
Course BIOS602: Assignment on conditional inference, riskset-based Likelihoods, etc ... version 2008.02.25

-1a- events in unstratified person-time - Say, as in Example 3.10 of
Breslow and Day Vol II, that the data are from a single stratum in which
O0 = 5 and O1 = 14, whereas PT0 = 7300 and PT1 = 5500, and interest is in
the rate ratio parameter ψ = λ1/λ0.

We showed in bios601 that O1 | O+ ∼ Binomial(O+, π), where

π = ψ × PT1/(ψ × PT1 + PT0).

i. From this, using 1st principles, derive the ML estimator, ψ̂ML−condn′l, of
ψ.

ii. Obtain ψ̂ML−condn′l from a generalized linear model. Hint : write logit(π)
as a function of ψ.

-1b- events in stratified person-time - See section (c) of section 3.6 of
Breslow and Day Vol II. There they say that the ML estimation of the rate
ratio ψ from stratified PT data requires iterative calculations, so let’s iterate...

We will use Example 3.11, with data, shown in Table 3.14, page 111, from
J = 13 age-period strata. Again interest is in the rate ratio parameter ψ =
λj1/λj0, assumed (for now) to be constant over the J strata.

Thus, for each of the J strata, Oj1 | Dj ∼ Binomial(Dj , πj), where

πj = ψ × PTj1/(ψ × PTj1 + PTj0).

Note the switch of notation, from Oj+ to Dj .

i. Derive the ML estimating equation (3.15) for ψ̂condn′l, by obtaining the
expression for d logL/dψ and setting it to zero.

ii. Use the Newton-Raphson iterative method to find the root of the
d logL/dψ function, ie

ψ̂(k+1) = ψ̂(k) +
d logL/dψ
d2 logL/dψ2

∣∣∣∣
ψ̂(k)

= ψ̂(k) +
Σjd logLj/dψ

Σjd2 logLj/dψ2

∣∣∣∣
ψ̂(k)

.

iii. How does the iteration change if we rewrite the Likelihood, and thus the
log Likelihood, in terms of β, where ψ = exp(β)?

iv. Obtain ψ̂condn′l from a generalized linear model (Binomial) fitted to the
13 binomial observations. The stratified data are available in the BIOS602 website

under the Resources link. Note that one can specify Binomial (rather than Bernoulli)

data by using as ‘y’ a matrix with 2 columns: the numbers positive and negative, i.e.

glm(cbind(‘# +ve’ vector,‘#no. -ve’ vector) ∼ . . . , family=binomial, ...).

v. Obtain ψ̂uncondn′l from a generalized linear model (Poisson, 14 param-
eters) fitted to the (j = 1, . . . , 13) × (i = 0, 1) = 26 observations
{Oji, PTji}.
Are your estimates in agreement with Breslow and Day’s statement (lines
5-6, page 109) that under the Poisson model, ψ̂condn′l = ψ̂uncondn′l?
Note B&D’s comment that the same will not be true for conditional vs. unconditional

estimation of a common rate ratio when the PT ’s are estimated from J stratified

denominator (‘control’) series, particularly if the strata are sparse.

-2a- single (unstratified) case series, and denominator series1

Say, as in section 4.2 Breslow and Day Vol I, that the data are from a single
stratum in which O0 = ‘c’ = 3 and O1 = ‘a’ = 2, whereas ̂PT0 : PT1 = 1 : 1,
based on a denominator series of 2 person moments, classified into ‘d’ = 1
unexposed person-moment, and ‘c’ = 1 exposed person-moment [in notation
of equation 4.1]. As before, interest is in the rate ratio parameter ψ = λ1/λ0.

Let us adopt the notation for Design 2 in the 2-page handout from course
epib-6342, namely c1 and c0 for exposed and non-exposed cases, and d1 and
d0 for the numbers of histories of exposure and non-exposure in those persons
forming the denominator series.

First, as above, we have explicit statistical models for the 2 numerators (i=1
exposed, i=0 not exposed):

ci ∼ Poisson(µi = λi × PTi); ψ = λ1/λ0.

Likewise, because the denominator series was formed by simple random sam-
pling of the base, we have an explicit statistical model for the d1 : d0 split:

d1 | (d1 + d0 = d) ∼ Binomial(d, π′ = PT1/(PT1 + PT0)).

(We don’t necessarily have to, and will see below what else we could do) but
if we condition on the sum, c, of the 2 numerators c1 and c0, we eliminate
the separate parameters λ1 and λ0 and are left with the parameter ψ and the
ratio of the two unknown constants PT1 and PT0, i.e.,

c1 | c ∼ Binomial(c, π), where π = ψ × PT1/(ψ × PT1 + PT0).
1denonimator series is a sample of the person moments, and serves as an estimate,

albeit containing sampling error, of the PT1 : PT0 ratio. Many, unfortunately, cling to
the confusing term ‘control ’ series, and refer to the people identified at the sampled person
moments as ‘controls.’

2See Notes, March 18: Estimation of IDR: ID in index (1 ) vs. ID in reference (0 )
category: 2 versions of the etiologic study.
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We also showed, back in bios601 (cf. lecture notes on 2 proportions3, section
5.3), that if one has two binomial observations, y ∼ Binomial(n, π) and y′ ∼
Binomial(n′, π′), then the distribution of y conditional on their sum y+y′, is
non-central hypergeometric with parameter ω = {π/(1− π)} ÷ {π′/(1− π′)}.
In our notation, then, this means that the distribution of c1, conditional on
the sum c1 + d1, and on the marginal totals c1 + c0 and d1 + d0 already fixed
by agreement and by design, is non-central hypergeometric with parameter

{π/(1− π)} ÷ {π′/(1− π′)} =
ψ × PT1

PT0
÷ PT1

PT0
= ψ = λ1/λ0.

i. Derive the ML estimating equation for ψ̂condn′l, by obtaining the expres-
sion for d logL/dψ and setting it to zero. This is estimating equation
4.5 in Breslow and Day, Volume I (Analysis of Case-Control Studies –
chapter in Resources).

ii. One obvious way, especially if the Likelihood involves higher order poly-
nomials, to obtain ψ̂condn′l, is by trial and error, i.e., by increasing or
decreasing ψ̂condn′l, until the fitted frequency in the a cell matches the
observed frequency (by the way, it doesn’t matter whether one tracks the a, b, c or d

frequency, since, with all four marginal totals fixed, there is only one free entry). But
this way does not tell us anything about the reliability of the estimate.

Thus, use the Newton-Raphson iterative method to find the root of the
d logL/dψ function, ie

ψ̂(k+1) = ψ̂(k) +
d logL/dψ
d2 logL/dψ2

∣∣∣∣
ψ̂(k)

= ψ̂(k) +
Σjd logLj/dψ

Σjd2 logLj/dψ2

∣∣∣∣
ψ̂(k)

.

As a by-product you will have the information4, −{d2 logL/dψ2}, the
inverse of which can be used as the variance for ψ̂.

-2b- several (stratified) case series and corresponding denominator
series

See the example on page 137 of Breslow and Day Vol I, and repeated in Table
4.3 page 145. The calculations for all of the other estimation methods are
shown in their entirety, but not those for the iterative ML methods (both
ψ̂uncondn′l and ψ̂condn′l), so let’s iterate... Because there is a considerable
amount of data (96 exposed cases in all), the example does not show the
importance of taking the conditional approach – we would need to take an

3Section 3 deals with test-based CI’s, a topic we did not spent much time on.
4a scalar in this example, a matrix when there are ≥ 2 parameters.

example from Chapter 7 of B&D Volume I in order to fully appreciate this.
However, since table 4.3 also shows all of the other estimators, we will use it
to show the ML approaches as well. Data are available in Resources.

i. Derive the ML estimating equation (4.25) for ψ̂condn′l, by obtaining the
expression for d logL/dψ and setting it to zero.

ii. Use the Newton-Raphson iterative method to find the root of the
d logL/dψ function, ie

ψ̂(k+1) = ψ̂(k) +
d logL/dψ
d2 logL/dψ2

∣∣∣∣
ψ̂(k)

= ψ̂(k) +
Σjd logLj/dψ

Σjd2 logLj/dψ2

∣∣∣∣
ψ̂(k)

.

iii. How does the iteration change if we rewrite the Likelihood, and thus the
log Likelihood, in terms of β, where ψ = exp(β)? See Appendix.

iv. Calculate Var[ψ̂], using the inverse of the information, −{d2 logL/dψ2},

v. Obtain ψ̂uncondn′l from a generalized linear model (logistic) fitted to the
(j = 1, . . . , 6)× (i = 0, 1) = 12 Binomial observations {cji/[cji + dji]}.
Breslow and Day (lines 5-6, page 109, Volume II) tell us that under the
Poisson model, with known PT denominators, ψ̂condn′l = ψ̂uncondn′l.
As is clear from the estimates shown in line 4 of page 144 Volume I,
the same is not true for conditional vs. unconditional estimation of a
common rate ratio when the PT ’s are estimated from J stratified
denominator (‘control’) series, particularly if the strata are sparse.5 We
will see more extreme examples in Chapter 7.

-2c- several risksets in a historical cohort6 study –

See example 5.1 beginning on page 187 of Breslow and Day Vol II. The time
axis is age, and the conditional Likelihood that Cox set up for each riskset7

means that the Likelihood is exactly the same as the one that leads to ψ̂condn′l

in the data in Volume I, Table 4.3.

5cf. Mantel, N. and Hankey, W. (1975). The odds ratio of a 2 × 2 contingency table.
American Statistician 29, 143–145, for a nice (single-stratum) proof of the fact that, in a
single table representing the data from a case series coupled with estimated denominators
(a sample of the base), ψcondn′l is closer to the null than ψ̂uncondn′l is. The same is true
for stratified data.

6It might be better to view this as an open population, since subjects move from the
unexposed to the exposed category during the followup.

7Technically, when we have ‘ties’, i.e., 2 or more events at the same time (age, here),
there are a few ways to set up the Likelihood.

2



Course BIOS602: Assignment on conditional inference, riskset-based Likelihoods, etc ... version 2008.02.25

i. Use the same computer code you used in 2b to obtain the ψ̂ = 1.80 that
Breslow and Day report on page 189, in the paragraph beginning “The
full partial likelihood...” [The data are available under Resources].

ii. How easy would it be to modify your code so that it could fit a model in
which the hazard ratio (or what Breslow and Day loosely call the relative
risk) for oestrogen use “varied with age”? the

-2d- 17 leukemia risksets in the Woburn study8

i. Refer to the data in Table 2, available electronically, along with some R
code, under Resources. Analyze exposure to wells G and H as a binary
variable, 0 vs. >0. You can reconstruct the numbers and unexposed
subjects from the percentages in the last column, and the numbers9 in
the risksets.

From the value of the incidence rate ratio (IRR), or of β = log(IRR),
that maximizes Cox’s Likelihood. See Figure 5 in part II of JH’s Oct 5, 2004

draft on survival analysis, risk sets, .. a unified view. You might be able to use

the same computer code you used in 2b to obtain this estimate. See also the ML

estimation approaches, via R, in the ‘Woburn leukemia data’ in the Resources for the

course.

ii. Can you trick a regular (unconditional) logistic program (e.g., glm in R)
into fitting this incidence rate ratio (IRR)?

iii. Note that in each riskset of the Woburn study, just as in the Hutchinson
et al study of hormones and breast cancer (2c above, Table 5.2 of B &
D II), the number of ‘non-cases’ is >> the number of cases. Given this,
we might expect that it would not matter (i.e, the variance would not be
very different) if we treated the underlying denominators as known rather
than as estimated from a sample of the base. Re-run the analyses in (i)
treating the composition of each risk set as fixed rather than random,
i.e., use the same estimation method as in 1b. (ii) sampling say 10 and
25 at random from each riskset. Repeat a few times with different riskset
samples.

8Lagakos SW, Wessen BJ, and Zelen M. Analysis of Contaminated Well Water and
Health Effects in Woburn, Massuchusetts, JASA 1986, pages 583-596 + Discussion. JASA
paper is on jh’s c626 website
See also http://www.geog.ubc.ca/courses/geog471/notes/health/grabber/index.html

9JH is often asked if the riskset includes the cases; the answer is yes – the riskset is the
set of candidates for the event of interest.

iv. Use this example, with just 1 case per riskset, and the single10 binary
exposure (‘z’, in Cox’s notation), to examine carefully the ‘anatomy’ of
the estimating equation and the detailed iteration steps in arriving at
β̂ = log(HR). To do so

(a) Derive the score for each riskset, i.e., fill in the ‘algebra’ that allowed
Cox to get from equation (12) to equation (14) in his 1972 paper.

(b) Derive the Information contribution from each riskset, i.e., fill in the
‘algebra’ that allowed Cox to write equation (16).

(c) Obtain the ML estimate of β = log IRR and its variance. As Cox
suggested in the last paragraph of page 191, do so ‘by iterative use
of (14) and (16) in the usual way’. From these, form a 95% CI for
the incidence rate ratio.

What changes if we treat exposure as a continuous variable? Are there
sufficient details in Table 2 to allow you to estimate the corresponding
parameter? If there are, do so; if not, explain.

-2e Reducing the crying of babies 11

Refer to the paper “The role of Stimulation in the Delay of Onset of Crying
in the Newborn Infant” by T Gordon and B.M. Foss in the Quarterly J of
Experimental Psychol., 18, 79-81. 1966. The Gordon and Foss article, the data,

and Cox’s 1966 data-analysis, are on the c626 website under Datasets (towards bottom of

page).

i. Treat each day as a stratum. Set up a model containing an odds ra-
tio ψ, assumed (for now) common over days. Estimate ψ using (a) an
unconditional (b) a conditional, logistic regression approach. Comment.

ii. Set up the problem as a ‘survival analysis’ [‘time to event’] one, where
say we know the times at which individual babies cried. Use each day as
a separate stratum.

iii. Do you need to know the exact times when babies started to cry, or is
the order in why they cried sufficient? Explain.

iv. How might you handle what for now look like unrankable (tied) pairs of
observations?

10so that the information and variance covariance matrices are of dimension 1× 1.
11These data are considered in the early editions of Cox’s book on the Analysis of Binary

data, and in the paper (to be found under Resources) A Simple Example of a Comparison
Involving Quantal Data. D. R. Cox, Biometrika, Vol. 53, No. 1/2. (Jun., 1966), pp.
215-220.
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-3- Post-hoc heuristics for the Mantel-Haenszel estimator

[Expository, with two items, near the end, left as exercises.]

How did Mantel come up with the form for his estimator? In his paper he
proposes several forms, but favours the one we know today. Some people say
it was simply ‘Mantel genius’, but can we mere mortals find any justification
for it, even post-hoc?

Breslow and Day Volume II page 109, when presenting the modification of it
for situations where the amounts of exposed and unexposed Population-Time
in the base are known (or, at worst, their ratio is known), refer to a 1982
paper by Clayton [available under Resources]. They say that Clayton showed
that the ψMH in equation 3.16 “arises at the first stage of iteration of one of
the computational methods used to find the maximum likelihood estimate.”
They didn’t say whether it was ψML−condn′l or ψML−uncondn′l, but in light of
their statement a few lines further up the page, it doesn’t matter, since the
two are identical under an underlying Poisson model.

Mantel’s version was for ‘case-control’ data, where, within each stratum, the
observed split d1 : d0 in the denominator (‘control’) series is taken as an
estimate of the split PT1 : PT0 in the base. For now, let’s look at the easier
one where that split is known without any sampling error. Moreover, let’s take
the conditional approach, where in stratum j, a total of cj = cj1+cjo exposed
and unexposed cases arose from PTj1 and PTj0 amounts of population time
respectively, and so, where

cj1 | cj ∼ Binomial(cj , πj = {ψ × PTj1}/{ψ × PTj1 + PTj0}).

For compactness, and looking ahead, refer to 1/{ψ × PTj1 + PTj0} as Wj ,
and drop the P from the PT .

The (binomial) likelihood contribution from stratum j is thus

{ψ × Tj1 ×Wj}cj1 ×W
cj0
j ∝ ψcj1 ×W

cj

j .

So,
logLj = cj1 logψ + cj logWj ,

and so

d logLj/dψ =
cj1
ψ

+cj
d logWj

dψ
=
cj1
ψ

+
cj
Wj

×(−1)×W 2
j ×Tj1 =

cj1
ψ
−cjTj1Wj .

Thus the estimating equation is

Σjcj1/ψ̂ = ΣjcjTj1Wj ,

or, as one would expect,

Σj cj1 = Σj cj × ψ̂ × Tj1 ×Wj = Σj ĉj1.

Exercise (i): Split up cj into cj1 + cj0 and rewrite this expression as

ψ̂ML =
Σj Wj × cj1 × Tj0
Σj Wj × cj0 × Tj1

.

With this reformulation, we can, as Clayton 1982 explains, obtain ψ̂ML by
solving this equation by iterative refinements of the weights

Wj = 1/(ψ × Tj1 + Tj0), starting from ψ = 1.

Clayton continues [in our notation] ...

The first step of this iteration itself provides a fully consistent es-
timate, although it is only fully efficient in the neighbourhood of
ψ = 1. This first-step estimator is closely related12 to the Mantel-
Haenszel estimator of the common odds-ratio in the 2× 2× k table,
and the fact that the first stage of the procedure leads to quite a good
estimate means that convergence is very rapid; a single refinement
stage is all that will be required, except when ψ is very far from 1.
The standard error of log ψ̂ is given by the expression

S.E.(log ψ̂) = {Σj W 2
j × ψ × Tj1 × Tj0 × (cj1 + cj0)}−1/2.

where Wj are the final weights. Of course, if the first step estimate
is used, the first value of this expression gives the null s.e. of the log
of the estimate, so that a test of H0 : ψ = 1 may be constructed. An
alternative test will be discussed immediately below.

Exercise (ii): The expression for S.E.(log ψ̂) looks different from that im-
plied by equation 3.17 on page 109 of Breslow and Day Volume II. Can you
reconcile them, or are they different?

12JH would argue that the only difference is that in a case-control study, a realization, d1 :
d0, of a binomial variable is used to estimate the PT1 : PT0 ratio. Otherwise, structurally,
the formulae for the known-PT and estimated -PT versions are the same.
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APPENDIX: Conditional MLE of common OR (ψ) from k 2× 2 tables.

In the jth stratum, with fixed marginal frequencies m = {c = cj1 + cj0, d =
dj1+dj0, cj1+dj1, cj0+dj0}, the one independent random variable (arbitrarily
cj1, say), has a Non-central Hypergeometric (NCH) distribution, i.e., cj1 ∼
NCH(m,ψ). We will drop the j as it will be obvious from the context. This
means that in a stratum,

pr[c1|m,ψ] = B[c1]×B[c− c1]× ψC1/P [ψ],

where B[c1] and B[c1] are binomial coefficients, and P [ψ] is the (normalizing)
polynomial

∑
B[i]×B[c− i]× ψi, and the summation is over the values of i

compatible with the marginal frequencies.

Then, the log-likelihood contribution from the stratum can be written as

logL = c1 logψ − logP [ψ]

and so, with interest in β = logψ rather than ψ,

d logL
dβ

= c1
d logψ
dβ

− d logP [ψ]
dβ

= c1
d logψ
dψ

dψ

dβ
− 1
P [ψ]

dP [ψ]
dψ

dψ

dβ
.

Leaving the components in terms of ψ when it suits to keep expressions com-
pact, and shortening B[i]×B[c− i] to Bi, we have:

d logψ/dβ = 1; dψ/dβ = expβ = ψ;

and

P ′[ψ] = dP [ψ]/dψ =
∑

i×Bi × ψi−1 = (ψ−1)× E[c1|ψ]× P [ψ].

Thus,

d logL/dβ = c1 − (P [ψ])−1 × {ψ−1 × E[c1|ψ]× P [ψ]} × ψ = c1 − E[c1|ψ].

Now, summing these scores over the strata, we have the estimating equation∑
c1 = Σ E[c1|ψ] =

∑
ĉ1.

The stratum-specific information I about β is I[β] = −E[d2 logL/dβ2] =
−d{−E[c1|β]}/dβ = E′[c1|β]. We can use the chain rule, or the derivative of
a quotient, to obtain

E′[β] =
dE

dψ

dψ

dβ
=
d{(P [ψ])−1

∑
i×Bi × ψi}

dψ

dψ

dβ

Using the chain rule one more time, we calculate that E′[β] is{
(P [ψ])−1 ×

{ ∑
i2 ×Bi × ψi−1

}
−

{ ∑
i×Bi × ψi

}
(P [ψ])−2P ′[ψ]

}
× ψ.

This can be simplified to

E′[β] = E[{c1|ψ}2]−
{{ ∑

i×Bi × ψi
}
(P [ψ])−1

}{
(P [ψ])−1P ′[ψ] ψ

}
,

and further still, using the representation of P ′[ψ] above, to

I[β] = E′[β] = E[{c1|ψ}2]− {E[{c1|ψ}]}2 = V ar[c1|ψ].

[there may be more elegant ways to derive the above expressions.]

Newton-Raphson Iteration towards β̂ML−condn′l

Define the score function U(β) =
∑
j d logL/dβ =

∑
j{cj1 − E[cj1|β]}, and

the information function I(β) = −
∑
j d

2 logL/dβ2 =
∑
j var[cj1|β].

Then, starting with β̂0 = 0, so that ψ = 1, we have the iterations:

β̂(k+1) = β̂(k) + U [β̂(k)]/I[β̂(k)].

As Breslow and Day hint at, each (stratum-specific) E[cj1ψ] and V ar[cj1|ψ]
pair involves a different polynomial P and so the computing challenge is to
evaluate the exact expectation and variance when P involves products of large
binomial coefficients, and large powers of ψ. One way to avoid unnecessarily
large powers is to not always focus on the upper left cell frequency, but on
the (stratum-specific) cell (possibly different in each stratum) whose possible
values begin at zero.

For example, in the Estrogen and breast cancer dataset, the number of cases
(c) in a riskset never exceeds 4, and the numbers of exposed subjects is never
less than 36, so it makes sense to focus on the range for the number of exposed
cases in the stratum.

Some R code that keeps the polynomials of as low a degree as possible is
available under ‘Software, computer code’ in Resources. There was however no
attempt to keep the products of binomial coefficients from causing numerical
problems, and jh has not tested how large the largest marginal frequencies
can be. Mind you, if one set of margins is large, and the other small, we are
closer to the situation, with known PT’s, discussed in 1b above.
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