact / artificially induced
1. Blood Pressure of unrelated (male, female) 'couples
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