
We live in a cancerophobic society. For several decades the man on the 
street has been bombarded with the carcinogen of the week to the point of 
numbing exhaustion. This epidemic reached ludicrous limits when it was 
announced, in all seriousness, that mother's milk'kaused cancer because 
it contained trace amounts of PCBs and other awful chemicals, and that 
children should be breast-fed for a maximum of 6 months. 

In part, the present dilemma can be laid at the feet of zealous legislators 
and news-hungry media folks; in part, the problem exists simply because 
our technical expertise has far outshippled our legislative apparatus. Laws 
about cancer in the environment were passed several decades ago, when 
the prevailing attitude was that any amount of a carcinogen in the soil, air, or 
water was too much. Since that time, technical improvements in analytic 
instrumentation have allowed us to detect trace amounts of chemicals that 
are orders of magnitude smaller than the amounts detectable when the 
laws were passed (literally equivalent to a martini made with a drop of 
vermouth in a swimming pool of gin). However, the laws remain on the 
books and any attempt to repeal them at this stage would promote a rapid 
demise to any political career. 

In part, too, the issue is epidemiologic. Epidemiologists, oncologists, and 
toxicologists tend to view the issue of causation as a binary variable - either 
something causes cancer or it doesn't Admittedly, some attempt is made 
to quantify the risk by extrapolation from animal data to humans. Neverthe- 
less, it would certainly assist the field, and perhaps our quality of life, if we 
would pause to ask just how much cancer a particular agent might cause. 
Of course, this question demands some means of quantifying the degree of 
risk to life and limb from a particular agent. 

This chapter deals explicitly with this issue, discussing a variety of 
measures of assodation used by epidemiologists. The problems to 
which these measures can be applied are far ranging, from the estimation 
of the risk to health from an environmental agent, to the benefit of treat- 
ment, to the agreement between a diagnostic test and a "gold standard," 
and to issues of observer agreement. 
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ISSUES IN CHOOSING A MEASURE 

The issue of measurement is critical to much of science. Lord Kelvin, a 
distinguished physicist of the 1800s, once said 

I often say that when you can measure what you are speaking about, 
and express it in numbers, you know something about it; but when 
you cannot express it in numbers, your knowledge is of a meager and 
unsatisfactory kind; it may be the beginning of knowledge, but you 
have scarcely, in your thoughts, advanced to the stage of science 
whatever the matter may be. 

Epidemiology is not immune to these admonitions. The issue of 
measurement in many sciences is, by and large, a technical issue of 
instrumentation, and of developing the right bit of apparatus to measure 
some phenomenon with the appropriate degree of precision. In epidemiol- 
ogy the issues are a bit more conceptual, and much thought must be 
directed to the appropriate selection of which variable to measure in the first 
place. Often the choice of variable represents a deliberate compromise; for 
example, in looking at the effects of an educational strategy for practicing 
physicians one could decide to measure the increase in knowledge of the 
participants, a variable that is likely sensitive to the educational strategy and 
can be easily tested with methods like multiple choice questions. Unfortu- 
nately, this choice begs the issue of whether the increased knowledge will 
be translated into a change in physician behavior with patients. In tum, we 
should worry whether the doctor's admonitions will change patient 
behavior, whether this behavior change will actually result in improved 
health, and whether the improvement in health will result in increased 
longevity or decreased morbidity. It is evident that the further we get from 
the intervention, the more socially relevant the outcomes are, but the less 
likely they are to be sensitive to the intervention. 

THE DIMENSIONS OF MEASUREMENT 
Epidemiologists have categorized the wide number of potential choices 

in the measurement of the effects of illness into the six Ds - death, disease, 
disability, discomfort, dissatisfaction, and debt. A little creativity can easily 
result in some additions to the list: psychiatrists would like to look at 
dysphoria and depression, and sociologists might examine disenfran- 
chisement or dysfunction. 

Some of these variables, like death and debt, are relatively easy to 
measure, and hence are frequently used in studies in epidemiology. Others, 
like dissatisfaction and disability, are notoriously difficult to measure, and 
have been the making of many a career in epidemiology. We will avoid, for 
the most part, the technical issues surrounding the measurement of these 
variables; the important point is that the Ds serve as  a reminder that 
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measurement of dependent variables or outcomes need not be confined to 
the traditional measures like death and disease. 

The choice of an outcome variable is almost inevitably a compromise 
based on the interplay among the several following factors: 

1 .  Precision of Measurement. Measures that are subject to a large 
degree of random variation or individual interpretation are less useful 
than measures that are more precise. The judgment of precision 
cannot be made on an a priori basis; careful studies have shown 
appallingly high error rates in many areas of clinical medicine, such as 
radiology, that conventional wisdom would suggest are highly objec- 
tive. Methods to assess precision are reviewed later in this section. 

2. Logistical Factors. Measures are often chosen simply because they 
are inexpensive. Cost is certainly one criterion, as are other logistical 
factors like the likelihood of obtaining compliance, or the ease of 
entering the data. 

3. Ethical Issues. Some measurements are unsuitable for ethical rea- 
sons. No ethics committee would permit coronary angiography to be 
performed on all patients in a trial, regardless of cost, simply because of 
the risks associated with the procedure (unless the test was a part of the 
patients' regular care). 

4. Importance. Often the most important variables, in terms of their 
burden on the affected individual, are the most impractical to use in 
studies. One good example is death. It has considerable importance to 
the individuals involved. However, although it is precise and easy to 
measure, death is often rejected as an outcome variable in studies 
because it occurs too infrequently (thank goodness), and thus the 
follow-up period required would be too long. As a result, investigators 
often substitute other variables that are less important, but more avail- 
able for measurement. As one example, hypoglycemic agents were 
adopted'because they demonstrated the appropriate effect on blood 
sugar, which is much easier to measure than diabetes (although not as 
relevant). Much later the widespread use of the drugs was discontinued 
because long-term studies showed that the lower blood sugar level had. 
no impact on longevity or complications from the disease. 

5. Sensitivity. For a variable to be useful, there must be some reason- 
able chance that it is related to, or likelyto change with, the independent 
variable under study. As an example, researchers often select a labora- 
tory test result as a measure of effect of a risk factor or therapeutic 
intervention. For instance, several studies have looked at the effect of 
formaldehyde on lower respiratory tract disease using measures of 
pulmonary function as the dependent variable. The choice is reason- 
able in some respects: pulmonary function can be measured with a 
high degree of precision and relatively cheaply. The data can be elicited 
horn patients far more easily than by using such alternatives as  symp 
torn diaries, which may cause severe problems with compliance. The 
difficulty is that the effects of formaldehyde may not be detectable with 
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this measure because they are likely to occur shortly after exposure and 
dissipate rapidly, and so  they have vanished by the time patients arrive 
at the clinical setting for testing. Also, relatively large changes in pul- 
monary function, of the order of 20 percent, are required to show any 
effect on patients' function. For a similar reason, the use of death as  an 
endpoint, however important, is unlikely to be sensitive to any subtle 
changes resulting from low-level exposure. Of course, if formaldehyde 
is suspected as a potential human carcinogen, the use of death as  a 
measure, specifically respiratory cancer death, is uniquely appropriate. 

The important implication of these considerations is that issues of meas- 
urement are central to much research in epidemiology. The choice of an 
appropriate measure is a complex exercise in compromise. Just as investi- 
gators should be aware of the issues involved in this choice, critical readers 
of the literature should examine closely the variables used in a reported 
investigation to determine whether they are appropriate for the research 
goals. 
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TYPES OF VARIABLES 

When considering issues of measurement, it is useful to make a distinc- 
tion among different types of variables. Atthough there are various ways to 
describe the different variables, the important distinction is between those 
variables that are categorical, such as deaddive, diseased/nomal, or 
Protestant/Catholic/Jewish/other, and those that are continuous, like 
diastolic blood pressure, hemoglobin level, height, and many subjedive 
states, such as  pain, disability, or mood. Categorical variables can only take 
on certain discrete values. By contrast, continuous variables can, in theory, 
assume an infinite number of values. 

Within these broad classes there is often a further subdivision. Categorical 
variables are classified into nominalvariables, which are named categories 
likk deadalive, male/female, or white/Oriental/African, and ordinal 
(ordered) categories like Stage I/Stage II/Stage I l l  cancer or much 
impmved/improved/same/worse/much worse. The distinction between 
the two is that there is no order implied for nominal variables -whites are 
no higher or lower than Orientals or Africans. In contrast, there is a clear 
order implied in ordinal variables (e.g., staging in cancer). 

Continuous variables are also divided into two classes. With interval 
variables the distance between points has some quantitative meaning, so 
that the difference between a blood pressure of 95  mm Hg and 105 mm Hg 
is the same as the difference between 1 10 mm Hg and 120 mm Hg. For 
ratiovariables, the ratio of two quantities has meaning (e.g., the ratio of two 
temperatures expressed in degrees Kelvin). These latter two concepts are 
understood better by considering violations of the rule. A rating scale going 
from "much below average" to "much above average" is not an intenml 
variable, because the distance between "much below average" and "below 
average" has no real meaning - it certainly would not be easy to demon- 
strate, for example, that it is the same as the difference between "average" 
and "slightly above average." In a similar vein, the ratio of two temperatures 
expressed in absolute or Kelvin degrees has some meaning, but degrees on 
the Celsius scale are not ratio variables - 20" C is not twice as hot as 10' C. 

The distinction between categorical and continuous variables is impor- 
tant, since it influences nearly every way we think about them, as will 
become evident in the remainder of this section. However, the difference 
between nominal and ordinal variables is only important in the application 
of some slightly esoteric statistical tests that work for ordered categories but 
not for nominal categories. Similarly, there is virtually no importance to the 
distinction between interval and ratio variables, so the less said the better. 
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MEASUREMENT WITH CATEGORICAL VARIABLES 

We beganthis section on measurement with the suggestion that much of 
the confusion surrounding the carcinogenic risk of many environmental 
hazards is a result of inadequate attention paid to the quantification of risk. 
In this m a o n  we will develop a number of ways to approach the issue of risk 
assessment. There are two parts to the question: (1) deciding on the 
appropriate way to measure the health effect, and (2) deciding on some 
way to express the assodation between the supposed cause and the 
outcome. 

For the moment let us define the issue a little more precisely. Without 
getting into the specifics of risks from radiation, PCBs, dioxin, ethylene 
dibromide, Agent Orange, video display terminals, or hydro lines, it would 
seem apparent that we are being bombarded with all sorts of chemical, 
electromagnetic, nuclear, and particulate delights that never assaulted our 
ancestors. That being the case, one possible result of the overall impact of 
all these insults to the organism would be an increase in the overall rate of 
cancer over the past century or so. If these pollutants are indeed devastating 
our health, this should be reflected in a gradual increase in cancer rates as 
time passes. 

As we shall see, this seems simple enough, but it isn't. First, should we 
count all cases of cancer, or all deaths from cancer? After all, to the extent 
that our therapies are getting better we might actually be curing some folks, 
which would make the death rate drop even though there may be just as 
many or even more cases around. On the other hand, we're also getting 
better at detecting cancer with methods like Pap smears and mammo- 
graphy, which weren't available a few years or decades ago. The effect of 
this might be to inflate the apparent number of cases in recent years, 
although it would have less impact on deaths, since by the time someone 
dies from it, cancer is fairly obvious. 

For convenience and convention we call the counting of cases the 
measurement of frequency, and the counting of deaths the measurement 
of impact. We will explore the issue of the overall effect of the environment 
using both these measures, by examining the risk of cancer in the 1930s 
and the 1980s to see if we can detect the effect of a (questionably) 
deteriorating environment 

MEASURES OF FREQUENCY 
Measures of frequency focus on the occurrence of disease as  opposed 

to the sequelae of disease (in particular, death). There are a number of ways 
one can approach the counting of disease. The choice is based on the 
unpleasant realitythat it takes some time to do a study, and while the clock 
is ticking, new folks are unfortunately developing a disease at the same time 
that some lucky souls are being cured of it (at least for some diseases) and 
others are dying of i t  All this coming-and-going in and out of the study 

I wreaks havoc with any attempt to count who actually has the disease. To 1 
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overcome this state of affairs, epidemiologists have worked out a few 
standard ways of counting bodies, warm or otherwise. 

To return to our original problem, let's suppose we wish to count aU cases 
of cancer (of all types) in Canada in 1987. Having agreed on the criteria for 
diagnosis and carefully set up a sampling frame that is perfectly representa- 
tive of the population of Canada, or, alternatively, having developed a 
reporting mechanism for all cases in Canada, we now start counting on 
January 1 and stop on December 31. All the counts come pouring in, and 
the systems analysts and statisticians are rubbing their hands in glee at all 
the years of prospective employment ahead. Now the embarrassing ques- 
tions emerge. 

To illustrate the difficulty, let's examine what happened at the cancer 
reporting center in Plumcoulee, Manitoba. There are a total of 200 people in 
this farming community, a fact that we'll need to know later. The reports to 
the center are shown in Table 3-1. 

It is obvious from the table that we can get wildly different estimates of 
the amount of cancer in Plumcoulee depending on how we choose to do 
the counting. If we just look at the number of cases around at any point in 
time, we find four in January, three in December, and eight in July. If we 
count the total number of folks who were reported this year, the answer is 
12. If we count the number of new cases in 1987, it's eight Finally, there 
were six deaths from cancer in that year. 

There are, however, some standard ways to report the data, a s  we'll 
discuss in this section. 

TABLE 3-1 Reports of Cancer, Plumcoulee, Manitoba 

Patient Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

D =first diagnosis; = w i t h  disease; C = cured; X = died 
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INCIDENCE 

lncidence is defined as follows: 

Number of new cases in a fixed time period lncidence = 
Number of people at risk 

Usuallythe period of study is chosen to be 1 year, in which case we speak of 
the annual incidence. In Plumcoulee (see Table 3-1) there were eight 
new cases of cancer in 1987. If we had decided to focus on the 3-month 
incidence, there were three new cases from January to March. 

The denominator, or number of people at risk, is not quite 200 people 
because patients 1,3,4, and 7 already had cancer and thus could not be 
counted as  "at risk"; this reducesthe denominator to 196. Thus the annual 
incidence is: 

8 Annual Incidence = - = 0.0408 cases per year 
1 96 

Usually the incidence of disease is much lower than in this example, and 
the correction for preaisting cases is unnecessary. Further, to make things 
more readable, incidence is often cited as  cases per 1,000 (in this example, 
40.8 cases per 1,000 per year), or even as cases per million per year for very 
rare disorders. 

PREVALENCE 

If we are planning screening programs, disease incidence is of imme- 
diate interest. However, if we are concerned with the provision of senicesfor 
people with the disease, such as palliative care, our immediate concern is 
"How many people actually have the disease at any point in time?' This 
quantity is called the prevalence, which is defined as  follows: 

Number of people with the disease 
Prevalence = 

Number of people at risk 

In contrast to incidence, prevalence is determined at a single point in 
time. Still considering the data from Table 3- 1, perhaps the most rational 
point in time to choose is the middle of 1987, or July 1. Looking at the table, 
we find that patients 2,3,4,6,8, and 9 had cancer at this time. Patient 5 was 
cured sometime in July, and should be counted on July 1, whereas patient 
1 1 was diagnosed in Jutyand would likely not enter the count. This leaves a 
total of seven cases in the numerator. 

Again the denominator is not quite 200. By Juty 1, patients 1 and 12 were 
deceased, so the denominator is only 198. Finally, the prevalence is: 

i 

Prevdence = - - - 0.0354 = : 35.4 per 1,000 
1 98 
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PERIOD PREVALENCE 
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CASE FATALITY RATE 

A close analogyto the incidence is the period prevalence, which is based While we're examining the fate of the Plumcoulee patients from Table 
on the number of people with the disease over a defined period of time 

I 3-1, we might a s  well introduce a term that links disease frequency, or the 
(usually 1 year). The formal definition is: 

Number of people with the disease over the time period 
Prevalence = 

Number of people at risk over the time period 

The calculation of annual prevalence in our example from Table 3-1 is 
straightfo~ward. There are 12 people identified a s  having cancer in that 
year, and 200 at risk, so the period prevalence is simply 121200 = 0.06 = 60 
per 1,000. If we were to calculate the quarterly prevalence for the first 
quarter of the year, we would include only patients 1,2,3,4,6,7, and 12; the 
period prevalence for 3 months is thecefore 71200 = 0.035 = 35 per 1,000. 

RELATION BETWEEN PREVALENCE AND INCIDENCE 

The previous definitions were slightly different in dimensions. Incidence 
is based on a fixed time period, and is quoted per month or year. However, 

likelihood of developing the disease, to disease impact, which is the likeli- 
hood of dying from the disease. 

First of all we note that a total of six persons from Plumcoulee died of 
cancer during the study. It is natural to express this quantity in a similar 
manner to our measures of disease occurrence to form a quantity called the 
mortality late; which is defined as  follows: 

Mortality Rate = Number of deaths from disease in a time period 

Number of people at risk 

Studying the data from Plumcoulee, we see that six people (patients 1,2, 
4,6,9, and 12) died of cancer in 1987. There were 200 people at risk, so the 
annual mortality late was 61200 = 0.03, or 30 per 1,000. 

As we shall see in the discussion on measures of impact, this approach is 
a fairly crude basis for comparison. However, there is another relationship 
evident from the display. When relating frequency to impact we might wish 

prevalence is calculated at a single point in time. It happens that the two 1 to study the likelihood that a disease may be fatal. This quantity is called the 
quantities have an interesting relationship, which involves the average 1 case fatality rate, and is defined as follows: 
duration of disease: 

Prevalence = lncidence X Duration 

It's not easy to demonstrate the relationship mathematically, but it is easy 
to show that it is reasonable. Think of a chronic, but relatively nonlethal 
disease like rheumatoid arthritis (RA). Once an individual acquires the 
disease, he/she canies it until death, so the duration is calculated by 
subtracting the average age at onset from the expected life span. Thus, 
each new case of RA is added to the pool of prevalent cases, and although 
relatively few cases may be added each year, there are a large number of 
prevalent cases around. So the prevalence of RA is much greater than 
annual incidence. 

By contrast, the ordinary cold has a duration of a few days at most, and 
kids can often get more than one per year. In this situation the annual 
incidence might approach, or even exceed, 1,000 per 1,000. Yet unless 
there's an epidemic around, relatively few people have a cold at any time, so 
the prevalence of colds is not nearly as  high as  the incidence - perhaps 50 
per 1,000. Because the duration isvery short, the prevalence is much lower 
than the annual incidence. 

The relationship may seem to be of only arcane interest However, it is 
often easier to obtain published data on disease prevalence than on inci- 
dence; yet if you want to do an intervention or prevention study, it is usually 
of greater interest to know how many new cases you are likely to get. 
Through the use of this formula and a reasoned guess at the duration of the 
disease, you can anive at a plausible estimate of the number of new cases. 

Case Fatality Rate = Number of deaths from disease in a time period 
IYumber of people with the disease 

In the present example there were 12 people with cancer in Plumcoulee 
in 1987, and six deaths; the case fatality rate is therefore 6/12 = 50 percent 
per year. 

MEASURES OF IMPACT 
We began this discussion with the idea that one broad way to determine 

whether all the industrial pollutants have affected human health was to 
examine the rates of cancer over several decades, to see if any increasing 
trend was evident. We brietly discussed the advantages and disadvantages 
of looking at disease frequency (cases of cancer) and disease impact 
(deaths from cancer). 

The impact of disease need not focus entirely on death. For a chronic 
disease like arthritis, disease impact would more appropriately be calcu- 
lated using measures of activities of daily living, function, or quality of life. 
However, for the example we have been pursuing we will focus on mortality. 
The measurement of mortality has one major advantage over the meas- 
urement of frequency, namely that relatively complete archival sources are 
available and have been for several decades (or for several centuries in 
Great Britain). Instead of setting up a reporting system such as was pro- 
posed for Plumcoulee and allowing it to run for a few decades while we 

7" 1 



70 PDQ Epidemiology 

epidemiologists cool our collective heels, we can conduct a retrospective 
impact study. In this discussion we use actual data, based on Canadian 
statistics for 1933 and 1973, to examine our research hypothesis that the 
increased level of chemical, radiologic, and particulate pollution in Canada 
in the intervening 40 years has led to an increase in the observed rate of 
death from cancer. 

MORTALITY RATE 

To test this hypothesis, let's tum to our desk copy of Canadian statistics. 
We look up the appropriate sections and compile the data (Table 3-2). To 
make the comparison easier, it makes sense to work out the number of 
deaths per 1,000 population. This is called the annual mortality rate, which 
is defined as follows: 

IY dmber of deaths in a year 
Annual Mortality Rate = 

. ' Total population 

For 1933 the annual mortality rate is 1 1,056 per 10,500,000, or 1.05 per 
1,000. For 1973 the annual mortality rate is 44,877 per 21,400,000, or 2.10 
per 1,000. 

From these data it would appear that the rate of cancer has nearly 
doubled in 40 years. We may conclude that perhaps there is evidence of a 
significant health effect of pollutants. Nevertheless there are a number of 
steps we can take to refine the comparison. 

PROPORTIONAL MORTALITY RATE 

We were in the fortunate position when we calculated the mortalityrate to 
have a good estimate of the denominator, or the population at risk Federal 
census takers in the Westem world go to great pains and expense to 
determine how many people there are in the country in given years (per- 
haps so they can ensure complete tax returns to pay for the census). 
However, in many situations where research is conducted on subpopula- 
tions (e.g., workers exposed to welding fumes or residents near a landfill 
site) it would be very difficult or impossible to determine on the basis of 
existing records how many people were in the denominator in a given year. 

On the other hand, it is much easier to determine the cause of death of all 
the people in a population who died, because death certificates are a legal 
necessity. We can reason that if pollutants are causing more cancer in 1973 

TABLE 3-2 Canadian Cancer Statlstlcs 

1933 1973 

w- 
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than they did in 1933, proportionately more deaths should be caused by 
cancer than by other causes in 1973 than in 1933. This approach is called 
the proportional mortality rate or PMR. It requires no knowledge of the 
people at risk, only mortality data. The PMR is defined as follows: 

I Number of deaths from a particular cause I 

PMR = 
I Total number of deaths 

It turns out that in 1933 there were a total of 122,850 deaths recorded in 
Canada. In 1973,236,200 deaths were recorded. The resuttant PMRs are 
shown in Table 3-3. 
It appears that the same trend to higher mortality rates in 1973 is present in 
these data. Of course one alternative explanation is that proportionately 
more people were dying of cancer in 1973 simply because fewer people 
were dying from everything else. This makes some sense because tubercu- 
losis, diphtheria, and other serious infectious diseases were present in 1933 
but absent in 1973. Certainly there is some evidence that this may be 
occurring; males born in 1933 had a life expectancy of 41.1 years, whereas 
men bom in 1973 had a life expectancy of 68.2 years. 

This example also nicely illustrates the strengths and weaknesses of the 
PMR method. I t s  strength is that it can be applied in situations in which only 
minimal data are available; its weakness is that a high PMR is always open to 
two interpretations: (1) more deaths from the cause of interest or (2) fewer 
deaths from everything else. 

AGE-SPECIFIC MORTALITY 

In general, cancer is a disease of old age. Although a few young persons 
die of cancer, in most circumstances there is a period of a few decades 
between exposure to some cancer-causing agent and the onset of the 
disease. This must be kept in mind when contrasting 1933 with 1973; not 
only might more people have died from other causes in 1933, as we 
mentioned previously, but also more people might have died young from 
other causes and not lived long enough to develop cancer. 

To determine if this reasoning results in an alternative explanation for the 
higher observed cancer mortality in 1973, we could look only at the death 
rate from cancer in older people (e.g., older than 75years of age). We could 

TABLE 3-3 Proportional Mortality Rates for Cancer 

1933 1973 
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5 .  

then calculate the cancer mortality rate in this age segment. The result is 
called the age-specific mortality rate, which is defined as follows: 

Number of deaths in a particular age mnge 
Agespecific MI? = 

Total number of deaths in a particular age range 

Ldt's work this example through. In 1933 there were 5,126 Canadians 
older than 75; in this group there were 110 cancer deaths. Therefore the 
age-specific mortality rate is 1 1015,126 = 21.5 per 1,000. Similar data from 
1973 indicate that there were 91 5 cancer deaths among the 35,295 Cana- 
dians over age 75, which results in an agespecific mortali rate of 
91 5135,295 = 25.9 per 1,000. 

These mtes are indeed a little closer than the ovemll mortality rates we 
looked at earlier, thereby suggesting that a partial explanation for the 
differences is simply that people were dying of other causes in 1933 and 
were not living long enough to develop cancer. However, it is unfortunate 
that in order to make this comparison it was necessaryto ignore most of the 
data. 

STANDARDIZED M.0RTALlTY RATE 

The discussion on agespecific mortality rate suggested that if we re. 
stricted our view to those individuals who survived long enough to be at risk 
of developing cancer, there was a smaller difference in cancer rates 
between 1933 and 1973 than was evident when we simply looked at overall 
mortality. The difference between the two sets of data reflects (1) the 
influence of age on mortality rates from a specific disease, and (2) diff eren- 
ces in the age distributions between the Canadian population in 1933 and 
1973. 

Most diseases show a strong relationship with age. Risk from chronic 
diseases like heart disease and cancer increases with age, whereas infec- 
tious diseases are more common in the young. Even pedestrian mortali 
shows a strong bimodal distribution with age, and strikes the very young, 
who lack awareness of the dangers of traffic, and the very old, who can no 
longer see and hear danger as well as before (or run as fast!). 

Because of the strong influence of age on disease mortality rates, any 
comparison between two different populations is considerably strength- 
ened by correcting for the differences in age distribution. This approach is 
called the standardized mortality rate or SMR, and builds on the age- 
specific mortality rate. Having broken down the deaths in the population of 
interest by age and created age-specific mortality rates, we then use them 
with the distribution of age in a reference or standard population to create 
an overall projected mortality rate. There are four basic steps in the process: 

L Calculate the agespecific mortality rate for each age mnge in the 
population of interest 
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2. Multiply this rate by the number of people in the age range in the 
standard population. This then determines the number of individuals in 
the standard population who would die from the disease. 

3. Add up the total number of projected deaths across all age levels of the 
standard population. 

4. Finally, convert this to a mortality rate by dividing by the total numbers 
in the standard population. 

For example, to compare the cancer mortality in 1933 and 1973, we will 
project them both onto a reference population distribution (in this case the 
population distribution of Canada in 1970, but any year could have been 
chosen). The method is illustrated in Table 3-4. 

After this lengthy process we then can determine that the standardized 
mortality rate for cancer deaths for 1933 is 2,510 per 1 million, or 2.51 per 
1,000. Similar calculations can be performed for cancer deaths in 1973 and 
from all other causes in both 1933 and 1973, always using the 1970 
population as the standard. These calculations are shown in Table 3-5. 

TABLE 3-4 Calcuiatlons for Standardized Mortality Rate 

1 2 3 4 5 6 

Age-Specific Standard 
Age 1933 Cancer Mortality 1970 Deaths 

Range Pop. Deaths (Col. 3 t Col. 2)  Pop. (Col. 4 X Col. 5) 

TABLE 3-5 Standardized Mortality Rates per 1,000 

1933 1973 
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Some of our suspicions are therefore correct. People indeed died at a 
much faster rate from other causes in 1933 than in 1973 - 1 5.1 2 per 1,000 
versus 8.91 per 1,000, respectively. There nevertheless appears t o  be an 
excess cancer risk persisting in 1973 of about 20 percent (3.10 versus 2.51 
per 1,000). However, this is considerably less than the doubled risk origi- 
nally calculated using the unstandardized mortality rates. 

SUMMARY 
The standardized mortality rate is aboutthe best estimate of the mortality 

arising from a particular cause, and is virtually a prerequisite for any 
comparison across different populations. Proportional mortality rates are a 
weak alternative, useful only in situations in which there are no denominator 
data available. 

It should be, kept in mind that the application of SMRs corrects for the 
confounding effect of age, and possibly'of sex differences, but that's all. To 
conclude that any observed difference results from a particular cause 
requires the elimination of all other possible causes. The point is nicely 
illustrated by a final run at the 1933- 1973 comparison. 

The difficulty arises from the use of a historical control, as described in 
Research Methodology. To conclude that the observed difference between 
1933 and 1973 is caused by industrial pollution requires that we eliminate 
from suspicion all the other differences between 1 933 and 1973. One differ- 
ence in particular is staring us in the face-cigarette smoking. Smoking per 
capita has increased steadily from the turn of the century until recent times, 
and cigarettes are a known and strong causal factor in lung cancer. These 
fads suggest that we may further understand the cause of the increase of 
cancer deaths from 1933 to 1973 by separating respiratory cancer from 
cancers of all other sites (since the latter are only weakly related to sm&- 
ing ). If we do this, and calculate SMRs for respiratory cancer and other sites, 
all the differences between 1973 and 1933 can be accounted for by a 
sevenfold difference in respiratory cancer rates (Table 3-6). This of course 
doesn't prove that smoking, rather than pollution, is the cause of the 
increase. However, it does suggest that there is no general impact of air, 
water, and foodborne chemicals on human health reflected in cancer rates. 

TABLE 3-6 Respiratory Cancers vs Cancers from All Other Sites* 

1933 1973 

p p  - - 

Standardized mortality rates per 1.000 
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MEASURES OF ASSOCIATION WITH CATEGORICAL VARIABLES 

We began this discussion with the assertion that much of our fear about 
cancer and the environment was a result of inadequate quantification of the 
additional risk To this point we have dwelt on measurement issues and 
sought means to measure the health effects in an unbiased manner. We 
now wish to explore methods to measure the s t ~ n g t h  of association 
between two variables. 

We have already used some rough-and-ready measures of association. 
We found in the last section that there was a sevenfold higher risk of 
respiratory cancer in 1973 than in 1933. We could restate the data in two 
other ways: (1) the risk of respiratory cancer increased from 0.09per 1,000 
to 0.69 per 1,000, or (2) there was a risk of cancer of 0.60 per 1,000 
attributed to the different circumstances in 1973 and 1933. In the next few 
examples we will formalize these concepts. 

Let's begin with a new example that is related to therapeutic benefit The 
issue is the relationship between cholesterol and heart disease. For a long 
time a strong association between serum cholesterol and heart disease has 
been known; however, the implications of this finding were not clear. Did a 
high level of cholesterol "cause" heart disease, or was it simply a marker of a 
certain genetic predisposition? The key issue has been whether it could be 
demonstrated that lowering cholesterol levels by diet or drugs would reduce 
the rate of heart disease. 

This was finally demonstrated in 1985 by the Coronary Primary Preven- 
tion Trial (CPPJ'), a randomized trial that was conducted at a number of 
clinics in North America. The researchers began by screening nearly half a 
million men to find a group of 3,900 who had very high serum cholesterol 
levels (above 256 mg per deciliter) but as yet no evidence of disease. The 
men also had to comply with a fierce regimen. The drug, called cholesty- 
ramine, was foul-smelling, foul-tasting, and gut-wrenching, and had to be 
taken in water six times per day. The researchers eventually found their 
bunch of docile souls who would go along with the treatment They were 
randomized into two groups (the placebo was concocted to taste just as 
bad) and followed for 7 to 10 years. After the dust settled there were 30 
cardiac deaths in the drug group and 38 in the control group, f i g u ~ s  that 
were statistically significant There was no overall difference in death rates, 
butthis won't concern us. The ways in which these data might be displayed 
are discussed next. 

RELATIVE RISK 

The data from the cholestyramine study appear in Table 3-7. The 
relathre risk, as the name implies, is a measure of the likelihood of 
occurrence of the target event (death or disease) in those exposed and not 
exposed to the agent of interest It is defined as follows: 

Relative Risk = Mortality rate (or incidence) in exposed group 

Mortality rate (or incidence) in unexposed group 
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TABLE 3-7 ~ a t a  from Cholestyramlne Study 
I 

Cardiac 
Deaths Alive Total 

Mortality rates in the two groups are 30 per 1,900 and 38 per 1,906. 
Therefore, the relative risk from cholestymmine is 3011,900 t 3811,906 
= 0.792. To put it another way, the risk of cardiac death in the treated group 
was 1 .OO - 0.792, or 21 percent lower than in the placebo group, a risk 
reduction of 21 percent. 

The data can be presented in another way. We could turn the question 
around and ask what the relative risk of cardiac death resulting from the 
absence of a drug is. This relative risk is the inverse of the previous 
calculation: 3811,906 + 30/1,900 = 1.26. 

ETIOLOGIC FRACTION 

Closely related to the notion of risk reduction is a concept called the 
etiologic fraction (EF). When considering a risk factor for a disease, in 
this case high cholesterol levels, we are interested in what fraction of the 
cases of cardiac death has high cholesterol levels as its etiology. Since there 
were 38 deaths in this coho& when high cholesterol levels were present, and 
30 deaths when this risk factor was absent, we could define the proportion 
of cardiac deaths, or the EF, as follows: 

EF = Mortality in exposed group -Mortality in unexposed group 
Mortality in exposed group 

For the CPPTtrial (see Table 3-7) the etiologic fraction is (38 - 30) i 38 
= 21 rxrcent. This is the same number as, although a different concept 
than, & risk reduction we calculated earlier. 

' 

AlTRlBUTABLE RISK 

The relative risk gives some indication of the increased risk (in the case of 
a risk factor) or benefit (in the case of a therapy) in relative terms. However, 
we would often like to examinethe actual increase or reduction in incidence 
or mortality attributed to the cause. This is called the attributable risk 
(AR), and is defined as follows: 

AR = Mortality rate (or incidence) in exposed group - Mortality rate 
(or incidence) in unexposed group 

In the cholestymmine example (see Table 3-7) the attributable risk of 
cardiac death (attributable to the absence of the benefit derived from 
cholestymmine) is 3811,906 - 30/1,900 = 4.1 pei 1,000. 

The example nicely illustrates the important differences between the two 
concepts of relative risk and attributable risk The CPPT trial began with a 
highly selected cohort of people with very high cholesterol levels, followed 
them for a long time (7 to 10 years), and indeed demonstrated a statistically 
significant risk reduction of 21 percent. However, this amounted to a 
reduction in risk of cardiac death of only four per 1,000, compared with a 
total rate of death in both groups of about 70 per 1,000. 

RELATIVE ODDS 

The concepts of association we have discussed so far workwell for most 
situations in which we wish to examine the effect of a particular risk factor on 
the subsequent occurrence of disease. However, there is one study design, 
the case-control study (see Research Methodology), in .which things don't 
quite fit. Casecontrol studies are used in situations in which the likelihood of 
developing disease is low, or there is a long latency before the onset of 
disease. Typically, both these conditions apply to the investigation of risk 
factors in cancer. In these circumstances we assemble a group of people 
with the disease (cases) and an appropriate set of people without disease 
(controls), usually of the same size, and we examine the exposure of the two 
groups to the risk factor of interest. 

As one example, continuing our cancer theme, Table 3-8 was derived 
from one of the original studies linking lung cancer to smoking. 

The fact that the rate of lung cancer overall is so high is a sure clue that we 
are dealing with a case-control study, since if these data were based on a 
cohort study that assembled persons who did and didn't smoke, we would 
arrive at the alarming conclusion that the overall rate of lung cancer was 
about 34 percent. However, if we continue along the lines we had done 
previously, we could calculate a risk of cancer in the exposed group of 
6591684, or 96 percent, and in the unexposed group of 98411,332, or 74 
percent. The relative risk of lung cancer is then, using the previous 
methods, 0.96 t 0.74 = 1.30. Although the final result seems plausible, the 
intermediate steps are insane because of the nature of the design. In fact, 
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TABLE 3-8 Lung Cancer and Smoking 

Cases Controls Total 

Total 684 1,332 2,016 

lung cancer is much rarer than we have made it out to be; the controls 
without cancer are sampled from a much larger population of healthy folks 
than are the cases. 

Although we cannot calculate from these data an actual risk of getting 
lung cancer, we can frame things in a different way. We begin with the cases 
and playa gambling game, asking the odds that this person was exposed to 
the suspected carcinogen. When a gambler says that the odds of a candi- 
date's being elected are 1 :4, he is saying that the probability of his being 
elected is one-quarter that of his not being elected, and sincethese probabil- 
ities add to one, a little mental arithmetic shows that the probabilitythatthis 
candidate will be elected is 20 percent Similarly, the odds that an individual 
with lung cancer was exposed to tobacco are A/C = 659125 = 26.4; and the 
odds that an individual in the control group was exposed is BID = 9841348 
= 2.83. The relative odds of lung cancer from tobacco exposure are then: 

Relative Odds = 
Odds of exposure for cases - A/C -- 
Odds of exposure for controls BID 

I DIAGNOSTIC TESTS 
The twentieth century has seen dramatic changes in disease patterns in 

the Western world. Since the advent of effective antibiotics, vaccines, and, 
perhaps most important, adequate nutrition and sanitation, most people in 
industrialized countries can look f o m r d  to a full life. Our present preoccu- 
pation is with chronic, lifestyle-related diseases for which there are unlikely 
to be any "magic bullets" in the foreseeable future. 

One result of these changes is that epidemiologists have moved away 
from their historical roots in the study of epidemics to such diverse activities 
as the study of occupational risks or trials of therapeutic agents, in order to 
maintain employment. (One result of this shift in employment patterns is 
that books such as this are now required to tell health professionals what 
epidemiologists do.) 

However, thanks to a new infectious disease, AIDS, that has all the 
devastating characteristics of the traditional scourges of mankind like 
cholera and the black plague, epidemiologists find themselves the center of 
attention at cocktail parties. We need not devote any space in this section to 
describing the natural history, prevalence, modes of transmission, or risk 
factors of AIDS -these are taught to elementary school students. However, 
we will use this disease as an instructive example of a measurement 
problem, the application of diagnostic tests. 

There are now two high-risk populations for AIDS-homosexuals 
because of sexual contact and street drug users because of the sharing of 
contaminated needles. Before the advent of adequate screening tests, there 
was a third high-risk segment - people requiring blood transfusionsfor any 
reason. In particular, a significant number of hemophiliacs acquired AIDS 
as a result of their exposure to large numbers of transfusions. However, 
since 1985 all blood products are routinely screened for AIDS using the 
enzyme linked immunosorbent assay (EUSA) test 

As diagnostic tests go, U S A  is a very good one indeed. This is fortunate, 
because the consequences of the test are severe. If an individual has AIDS 
antibodies, there is at least a 30 percent chance of developing the disease, 
and AlDS has nearly a 100 percent mortality. ,The consequences of a false 
positive are also severe. If we tell someone helshe has antibodies when this 
isn't the case, we are causing massive anxiety and lifestyle changes. Con- 
versely, if we miss blood products containing antibodies, the chance of 
infecting someone is high. 

Let us examine the performance of this test in two populations: (1) in a 
homosexual population, in which the prevalence of AlDS antibodies is 
about 50 percent, and (2) in routine screening of blood donations, in which 
the prevalence of antibodies is about 0.2 percent. 

TRUE POSITIVE, FALSE POSITIVE, TRUE NEGATIVE, AND 
FALSE NEGATIVE RATES 

Let us imagine that the W S A  test is being used as a diagnostic test for a 
high-risk population, e.g., homosexuals in New York City. Actual figures for 
this group indicate that the prevalence of the AIDS antibody is about 50 
percent 

To examine the test performance, we could screen a group of individuals 
and compare the test.result with their true status. Truth isn't easy to come 
by, but in this case there is a more expensive, but virtually perfect test called 
the Western blot test We could take samples from the group and perform 
both tests on the samples. If we were to screen 1,000 individuals with the 
test and compare the test result to the "gold standard," the results would be 
similar to those found in Table 3-9. 
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s ~ p l =  -a Rraults O~..ELISA vs Western B I O ~  Test In Screening of 
~nmqsexuals from New York Clty 

Gold Standard (Western Blot) 

SENSlTlVlN AND SPECIFICITY 
! Another way of describing the test's characteristics has its origins in the ! biochemistry laboratory. We speak of sensitivity- how sensitive the test is 

at detecting disease-and specificity- how good the test is at rejecting 
samples that are not diseased. Let's use the data from Table 3-9. 

The test sensitivity is a measure of the test's ability to detect people with 
I 
! the disease, and is measured as follows: 

No 
Antibodies Antibodies Total 

Sensitivity = Number with disease who have a positive test 
Number with disease 

Total 508 492 1,000 

The characteristics of tests are usually described in terms of the letters 
(A, B, C, D) in the four cells of the table. One way of describing the test's 
performance is as follows: 

People with positive test and disease 
True Positive Rate = 

a All people with disease 

= A/(A + C) = 4981508 
= 98.03 percent 

False Negative Rate = 
People with negative test and disease 

All people with disease 

= C/(A + C) = 101508 
= 1.97 percent 

People with negative test and no disease 
True Negative Rate = 

All people without disease 

= D/(B + D) = 4881492 
= 99.1 9 percent 

People with positive test and no disease F e e  Posithre Rate = 
All people without disease 

= B/(B + D) = 41492 
= 0.81 percent 

I 
i 
I = A/(A + C) = 4981508 

I = 98.03 percent 
I 

i Conversely, the test specificity measures the ability of the test to correctly 

/ identify people who do not have the disease, and is measured as follows: 

Specificity = Number without disease who have a negative test 
Number with disease 

= D/(B + D) = 4881492 
= 99.19 percent 

As you can see, sensitivity is the same as true positive rate, and specificity 
is the same as true negative rate. 

1 POSITIVE AND NEGATIVE PREDICTIVE VALUE 

The descriptions thus far give some picture of the characteristics of the 
test. However, the denominator for both sensitivity and specificity assumes 
some knowledge of the true state of affairs, since it is based on people who 
do or don't have the disease. Clinicians rarely have the luxury of a "gold 
standard; if they did, they wouldn't be doing the test Putting it another way, 
assume you are about to advise someone who has just received a positive 
UISA. Do you tell the individual that he/she has AIDS antibodies? What is 
the chance that someone with a positive ELlSA does not have antibodies? 
These probabilities are embodied in the concepts of positive predictive 
value and negative predictive value, in which the denominators are 
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based on people with positive and negative tests. Again using the data from 
Table 3-9, these values are measured as follows: 

Positive Predictive Value = 
People with positive test and disease 

All people with positive test 

= A/(A + B) 
= 4981502 
= 99.20 percent 

People with negative test and nodisease Negative Predictive Value = 
All people with negative test 

= D/(C + D) 
= 488/498, 
= 97.99 percent - 

RELA'I'IONSHIP BETWEEN PREVALENCE AND 
PREDICTIVE VALUE 

The data we have presented so far give a fairly encouraging picture of the 
ELlSA test. If someone has a positive test, we can be 99.2 percent certain 
that person really has AlDS antibodies. However, the calculations were 
based on a situation where the prevalence of antibodies was high (about 50 
percent). In different circumstances the picture may not be as rosy. For 
example, experience in screening blood donations has shown that the 
prevalence of AlDS antibodies is actually closer to 0.2 percent. As pointed 
out over 3 decades ago, this change in prevalence may drastically affect the 
usefulness of the test 

Working out a new contingency table (as in Table 3-9) we now have a 
prevalence of 0.2 percent; two people out of the 1,000 will have antibodies, 
and 998 will not. Because the prevalence is so low, imagine screening 
1,000,000 units of blood, of which about 2,000 will have antibodies 
(whether we use 1,000 samples or 1,000,000 does not affect the results at 
all, it just eliminates decimal points during the calculations). Since the test 
has a sensitivity of 98.0 percent, 0.98 X 2,000 = 1,960 persons will test 
positive with EUSA (cell A) and 40 will test negative (cell C). Now there will 
be 1,000,000 - 2,000, or 998,000 normal unitsof blood. We know from our 
previous data that the specificity of the test is 99.2 percent; there will be a 
total of 0.992 X 998,000 = 990,016 normal unitsthat test negative (cell D). 
Conversely, there will be 998,000 - 990,016 = 7,984 noma] units of blood 
that have positive EUSA tests (cell C). The new data appear in Table 3-10. 

Measurement with Categorical Variables 83 

I 
TABLE 3-10 Prevalence of AIDS per 1,000,000 Units of Blood 

Gold Standard (Western Blot) 

No 
Antibodies Antibodies Total 

I Total 2,000 998,000 1,000,000 

If we now recalculate the predictive values, they look like this: 

Positive Predictive Value = 1,96019,944 
= 19.7 percent 

Negative Predictive Value = 990,0161990,056 
= 99.99 percent I 

The picture is now very different than in the first situation. If a person has a 
negative test, there is virtual certainty that he/she truly is AIDS-negative. 
However, a positive test is nearly uninterpretable because more than 80 
percent of the positive test results come from people who don't have 
antibodies! 

In actual practice any blood that tests positive is sent for a repeat EUSA 
and a Western blot test. If EUSA remains positive and the Westem blot is 
negative, the blood is discarded but the donor is not told. If they are both 
positive, the donor is informed and contacts tmced. 

Thus in general, the prevalence of disease has a profound effect on the 
usefulness of a test. If the prevalence is tow, the positive predictive value of 
the test is low and the negative predictive value high. Conversely, if the 
prevalence of disease is very high, the negative predictive value is low but 
the positive predictive value is high. 
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BAYES THEOREM 

In the previous discussion we calculatedthe probabilitythat a person with 
a positive EUSA had AIDS antibodies, given known data about the preva- 
lence of antibodies and the characteristics of the test. However, we had to 
take a roundabout route by calculating a new contingency table (see Table 
3-10) and then working out the appropriate values. There is an algebraic 
shortcut, called Bayed theorem, that. permits this calculation directly. To 
do the calculation, we will also introduce some new symbolsthat frequently 
appear in the epidemiologic literature: 

P(D) = Probability of disease before the test 
= Prevalence = 0.2 percent 

P(T+ 1 D) = Probability of positive test given the disease 
= Sensitivity = 98.0 percent 

P(T+ I D) = Probability of positive test given no disease 
= (1 - Specificity) = 0.8 percent 

P(T- ( D) = Probability of negative test given the disease 
= (1 - Sensitivity) = 2.0 percent 

P(T- I 5) = Probability of negative test given no disease 
= Specificity = 992  percent 

According to Bayes' theorem, the probability of disease given a positive 
test, P(D ( Ti) (i.e., the positive predictive value), is as follows: 

- - 0.2 X 98 - --- - 19.7 percent 
(0.2 X 98) + (0.8 X 99.8) 99.44 

A similar calculation could be done to get the negative predictive value. 
Bayes' theorem can also be used in an iterative fashion. If we had a situa- 

tion involving a series of labomtory tests, we could now calculate the post- 
test probability for the second, third, and subsequent tests. In each case we 
would, use the calculated posttest probability from the previous test as the 
pretest probability for the calculation of the next test. 

RECEIVER OPERATING CHARACTERISTIC CURVES 

One measure that is frequently employed for evaluating the effectiveness 
of diagnostic systems is the receiver operating characteristic (ROC) 
curve. Particularly popular in mdiology, it has roots in electrical engineering 
and psjchophysics. 

Imagine a laboratory test that has continuous values, such as cardiac 
enzymes, and consider the problem of attempting to find an appropriate 
cut-point where any value above the point is considered a positive (i.e., 
indicative of myocardial infarction), and any point below is considered 
negative or normal. If we set the point too high, we will miss a number of 
mild myocardial infarctions, but will avoid false positives. Conversely, a 
point set too low will catch all the myocardial infarctions at the cost of filling 
cardiac care unit beds with normal (non-myocardial infarction) patients. , 
This situation is illustrated in Figure 3- 1. 

As we move the cut-point from right to left, we will initially pick up true 
positives and few false positives. However, as we pass the center of the 
myocardial infarction distribution, the rate of pickup of the false positives 
will increase, and the true positives decrease, to the point that nearly all the 
increase is false positives. Plotting the true positive rate on the Y-axis and the 
false positive rate on the X-axis, we generate the ROC curve, as in Figure 
3-2. 

The ROC curve has some interesting features. First, we note that a perfect 
test would pick up only true positives at first, then after the true positive rate 
is 100 percent, only false positives; this describes a curve going vertically 
along the Y-axis and then horizontally along the top. Conversely, a useless 
test picks up both true and false positives at the same rate, and traces out a 
line at 45 degrees. The extent to which the ROC curve "crowds the comer" 
is a measure of the value of the test. This is measured by the area between 
the curve and the 45 degree line. Second, the best cutoff to minimize overall 
errors occurs when the tangent to the line is at 45 degrees; displaying the 
data this way therefore permits a rational selection of cutoff. The advantage 
of the ROC approach is that it permits a clear separation between the 
intrinsic value of the test, a s  captured in the area under the curve, and the 
errors associated with an inappropriate choice of cutoff. 

Normal t M.I. 
CUT POINT 

Figure 3-1 Determining the cut-point ot a test tor myocardial intamtion. 
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Flgure 3-2 ROC curve. 

As yet we have not considered any measure of the overall accuracy of the 
test. One approach that is very straightforward is to simply sum up the 
numbers on the diagonal of the table, cells A and D, and place them over 
the total of all cells. Let's use the data from our two AIDS examples (Tables 
3-9 and 3-10). 

The overall accuracy of the test, based on data from Table 3-9, is (498 + 488)/1,000 = 98.6 percent. For the lower prevalence situation in Table 
3- 10, the accuracy is (1,960 + 990,016)/1,000,000 = 99.198 percent. 
Even though the test is much less useful in the low prevalence case, the 
accuracy has improved, since the huge numbers of true negatives have 
predominated in the calculation of accuracy. Because of the possibility of 
misleading results from this approach, most assessments of accuracy are 
performed by correcting for chance agreement using a statistic called 
Cohen's Kappa. 

CHANCE CORRECTION USING COHEN'S KAPPA 

As we have just seen, the likelihood of agreement between a test result 
and a "gold standard" is affected by the prevalence of disease. In the 
extreme case we could consider the application of a clinical sign, right- 
handedness, to a classical "disease" of Victorian times - self-pollution, or 
masturbation. Right-handed people are in the majority with about 90 per- 
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TABLE 3-11 Prediction of Depresslon from Test Results 

Depression 

Present Absent 

positive 25 

Test Results 

Negative 

cent of the population. If we are in a population where everyone does "it," 
the test will be right 90 percent of the time, without conveying any informa- 
tion whatsoever. 

To avoid this trap it is desirable to correct for chance agreement. Taking a 
little less extreme example, consider the data in Table 3-1 1, which predict 
depression as  diagnosed by expert interview using DSM-Ill criteria, from a 
selfcompleted questionnaire. 

The accuracy, as  determined before, is (A + D)/N = (1 8 + 63)/100 = 81 
percent. What agreement would we expect by chance? Chance means that 
there is, in fact, no association between the two variables. Consider first the 
A cell. We know that on the average 30 percent of all people in the sample 
have depression, or 30 people. If there is no association between the two 
variables, we would expect that the same proportion of people with and 
without depression would have a positive test, simply equal to the overall 
proportion of positive tests, or 25  percent. So by chance, 25  percent of the 
30 depressed people, or 7.5 people, would be in cell A Similarly, there 
should be 7 5  percent of the nondepressed people, or 52.5 people, in cell D. . 
The agreement expected by chance is (7.5 + 52.5)/100 = 60 percent We 
actually observed 81 percent. It's not necessary to figure out the numbers in 
cells B and C because we don't use them in the calculation. The chance 
corrected agreement, called Kappa, is defined as: 

Observed agreement - Agreement by chance - 0.81 - 0.60 
Kappa = - 

1.0 - Agreement by chance 1.0 - 0.60 

As a result, the agreement corrected for chance has been reduced from 81 
percent to 53 percent 
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MEASUREMENT WITH CONTINUOUS VARIABLES 

Historically, epidemiology was concerned with the distribution in time 
and place of disease epidemics; in more recent times clinical epidemiology 
has focused on the testing of therapies directed to prolonging life by 
reducing the incidence of such catastrophic events as heart attacks and 
strokes. In these situations the unit of analysis is the case of disease or 
death, and mkasurement issues focus on the verification of presence or 
absence of disease. 

However, physicians and epidemiologists are increasingly coming to 
recognize that, for many diseases, there is little to be gained in quantity of 
life from foreseeable advances in biomedicine and there is much more 
potential for gain in quality of life. Innovations such as palliative care and 
geriatric medicine are explicitly not directed to the cure of disease or 
extension of life; rather, they are an attempt to improve the quality of life. 

From the perspective of epidemiology, research in this area presents new 
measurement challenges. The measurement of quality of life is a new 
science; different methods proliferate, and seldom yield the same results. 
There is possibly more error of measurement than might be expected in 
categorical measures like diagnosis. Conventional approaches to evalua- 
tion of measures, such as comparison with a "gold standard," are inappli- 
cable, because no such criterion currently em'sts, and no clinical equivalent 
of the autopsy or biopsy will ever be available. Epidemiologists must 
acquire new skills, borrowed from such disciplines as psychology, educa- 
tion, and economics, in order to understand and contribute to the 
development of these measures. 

With rare exceptions, these outcomes are based on continuous 
measurement, originating in rating scales or checklists completed by 
observers or patients. Approaches to the measurement of association with 
these measures involve unfamiliar concepts like reliability and construct 
validity. Usually analysis is conducted using parametric statistics, which 
assume an interval level of measurement, and normal (bell-shaped) dis- 
tributions. This section briefly reviews some of these concepts. We are not 
trying to be comprehensive; instead, we will recommend additional read- 
ings for readers who wish to venture further. 

MEASURES OF ASSOCIATION 

To examine the issues of measurement with continuous variables, we will 
use an example from rheumatology. The issues here are prototypical of the 
issues we raised in the beginning of this discussion. The diseases of 
rheumatology- rheumatic arthritis, osteoarthritis, ankylosing spondylitis, 
and lupus - are rarely fatal, but often are severely incapacitating because 
they inflict pain, deformity, and dysfunction on their victims. To examine the 
efficacy of their therapies, rheumatologists have developed a large number 

Measurement with Continuous Variables 89 

of measures of disease seventy. Some emerge from the laboratory, such as 
erythrocyte sedimentation rate and rheumatoid factor, but appear to have 
little relationship with clinical measures of function. Some appear to be 
"objective" clinical descriptions of disease process, such as counts of 
involved joints or erosion counts (from observations of bone erosions on 
hand roentgenograms) and walk times. On closer scrutiny, however, these 
objective descriptions appear to have a great deal of variation among 
observers and relatively little relationship with measures of the patient's 
function. Finally, some measures are based on the patients' own assess- 
ment of their function and health, and run the gamut from a simple 10 cm 
line (called a visual analog scale, presumably to obscure its simplicity) on 
which the patient puts a mark to indicate his perceived health, to indices of 
function containing tens or hundreds of questions. 

To make sense of this potpourri, it is essential to review empirical 
evidence that the measures are doing what was intended by their makers. 
When these questions are examined, the evidence falls into two broad 
classes. The researcher assessing reliability asks whether the measures 
are giving the same answer over different situations (e.g., different 
observers or the same observer on two occasions separated bya short time 
interval). The researcher studying validity asks whether the measure is 
assessing what is intended. Does the index of function related by the patient 
really assess function, or is the score related to the patient's mood, social 
status, or whatever? 

Because the measures are continuous, we cannot simply place the data 
into a 2 X 2 table as we used before. (We could do this, but the shoehorn a d  
comes at an awful cost of loss of information, e.g., any height above 
5'6" [ 168 cm] is classified as tall.) Instead we must measure the degree to 
which an individual who is high on one measure or occasion is high on a 
second measure or occasion, and the converse. The methods to develop 
these measures are explored further in the next discussions. 

PEARSON CORRELATION 

By far the most common measure of association for contihous vari- 
.ables is the Pearson product-moment correlation. It was invented in the 
early 1900s by one of the founders of modern statistics. The correlation is 
based on the idea of fitting the data by a straight line, as ill.ustrated in Figure 
3-3. 
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Sedimentation Rate 
Figure 3-3 Association between erythrocyte sedimentation rate and a measure of active joints 
in patients with rheumatoid arthritis. 

( 

The Pearson correlation is a number between -1 and +l. It equals 0 if 
there is no relationship, and 1 if there is a perfect linear (stmight line) 
relationship. There is one minor addition: if the slope is negative, that is, if 
the joint count decreases with increasing sedimentation rate, the correla- 
tion is preceded by a minus sign. Therefore a perfect negative relationship 
has a correlation of -1. Pearson correlations of various sizes are pictured in 
Figure 3-4. 

As you can see, the more the individual points deviate from the straight 
line, the lower the correlation. With a perfect correlation (+1 or -I), all the 
points fall on the line. It should be evident from Figure 3-4 that a correla- 
tion of 0.8 indicates a fairly good association. Conversely, a correlation of 
anything less than 0.3 is hardlyworth the excitement, statistically significant 
or not. 
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Flgum 3-4 Correlations of various sizes. A ,  r = 1; B, r = 0.9; C, r = 0.5; 0, r = 0. 

INTRACLASS CORRELATION 

The Pearson correlation is a perfectly appropriate measure of association 
to express the degree of linear relationship between two variables. However, 
under certain circumstances we demand a more stringent measure of 
association. This situation usually arises in the measurement of agreement 
between observers, when we don't simply want assurance that a patient 
scoring high by one observer will also be scored high by the other observer; 
we want to be sure that the observers are actually giving similar numbers. 

Suppose we recruited two rheumatologists to examine hand joints an a 
series of patients with rheumatoid arthritis and work out the total number of 
inflamed or swollen joints (Fig. 3-5). It could happen that one observer set 
very much lower thresholds for what he chose to call "inflamed" than the 
other, so that for every patient his total was exactly two more (i.e., if one 
observer said 12 joints, the second said 10, and if one said four, the other 
said two). 
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Observer 1 
Flgure 3-5 The number of hand joints judged as Inflamed by two rheumatologists for varlous 
patients. 

The Pearson correlation simply demands that there is a strong associa- 
tion between the raters - the highest scoring patients for Observer 1 are 
also the highest for Observer 2, and the lowest for Observer 1 are the lowest 
for Observer 2. Since this is the case and the points all lie exactly on a 
stmight line, we would get a Pearson correlation of +l .  However, by most 
standards the agreement is terrible; the observers never give the patient the 
same count. 

To get around this problem, the Pearson correlation has been replaced in 
most circles by the intmclass correlation (ICC). The intraclass correla- 
tion is still expressed as a number between 0 and 1; however, the ICC 
measures not only the association between the raters, but also the 
agreement 

Although much is made of the difference between association and 
agreement and the relative advantages of the intraclass correlation overthe 
Pearson correlation, in most real-world situations the major variability in the 
data is from apparently random error. Under these circumstances the two 
measures give identical results. Furthermore, if we treat a 2 X 2 table as  a 
series of points having values of (1,1), (0,0), (1,0), or (0,1), the intraclass 
correlation and Kappa yield identical results. For once we can get conver- 
gence among differing approaches. 
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RELIABILITY 

Reliability is, as we indicated, a measure of the extent to which a measure 
is reproducible, or gives the same results, over different situations (e.g., 
different observers or different days). However, this reproducibility is defined 
in a very special way by comparing the variability across situations (error 
variance) to the true variability among patients (patient variance). The 
reliability coefficient is defined as follows: 

Reliability = Variance due to patients 
Variance due to patients + Error variance 

In other words, the reliability expresses the proportion of the variability in 
the measures that is caused by true variability among patients. The 
implication of this definition is that if the patients we are studying are truly 
homogeneous with respect to the attribute of interest, the reliability of the 
measure will be near 0; conversely, if there is great variability among 
patients, there will likely be higher reliability. The reliability is a measure of 
the extent to which we can differentiate among patients on a particular 
attribute. 

Although this definition is a bit hard for egalitarian folks to accept, it rests 
on the simple premise that the goal of measurement is to distinguish 
among people on a particular attribute. If all the people in the population 
have the same value of a particular quantity, why bother to measure it? 
Simply assume that the next person will have that value too. 

It is not too difficult to demonstrate that the phenomenon is completely 
analogous to the discussion about the effect of prevalence on the perfor- 
mance of a diagnostic test. Reliability is like the chance corrected accuracy 
of a test If the prevalence of disease drops, this is analogous to the patient 
population becoming more similar, and the reliability of the continuous 
measure and the accuracy of the test both fall. 

There are some other terms usually associated with reliability, most of 
which are selfexplanatory. Intembserver reliability examines the degree of 
agreement among different observers. Test-retest reliability involves 
administering a test or measure to a group of patients on two different 
occasions and examining the correlation. Split-halves reliability is used in 
longer tests, and involves splitting the test items into two halves at random 
and examining the correlations between subscores from the two halves of 
the test. 

There are a number of other specific forms of reliability, but this should 
give you the idea. 

VALIDITY 

FACE AND CONTENT VALIDITY 

Having demonstrated that a measure is reproducible, it remains to be 
shown that it is measuring what is intended. Sometimes this is straightfor- 
ward and noncontroversial; for example, to showthat a mercury manometer 
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is measuring blood pressure validly, one might compare blood pressure 
values obtained this way with direct measures of arterial blood pressure. 

More frequentlythe situation is not so straightforward. How do you dem- 
onstrate that your new measure is really assessing self-concept, illness 
behavior, locus of control, or quality of life? One way is to argue that it 
measures trait X because trait X is what it measures, an argument that is 
invoked in a variety of forms for the measurement of intelligence. However, 
this approach is a little circular; a variation on the theme that is a little less 
egocentric is to approach a group of experts and ask them whether the 
measure looks like a reasonable measure of the concept as they under- 
stand it. This approach is termed face validity. You could also ask them if 
the measure appears to contain all the important concepts, behaviors, and 
elements of the concept If the answer is "yes," you have also attained 
content validity. 

There are better approaches to the measurement of content validity. For 
example, you might observe patients to'see behaviors, interview them or 
review records, or base the instrument on previous reported measures. All 
of these strategies are appropriate to ensure that the measure contains the 
desired content However, in the final analysis the assessment of face and 
content validity is, with rare exceptions, based on the opinion of experts. 
Since "old boy" networks are the norm in most academic disciplines, in that 
we associate with people who thinklike we do (i.e., correctly), these must be 
regarded as weak tests of validity. 

CRITERION VALIDITY 

As we indicated, measures of validity based on expert judgments are 
regarded in general as  weak tests of validity. Perhaps the strongest 
approach to validity is the assessment of criterion d d t y ,  which involves 
comparison with a "gold standard." In turn, this is divided into two forms 
that differ only in time. If the comparison is made at the same time (i.e., both 
measures are administered together) the approach is called concurrent 
validity. If the measure is used to predict future status, such as  confirma- 
tion of a disease at autopsy or admission to hospital, it is called p d c t i v e  
validity. The index of criterion validity is most often a correlation coefficient 
between the scores on the new test and on the old (or predicted) one. 

The comparison of blood pressure reading with a mercury sphygmo- 
manometer with arterial blood pressures is an example that highlights both 
the use of a "gold standard" and the reason for developing a new measure, 
namely, reduced cost or risk However, such true "gold standards" are 
difficult to come by, and one is frequently left in the situation of comparing 
the new measure with another better accepted, but arguably inferior 
measure of the same attribute. One example of this is the measurement of 
depression. Although new measures proliferate, nearly all are compared 
with one of two scales -the Beck Depression lnventory or the CES-D scale. 
Since both standards are short and cheap, the only reason todevelop a new 
measure is that it will be better; however, this is difficult to prove by simply 
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comparing with existing measures. Under these circumstances the 
m d  correlation of the two measures should be high, but one would not 
anticipate correlations too close to unity; if it were nearly 1 .O, the two tests 
are measuring almost exactly the same thing and there is little reason to 
develop the new one. 

CONSTRUCT VALIDITY 

Probably the most frequently applied, but poorest understood measure 
of validity is called construct validity. It is used in circumstances in which 
there is no other measure of the attribute under study. Instead of testing the 
relationship between the new measure and some other measure of the 
same thing, we invoke a theoretical construct that describesthe relationship 
between the attribute under scrutinyand other attributes. Wethen examine 
the relation between these two measures, and if it is in the expected 
direction, we have evidence that both the measure and the hypothetical 
construct were right. However, if there is no relationship between the two 
measures, we have no way of determining whether our measure or our 
theory was wrong. 

For example, if we are developing a measure of quality of life of patients 
with rheumatoid arthritis, we might hypothesize that the measure is strongly 
related to measures of function like morning stiffness or walk time, and 
relatively poorly related to measures of disease process like joint counts or 
sedimentation rate. Further, since we would hope that it is a relatively pure 
measure of the effect of the particular disease on perceived quality of life, we 
may further hypothesize that scores are uncorrelated with measures of 
depression. Finally, we can examine hypotheses about differences between 
groups, for example, that inpatients are likely to score poorer than 
outpatients. 

It is evident that in the construct validity game there is no single study or 
hypothesis that clinches the case. Some hypotheses will be right and some 
will be wrong. Rather, the judgment of validity depends on the weight of the 
evidence being in the expected direction. 

MEASUREMENT BIAS 

In the previous section on research methodology we described how 
incorrect conclusions may result from design flaws. Biases such as  the 
Berkson's or Neymann bias can yield estimates that are systematically 
higher or lower than the true value. 

Unfortunately, research design errors are not the only source of bias. 
Large distortions can result from biases in measurement There are innu- 
merable sources of measurement bias; many psychologists have made 
careers out of cataloging how people can be induced to distort their 
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estimates one way or another. One of the most disturbing examples derives 
from choices resembling the following: 

"You are responsible for the care of 100 patients who have a fatal 
disease. You are given a choice between two drugs: Drug A has a 60 
percent chance of saving everyone; Drug B will save 60 of the 100 
patients. Which will you choose?" 

Under these circumstances, most subjects choose Drug B. However, the 
question can be framed in the logically equivalent way 

"You are responsible for the care of 100 patients with a fatal disease. 
You are given a choice between two drugs. Drug A has a 40 percent 
chance of killing all of the patients. Drug B will result in the death of 40 
of the 1.00 patients. Which will you choose?" 

When the question is framed in this way, most respondents choose Drug 
A Obviously the way a question is asked can lead to radically dierent 
responses. There are many other ways that data can be willingly or unwill- 
ingly distorted by unsuspecting investigators. Our purpose will be served by 
illustrating a few. 

However, before we illustrate a few different kinds of bias, let's distinguish 
between two concepts- bias and random error. Bias is a systematic 
deviation from the correct value of a particular variable. The effect of bias is 
to distort the estimate of that variable, for example, to increase the sample 
mean or decrease the prevalence of some trait. In random emr, on the 
other hand, there is also a deviation from the true value, but because it is 
random the deviation sometimes adds to the estimate and sometimes 
takes from it. In the long run (i.e., with a lot of subjects) these deviations 
cancel each other out. The effect is to increase the variability of the scores, 
but random error does not affect the estimate of the variable. For this 
reason random error can be dealt with by statistics. Since bias is a 
consistent distortion from the true value, it cannot be corrected by any 
statistical manipulation, and thus is more insidious. 

DIAGNOSTIC SUSPICION BlAS 

Under certain circumstances the rate of occurrence of a diagnosis can 
depart fmm expectations simply because of an enhanced index of suspi- 
cion on the part of the diagnostician. This bias may be highly individualized 
and short term. One welldocumented bias of individuals is illustrated by the 
clinical anecdote that goes something like this: "The funniest thing hap  
pened. Saturday night in the ER 1 diagnosed the first case of Somaliland 
Camelbite Fever I've seen in 20 years. This week I saw four more cases in 
my ofice. There must be a real epidemic going around!" A more likely 
explagation is the availability bias. The one case in the El? is readily 
available in memory, and is likely to be recalled when anything similar 
comes along. 
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A more long-term and widespread diagnostic suspicion bias is the syn- 
dromesyndrome. Overthe decades it is easy to show how the popularity of 
certain diseases has waxed and waned. In the 1920s a common syndrome 
was "self-pollution", or masturbation. The clinical syndrome was well des- 
cribed, and there were literally institutions filled with depraved little self- 
uolluters. In fact, W.K. Kellogg ran a sanatorium for these lost souls in Battle 
creek. 

Lest you feel this is a perversion of the early days of medicine prior to the 
advent of sophisticated diagnostic procedures, there are many current 
examples. Alzheimer's disease has apparently reached epidemic propor- 
tions. Some of the increased incidence is a result of better diagnostic tools 
and more old people around to get it. Nevertheless the syndrome was first 
described in the early 1900s. Presumably, until recently doddery old ladies 
were simply passed off as doddery old ladies. Now, if anyone over 65 forgets 
where they left their car keys, Alzheimer's is the first diagnosis to spring to 
mind. 

We also alluded to the ureaformaldehyde foam insulation (UFFI) issue 
earlier. The interesting tale about ClFfl is that it was installed for several 
decades in Europe prior to its arrival in North America. Once here, relatively 
few problems arose until the media announced all the lethal consequences 
of the stuff. Following that point physicians everywhere were diagnosing 
anv number of complaints, from headaches to ingrown toenails, as result- 
ing from Urn poisoning. . 

In the Preface we mentioned one study in which physicians "found" 
tonsillitis requiring surgery in about 45 percent of kids, even when two other 
sets of ~hvsicians declared the kids clean (or at least not ill). Here again, the --.- - 

exp&ti;n of finding a disorder biased what was seen. 

SOCIAL DESIRABILITY BlAS 

Personality psychologists now routinely include a social deshabiity 
scale in many of their measures. The notion is that people, when asked 
sensitive questions about, for example, alcohol consumption or sexual 
practices, will consciously or unconsciously bias their responses toward the 
socially acceptable answer. If the bias is deliberate and conscious, it is called 
"faking good," and if unconscious, "social desirability." In either case the 
results are the same -an underestimate of the true prevalence of undesir- 
able behaviors. 

Several techniques have been developed to detect the presence of social 
desirability and to fuc it if present Many psychological scales contain 
imbedded social desirability scales; for example, only saints can truthfully 
answer "true" to the statement "I have never stolen anything." Alternatively 
methods such as the random response technique are designed to elicit 
better measures of the prevalance of unacceptable behaviors. 
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C.R.A.P. DETECTORS 

C.R.A.P. DETECTOR 111-1 

Question An investigation of the usefulness of exercise ECGs was con- 
ducted using patients who had been admitted to a coronary care unit 
(CCU).The ECG was compared with findings from coronaryangiogmphy- 
a very expensive and risky procedure. For obvious reasons the researchers 
had difficulty recruiting a large number of "normal" subjects to undergo 
angiography. So they took 80 men off the street, did ECGs on them (which 
were normal of course), assumed that they would have normal angiogmms, 
and added them to the negative ECG-negative angiogram category. The 
results looked very good indeed: sensitivity was 64 percent and specificity 
was 93 percent. Subsequent applications of exercise ECGs in ambulatory 
settings have shown that it is not what it was cracked up to be, and show a 
sensitivity of only 33 percent. Why does the discrepancy exist? 

Answer The authors did two things to ensure that the results would look 
favorable. First, the positive cases were chosen from a highly select group of 
men in a CCU with confirmed cardiac disease, so they were more extreme 
than the usual suspected arteriosclerosis. Second, the initial study had too 
high a prevalence of disease. By including the "normal" volunteers and, 
better still, assuming that they had normal angiograms, they succeeded in 
messing the base rates in their favor. 

Beware the "sample samba." By dancing around with prevalence, or by 
selecting extreme groups (e.g., phys. ed. students and 70-year-olds on their 
third myocardial infarction), anyone can make any test in the world look 
good. 

C.R.A.P. DETECTOR 111-2 

Question A recent reanalysis was conducted of the Blair et al. National 
Cancer Institute study of the occupational effects of formaldehyde on 
cancer. They were unable to show any significant relationship between 
formaldehyde level and lung cancer, but did demonstrate a relationship 
between job class and cancer. They concluded that the retrospective 
measurement of formaldehyde was too crude, and that blue collar workers 
suffered more lung cancer as a result of occupational exposure to 
formaldehyde. The study was not published (thank goodness!). Why? 

Answer The measurement of formaldehyde level may have been crude, 
but the use of job class as  a surrogate for exposure ignores the many other 
variablesthat go along with job class. First, blue collar workers smoke more, 
and smoking causes lung cancer. Second, lower social class folks suffer 
more disease of all types, and live less long than upper class folks. 

Correlation is not equal to causation. (See Assessing Causation). 

C.R.A.P. Detectors 99 

C.R.A.P. DETECTOR 111-3 

Question In a study of the causes of cervical cancer one potential cause 
under investigation was whether or not the man was circumcised. The 
researchers approached 166 males and asked whether they were circum- 
cised. This was then confirrned by a physical examination. Of the 44 men 
who said they were, 21 (48 percent) were not, and of the 122 men who said 
they were not circumcised, 50 (40 percent) were! Don't men know whether 
or not they are circumcised? 

Answer Self-report may be a lousy lab test. If an investigator is using 
self-report data, there should be some assurance (other than faith!) that the 
data are valid. 

C.R.A.P. DETECTOR 111-4 

Question For about two decades, patient management problems 
(PMPs) have been used as a component in the certification examination 
used to license physicians in Canada and the U.S. These are written 
simulations of a patient, on which the candidate selects options on history, 
physical, laboratory, and management and is rewarded (or punished) on 
the basis of the good options he selected and harmful options he avoided. 
Many studies demonstrated that candidates felt the method to be life-like 
(face validity), and care was taken to ensure that they were medically 
accurate (content validity). They have also been used a s  a measure of 
problem-solving skills. This was confirmed by a low correlation of PMP 
results with tests of knowledge, which suggested that they were measuring 
"something else" (construct validity). Can PMPs be considered to be good 
predictors of physician performance? 

Answer Recent studies showed a very low reliability of the scores, which 
suggests that the "something else" they were measuring was simply noise. 
Other studies showed that candidates do about twice as much of everything 
(such as ordering lab tests) on the written problem a s  they do in real life. 
Both licensing bodies have subsequently dropped the requirement for 
performance on PMPs. 

Face and content validity are poor substitutes for empiric forms of 
validity. Anyone can recruit some friends who will like hislher measure. The 
best test of validity is criterion-related validity. All others are relatively weak 
approximations. 
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