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The answer to these questions is  "No!" What then is a P value? It is the likelihood
of observing the study results under the assumption that the null hypothesis of no
difference is true.  Probably because this definition is elusive and intimidating,
understanding P values (and other statistical concepts like power, confidence
intervals, and multiple hypothesis testing) is often left to experts in the field.  It is
easier just to check whether a P value is .05 or less, call the result "statistically
significant," regard the tested hypothesis as probably true, and move on to the next
paragraph.

Just as diagnostic tests are most helpful in light of the clinical

presentation, statistical tests are most useful in the context of

scientific knowledge.  Knowing the specificity and sensitivity of a

diagnostic test is necessary, but insufficient: the clinician must also

estimate the prior probability of the disease.  In the same way,

knowing  the P value and power, or the confidence interval, for the

results of a research study is necessary but insufficient: the reader

must estimate the prior probability that the research hypothesis is

true.  Just as a positive diagnostic test does not mean that a patient

has the disease, especially if the clinical picture suggests otherwise,

a significant P value does not mean that a research hypothesis is

correct, especially if it is inconsistent with current knowledge.

Powerful studies are like sensitive tests in that they can be

especially useful when the results are negative.  Very low P values

are like very specific tests; both result in few false-positive results

due to chance.  This Bayesian approach can clarify much of the

confusion surrounding the use and interpretation of statistical tests.

(JAMA 1987;257:2459-2463)

Readers of medical literature need not give up quite so quickly, however.  As
Diamond and Forrester5 pointed out, many statistical concepts have remarkably
similar analogues in an area familiar to clinicians - the interpretation of diagnostic
tests.  In the diagnosis of Cushing's syndrome, for example, most clinicians
recognize that an elevated serum cortisol level is more useful than an elevated blood
glucose level, and that an elevated cortisol level is more likely to be due to Cushing's
syndrome in a moon-faced patient with a buffalo hump and abdominal striae than in
an overweight patient with hypertension.6-7 Why?? Because the interpretation of a
test result depends on the characteristics of both the test and the patient being
tested.8-13

The same type of reasoning - called Bayesian analysis  after Thomas Bayes, the
mathematician who developed it more than 200 years ago14  - can also be used to
clarify  the meaning of the P value and other statistical terms.  Although this
application of Bayes' ideas has been discussed in epidemiologic and statistical
literature,15-18 it has received less attention in the journals read by clinicians.  In
this article, we begin with the basic aspects of the analogy between research studies
and diagnostic tests, such as the similarity between the power of a study and the
sensitivity of a test, and then examine more challenging issues, such as how a study
with multiple hypotheses resembles a serum chemistry panel.

THE ANALOGY

IN THE four ORIGINAL CONTRIBUTIONS in this issue of THE JOURNAL, the
authors report the results of statistical tests of 76 hypotheses.1-4 Of these, 32 had
significant P values (P<.05). But do these P values imply that the 32 hypotheses are
true? Or that 95% of them are true? Are all significant P values created equal?

An overview of the analogy between research studies and diagnostic tests is shown in
Table 1. In this analogy, a clinician obtains diagnostic data to test for the presence of
a disease, such as breast cancer, and an investigator collects study  data to determine
the truth of a research  hypothesis   such as that the efficacies of two drugs differ in
the treatment of peptic ulcer disease. (The research hypothesis is often called the
alternative  hypothesis  in standard terminology.) The absence of a disease  (no
breast cancer) is like the null hypothesis   of no difference in the efficacy of the two
drugs.

† From the Departments of Medicine (Dr Browner), Pediatrics (Dr Newman), and
Epidemiology and International Health (Drs Browner and Newman), School of
Medicine, University of California at San Francisco, and the Clinical Epidemiology
Program, Institute for Heath Policy Studies, San Francisco (Drs Browner and
Newman). The term "positive" is used in its usual sense: to refer to diagnostic tests that are

consistent with the presence of the disease and to studies that have statistically
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significant results.  Similarly, "negative" refers to diagnostic tests consistent with
the absence of disease and research results that fail to reach statistical significance.
Thus there are four possible results whenever a patient undergoes a diagnostic test.
Consider the use of fine-needle aspiration in the evaluation of a breast mass, for
example (Table 2).  If the patient has breast cancer, there are two possibilities: the
test result can either be correctly positive or incorrectly negative.  On the other hand,
if the patient actually does not have cancer, then the result will either be correctly
negative or incorrectly positive.  Similarly, there are four possible results whenever
an investigator studies a research hypothesis (Table 3).  If the efficacies of the two
drugs really do differ, there are two possibilities: the study can be correctly positive if
it finds a difference or incorrectly negative if it misses the difference.  If the two drugs
actually have the same efficacy, then the study can either be correctly negative if it
finds no difference or incorrectly positive if it does find one.

false-positive rate is 5%: of 100 women without breast cancer, five will have falsely
positive test results.

Table 2.—The Four Possible Results of a Diagnostic Test

      If Breast Mass is actually:

Malignant Benign

Positive   This is a true-positive test:   This is a false-positive test:
And Result of result is correct result is incorrect
Fine-Needle
Aspirate is:

Negative This is a false-negative test: This is a true-negative test
result is incorrect result is correct

Similarly, the relationships between the four possible outcomes of a research study
are usually expressed as the power  and P value  of the study, which are determined by
assuming that the truth or falsity of the null hypothesis is known.  Power is the
likelihood of a study being positive if the research hypothesis is true (and the null
hypothesis is false); it is analogous to the sensitivity of a diagnostic test.  The P
value is the likelihood of a study being positive when the null hypothesis is true; it
is analogous to the false-positive rate (1 - specificity) of a diagnostic test.  A study
comparing two drugs in the treatment of ulcers that has an 80% chance of being
correctly positive if there really is a difference in their efficacies wuould have a power
of 0.80. A study with a 5% chance of being incorrectly positive if there is no
difference between the drugs would have aP value of .05. (Conventionally, when the
P value is less than a certain predetermined "level of statistical significance," usually
.01 or .05, the results are said to be "statistically sign)ficant.")

Table l.-The Analogy Between Diagnostic Tests and Research Studies

Diagnostic Test Research Study

Absence of disease Truth of null hypothesis

Presence of disease Truth of research (altematve hypothesis

Positive result (outside normal limits) Positive result (reject null hypothesis)

Negative result (within normal limits) Negative result (fail to reject null
hypothesis)

Sensitivity Power
Table 3.—The Four Possible Results of a Research Study

False-positive rate (I - specificity) P value
    If Research Hypothesis is actually:

Prior probability of disease Prior probability of research hypothesis
True False

(Efficacy of Drug A and (Drug A has same efficacy as B
Drug B differ in treatment  in treatment of ulcer disease)
of ulcer disease)

Predictive value of a positive (or
negative) test result

Predictive value of a positive (or
negafive) study

The relationships between the four possible outcomes of a diagnostic test are usually
expressed as the sensitivity  and specificity  of the test, which are determined by
assuming that the presence or absence of the disease is known.  Sensitivity is the
likelihood that a test result will be positive in a patient with the disease.  Specificity
is the likelihood that a test result will be negative in a patient without the disease. If
the result from a fine-needle aspiration is positive in 80 of 100 women with breast
cancer, and negative in 95 of 100 women without cancer, the test would have a
sensitivity of 80% and a specificity of 95%.  There is another term that is useful in
the analogy: the false-positive rate (1-specificity), which is the likelihood that a test
result will be (falsely) positive in someone without the disease.  In this example, the

Positive This is a true-positive study: This is a false-positive study:
And Result of result is correct result is incorrect
Study  is:

Negative This is a false-negative study: This is a true-negative study
result is incorrect result is correct

Knowing the sensitivity and specificity of a test is not aufficient, however, to
interpret its results: that interpretation also depends on the charactertistics of the
patient being tested. If the patient is a 30-year-old woman uith several soft breast
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masses, a positive result from a fine-needle aspiration (even with a false-positive rate
of only 5%) would not suffice to make a diagnosis of cancer. Similarly, if the patient
is a 60-year-old woman with a firm solitary breast mass, a negative aspirate result
(with a sensitivity of 80%) would not rule out malignancy19  Clinicians use these
sorts of patient characteristics to estimate the prior probability of the disease—the
likelihood that the patient has the disease, made prior t to knowing the test results.
The prior probability of a disease is based on the history and physical findings,
previous experience with similar patients, and knowledge of alternative diagnostic
explanations. It can be very high (breast cancer in the 60-year old woman with a
single firm mass), very low (breast cancer in the younger woman), or somewhere in
between. Although they may not realize it, clinicians express prior probabilities
when using phrases such as "a low index of suspicion" or "a strong clinical
impression."

a fine-needle aspirate (with a specificity of 95% and a sensitivity of 80% for cancer)
results in a very high predictive value for malignancy, about 94% (Figure). Next,
consider the 30  year-old woman with multiple soft masses. The prior probability of
cancer is low, say 1%. Even given a positive aspirate result, the likelihood that she
has breast cancer is still small (about 14%).

A Bayesian approach can also be used to determine what the reader of a research study
really wants to know—the likelihood that the research hypothesis is true, given the
study results. It combines the characteristics of the hypothesis (expressed as prior
probability), the characteristics of the study (expressed as power and the P value), and
the study results (positive or negative) to determine the predictive value of a study.
The predictive value of a positive study is the probability that given a positive result,
the research hypothesis is actually true. (The predictive value of a negative study is
the probability that given a negative result, the research hypothesis is false.)

In the same way, knowing the power and the P value of a study is not sufficient to
determine the truth of the research hypothesis. That determination also depends on the
characteristics of the hypothesis being studied. Suppose one drug is diphenhydramine
hydrochloride (Benadryl) and the other is chlorpheniramine maleate (Chlor-Tri-
meton): a positive study (at P=0.05) would not ensure that one of the drugs is
effective in the treatment of ulcers  Similarly, if one drug was ranitidin hydrochloride
(Zantac) and the other placebo, a negative study (even with power of 0.80) would not
establish the ineffectiveness of ranitidine. The characteristics of a research hypothesis
determine its prior probability—an estimate of the likelihood that the hypothesis is
true, made prior to knowing the study results. The prior probability of a hypothesis
is based on biologic plausibility, previous experience with similar hypotheses. and
knowledge of alternative scientific explanations Analogous to the situation with
diagnostic tests, the prior probability of a research hypothesis can be very high (that
an H2-blocker, such as ranitidine is more effective than placebo in the treatment of
ulcers), very low (that the efficacies of two H1-blockers, such as diphenhydramine
and chlorpheniramine, differ in the treatment of ulcer disease), or somewhere in
between. Authors of research reports indicate prior probabilities with terms like
"unanticipated" or "expected" when they discuss their results.

The predictive value of a research study, however, is usually harder to estimate than
the predictive value of a diagnostic test (see "Limitations" section). Nonetheless, the
basic analogy remains valid: the prior probability of the hypothesis must be
combined with the power and the P value of the study to determine the likelihood
that the research hypothesis is true. In the next section, we discuss how this analogy
can be used to understand several statistical concepts.

IMPLICATIONS

Specificity and the P Value

How low must a P value be for it to be accepted as evidence of the truth of a research
hypothesis? This question is analogous to asking: how high must the specificity of a
test be to accept a positive test result as evidence of a disease? Requiring that a P
value be less than 0.05 before it is "significant" is as arbitrary as requiring that a
diagnostic test have a specificity of at least 95%. A more important criterion, but one
that is not as easy to quantitate, is whether the results of the study combined with the
prior probability of the research hypothesis are sufficient to suggest that the
hypothesis is true. Consider the hypothesis, tested in the Lipid Research Clinics
Primary Prevention Trial 20  that cholestyramine resin decreases the incidence of
coronary heart disease in hypercholesterolemic men. This research hypothesis had at
least a low to moderate prior probability, based on previous evidence. Even with a
"nonsignificant" P value of .094 (the two-sided equivalent of the controversial one-
sided P=.047 reported by the investigators), the hypothesis is likely to be true.

The advantage of Bayesian analysis in interpreting diagnostic tests is that it can
determine what the clinician really wants to know—the likelihood that the patient
has the disease, given a certain test result. Bayesian analysis combines the
characteristics of the patient (expressed as the prior probability of disease), the
characteristics of the test (expressed as sensitivity and specificity), and the test result
(positive or negative) to determine the predictive value of a test result. The predictive
value of a positive diagnostic test is the probability that given a positive result, the
patient actually has the disease. (The predictive value of a negative test is the
probability that given a negative result, the patient does not have the disease.)

It is also a mistake to believe a research hypothesis just because a P value is
statistically significant. Consider a study that found that drinking two or more cups
of coffee a day was associated with pancreatic cancer (P<.06).2' This hypothesis had a
very low prior probability: the authors called the association "unexpected." Thus,As an example, recall the 60-year-old woman with a firm breast mass. The prior

probability that the mass is malignant is moderate, say 50%. A positive result from
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finding a significant P value did not establish the truth of the hypothesis; subsequent
studies, including one by the same authors, failed to confirm the association. 22-27 Even if a diagnostic test is adequately performed, there may be several explanations

for the result. An elevated serum amylase level, for example. has a high specificity to
distinguish patients who have pancreatitis from those with nonspecific abdominal
pain. However, there are extrapancreatic diseases (such as bowel infarction) that
elevate the amylase level and that must be considered in the differential diagnosis. In
the same way, although a low P value may indicate an association between an
exposure and a disease (like the association between carrying matches and lung
cancer), a confounder (cigarette smoking) may actually be responsible. Readers of
research studies should always keep in mind potential confounding explanations for
significant P values.

Of course, many diagnostic test results are not simply reported as "positive"; they
also indicate how abnormal the result is. The more abnormal that result, the less
likely that it is just a chance finding in a normal person. If the upper limit of normal
for a serum thyroxine level at a specificity of 95% is 12.0 µg/dL (154 nmol/L), then
a thyroxine level of 18.0 µg/L (232 nmol/L) is almost certainly abnormal. The
question becomes whether it represents hyperthyroidism, another disease, or a
laboratory error. By analogy, if the cutoff for calling a study positive is a P value
less than .05, then a P value of.0001 means chance is an extremely unlikely
explanation for the findings. The question becomes whether the results indicate the
truth of the research hypothesis or are a result of confounding or bias (see
"Laboratory Error and Bias" and "Alternative Diagnoses and Confounding
Explanations" sections). Because the P value is analogous to the false-positive rate
(1- specificity), a study with a very low P value is like a test with very high
specificity: both give few false-positive results due to chance, but may require careful
consideration of other possible explanations.

Better Tests and Bigger Studies

Increasing the sample size in a research study is similar to using a better diagnostic
test. Better diagnostic tests can have more sensitivity or specificity or both, Iarge
studies can have greater power or lower levels of statistical significance or both.
Often the choice of a diagnostic test is a matter of practicality: biopsies are not
feasible in every patient for every disease. Similarly, power or the significance level
may be determined by practical considerations, since studies of 20 000 or more
subjects cannot be done for every research question. Of course, bigger studies may
find smaller differences, just like better tests may detect less advanced cases of a
disease. A small but statistically significant difference in a research study is like a
subtle but definite abnormality on a diagnostic test; its importance is a matter of
judgment.

Sensitivity and Power

When the result of a diagnostic test that has a high sensitivity is negative, such as a
urinalysis in the diagnosis of pyelonephritis, it is especially useful for ruling out a
disease. Similarly, when a powerful research study is negative, it strongly suggests
that the research hypothesis is false. However, if the sensitivity of a test is low, such
as a sputum smear in a patient with possible tuberculosis, then a negative result does
not rule out the disease.9 In the same way, a negative study with inadequate power
cannot disprove a research hypothesis,28,29

Intentionally Ordered Tests and Prospective Hypotheaea

A positive result on a single intentionally ordered test is more likely to indicate
disease than the same result that turns up on a set of routine admission laboratory
tests. Similarly, the P value for a research hypothesis stated in advance of a study is
usually more meaningful than the same P value for a hypothesis generated by the
data. The reason is that clinicians usually order tests and investigators state
hypotheses in advance when the prior probability is moderate or high. Thus the
predictive values of positive results are generally greater for intentionally ordered tests
and prospectively stated hypotheses.

Laboratory Error and Bias

When unexpected or incredible results on a diagnostic test are found, such as a serum
potassium level of 9.0 mEqlL (mmol/L) in an apparently well person, the first
possibility to consider is laboratory error: Was the test adequately performed? Did the
sample hemolyze? Was the specimen mislabeled? Similarly, readers of a research
study, such as a trial of biofeedback in the treatment of hypertension, must always
consider the possibility of bias, especially if the study yields surprising results: Was
the study adequately designed and executed? Did the investigators assign subjects
randomly? Was blood pressure measured blindly? 30  Improperly performed tests and
biased studies do not ~ ield reliable information, no matter how specific or significant
their results.

Not all unexpected results however, have low prior probabilities. Occasionally,
clinicians or investigators are just not smart or lucky enough to consider the
diagnosis or hypothesis in advance. For example, a house officer caring for a patient
with fatigue and vague abdominal symptoms might ignore a serum calcium level of
10.5 mg/dL (2.62 mmol/L) until the attending physician mentions the possibility of
hyperparathyroidism in rounds the next morning. Similarly, researchers might
disregard the association between smoking and cervical cancer until a plausible
biologic explanation is suggested.31-34 Estimating the prior probability of a

Alternative Diagnoses and Confounding Explanations
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hypothesis on the basis of whether it was considered prospectively is a useful, but
not infallible, method. The truth, elusive though it sometimes may be, does not
depend on when a hypothesis is first formulated.

nonsignificant P values to change incrementally the likelihood that a research
hypothesis is true. Howeever, just as only those tests that are relevant to the
diagnosis in question should be combined, only those research studies that address the
same research hypothesis should be pooled.

Multiple Tests and Multiple Hypothesea
Confidence Intervals

Most of us are intuitively skeptical when one of 50 substances on a checklist is
associated with a disease at P<.05 because of the likelihood of finding such an
association by chance alone. A standard technique for dealing with this problem of
testing multiple hypotheses is to use a more stringent level of statistical
significance, thus requiring a lower P value.35, 36  This approach is simple and
practical, but it leads to some unsatisfying situations. It seems unfair, for example,
to reduce the required significance level for a reasonable hypothesis just because
other, perhaps ridiculous, hypotheses were also tested. What if the disease was
mesothelioma and one of the exposures was asbestos: should a more stringent level
of statistical significance be required because 49 other substances were also included?
Should the level of significance be reduced when testing the main hypothesis of a
study whenever additional hypotheses are considered? Need statistical adjustments for
multiple hypothesis testing be made only when reporting all of the hypotheses in a
single publication?

There is no ready diagnostic test analogy for confidence intervals from research
studies (the concept of test precision comes closest). But because confidence intervals
are commonly mis-interpreted as expressions of predictive value, they merit a short
discussion. The term "confidence interval" is unfortunate, because it leads many
people to believe that they can be confident that the interval contains the true value
being estimated. Actually, confidence intervals are determined entirely by the study
data: the prior probability that the true value lies within that interval is not at all
considered in the calculations. A 95% confidence interval is simply tne range of
values that would not differ from the estimate provided by the study at a statistical
significance level of 0.05 38,39.

Confidence intervals are useful because they define the upper and lower limits
consistent with a study's data. But they do not estimate the likelihood that the results
of the research are correct. A confidence interval provides no more information about
the likelihood of chance as an explanation for a finding than does a P value.40  As an
example, suppose a well-designed study finds that joggers are twice as likely as non-
joggers to develop coronary heart disease, with a 95% confidence interval for the
relative risk of 1.01 to 3.96. (This is equivalent to rejecting the null hypothesis of
no association between jogging and heart disease at P=.05). Despite a 95% confidence
interval that excludes 1.0, there is obviously not a 95% likelihood that joggers are at
an increased risk of coronary heart disease. There are many other studies that have
found that exercise is associated with a reduced risk of heart disease. Given the low
prior probability of the hpothesis that jogging increases the risk of coronary heart
disease, chance (or perhaps bias) would be a more likely explanation for the results.

This vexing problem of multiple hypothesis testing resembles the interpretation of a
serum chemistry panel. When a clinician evaluates a patient with a swollen knee, a
serum uric acid level of 10.0 mg/dL (0.6 mmol/L) has the same meaning no matter
how many other tests were also performed on the specimen by the autoanalyzer.
However, an unanticipated abnormal value on another test in the panel is likely to be
a false-positive: that is because the diseases it might represent usually have low prior
probabilities, not because several tests were performed on the same sample of serum.
Similarly, testing multiple hypotheses in a single study causes problems because the
prior probabilities of such hypotheses tend to be low: when investigators are not
sure, what they are looking for, they test many possibilities. The solution is to
recognize that it is not the number of hypotheses tested, but the prior probability of
each of them, that determines whether a result is meaningful. LIMITATIONS

Confirmatory Tests and Pooled Studies While it provides several useful insights the analogy between diagnostic tests and
clinical research is not perfect. It is easier to determine the prior probability of a
disease, based on the prevalence of the disease in similar patients, than the prior
probability of a hypothesis, based on the prevalence of the truth of similar
hypotheses. Similarity in patients can be defined by characteristics known to be
associated with a disease, such as age, sex, and symtoms.11  But what defines similar
hypotheses? Thus the prior probability of most research hypotheses tends to be a
subjective estimate (although, in practice estimates of the prior probability of a
disease are generally subjective as well).

When a single diagnostic test is insufficient to make a diagnosis, additional tests are
often ordered, some results of which may be positive and some negative. The
clinician revises the probability of the disease by combining these results, often
weighting them by the tests' characteristics. In a patient with a swollen leg, for
example, a normal result from a Doppler study would lowerwer the probability of
deep venous thrombosis, but an abnormal result of a fibrinogen scan might raise it
aufficiently to make the diagnosis. In the same way, it may be necessary to combine
the results of several research studies weighting them by the characteristics of each
study. This process, known as pooling, allows studies with both significant and
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Second, as long as there is a gold standard for its diagnosis, a disease is either present
or absent: there are only these two possibilities. If a group of patients known to have
the disease is assembled, a single value for the sensitivity of a test can be determined
empirically. But there is no single value for the power of a research study: it depends
on the sample size, as well as the magnitude of the actual difference between the
groups being compared. A study comparing IQ in internists and surgeons for
example, might have a power of only 50% to detect a difference between them if
surgeons actually scored five points higher than internists, but a power of 98% if
surgeons actually scored ten points higher. Since the actual difference is unknown, a
unique value for power cannot be calculated.
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