WMS5 Exercises

Make sure you make "Before" and "After" plots of the pdf's

6.1 parts a, b and c , p2626.13, 6.14 p264

6.19, p270

6.25, 6.26 p 271

6.65, p 286

Homegrown Exercises [more to be added later this week]

Q1 refer again to the exercise we began in class today (Wed 23 May), where

 $Y \sim N(0,1)$

i.e $pdf_{Y}[y]=(1/sqrt[2]) exp[-y^{2}/2]$ on (-Infinity, Infinity) and

 $X = Y^2$.

- draw the pdf for Y, the scale for X, and the "backtrack" from X to Y.
- derive the pdf, pdf_X[x] of X at selected X values, say X=0(1)10.

(Note that you will have to first "pour" the density from the $Y \ge 0$ region onto the $X \ge 0$ region. and then add to it the probability from the Y < 0 region.)

If you prefer, you can do the calculations/graphs by Excel, (it has the Gaussian pdf built in -- or you can write the formula yourself)

- From these numerical calculations, work out the pdf_X[x] for any value x.
 and check that the integral of pdf_X[x] is indeed unity.
- Do you recognize the distribution of X ? What are its parameters?

Q2 Y = fuel economy, measured in miles per gallon (mpg) on the highway, of 1993 model automobiles.. (93 cars in all)

- a The scale on the left vertical axis is absolute numbers of cars. Add a <u>density</u> scale on the right vertical axis, making sure that the total probability (total <u>area</u> of 6 rectangles) is 1. Freedman says it is useful to think of density as "proportion per unit of MPG"
- b Change the variable of interest to X = the number of gallons of gas to go 200 miles

Draw the histogram for X, making sure that the total area sums to 1. Normally, we would choose equal width-intervals for X (the new variable of interest). in this case, since we don't have access to the raw data, make an exception and let the boundaries for the Y intervals dictate the boundaries of the intervals for X i.e. simply transfer the intervals for Y into their equivalents (now of unequal widths) for X.

A good way to be sure that the heights of the new rectangles sitting over the new intervals are correct is to use the "law of conservation of probability" ie

Area = Area Height_X DX Height_Y DY DY Height_Y Height_New = Height_Old • $\frac{D_Old}{D_New}$

i.e X = 200 / Y

Q3 Given:

C = What Canadian is worth, in USover the last year (pdf_Y(y) say)

Say distribution (pdf) of C is given by...

U = what a US\$ is worth, in \$ Canadian, in same period.

i.e., U = 1/C

Compute the pdf for U via the <u>Method of Transformations</u> (i.e. "<u>pdf</u> directly to pdf")

The range of U is 1/0.7 = 1.43 to 1.67, a total distance of 24 cents, versus only 0.10 for C

So the pdf for U will have to be lower so that the total area associated with it equals unity.

To save you time, equations that describe the pdf of C are

pdf _C (c) =	400(c - 0.60)	0.60	С	0.65;
	400(0.70 - c)	0.65	с	0.70.

b Compute the pdf for U via the <u>Method of Distribution Functions</u> (i.e. "<u>pdf from cdf from cdf</u>")

	8(5c - 3) ²	0.60	С	0.65;
$cdf_{C}(c) =$				
	280c - 200c ² - 97	0.65	с	0.70.

The pdf for U should look like..

а

