Regression M&M 82.3and 8§10

Uses
 Curvefitting
e Summarization (‘model")
* Description
 Prediction
» Explanation
Adjustment for 'confounding' variables

Technica Meaning

[originally] simply aline of 'best fit' to data points

* [nowadays] Regression lineisthe LINE that connects the CENTRES of
the distributions of Y's at each X value.

* not necessarily a straight line; could be curved, as with growth charts
* not necessarily my|x 'sused as CENTRES ; could use medians etc.

* dtrictly speaking, haven't completed description unless we characterize
the variation around the centres of the Y distributions at each X

* inference not restricted to the distributions of Y's for which we make
some observations; it applies to distributions of Y's at all unobserved X
values in between.

Examples (with appropriate caveats)
 Birthweight (Y) in relation to gestational age (X)
* Blood pressure (Y) in relation to age (X)
 Cardiovascular mortality (Y) in relation to water hardness (X) ?
 Cancer incidence (Y) in relation to some exposure (X) ?
 Scholastic performance (Y) visavis amount of TV watched (X)

Caveat: No guarantee that simple straight line relationship will be adequate.
Also, in some instances the relationship might change with the type of X
and Y variables used to measure the two phenomenabeing studied; also the
relationship may be more artifact than real - see later for inference.)
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MALES FENVALES
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Simple Lineart Regression

(one X) (straight line)
Equation
. _ Dmx _ : ||r.i$|l
Myx=a+bX or ADX b run”

In Practice:
one rarely sees an exact straight line relationship in health science

applications;

1- While physicists are often able to examine the relationship between Y
and X in alaboratory with all other things being equal (ie controlled or
held constant) medical investigators largely are not. The universe of
(X,Y) pairsisvery large and any 'true' relationship is disturbed by
countless uncontrollable (and sometimes un-measurable factors. In any
particular sample of (X,Y) pairs these distortions will surely be
operating.

The true relationship (even if we could measure it exactly) may not be a
simple straight line.

The measuring instruments may be faulty or inexact (using
‘instruments’ in the broadest sense).

2 -

3-

One alwaystries to have the investigation sufficiently controlled that the
'real’ relationship won't be 'swamped' by factors 1 and 3 and that the
background "noise" will be small enough so that alternative models (eg
curvilinear relationships) can be distinguished from one another.

T Linear here means linear in the parameters. The equation

y = BxC can be made linear in the parameters by taking logs

i.e. log[y] =log[B] + x log[C]; y = at+bex+cex2 isaready linear
in the parametersab and c. The following model cannot be made
linear in the parametersa b g:

Fitting astraight line to data - L east Squares M ethod

The most common method is that of Least Squares. Note that |east
squares can be thought of asjust a curve fitting method and doesn't have
to be thought of in a statistical (or random variation or sampling
variation) context. Other more statistically-oriented methods include
the method of minimum Chi-Square (matching observed and expected
counts according to measure of discrepancy) and the Method of
Maximum likelihood (finding the parameters that made the data most
likely). Each has adifferent criterion of "best-fit".

Least Squares Approach:

e Consider acandidate sope (b) and intercept (a) and predict that the
Y value accompanying any X=x is§/\ =a+ bex. The observedy
value will deviate from this " predicted” or "fitted" value by an
amountd =y - 3’/\

We wish to keep this deviation as small as possible, but we must
try to strike a balance over all the data points. Again just like
when calculating variances, it is easier to work with sguared
deviations! :

P=(y- )2
Weweight all deviations equally (whether they be the onesin the

middle or the extremes of the x range) using & 2 =& (y - V) 2
to measure the overall (or average) discrepancy of the points from

theline.

l-a
1+exp{ b—glog[dose]}

proportion dying =a +
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1 there are also several theoretical advantagesto least squares estimates
over others based for example on least absolute deviations: - they are
the most precise of all the possible estimates one could get by taking
linear combinations of y's.
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L]

From all the possible candidates for slope (b) and intercept (a) , we
choose the particular values a and b which make this sum of squares
(sum of sgquared deviations of ‘fitted' from 'observed' Y's) aminimum.
ie we search for the aand b that give us the least squaresfit.
Fortunately, we don't have to use trial and error to arrive at the 'best’ a
and b . Instead, it can be shown by calculus or algebraically that the a
and b which minimize & d2 are:

b= b = &{xi—xHyi-y} _ my°*sy

a{xj - x}2 S

N —_— —_—
a=a =y-bx
[Note that aleast-squares it of the regression line of X on Y would
give a different set of values for the slope and intercept: the slope
I °
of thelineof xony is &g] . one needs to be careful when

using a calculator or computer program to specify which is the
explanatory variable (X) and which is the predicted variable (Y)].

Meaning of intercept parameter (a):

Unlike the slope parameter (which represents the increase/decrease
in my|x for every unit increase in x), the intercept does not always
have a'natural’ interpretation. It depends on where the x-valueslie
in relation to x=0, and may represent part of what isrealy the
mean Y. For example, the regression line for fuel economy of cars
(Y) inrelation to their weight (x) might be

My jweight = 60 mpg — 0.01-weight in [bs [0.01 mpg/Ib]
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but there are no cars weighing 0 Ibs. It would be better to write the
equation in relation to some 'central’ value for weight e.g. 3500
Ibs; then the same equation can be cast as

My jweight — 25 = 0.01+(weight — 3500)

It is helpful for testing whether there is evidence of a non-zero slopeto
think of the simplest of all regression models, namely that whichisa
horizontal straight line

myjx = a + 0 X = theconstant a .
Thisis are-statement of the fact that the sum of squared deviances
around a constant horizontal line at height 'a’ is smallest when'a' =

the mean .

[We don't dways use the mean as the best 'centre’ of a set of numbers.
Imagine waiting for one of several elevators with doorsin arow along
one wall; you do not know which one will arrive next, and so want to
stand in the 'best’ place no matter which one comes next. Where to
stand depends on the criterion being optimized: if you want to minimize
the maximum distance, stand in the middle between the one on the

extreme left and the extreme right; if you wish to minimize the average

distance, where do you stand?, If, for some reason, you want to
minimize the average squared distance, where to stand? If the elevator

doors are not equally spaced from each other, what then?|
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The anatomy of a slope: some re-expressions

a{x—xbar}{y —ybar}
a{x —xbar} 2

Consider the formula: slope=b =

Without loss of generality & for simplicity, assume ybar=0.
If we have 3 x's, 1 unit apart (eg.x;=1; X, =2; X3 =3),
then...  x;—xbar=-1; x,—xbar =0; x3—xbar=+1

{-1}y; + {0}y, + { +1}y;
{-1}2+{0}2+{+1}2

soslope=b=

I.e. aweighted average of the dope from datapoints 1 and 4
and that from datapoints 2 and 3, with weights proportional to the
squares of their distanceson x axis{x4s — X1}2 and {x3 — %o}2

Ys — Vi1

i.e. slope=
X3 — X1

Notethat y, contributesto ybar and thusto an estimate
of the averageyy (i.e. level) but not to the slope.

If 4 x's1unit apart (e.g. x;=1; X5 =2; X3 =3; X4 =4), then,...

X1 —xbar =-1.5
x3 — xbar = +0.5

X2 —xbar = —0.5
X4 —Xbar = + 1.5

and so
_._{-15}y; + { -0.5}y, + { + 0.5}ys+ { + 1.5}y,
slope=b = 5 ] ° :
{-15}2+{-05}2+{05}2+{ + 1.5}
ie. slope= 1.5 y45 - yab, 05 y35 — vy,
3 1
E{Y4 -y 5{ Y3 — Y2}
i.e. S|Ope: "
S 5
3{X4 - Xl} 1{X3 _ X2}
i 9 {ys —vyi} 1{ys -y}
i.e. slope=—= 1
p 10 {X4 - Xl} 10 {X3 — X2}

Another way to think of the slope:

a{x —xbar}{y —ybar}

Rewrite b= S > as
a{x—xbar}
Sry 2 {y—ybar} o {y —ybar}
. a{x—xbar} {X — xbar} _ a weight {X — xbar}
&{x —xbar} 2 aweight
weight {x—xbar}zfor estimate % of slope
Y et another way to think of the slope:

. . - Yi—Yy
b is a weighted average of all the pairwise slopes X -
with weights proportional to {x — x }2.

eg. If 4 x's1 unit apart
denote by b, ¢ , the lope obtained from {X,,y,} & {X;,y1}, €tc...

_ 1bigp + 4.b1g3 + 9.b1gs + 1.01g3 + 4bpgs + 1.b3gy

b 1+4+9+1+4+1=20

jh 6/94
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Inferences regarding Simple Linear Regression 50 than to take X =38, 39, 49, 41, 42. Any individual fluctuations
will 'throw off' the slope much less if the X's are far apart.
How reliableare

(i) the (estimated) slope (a) (b)
(i) the (estimated) intercept BP BP

(i) the predicted meanY at agiven X
(iv) the predicted y for a (future) individual with agiven X

when they are based on data from a sample? i.e. how much would these
estimated quantities change if they were based on a different random
sample [with the same x values]?

AGE AGE
We can use the concept of sampling variation to (i) describe the | | | | | |
'uncertainty’ in our estimates via CONFIDENCE INTERVALS or (ii) 30 40 50 30 40 50
carry out TESTS of significance on the parameters (slope, intercept,
predicted mean).
We can describe the degree of reliability of (or, conversely, the degree of thick line: real (true) relation between average BP at age X and X : thin
uncertainty in) an estimated quantity by the standard deviation of the lines: possible apparent relationships because of individual variation when
possible estimates produced by different random samples of the same we study 1 individua at each of two ages () spaced closer together (b)
size from the same x's. We call this (obviously conceptual) S.D. the spaced further apart.
standard error of the estimated quantity (just like the standard error of the
mean when estimating ). helpful to think of slope as an average Notes

differencein meansfor 2 groupsthat are 1 x-unit apart.
Regression line refers to the relationship between the average Y at a

The size of the standard error will depend on given Xto the X, andnot toindividual Y'svsX. Obviously of course if
theindividual Y's are close to the average Y, so much the better!

1. how 'spread apart' the x'sare

2. How good afit the regression line redly is (i.e. how small is The above argument would suggest studying individuals at the
the unexplained variation about the line) extremes of the X values of interest. We do thisif we are sure that the
3. How large the sample size, n, is. relationship isa linear one. If we are not sure, it iswiser -- if we have

a choice in the matter -- to take a 3-point distribution.
Factors affecting reliability (in mor e detail)

There isa common misapprehension that a Gaussian distribution of X

1. Thespread of the X's. The best way to get a reliable estimate of valuesis desirable for estimating a regression slope of Y on X. In fact,
the slopeisto take Y readings at X's that are quite a distance from the 'inverted U' shape of the Gaussian is the least desirable!

each other. E.g. in estimating the "per year increase in BP over the
30-50 yr. age range", it would be better to take X=30,35, 40, 45,
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Factors affecting reliability (continued)

2. The(vertical) variation about the regression line: Again, consider
BP and age, and suppose that indeed the average BP of all persons
aged X + 1 isb units higher than the average BP of all persons

aged X, and that this linear relationship

average BPof personsagedx = a + b ¢ X
(averageof Y'sat a given X =intercept + lope* X)

holds over the age span 30-50.

Obviously, everybody aged x=32 won't have the exact same BP,
some will be above the average of 32 yr olds, some below.
Likewise for the different ages x=30,...50. In other words, at any x
there will be a distribution of y's about the average for age X.
Obviously, how wide this distribution is about a + beX will have
an effect on what slopes one could find in different samples
(measure vertical spread around theline by s)

variation when we study 1 individual at each of two ages when the
within-age distributions have (a) anarrow spread (b) awider spread

NOTE: For unweighted regression, should have roughly same spread
of Y's at each X.

Factors affecting reliability (continued)

3. Sample Size (n) Larger nwill make it more difficult for the types of
extremes and misleading estimates caused by 1) poor X spread and 2)
large variationin Y about Hy X - to occur. Clearly, it may be possible

to spread the x's out so as to maximize their variance (and thus reduce
the n required) but it may not be possible to change the magnitude of
the variation about Hy|x (unless there are other known factors

influencing BP). Thus the need for reasonably stable estimated 9
[i.e.estimate of Ky |x ]

@) )

BP

AGE

AGE

30 40 50 30 40

50

thick line: real (true) relation between average BP at age X and X :
thin lines. possible apparent relationships because of individual
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Standard Errors

S

\/é{xi -X}2 ,

A %2
SE(@) = SE(a):S\/:I--I-é{X-f)_(}Z

(Note: thereisa negative correlation between a and b).

SE(b) = SE(b) =

Wedon't usually know s so we estimate it from the data, using scatter of
they'sfrom the fitted linei.e. SD of the residuals)

If examinethe structure of SE(b), see that it reflects the 3 factors discussed
above: (i) alarge spread of the x's makes contribution of each observation to

a{x — x }2 large, and since thisis in the denominator, it reduces the SE
(i1) asmall vertical scatter isreflected inasmall s and since thisisin the
numerator, it also reduces the SE of the estimated slope (iii) alarge sample

sizemeansthat &{x — X }2 islarger, and like (i) this reduces the SE.

The formula, as written, tends to hide this last factor; note that

a{x — X }2 iswhat we use to compute the spread of a set of X's -- we
simply divide it by n—1 to get a variance and then take the square root to get
the sd. To make the point here, simplify n-1 to n and write

é{Xl - )_(}2 » n‘Var(X), so that \lé{x| - )?}2 » \/F]ogj(x)

and the equation for the SE simplifiesto

S _ SDy|X/ SDy

Vi« sd(x) Vn

with \/?1 in its familiar place in the denominator of the SE (even in more
complex SE's, thisiswhere\/a isusually found!)

SE(b) =
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The structure of SE(a) : In addition to the factors mentioned above, all
of which comein again in the expected way, there is the additional

factor of x2; since thisisin the denominator, it increases the SE . This

isnatural in that if the data, and thus X, are far from x=0, then any
imprecision in the estimate of the slope will project backwardsto a
large imprecision in the estimated intercept. Also, if one uses ‘centered'

X's, so that X = 0, the formulafor the SE reduces to

SE(a) = s\/_:]' = %

and we recognize this as SE(y) -- not surprisingly, sincey is the
‘intercept’ for centered data.

Cl's& Tests of Significance for & and /[5 are based on
t—distribution (or Gaussian Z's if n large)

a: o * th—2 * SE( &)
Ho: a =a t —@
0. =0a0 n_Z_SE(&)

B B *tnoeSE(B)
B - Bo

Ho: B = = A
00 P =Ppo th-2 =0
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Standard Error for Estimated pyx or 'averageY at X'

N N
Weestimate'average Y at X' or Hy |x by a + beX . Sincethe

estimate is based on two estimated quantities, each of which is subject to
sampling variation, it contains the uncertainty of both:

: _ 1, {X- x}2
SE(estimatedaverage Y at X) =s n + - ~
a{x - x}?

N
Again, we must use an estimate s of s .

First-time users of this formula suspect that it has a missing & or an x

instead of an xbar or something. There is no typographical error, and indeed
if one examinesit closely, it makes sense. X refersto the x-value at which
oneis estimating the mean -- it has nothing to do with the actual x'sin the
study which generated the estimated coefficients, except that the closer X is

to the center of the data, the smaller the quantity {X — X} and thusthe
quantity {X — x}2, and thus the SE, will be. Indeed, if we estimate the
average Y rightat X = x,theestimateissimply y (sincethe fitted
line goes through [ x, y] ) and its SE will be

1, {X- %2 \/‘1_3_ .
s\/ + 52 or s n—\ﬁ]—SE(y).

N a{x

Confidence Interval for individual Y at X

A certain percentage P% of individuals are withintpe s of the mean
Hyx = a+ b ¢ X, wheretpisamultiple, depending on P, from thet
or, if nislarge, the Z table. However, we are not quite certain where
exactlythemean a + b+ X is--thebest wecan dmse;tlmate
with a certain P% confldence that it iswithin tpe SE( a + b-X ) of

the point estimate a + b X . The uncertainty concerning the mean and
the natural variation of individuals around the mean -- wherever itis--
combine in the expression for the estimated P% range of individual
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variation, which is as follows:

N N — _2
a+beX + t-s\/1+i+J—LOX -
a{x - x}2

Both the CI for the estimated mean and the CI for individuals (ie the
estimated percentiles of the distribution) are bow-shaped when drawn as

afunction of X. They are narrowest at X = X, and fan out from there.
One needs to be careful not to confuse the much narrower Cl for the
mean with the much wider Cl for individuals. If one can see the raw
data, it is usually obvious which iswhich -- the CI for individualsis
almost as wide as the raw data themselves.

cf. data on degping through the night; alcohol levels and eye speed.



