33 Analysis of Infectious Disease Data N.G. Becker (1989)
34 Design and Analysis of Cross-Over Trials B. Jones and M.G. Kenward (1989)
36 Symmetric Multivariate and Related Distributions K.-T. Fang, S. Kotz and K. Ng (1989)
38 Cyclic Designs J.A. John (1987)
40 Subset Selection in Regression A.J. Miller (1990)
41 Analysis of Repeated Measures M. Crowder and D.J. Hand (1990)
42 Statistical Reasoning with Imprecise Probabilities P. Walley (1990)
44 Inspection Errors for Attributes in Quality Control N.L. Johnson, S. Kotz and X. Wu (1991)
45 The Analysis of Contingency Tables, 2nd edition B.S. Everitt (1992)
48 Markov Models and Optimization M.H.A. Davis (1993)
51 Inference and Asymptotics D.R. Cox and O.E. Barndorff-Nielson (1994)
52 Practical Risk Theory for Actuaries C.D. Daykin, T. Pentikäinen and M. Pesonen (1993)
54 Predictive Inference S. Geisser (1993)
57 Nonparametric Regression and Generalized Linear Models P.J. Green and B.W. Silverman (1994)
58 Multidimensional scaling T. Cox and M. Cox (1994)

(Full details concerning this series are available from the publisher)
Contents

Preface to the first edition xvi
Preface xviii

1 Introduction 1
 1.1 Background 1
 1.1.1 The problem of looking at data 3
 1.1.2 Theory as pattern 4
 1.1.3 Model fitting 5
 1.1.4 What is a good model? 7
 1.2 The origins of generalized linear models 8
 1.2.1 Terminology 8
 1.2.2 Classical linear models 9
 1.2.3 R.A. Fisher and the design of experiments 10
 1.2.4 Dilution assay 11
 1.2.5 Probit analysis 13
 1.2.6 Logit models for proportions 14
 1.2.7 Log-linear models for counts 14
 1.2.8 Inverse polynomials 16
 1.2.9 Survival data 16
 1.3 Scope of the rest of the book 17
 1.4 Bibliographic notes 19
 1.5 Further results and exercises 1 19

2 An outline of generalized linear models 21
 2.1 Processes in model fitting 21
 2.1.1 Model selection 21
 2.1.2 Estimation 23
 2.1.3 Prediction 25

vii
3 Models for continuous data with constant variance 48
3.1 Introduction 48
3.2 Error structure 49
3.3 Systematic component (linear predictor) 51
 3.3.1 Continuous covariates 51
 3.3.2 Qualitative covariates 52
 3.3.3 Dummy variates 54
 3.3.4 Mixed terms 55
3.4 Model formulae for linear predictors 56
 3.4.1 Individual terms 56
 3.4.2 The dot operator 56
 3.4.3 The + operator 57
 3.4.4 The crossing (*) and nesting (/) operators 58
 3.4.5 Operators for the removal of terms 59
 3.4.6 Exponential operator 60
3.5 Aliasing 61
 3.5.1 Intrinsic aliasing with factors 63
 3.5.2 Aliasing in a two-way cross-classification 65
 3.5.3 Extrinsic aliasing 68
 3.5.4 Functional relations among covariates 69
3.6 Estimation 70
 3.6.1 The maximum-likelihood equations 70
 3.6.2 Geometrical interpretation 71

4 Binary data 98
4.1 Introduction 98
 4.1.1 Binary responses 98
 4.1.2 Covariate classes 99
 4.1.3 Contingency tables 100
4.2 Binomial distribution 101
 4.2.1 Genesis 101
 4.2.2 Moments and cumulants 102
 4.2.3 Normal limit 103
 4.2.4 Poisson limit 105
 4.2.5 Transformations 105
4.3 Models for binary responses 107
 4.3.1 Link functions 107
 4.3.2 Parameter interpretation 110
 4.3.3 Retrospective sampling 111
4.4 Likelihood functions for binary data 114
 4.4.1 Log likelihood for binomial data 114
 4.4.2 Parameter estimation 115
 4.4.3 Deviance function 118
 4.4.4 Bias and precision of estimates 119
 4.4.5 Sparseness 120
 4.4.6 Extrapolation 122
4.5 Over-dispersion 124
 4.5.1 Genesis 124
 4.5.2 Parameter estimation 126
<table>
<thead>
<tr>
<th>Section</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>Example</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Habitat preferences of lizards</td>
</tr>
<tr>
<td>4.7</td>
<td>Bibliographic notes</td>
</tr>
<tr>
<td>4.8</td>
<td>Further results and exercises</td>
</tr>
<tr>
<td>5</td>
<td>Models for polytomous data</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Measurement scales</td>
</tr>
<tr>
<td>5.2.1</td>
<td>General points</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Models for ordinal scales</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Models for interval scales</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Models for nominal scales</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Nested or hierarchical response scales</td>
</tr>
<tr>
<td>5.3</td>
<td>The multinomial distribution</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Genesis</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Moments and cumulants</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Generalized inverse matrices</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Quadratic forms</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Marginal and conditional distributions</td>
</tr>
<tr>
<td>5.4</td>
<td>Likelihood functions</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Log likelihood for multinomial responses</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Parameter estimation</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Deviance function</td>
</tr>
<tr>
<td>5.5</td>
<td>Over-dispersion</td>
</tr>
<tr>
<td>5.6</td>
<td>Examples</td>
</tr>
<tr>
<td>5.6.1</td>
<td>A cheese-tasting experiment</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Pneumoconiosis among coalminers</td>
</tr>
<tr>
<td>5.7</td>
<td>Bibliographic notes</td>
</tr>
<tr>
<td>5.8</td>
<td>Further results and exercises 5</td>
</tr>
<tr>
<td>6</td>
<td>Log-linear models</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2</td>
<td>Likelihood functions</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Poisson distribution</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The Poisson log-likelihood function</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Over-dispersion</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Asymptotic theory</td>
</tr>
<tr>
<td>6.3</td>
<td>Examples</td>
</tr>
<tr>
<td>6.3.1</td>
<td>A biological assay of tuberculins</td>
</tr>
<tr>
<td>6.3.2</td>
<td>A study of wave damage to cargo ships</td>
</tr>
<tr>
<td>6.4</td>
<td>Log-linear models and multinomial response models</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Comparison of two or more Poisson means</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Multinomial response models</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Summary</td>
</tr>
<tr>
<td>6.5</td>
<td>Multiple responses</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Independence and conditional independence</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Canonical correlation models</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Multivariate regression models</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Multivariate model formulae</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Log-linear regression models</td>
</tr>
<tr>
<td>6.5.7</td>
<td>Likelihood equations</td>
</tr>
<tr>
<td>6.6</td>
<td>Example</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Respiratory ailments of coalminers</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Parameter interpretation</td>
</tr>
<tr>
<td>6.7</td>
<td>Bibliographic notes</td>
</tr>
<tr>
<td>6.8</td>
<td>Further results and exercises 6</td>
</tr>
<tr>
<td>7</td>
<td>Conditional likelihoods*</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>Marginal and conditional likelihoods</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Marginal likelihood</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Conditional likelihood</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Exponential-family models</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Profile likelihood</td>
</tr>
<tr>
<td>7.3</td>
<td>Hypergeometric distributions</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Central hypergeometric distribution</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Non-central hypergeometric distribution</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Multivariate hypergeometric distribution</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Multivariate non-central distribution</td>
</tr>
<tr>
<td>7.4</td>
<td>Some applications involving binary data</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Comparison of two binomial probabilities</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Combination of information from 2×2 tables</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Ille-et-Vilaine study of oesophageal cancer</td>
</tr>
<tr>
<td>7.5</td>
<td>Some applications involving polytomous data</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Matched pairs: nominal response</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Ordinal responses</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Example</td>
</tr>
<tr>
<td>7.6</td>
<td>Bibliographic notes</td>
</tr>
<tr>
<td>7.7</td>
<td>Further results and exercises 7</td>
</tr>
</tbody>
</table>
8 Models with constant coefficient of variation 285
8.1 Introduction 285
8.2 The gamma distribution 287
8.3 Models with gamma-distributed observations 289
8.3.1 The variance function 289
8.3.2 The deviance 290
8.3.3 The canonical link 291
8.3.4 Multiplicative models: log link 292
8.3.5 Linear models: identity link 294
8.3.6 Estimation of the dispersion parameter 295
8.4 Examples 296
8.4.1 Car insurance claims 296
8.4.2 Clotting times of blood 300
8.4.3 Modelling rainfall data using two generalized linear models 302
8.4.4 Developmental rate of Drosophila melanogaster 306
8.5 Bibliographic notes 313
8.6 Further results and exercises 8 314

9 Quasi-likelihood functions 323
9.1 Introduction 323
9.2 Independent observations 324
9.2.1 Covariance functions 324
9.2.2 Construction of the quasi-likelihood function 325
9.2.3 Parameter estimation 327
9.2.4 Example: incidence of leaf-blotch on barley 328
9.3 Dependent observations 332
9.3.1 Quasi-likelihood estimating equations 332
9.3.2 Quasi-likelihood function 333
9.3.3 Example: estimation of probabilities from marginal frequencies 336
9.4 Optimal estimating functions 339
9.4.1 Introduction 339
9.4.2 Combination of estimating functions 340
9.4.3 Example: estimation for megalithic stone rings 343
9.5 Optimality criteria 347
9.6 Extended quasi-likelihood 349
9.7 Bibliographic notes 352
9.8 Further results and exercises 9 352

10 Joint modelling of mean and dispersion 357
10.1 Introduction 357
10.2 Model specification 358
10.3 Interaction between mean and dispersion effects 359
10.4 Extended quasi-likelihood as a criterion 360
10.5 Adjustments of the estimating equations 361
10.5.1 Adjustment for kurtosis 361
10.5.2 Adjustment for degrees of freedom 362
10.5.3 Summary of estimating equations for the dispersion model 363
10.6 Joint optimum estimating equations 364
10.7 Example: the production of leaf-springs for trucks 365
10.8 Bibliographic notes 370
10.9 Further results and exercises 10 371

11 Models with additional non-linear parameters 372
11.1 Introduction 372
11.2 Parameters in the variance function 373
11.3 Parameters in the link function 375
11.3.1 One link parameter 375
11.3.2 More than one link parameter 377
11.3.3 Transformation of data vs transformation of fitted values 378
11.4 Non-linear parameters in the covariates 379
11.5 Examples 381
11.5.1 The effects of fertilizers on coastal Bermuda grass 381
11.5.2 Assay of an insecticide with a synergist 384
11.5.3 Mixtures of drugs 386
11.6 Bibliographic notes 389
11.7 Further results and exercises 11 389

12 Model checking 391
12.1 Introduction 391
12.2 Techniques in model checking 392
12.3 Score tests for extra parameters 393
12.4 Smoothing as an aid to informal checks 394
12.5 The raw materials of model checking 396
12.6 Checks for systematic departure from model 398
12.6.1 Informal checks using residuals 398
12.6.2 Checking the variance function 400
12.6.3 Checking the link function 401
12.6.4 Checking the scales of covariates 401
12.6.5 Checks for compound discrepancies 403
12.7 Checks for isolated departures from the model 403
12.7.1 Measure of leverage 405
12.7.2 Measure of consistency 406
12.7.3 Measure of influence 406
12.7.4 Informal assessment of extreme values 407
12.7.5 Extreme points and checks for systematic discrepancies 408
12.8 Examples 409
12.8.1 Carrot damage in an insecticide experiment 409
12.8.2 Minitab tree data 410
12.8.3 Insurance claims (continued) 413
12.9 A strategy for model checking? 414
12.10 Bibliographic notes 415
12.11 Further results and exercises 12 416

13 Models for survival data 419
13.1 Introduction 419
13.1.1 Survival functions and hazard functions 419
13.2 Proportional-hazards models 421
13.3 Estimation with a specified survival distribution 422
13.3.1 The exponential distribution 423
13.3.2 The Weibull distribution 423
13.3.3 The extreme-value distribution 424
13.4 Example: remission times for leukaemia 425
13.5 Cox's proportional-hazards model 426
13.5.1 Partial likelihood 426
13.5.2 The treatment of ties 427
13.5.3 Numerical methods 429
13.6 Bibliographic notes 430
13.7 Further results and exercises 13 430

14 Components of dispersion 432
14.1 Introduction 432
14.2 Linear models 433

15 Further topics 455
15.1 Introduction 455
15.2 Bias adjustment 455
15.2.1 Models with canonical link 455
15.2.2 Non-canonical models 457
15.2.3 Example: Lizard data (continued) 458
15.3 Computation of Bartlett adjustments 459
15.3.1 General theory 459
15.3.2 Computation of the adjustment 460
15.3.3 Example: exponential regression model 463
15.4 Generalized additive models 465
15.4.1 Algorithms for fitting 465
15.4.2 Smoothing methods 466
15.4.3 Conclusions 467
15.5 Bibliographic notes 467
15.6 Further results and exercises 15 467

Appendices 469
A Elementary likelihood theory 469
B Edgeworth series 474
C Likelihood-ratio statistics 476

References 479

Index of data sets 500

Author index 501

Subject index 506