
189-323 WMS5: Chapter 6: Functions of Random Variables : §6.1 and 6.2 (Intro)

WHY IS THIS CHAPTER IMPORTANT? UP TO NOW, WE HAVE ONLY LEARNED HOW TO GET THE

EXPECTED VALUE (MEAN) OF A FUNCTION OF ONE OR MORE

RANDOM VARIABLES. IF WE ARE TO ASSESS VARIATIONS FULLY,

WE NEED TO BE ABLE TO CHARACTERIZE THE FULL DISTRIBUTION

OF WHATEVER FUNCTION OF THE n RANDOM VARIABLES IS OF

INTEREST, NOT JUST THE MEAN (or the mean AND the variance) OF

THE DISTRIBUTION!

Virtually all statistical inference is based on statistics calculated using data

from samples.  The most common statistics are means, proportions,

correlations, regression coefficients etc..

Take one of the simplest cases: say we are interested in estimating the

"population" mean µ from sample observations  y1, y2, ... yn.

Here the relevant statistic is  y
–

  =  
1
n

y1 +  
1
n

y2, ... + 
1
n

yn ,

a linear combination of the n random variables Y1 to Yn .
Thus, we need to be able  to be able to..

(1) given a full characterization of a random variable Y in terms of either

f(y) or F(y), fully characterize the distribution of a function U of Y.
But to estimate its "goodness", one must also use the variability of the n

values, measured by a statistic that involves computing

s2 = 
(y1 -   y

–
 ) 2 +   ( y 2 -   y

–
 ) 2 +   . . .  +   ( y n -   y

–
 ) 2 

n-1

which, apart from the divisor, is a sum of the squares of functions of the  n

random variables Y1 to Yn.

(2) given a full characterization of the [in a simple random sample]

independent and identically distributed random variables RV1 to

RVn, fully characterize the distribution of their sum,

Sum = RV1 +  ... + RVn .

Of course, if we can get the distribution of the sum, then the

distribution of the mean is just a scaled version of the distribution of

the sum.

In fact, a key item in estimating (or testing) the mean  µ is the statistic

 y
–

 ±  some multiple of s,

with the "multiple" chosen so that the interval has a certain "coverage".

Chapter 7 gives the distributions for a number of the common statistics --

functions of  y1 to yn .
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189-323 WMS5: Chapter 6: Functions of Random Variables: towards §6.3 (Method of Distribution Functions)

But, how far could we get on our own...? What if we were

curious enough to ask...

For (1b) we can imagine "mapping" the Y values into X= Y2 values... and

keeping track of the probabilities in each little sub-region.. e.g.,

1a If Y had a Gaussian distribution (with, say,  µ= 0, σ = 1),

what would be the distribution of ..

(i) |Y|  ?   (ii) Y2 ?   ...

Since.. of the Y's are between This same percentage of

the X = Y2 values will be

between...

50%  -0.67 and +0.67, 0 and 0.672 =    0.45

For 1a (i), we can imagine "folding'" the distribution over onto the positive

axes.. so pdf|Y|(•) = 2 pdfY(•) for • ≥0

68%  -1 and +1, 0 and 1

80%  -1.28 and +1.28, 0 and 1.282 =    1.64

90% -1.645 and 1.645 0 and 1.6452 =  2.71
f[y_]:=(1/Sqrt[2Pi]) Exp[-0.5 y^2];

95% -1.96 and 1.96 0 and 1.962 =    3.84

etcPlot[{f[y],If[y<0,0,f[y]+f[y]]},
  {y,-2.5,2.5},

But it is labour intensive and doesn't produce an analytic expression for

the pdf or cdf of the RV Y2. [Of course, we are not using the analytic

expression for the cdf or pdf of Y.]

  AxesLabel->{"y or abs[y]","pdf(Y) and pdf[abs(Y]"}]

-2 -1 1 2
y or abs[y]

0.2

0.4

0.6

0.8

pdf(Y) and pdf(abs(Y])

Another example..

1b If Y had a Uniform [say on the interval(0,1) ],  so fY(y)=1 on (0,1),

what would be the distribution of ..

(i) X = Y2    (ii)X = Y1/2 ?   (iii) X = ln(Y)   ?   ...

rev. 2001.05.22 2



189-323 WMS5: Chapter 6: Functions of Random Variables: towards §6.3 (Method of Distribution Functions)

Since.. of the Y's are between this same percentage of

the X = Y2 values will be

between...

†start with rightmost column, and work left...

This last way allows us to get the cdf for X = Y2 directly, in linear

increments of Y2. If we now want the pdf for the RV X=Y2, then we can

take the derivative (or use successive subtractions)10%  0 and 0.1, 0 and 0.12 =    0.01

10%  0.1 and 0.2, 0.01 and 0.04

We reasoned that the proportion of the probability distribution of X that is

to the left of X = x is given by:

Prob(X ≤ x ) =  x1/2.

.. etc etc

or,

Since..

of the Y's are below this same percentage of

the X = Y2 values will be

below...

i.e10% 0.1 0.01

20% 0.2 0.04

FX(x) = x1/2.

So

etc

Better

still..†

of the Y's are below this same percentage of

the X = Y2 values will be

below...
fX(x) =  

dFX(x)
dx

  =  (1/2) x–1/2.

10.0% 0.011/2 = 0.100 0.01

Check: is this a pdf? does it integrate to 1?14.1% 0.021/2 = 0.141.. 0.02

17.3% 0.031/2 = 0.173.. 0.03
g[x_]:= (1/2) x^(-0.5);

20.0% 0.041/2 = 0.200 0.04 Plot[g[x],{x,0,1},
PlotRange->{{0,1},{0,10}},
AxesOrigin->{0,0},

100% ×

x1/2

x1/2 any value, x AxesLabel->{"x","pdf(x)"}]

etc
Integrate[g[x],{x,0,1}]

1.
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189-323 WMS5: Chapter 6: Functions of Random Variables: towards §6.3 (Method of Distribution Functions)

0.2 0.4 0.6 0.8 1
x0

2

4

6

8

10

pdf(x) Again, this makes sense, since more of the X = -ln(Y) values will now be
concentrated towards the X=0 end of the (0,Infinity) scale, and the
integral of  fX(x)  over (0,Infinity) is 1.

g[x_]:= Exp[-x];
Plot[g[x],{x,0,5},
PlotRange->All, AxesOrigin->{0,0},
AxesLabel->{"x","pdf(x)"}]

1 2 3 4 5
x

0.2

0.4

0.6

0.8

1

pdf(x)

(ii) Probability Distribution of  the r.v.  X = Y1/2,  [ Y ~U(0,1) ]

Prob (X ≤ x ) = Prob (Y1/2 ≤ x ) = Prob (Y ≤ x2) =  x2 = FX(x)

So fX(x) =  
dFX(x)

dx
  =  2x.

Integrate[g[x],{x,0,Infinity}]
1

This makes sense, since more of the X values will now be towards the

X=1 end of the (0,1) scale, and the integral of  fX(x) = 2x over (0,1) is 1.
TAKE-HOME MESSAGE

If the cdf of the original (continuous) variable Y is  tractable, then the
above  Method of Distribution Functions (cdf) route is a good
way of arriving at the cdf (and thus pdf) of the new random variable.
The book also suggests it also for a function of n random variables,
but that may involve some serious n-dimensional integration!

(iii) It is the same procedure if we created the rv X = –ln(Y).

FX(x) = Prob (–ln(Y) ≤ x ) = Prob (Y ≥ e–x) = 1– e–x

Are there even more direct ways, especially if cdf is not

tractable (e.g. Gaussian) but the pdf is?

So fX(x) =  
dFX(x)

dx
  =  (–)e–x(-1) =  e–x
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189-323 WMS5: Chapter 6: Functions of Random Variables: §6.4 (Method of Transformations)

Two examples

-5 0 10 15
y (C)

0.02

0.04

0.06

0.08

0.1

pdf(y)

1c

(i) (déjà vu) If Y has a Uniform distribution on say (0,1),

what is the distribution of the random variable X = Y2 ?

[ N(0,1) is shorthand for "Normal with mean 0, SD 1"  ]

(ii) If Y = temperatures (C) in Montreal in a certain month have a

Gaussian distribution (with, say,  µ= 5, σ = 4),

what would be the distribution of  X = the temperatures in F?

To get the distribution in Farenheit, what would be wrong
with taking the above graph and just changing the C values
on the horizontal axis to their equivalents in Fahrenheit?

Plot[pdfY[y],{y, meanC - 2.5sdC, meanC + 2.5sdC},
AxesOrigin->{meanC,0}, AxesLabel->{"x (F)","pdf(x)"},
Ticks->{ {{-5,"23"}, { 0,"32"}, { 5,"41"},  {10,"50"},Let's start with easier one, (ii), where we know the answer.
          {15,"59"} },   Automatic} ]

meanC = 5; meanF = (9/5)meanC + 32;

23 32 50 59
x (F)

0.02

0.04

0.06

0.08

0.1

pdf(x)

sdC=4; sdF = (9/5) sdC;

pdfY[y_]:=(1/(sdC Sqrt[2Pi])) *
          Exp[-((y-meanC)/sdC)^2];

pdfX[x_]:=(1/(sdF Sqrt[2Pi])) *
       Exp[-((x-meanF)/sdF)^2];

Plot[pdfY[y],{y, meanC - 2.5sdC, meanC + 2.5sdC},
AxesOrigin->{meanC,0}]
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189-323 WMS5: Chapter 6: Functions of Random Variables: §6.4 (Method of Transformations)

In this very simple (linear transformation) example, this
translates to the following rule:

Answer: The area under the curve is now >> 1 !

If we enlarge the horizontal scale by a factor of 9/5, we must

shrink the height of the pdf so that the area is unity. i.e.
pdf for new random variable X      (X = fn. of old rv Y)

pdfX(x) = pdfY("y-equivalent of x")    scale factor,

where scale factor is the ratio of the 2 scales..

   ratio = 
o l d  s c a l e   ( C  i n  e . g . )
n e w  s c a l e  ( F  i n  e . g . )

< 1 if new scale (X) is larger than old one (Y)

> 1 if new scale (X) is smaller than old one(Y).

It IS NOT SO MUCH THAT WE CREATED A NEW
RANDOM VARIABLE X FROM THE OLD ONE Y AS IT IS
THAT WE CHANGED THE SCALE ON WHICH THE
VARIABLE WAS MEASURED. CONCEPTUALLY, THERE
IS ONLY ONE RANDOM VARIABLE TEMPERATURE.
HOW WE MEASURE IT CHANGES THE SCALE.

Plot[(5/9)pdfY[y],{y, meanC-2.5sdC, meanC + 2.5sdC},
AxesOrigin->{meanC,0}, AxesLabel->{"x (F)","pdf(x)"},
Ticks->{ {{-5,"23"}, { 0,"32"}, { 5,"41"}, {10,"50"},
          {15,"59"} },  Automatic}  ]

23 32 50 59
x (F)

0.01

0.02

0.03

0.04

0.05

pdf(x)

You can see by your eye that the area under this curve is more
appropriate (it does in fact integrate to unity).
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189-323 WMS5: Chapter 6: Functions of Random Variables: §6.4 (Method of Transformations)

Now, let's do the harder one, (i), where the change of scale
depends on where on the new scale one is...

0 0.45 0.63 0.77

0 0.2 0.4 0.6 0.8 1.

<- y

<- x = y^2

(i) (déjà vu) If Y has a Uniform distribution on say (0,1),

what is the distribution of the random variable X = Y2 ?

Think of "pouring" the probability mass from the original

(old) containers (top) into the new ones at bottom,

ALL THE WHILE CONSERVING THE 100% PROBABILITY

MASS I.E. THE AR EA UNDER THE PDF FOR THE NEW R.V.

MUST EQUAL 1, JUST AS THE AREA UNDER THE

ORIGINAL PDF EQUALS 1.

---

NOTE THAT THE AREA OF EACH RECTANGLE SITTING ON

THE NEW SCALE (BOTTOM) MUST EQUAL THE AREA OF

THE CORRESPONDING RECTANGLE IN THE ORIGINAL

DISTRIBUTION (TOP). SO IF WE BASES OF THESE

RECTANGLES ARE OF UNEQUAL SIZES, THEIR HEIGHTS

MUST BE ALTERED ACCORDINGLY SO AS TO KEEP THE

TWO AREAS EQUAL.
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189-323 WMS5: Chapter 6: Functions of Random Variables: §6.4 (Method of Transformations)

If we make the containers (or "bins") narrower, the density
curve (the heights of the containers) becomes smoother.

Note that there is nothing in the above that says that the
new random variable must have the same range as the old
one. For example it would work fine if say

height of lower container
Y ~ Uniform on (0.1)

X = -ln(Y) on (0,Infinity)= height of upper container   scale factor

where scale factor is the LOCAL  ratio of the 2 scales..

ratio = 
o ld  sca le  a t  po int
new sca le  a t  po in t

  =  
dY
dX

 < 1 if new scale (X) is changing faster than old one (Y)
 > 1 if new scale (X) is changing "slower" than old one(Y).

In this case, X is a decreasing function, so it is more difficult

to draw my "pouring probability from containers" diagram.

pdf for X

pdfX(x) = pdfY("y-equivalent of x")    scale factor,

where scale factor is the (always positive) local ratio of the 2

scales.. i.e.,

0 0.45 0.63 0.77

0 0.2 0.4 0.6 0.8 1.

<- y

<- x = y^2

|  
dY
dX

  |

 Cf. exact version: fX(x)  =   (1/2) x–1/2 .
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189-323 WMS5: Chapter 6: Functions of Random Variables: §6.4 (Method of Transformations)

X = -ln(Y)
On re-reading it, I find  WMS5's explanation of the Method
of Transformations quite short and clear -- provided you
recognize the Chain Rule in the last step.. (They use U for
the new variable; I tried to stay away from U because it also
denotes Uniform").==> Y = e –X

For X and increasing  function case..

P(U  u) = P(Y < y) , where y -s the y-equivalent of u

i .e.

FU(u) = FY(y)

Thus,

fU(u) = 
dFU(u)

du
  =   

dFY(y)
du

  = 
dFY(y)

dy
   

dy
du

= pdfOLD(evaluated at y-equivalent of u)     
d  "old"
d "new"

For X a decreasing  function case..

==>
dY
dX

 =  (-1)e –X

==> |  
dY
dX

  |  = e –X

==> pdfX(x) = pdfY("y-equivalent of x")    e –x

= pdfY( e –X)    e –x

But since Y ~ Uniform on (0,1), pdfY( •)  = 1 on (0,1), we get

pdfX(x) = 1    e –x  =  e –x

notice that now

P(U  u) = 1 - P(Y < y) ,

Note that this Method of Transformations of finding the pdf

of a function of a continuous random variable only works if

the function X of Y is decreasing or increasing. For

example, it will not work if say

Y~ N(0,1) and X = Y2

See book  p266 -267 for why no matter which, the scale

factor is the absolute value of    
d "old"
d "new"

  .

TAKE-HOME MESSAGE

If the pdf of the original (continuous) variable Y is  tractable, and the
transformation is monotonic, then the above  Method of
Transformations (cdf) route is a good way of arriving at the pdf of
the new random variable.
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189-323 WMS5: Chapter 6: Functions of Random Variables: §6.4 (Method of Transformations)

Example Y = fuel economy, measured in miles
per gallon (mpg) on the highway, of
1993 model automobiles..

Example Given:

Y = What Canadian $ is worth, in $US
over the last year (pdfY(y) say)

Q:

X = what a US$ is worth, in $ Canadian, in
same period?

X =   1/Y

15 20 25 30 35 40 45 50
Y=HIWAY MPG

0

.2

.4
p(y)

Say  distribution (pdf) of Y is given by..

0.60 0.70
Y

0.65

f(y)

Q: What is the probability histogram for

X = the number of gallons of gas to go 300 miles?

i.e  X = 350 / Y Note that this distribution uses 10 "equal-
width bins".

AGAIN, THE KEY IS TO KEEP THE TOTAL AREA UNDER

THE NEW HISTOGRAM AS UNITY, SO IF YOU USE A BASE

FOR A RECTANGLE THAT IS SMALLER (LARGER) THAN

THAT OF THE CORRESPONDING RECTANGLE IN THE

ORIGINAL DISTRIBUTION, YOU NEED TO MAKE THE

HEIGHT OF THE NEW RECTANGLE LARGER (SMALLER)

SO AS TO MAINTAIN THE SAME RELATIVE FREQUENCY

FOR THE NEW AND OLD RECTANGLES.

Q: Say we want to also use 10 equal width
"bins" for the distribution of X = 1/Y

The range of X is 1/0.7 = 1.43 to 1.67, a
total distance of 24 cents], so each bin will
be 2.4 cents wide.

So the heights in the X bins will have to be
a lot lower so as to make the area in the
rectangle, and the overall area, for X come
out to unity.
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189-323 WMS5: Chapter 6: Functions of Random Variables: §6.5 (Method of Momemnt Generating Functions)

WHAT ARE THEY AND WHAT IS THEIR MAIN USE? out the "signature" moment generating function for the

Gaussian distribution, and since the moment generating

function of a sum of i.i.d rv's is simply the product of their

respective moment generating functions,  we can quickly

recognize that the sum must also have a Gaussian

distribution.

Remember we tried to "match up"

an empirical distribution (Breast Cancer waiting times)
and a theoretical distribution (Gamma).

in the quiz, another empirical distribution ( waiting times
to connect to the WWW) and a  theoretical distribution
(Gamma). What is fast way to get all these "moments" (k-th moment is

average of k-th power of deviation from mean --  can also

calculate the deviations from zero, but they are more

awkward)?

In both instances, we did so by matching the means and the

variances. But one could have two non-identical

distributions that had the same mean and variance.. they

could differ somewhere along their pdf's or cdf's. The trick is to use the expected value of an infinite series in

some argument "t" ..

i.e. if Y is a random variable, we define its moment

generating function, mY(t) as

E(eYt )

What if we matched them not just on the average squared

deviations from the mean, but also the cubed deviations,

the deviations to the 4th power, etc..?

Ultimately, if the distributions matched on all these

characteristics for as high a power as we cared to go, then

we would say they were identical (a bit like with

fingerprints) See the uniqueness Theorem at bottom of p

271. Thus, they help us to "recognize" certain

distributions.

where E denotes the expected value,  e is the base for the

natural logs and t is the "argument" for the moment

generating function.   (see p 119)

But  e to a power of Yt is an infinite series, involving powers

of Y, and thus mY(t) involves all of the moments of Y. One

can extract these moments by repeated differentiation and

subtraction.

For example, it could take some work to prove -- from

scratch -- that the sum of 2 or more independent Gaussian

random variables is again Gaussian, but since we can work
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189-323 WMS5: Chapter 6: Functions of Random Variables: §6.5 (Method of Momemnt Generating Functions)

Random Variable Sum of 2
i.i.d. such variables

Sum of 12
i.i.d. such variables

Sum of  30

Uniform on (min,max)

0 1

f(y)

0

1

y

f(y) =   
1

min— max    eg min 0, max 1

mean = 
min+max

2     Var = 
[max-min]2

12

                        
1
2                              

2
12

e.g. min=0, max=1

0 21

f(sum)

0

1

sum

                           mean =  1     Var = 
2
12

Exponential on (0,Infinity)

f(y) =  
1
β
 exp[— 

1
β
 y]

mean = β  (1 in e.g. below) ; var  = β2

1 2 3 4 5 6
y

0.2

0.4

0.6

0.8

1

f(y)

Gamma  (α = 2,  β[= 1 here] )

mean = 2β ;  var  = 2β2

2 4 6
sum

0.15

0.3

f(sum)

Gamma (α = 12,  β [= 1 here] )

mean = 12β ;  var  = 12β2

5 10 15 20
sum

0.1

f(sum)

rev. 2001.05.22 12



189-323 WMS5: Chapter 6: Functions of Random Variables: §6.5 (Method of Momemnt Generating Functions)

Gamma on (0,Infinity)

 
1

Γ(α)βα
 yα-1 exp[— 

1
β
 y]

mean = αβ;  var = αβ2

Gamma on (0,Infinity)

 
1

Γ(α)βα
 yα-1 exp[— 

1
β
 y]

mean = 2αβ;  var = 2αβ2

Gamma on (0,Infinity)

 
1

Γ(α)βα
 yα-1 exp[— 

1
β
 y]

mean = 12αβ;  var = 12αβ2

Normal ( ,  )
on (- Inf , Inf)

f(y) =

 
1

σ 2π
  exp[ -  

[y—µ]2

2σ2   ]

sum ~ Normal (2 ,  2 )

 y
–

  ~  Normal ( ,  
2

 )

 y
–

 -  

   2  
  ~  Normal (0,1 )

 y
–

 -  

 s   2  
  ~  Student's t (1 df )

sum ~ Normal (12 ,  12 )

 y
–

  ~  Normal ( ,  
12

 )

 y
–

 -  

   1 2  
  ~  Normal (0,1 )

 y
–

 -  

 s   1 2  
  ~  Student's t (11 df )

sum ~ Normal (30 ,  30 )

 y
–

  ~  Normal ( ,  
30

 )

 y
–

 -  

   3 0  
  ~  Normal (0,1 )

 y
–

 -  

 s   3 0  
  ~  Student's t29
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