
Correlation  M&M §2.2

References: A&B Ch 5,8,9,10; Colton Ch 6, M&M Chapter 2.2 Measures of Correlation

Similarities between Correlation and Regression Loose Definition of Correlation:

• Both involve relationships between pair of numerical variables. Degree to which, in observed (x,y) pairs, y value tends to be
larger than average when x is larger (smaller) than average; extent
to which larger than average x's are associated with larger
(smaller) than average y's

• Both: "predictability",  "reduction in uncertainty"; "explanation".

• Both involve straight line relationships [can get fancier too].
Pearson Product-Moment Correlation Coefficient

Differences

Context Symbol Calculation
Correlation Regression

sample of
n pairs

rxy
 

 ∑{xi – x–  }{yi – y–  }

( ∑{xi – x–  }2  ) ( ∑{yi – y–}2  ) 

Symmetric

(doesn't matter which is
on Y, which on X axis)

Directional

(matters which is on Y,
which on X axis)

"universe"
of all pairs

ρxy   
E{ (X – µX ) (Y – µY) }

E{ (X – µX )2  }  E{ (Y – µY)2  }
Chose n 'objects';
measure (X,Y) on each

(i) Choose n objects on
basis of their X values;
measure their Y; or

(ii) Choose objects, (as
with correlation);
measure (X,Y)

Regard X value as
'fixed';  .

Notes: ° ρ: Greek letter r, pronounced 'rho' ;
° E : Expected value ;
° µ: Greek letter 'mu'; denotes mean in universe.
° Think of r as an average product of scaled deviations [M&M

p127 use n-1 because the two SDs involved in creating Z scores

implicitly involve 1/√(n-1); result is same as above]
Can be extended to non-
straight line relationships Spearman's (Non-parametric) Rank Correlation Coefficient

Can relate Y to multiple
X variables. x -> rank replace x's by their ranks (1=smallest to n=largest)

Dimensionless (no units)
( – 1 to + 1 )

∆Y/∆X units e.g., Kg/cm y -> rank replace y's by their ranks (1=smallest to n=largest)

THEN calculate Pearson correlation for n pairs of ranks

(see later)
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Correlation  M&M §2.2

Correlation 2  is a measure of how much the variance of Y is reduced by
knowing what the value of X is (or vice versa)Positive: larger than ave. X's with larger than ave. Y's;

smaller than ave. X's with smaller than ave. Y's; See article by Chatillon  on "Balloon Rule" for visually estimating r. (cf.
Resources for Session 1, course 678 web page)Negative: larger than ave. X's with smaller than ave. Y's;

smaller than ave. X's with larger than ave. Y's;

None: larger than ave. X's 'equally likely' to be coupled with larger as with
smaller than ave. Y's

Var( Y | X ) = Var( Y ) × ( 1 – ρ2 )
ρ2  called
"coefficient of
determination"

ave(Y)

ave(X) ave(X)ave(X)

Var( X | Y ) = Var( X ) × ( 1 – ρ2 )

Large  ρ2  (i.e. ρ  close -1 or +1)  - > close linear association of X and Y

values; far less uncertain about value of one variable if told value of

other.
How r ranges from -1 (negative correlation) through 0 (zero correlation.) through +1
(positive correlation.) (r not tied to x or y scale) If X and Y scores are standardized to have mean=0 and unit SD=1 it can

be seen that ρ  is like a "rate of exchange" ie the value of a standard

deviation's worth of X in terms of PREDICTED standard deviation units

of Y.
ave(Y)

ave(X)

X-deviation is –
Y-deviation is +
PRODUCT  is –

X-deviation is +
Y-deviation is –
PRODUCT  is –

X-deviation is –
Y-deviation is –
PRODUCT  is +

X-deviation is +
Y-deviation is +
PRODUCT  is +

.

If we know observation is ZX SD's from µX, then the least squares

prediction of observation's ZY value (ie relative to µY) is given by

predicted ZY = ρ • ZX

ave(Y)

ave(X) ave(X)ave(X)

PRODUCTS

Notice the regression towards mean:  ρ is always less than 1 in absolute

value, and so the predicted ZY is closer to 0 (or equivalently make Y

closer to µY) than the ZX was to 0 (or X was to µX ).
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Correlation  M&M §2.2

Inferences re     [based on sample of n (x,y) pairs] 2 Other common questions: given that r is based only on a sample, what
interval should I put around r so it can be used as a (say 95%)
confidence interval for the "true" coefficient   ?

Or (answerable by the same technique): one observes a certain  r1 ; in
another population, one  observes a value r2 . Is there evidence that the

's  in the 2 populations we are studying are unequal?

From our experience with the binomial statistic, which is limited to
{0,n} or {0,1}, it is no surprise that the r statistic, limited as it is to
{minus 1, plus 1}, also has a pattern of sampling variation that is not
symmetric unless  is right in the middle, i.e. unless  = 0. The
following transformation of r will lead to a statistic which is
approximately normal even if the ρ('s) in the population(s) we are
studying is(are) quite distant from 0:

Naturally, the observed r in any particular sample will not exactly match
the  in the population (i.e. the coefficient one would get if one included
everybody). The quantity r varies from one possible sample of n to
another possible sample of n. i.e. r is subject to sampling fluctuations
about  .
1 A question all too often asked of one's data is whether there is

evidence of a non-zero correlation between 2 variables.  To test this,
one sets up the null hypothesis that    is zero and determines the
probability, calculated under this null hypothesis that   = 0 , of
obtaining an r  more extreme than we observed. If the null hypothesis
is true, r would just be "randomly different" from zero, with the
amount of the random variation governed by n.

This discrepancy of r from 0 can be measured as 
r  n – 2 

 1 – r2 
  and

should, if the null hypothesis of   = 0 is true, follow a t distribution
with n-2 df.

  
1
2  ln { 

1 + r
1 – r } [where  ln  is log to the base e or natural log].

It is known as Fisher's  transformation of r; the observed r,
transformed to this new scale, should be compared against a Gaussian
distribution with

     mean =  
1
2  ln { 

1 + 
1 –   }  and SD = 

1
n – 3 .

[Colton's table A5 gives the smallest r which would be considered
evidence that   0. For example, if n=20, so that df = 18, an observed
correlation of 0.44 or higher, or between -0.44 and -1 would be
considered statistically significant at the P=0.05 level (2-sided). NB:
this t-test assumes that the pairs are from a Bivariate Normal
distribution. Also, it is valid only for testing   = 0, not for testing
any other value of 
JH has seen many the researcher scan a matrix of correlations, highlighting
those with a small p-value and hoping to make something of them. But very often,
that   was non-zero was never in doubt; the more important question is how non-
zero the underlying  really was. A small p-value (from maybe a feeble r but a
large n!) should not be taken as evidence of an important  ! JH has also
observed several disappointed researchers who mistakenly see the small p-
values and think they are the correlations! (the p-values associated with the test
of  = 0 are often printed under the correlations)

Interesting example where r  0, and not by chance alone!

1970 U.S. DRAFT LOTTERY during Vietnam War: See Moore
and McCabe pp113-114, along with spreadsheet under Resources for
Chapter 10, where the lottery is simulated using random numbers
(Monte Carlo method)
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Inferences re     [continued... ] e.g. 2c:  100(1– )% CI for  from r=0.4 in sample of n=20.

e.g. 2a:  Testing H0:  = 0.5
By solving the double inequality

– zα/2   ≤  
 
1
2  ln { 

1 + r
1 – r } – 

1
2  ln { 

1 + 
1 –  }  

 
1

n – 3 .
   ≤   zα/2

so that the middle term is , we can construct a CI for :

[High, Low] =  
1 + r – {1 – r} e [ ± 2 zα/2 / Sqrt[n-3] ]

1 + r + {1 – r} e [ ± 2 zα/2 / Sqrt[n-3] ]

Observe r=0.4 in sample of n=20.

Compute
 
1
2  ln { 

1 + 0.4
1 – 0.4 } – 

1
2  ln { 

1 + 
1 –  }  

 
1

n – 3 .

and compare with Gaussian (0,1) tables. Extreme values of the

standardized Z are taken as evidence against H0 . Often, the

alternative hypothesis concerning  is 1-sided, of the form  > some

quantity.
Worked e.g.  95% CI( ) based on r=0.55 in sample of n=12.

With  α=0.05, zα/2  = 1.96, lower & upper bounds for :

=  
1 + 0.55 – {1 – 0.55} e [ ± 2 • 1.96 / √9 ]

1 + 0.55 + {1 – 0.55} e [ ± 2 • 1.96 / √9 ]

=   
1.55 – 0.45 e [ ± 2 • 1.96 / √9 ]

1.55 + 0.45 e [ ± 2 • 1.96 / √9 ]  =   
1.55 – 0.45 e ± 1.307

1.55 + 0.45 e ± 1.307

=   
1.55 – 0.45 • 3.69
1.55 + 0.45 • 3.69   ,  

1.55 – 0.45 / 3.69
1.55 + 0.45 / 3.69   =  –0.04 to 0 .84

e.g. 2b: Testing   H0:  = 

r1 & r2 in independent samples of n1 & n2

Remembering that "variances add; SD's do not", compute  the test

statistic

 
  
1
2  ln {

1 + r1
1 – r1

} – 
1
2  ln {

1 + r2
1 – r2

}  – [ 0 ] 

 
1

n1 – 3 + 
1

n2 – 3 .

and compare with Gaussian (0,1) tables.

This CI, which overlaps zero,  agrees with the test of  =0  described above.

For if we evaluate   0.55  12  –  2  

 1 – 0.552  
   ,  we get a value of 2.08,

which is not as extreme as the tabulated t10 ,0.05(2-sided) value of 2.23.

Note: There will be some slight discrepancies between the t-test of  =0 and the z-
based CI's. The latter are only approximate. Note also that both assume we have data
which have a  bivariate Gaussian distribution.
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(Partial) NOMOGRAM
for 95% CI's for  

n = 10, 15, 25, 50, 150

It is based on Fisher's
transformation of r. In addition to
reading it vertically to get a CI for
 (vertical axis) based on an

observed r (horizontal axis), one
can also use it to test whether an
observed r is compatible with, or
significantly different at the α =
0.05 level, from some specific 
value, 0   say, on the vertical
axis: simply read across from   =

0   and see if the observed r falls
within the horizontal range
appropriate to the sample size
involved.  Note that this test of a
nonzero   is not possible via the
t-test. Books of statistical tables
have fuller nomograms.

Shown: CI if observe
r=0.5 (o) with n=25.

Could aldo use nomogram to
gauge the approx. 95% limits of
variation for the correlation in a
draft lottery. The n=366 is a little
more than 2.44 times the n=150
here. So the (horizontal) variations
around ρ = 0 should be only
1/√2.44 or 64% as wide as those
shown here for n=150. Thus the
95% range of r would be approx.
-0.1 to +0.1. (since X and Y are
uniform, rather than Gaussian,
theory may be a little "off").
Observed r was -0.23.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

observed r
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-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

rho

{1+r-(1-r)Exp[±2z/Sqrt[n-3]]} / {1+r+(1-r)Exp[±2z/Sqrt[n-3]]}

rho
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25
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150

10
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25
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Spearman's (Non-parametric) Rank Correlation Coefficient Correlations --  obscured and artifactual

How Calculated:

+ =

+ =

(ii) Artifact

(i) Diluted / attenuated

(i) replace x's and y's by their ranks (1=smallest to n=largest)

(ii) calculate Pearson correlation using the pairs of ranks.

Advantages
• Easy to do manually (if ranking not a chore);

rSpearman = 1 – 
6∑d2

n{n2-1}

{ d = ∆  between "X rank" & "Y rank" for each observation}

• Less sensitive to outliers (x -> rank
==> variance  fixed (for a given n).

Extreme  {xi – x
–
 } or {yi – y

–
}  can exert considerable influence on

rPearson. Examples:
(i) Diluted / attenuated / obscured

• Picks up on non-linear patterns  e.g. the  rSpearman
for the following data is 1, whereas the rPearson. is

less.

1 Relationship, in McGill Engineering students, between their first
year university grades and their CEGEP grades

2 Relationship between heights of offspring and heights of their
parents       y

                   °

                  °

                 °

                      °

             °

          °

       °

    ____________________

X = average height of 2 parents
Y = height of offspring (ignore sex of offspring)

Galton's solution

'transmute' female heights to male heights

'transmuted' height = height × 1.08

x (ii) Artifact / artificially induced

1. Blood Pressure of unrelated (male, female) 'couples'
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