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7.2.4 Profile likelihood 
I 

I 
In those instances where they exist, marginal and conditional 
likelihoods work well, 'often with little sacrifice of information. 
However, marginal and conditional likelihoods are available only 
in very special problems. The profile log likelihood, while less 
satisfactory from several points of view, does have the important 
virtue that it can be used in all circumstances. 

Let be the maximum-likelihood estimate of A for h e d  #. 
This maximum is assumed here to be unique, as it is for most 
generalized linear models. The partially maximized log-likelihood 
function, 

lt(#; Y) = I(#, A,; Y) = supl(#, A; Y) 
X 

is called the profile log likelihood for 9. Under certain conditions 
the profile log likelihood may be used just like any other log 
likelihood. In particular, the maximum of lt(#; y) coincides with 
the overall maximum-likelihood estimate. Further, approximate 
confidence sets for # may be obtained in the usual way, namely 

1 
;; where p = dim(#). Alternatively, though usually less accurately, 
/I intends may be based on 4 together with the second derivatives 
11 of Zt(#; y) at the maximum. Such confidence intervals are often 
j j satisfactory if dim(A) is small in relation to the total Fisher 

information, but are liable to be misleading otherwise. 
Unfortunately lt(#; y) is not a log likelihood fynction in the 

usual sense. Most obviously, its derivative does not have zero mean, 
a property that is essential for estimating equations. In fact the 
derivative of lt may be written in terms of the partial derivatives 
of 1 as follows: 

The expression in parentheses is just dl (g, X)/dA evaluated at A,, 
and hence is identically zero. Under the usual regularity conditions 
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for large n, the remaining three terms are op(nlP), op(n1P) and 
OP(1) respectively. The @st term has zero mean but the remaining 
two have mean O(1) if A, is a+ consistent estimate of A. Their 
expectations may be idated if A, is not consistent. 

A simple expression for the approximate mean of alt/a# in terms 
of cumulants of the derivatives of 1 is given by McCullagh and 
Tibshirani (1988). 

In general, if the dimension of A is a substantial fraction of n, 
the mean of alt/a# is not negligible and the profile log likelihood 
can be misleading if interpreted as an ordinary log likelihood. 

It is interesting to compare the profile log likelihood with the 
marginal log likelihood in a model for which both can be calculated 
explicitly. The covariance-estimation model, considered briefly at 
the end of section 7.2.1, is such an example. The profile log 
likelihood for the covariance parameters 8 in that problem is 

lt(8; y) = - i log det E - 3&2(R), 

which differs from the marginal log likelihood given at the end of 
section 7.2.1 by the term l ~ ~ d e t ( ~ ~ ~ - ~ ~ ) .  Both the marginal 
and profile log likelihoods depend on the data only through the 
contrasts or residuals, R. The marginal log likelihood is clearly 
preferable to It in this example, because 2t is not a log likelihood. 
The derivatives of 2t, unlike those of the marginal log likelihood, 
do not have zero mean. 

The use of profile likelihoods for the estimation of covariance 
functions has been studied by Mardia and Marshall (1984). 

7.3 Hypergeometric distributions 

7.3.1 Central hypergeometric distribution 

Suppose that a simple random sample of size ml is taken from a 
population of size m.. The population is known to comprise s l  
individuals who have attribute A and s 2  = m. - s l  who do not. 
In the sample, Y individuals have attribute A and the remainder, 
ml - Y, do not. The following table gives the numbers of sampled 
and non-sampled subjects who possess the attribute in question. 



CONDITIONAL LIKELIHOODS 

Attribute - 
A A Total 

sampled Y = Yll ml - Y = Yl2 ml 
non-sampled sl - Y G Yzl m2 - sl + Y Y22 m2 

Total 81 32 m. = s. 
Under the simple random sampling model, the distribution of Y 
conditionally on the marginal totals m, s is 

The range of possible values for y is the set of integers satisfying 

There are min(ml, m2, sl, 32) + 1 points in the sample space. If 
a = b, the conditional distribution puts all its mass at the single 
point a. Degeneracy occurs only if one of the four marginal totals 
is zero. 

The central hypergeometric distribhtion (7.6) is denoted by 
Y H(m,s) or by Y N H(s,m). 

An alternative derivation of the hypergeometric distribution is 
as follows. Suppose that Yl B(ml,a) and Y2 N B(m2,n) 
are independent binomial random variables. Then the conditional 
distribution of Y = Yl conditionally on Yl + Y2 = 31 is given by 
(7.6). 

The descending factorial moments of Y are easily obtained from 
(7.6) as follows: 

where Y(') = Y (Y - 1) . . . (Y - r + l) ,  provided that r 5 
min(ml, sl). From these factorial moments we may compute the 
cumulants of Y as follows. First, define the following functions 
of the marginal frequencies in terms of the sampling fraction 
r = rnllm,. 
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! The first four cumulants of Y are 

Note that A, is the rth cumulant of the B(m,,rl) distribution 
associated with the sampling fraction, whereas K1, . . . , Kq, K22 
are the population k-statistics and polykay up to order four. 
Details of these symmetric functions are given in McCullagh (1987), 
Chapter 4, especially section 4.6. For large m, and for fked 
sampling fraction, the As are O(m.), whereas the Ks are O(1) 
for fixed attribute ratio, sl/sa. 

Note that the third cumulant of Y is zero if either K3 = 0 
or A3 = 0. In fact all odd-order cumulants are zero under these 
conditions and the distribution of Y is symmetric. 

7.3.2 Non-central hypergeometric distribution 

The non-central hypergeometric distribution with odds ratio $ is 
an exponentially weighted version of the central hypergeometric 
distribution (7.6). Thus 

where Po ($) is the polynomial in $, 

The range of summation is given by (7.7). This distribution arises 
in the exponentially weighted sampling scheme in which each of 
the (z;) possible samples is weighted proportionally to $g, where 
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y is a particular function of the sample. Here y is the number of 
individuals in the sample who possess attribute A, but in principle 
any function of the sample could be chosen. 

Alternatively, the non-central hypergeometric distribution may 
be derived as follows. Suppose that Yl N B(ml, nl), Y2 N 

B(m2, n2) are independent biiomial random variables and that 
$ = nl(l-n~)/{n2(l-nl)} is the odds ratio. Then the conditional 
distribution of Yl given that Y. = s l  is non-central hypergeometric 
with parameter $. For conciseness, we write Y H(m,s;$) to 
denote the conditional distribution (7.9). Note that Po(l) = (21, 
so that H(m, s; 1) is identical to H(m, s). 

An 'observation7 from the distribution (7.9) is often presented 
as a 2x2 table in which the marginal totals are m and s. The 
contribution of such an observation to the conditional log likelihood 
is 

Y log$ - 1% Po(@), 

where the dependence on m and s has been suppressed in the 
notation for the polynomial Po($). This log likelihood has the 
standard exponential-family form with canonical parameter '0 = 
log $ and cumulant function 

The mean and variance of Y are therefore 

where P,($) is the polynomial 

More generally, the moments about the origin are expressible as 
rational functions in $, namely 
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Unfortunately the functions ~ ~ ( 0 )  and ~ ~ ( 8 )  are awkward to 
1 compute particularly if the range of summation in (7.10) is exten- 

I sive. The following approximations are often useful. First, it is 
easily shown that, conditionally on the marginal totals, 

1 and, more generally, that 

(7) (r) E(Y$:)Y$)) = $'E(Y12 Yzl ). 

Hence, since E(Y11Yz2) = p11~22 + nz, we have 

where pll  = E(Yll; 0) , . . . are the conditional means for the four 
cells, and 6 2  is the conditional variance of each cell. Consequently 
we have the following exact relationship between 61 = ~ 1 1  and nz: 

In addition, the following approximate relationship may be derived 
from asymptotic considerations of the type discussed in section 
6.5.6: 

In addition to being asymptotically correct for large b - a, this 
expression is exact for m. = 2, the smallest non-degenerate value, 
and also for $ = 1, whatever the marginal codguration. 

The simultaneous solution to (7.11) and (7.12) gives a very 
accurate approximation to the conditional mean and variance 
provided that either 101 < 2 or the marginal totals are large: see 
Breslow and Cologne (1986). An equally accurate but slightly more 
complicated approximation is given by Barndorff-Nielsen and Cox 
(1979). 
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however, gives a simple exact relationship between the conditional 
mean vector pl of Y and the conditional covariance matrix X. 

Note that 
g j k  = COV(Y~~,  Ylk) = - COV(Y~~,  Y2k) 

t is negative for j < k. 
The covariance matrix Z of Yll,. . . , Ylk may be approximated 

quite accurately as follows. Define the vector C with components 
Cj given by 

The approximate covariance matrix 2 is then given in terms of C 
by 

9 = 5 {diag(~) - [ c T / ~  } . 
m, - 1 

(7.16) 

This matrix has rank k - 1. The simultaneous solution of equations 
(7.15) and (7.16) gives the approximate mean and covariance 
matrix of Y as a function of JI. 

7.4 Some applications involving binary data , 

7.4.1 Comparison of two binomial probabilities 

Suppose that a clinical trial is undertaken to compare the effect 
of a new drug or other therapy with the current standard drug or 
therapy. Ignoring side-effects and other complications, the response 
for each patient is assumed to. be simply 'success' or 'failure'. 
In order to highlight the differences between the conditional log 
likelihood and the unconditional log likelihood, it is assumed that 
the observed data are as shown in Table 7.1. For a single stand- 
alone experiment, the numbers in this Table are unrealistically 
small, except perhaps as the information available at an early 
stage in the experiment when few patients have been recruited. 
In the context of a large-scale multi-centre clinical trial, however, 
Table 7.1 might represent the contribution of one of the smaller 
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Table 7.1 Hypothetical responses in one segment of a clinical trial 

Response 

1 

centres to the study. It is in the latter context that the methods 
described here have greatest impact. 

We begin with the usual assumption that responses are indepen- 
dent and homogeneous within each of the two groups. Allowance 
can be made for the differential effect of covariates measured on 
individuals, but to introduce such effects at this stage would only 
complicate the argument. Strict adherence to protocol, together 
with randomization and concealment, are essential to ensure com- 
parability, internal homogeneity and independence. With these 
assumptions, the numbers of successes in each treatment -group 
may be regarded as independent binomial variables Yi N B(mi, r i) ,  
where 

For a single experiment or 2x 2 table, (7.17) is simply a re-paramet- 
erization from the original probability scale to the more convenient 
logistic scale. Implicit in the re-parameterization, however, is the 
assumption that the logistic difference, A is a good and useful 
measure of the treatment effect. In particular, when it is required to 
pool information gathered at several participating sites or hospitals, 
it is often assumed that X may vary from site to site but that A 
remains constant over all sites regardless of the success rate for the 
controls. 

In order to set approximate confidence limits for A, there are 
two principal ways in which we may proceed. The simplest way is 
to fit the linear logistic model (7.17) using the methods described 
in Chapter 4. Approximate coddence limits may be based on A 
and its large-sample standard error. For the present example this 
gives 

A = log (E) = 1.792, s . e . ( ~ )  = 1.683. 
1 x 1 

Total 
m 1 = 3  
rnz = 4 

m .  = 7 

Treatment 
Control 

Total 

Success Failure 
YI = 2 1 
Y2 = 1 3  

Y . = 3  4 
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Note that the large-sample variance of A is 

More accurate intervals are obtained by working with the profle 
deviance, 

D(y;A) = 21(A,fi) - 21(A,fiA) 

where f i ~  is the maximum-likelihood estimate of X for given A. 
This statistic is easy to compute using standard computer packages. 
For the data in Table 7.1, the'profile deviance is plotted in Fig. 7.1. 
The nominal 90% large-sample confidence interval, determined 
graphically, is 

Fig. 7.1 Graphical compaTison of hypergeometric and binomial deviance 
functions for the data in Table 7.1. Nominal 90% intervals for the log 
odds ratio, A, are indicated. 

The alternative approach advocated here is to eliminate X by 
using the conditional likelihood given Y.. The hypergeometric log 
likelihood is 

MA) = YIA - logpo(eA), i 

1 where, for Table 7.1, Po($) is equal to the cubic polynomial 
Y !. 

Po(+) = 4 + 184 + 12$2 + $J~.  1: 
F 

The hypergeometric likelihood has its maximum at a point A, 
. . different from the unconditional maximum A. In general IAc1 5 
. 1 ~ 1 ,  with equality only at the origin. More precisely A, satisfies 

the standard exponential-family condition 

In the example under discussion we find 

where the standard error is computed in the usual way, namely 

The conditional deviance function 

is plotted as the solid line in Fig 7.1 and departs markedly from 
the profile deviance for large values of A. 

7.4.2 Combination of information from several 2x2 tables 

Suppose that data in the form of Table 7.1 are available from several 
sources, centres or strata, all cooperating in the same investigation. 
In the context of a multi-centre clinical trial, the strata are the 
medical centres participating in the trial. In some trials there may 
be many such centres, each contributing only a small proportion of 
the total patients enrolled. At each centre, one would expect that 
the pool of patients suitable for inclusion in the trial would differ 
in important respects that are dif3cult to measure. For instance, 
pollution levels, water hardness, rainfall, noise levels and other less 
tangible variables might have an effect on the response. In addition, 
nursing care and staff morale could have an appreciable effect on 
patients who are required to remain in hospital. Consequently, one 



266 CONDITIONAL LIKELIHOODS 

would expect the success rate for any medical treatment to vary 
appreciably from centre to centre. 

Consequently, if we write 

7 ~ l i  = pr(success I treatment) 

7r2i = ~ ~ ( S U C C ~ S S  ( control) 

for the success probabilities at centre i, we may consider the linear 
logistic model 

The idea behind this parameterization is that A > 0 implies that 
treatment is uniformly beneficial at all centres regardless of the 
control success rate: A < 0 implies that the new treatment is 
uniformly poorer than the standard procedure. There is, of course, 
the possibility that A varies from centre to centre, even to the 
extent that A > 0 for some centres and A < 0 for others. Such 
interactions require careful investigation and detailed plausible 
explanation. 

One obvious d%culty with the linear logistic model (7.18) is 
that it contains n+ 1 parameters to be estimated on the basis of 2n 
observed binomial proportions. In such circumstances, maximum 
likelihood need not be consistent or efficient for large n. However, 
following the general argument outlined in section 7.2.2, if we 
condition on the observed success totals, xi, at each of the centres, 
we have 

Yli I Xi H(mi, 9.i; $')a (7.19) 

The hypergeometric log likelihood is thus the sum of n conditionally 
independent terms and depends on only one parameter, namely 
$' = eA. Provided that the total conditional Fisher information is 
su£Eciently large, standard large-sample likelihood theory applies 
to the conditional likelihood. 

The conditional log likelihood for A is 

where additional arguments have been appended to the polynomial 
Po(.) to emphasize its dependence on the marginal totals for 
stratum i. 

! The score statistic for no treatment effect is 

The exact null variance of U is the sum of hypergeometric variances, 
namely 

The approximate one-sided significance level for the hypothesis of 
no treatment effect is 1 - @(z-) ,  where 

is the continuity-corrected value. This test, first proposed by 
Mantel and Haenszel (1959), is known as the Mantel-Haenszel 
test. The Mantel-Haenszel estimator, which is different from the 
conditional likelihood estimator, is derived in Exercise 9.10. 

7.4.3 Example: ale-et- Vilaine study of oesophageal cancer 

The data shown in Table 7.2 is a summary of the Ille-et-Vilaine 
retrospective study of the effect of alcohol consumption on the 
incidence of oesophageal cancer. A more complete list of the 
data, including information on tobacco consumption, is given in 
Appendix 1 of Breslow and Day (1980). In a retrospective study 
the numbers of cases (subjects with cancer) and the number of 
controls is to.be regarded as fixed by the study design. The alcohol 
consumption rate (high/low) is the effective response. However, for 
the reasons given in section 4.4.3, the roles of these two variables 
can be reversed. We may, therefore, regard alcohol consumption 
rate as the explanatory covariate and outcome (cancer/no cancer) 
as the response even though such a view is not in accord with the 
sampling scheme. Since the analysis that follows is conditional 
on both sets of marginal totals, this role-reversal presents no 
conceptual difficulty. 

It is common to find that the incidence of cancer increases with 
age. The cases in this study are older on average than the controls. 
If age were ignored in the analysis, the apparent effect of alcohol 
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Table 7.2 Ille-et-Vilaine retrospective study of the relationship between 
alcohol consumvtion and the incidence o f  oesovhaoeal cancer 

Cancer NO mn.cec 
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- - . - - - . --.---. ill. : 
/li ; Alcohol consumption Fitted values 1 1 80+ 80- 80+ 80- under model (ii) ? 1:. 
!j 
i! Age yll  ~ 1 2  y21 y22 qc j i 1 1  Residual ! 
1; 25-34 1 0 9 106 00 0.33 1.4: 

35-44 4 5 26 164 il 4.98 4.11 -0.07 
i! 
{: 

45-54 25 21 29 138 . 5.61 24.49 0.18 : 

:I! 55-64 42 34 27 . 139 6.30 40.09 0.59 
jl 65-74 
I! 

19 36 . 18 88 2.56 23.74 -1.89 
!: 75+ 5 8 0 3 1  00 3.24 1.75 
i 

,. , , Total 96 104 109 666 96.01 . X 2  = 9.04 
I . .  . 

95% intervals for the log odds ratio, Po,  are indicated. 
consumption would be inflated. For that reason it is advisable 
to stratify the data by age. In other words, cases are matched The model formula for (i) is unusual in that it is entirely empty, 
with controls of a similar age. The treatment effect is therefore a excluding even the intercept. 

for the model of constant odds-ratio is 1.658 
md residuals under this 

comparison of cancer incidence rates between subjects of similar The estimate of Po 
1 age. with standard error 0.189. Fitted values a 

Three models are considered. model are shown in the final two columns of Table 7.2. The 
I 

1. a model in which the log odds-ratio is zero, meaning that alco- residuals, calculated by the formula 
hol consumption has no effect on the incidence of oesophageal 
cancer. ( ~ 1 1  - b l l ) / J V m 7  

, .  . 
, . 2. a model in which the log odds-ratio is constant, meaning 

that increased alcohol consumption increases the odds for 
oesophageal cancer by the factor e$ uniformly over all age 

- 
groups. 

3. a model in which the log odds-ratio increases or decreases 
linearly with increasing age. 

Algebraically, these models may be written in the form 

(i) log $i = 0, 

(ii) log $i = PO 1 

(iii) l0g$i=/3o+Pl(i-3.5), 

exhibit no patterns that would suggest systematic deviation from 
constancy of the. odds-ratio. The fact that we have chosen the 
(1,l) cell is immaterial because the residuals are equal in magnitude 
for the four cells of the response. 

For the third model, the estimates are 

confirming that there is no evidence of a linear trend in the log 
odds-ratios. 

Both Pearson's statistic and the residual deviance statistic are a 
where i = 1,. . . , 6  indexes the age strata. The residual deviances 

I 1 I little on the large side, though of borderline statistical significance 
for these three models are 89.83, 10.73 and 10.29 on 6, 5 and 4 when compared to the nominal X% distribution. This inflation may 
degrees of fieedom respectively. be due to factors that have been ignored in the present analysis. 
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The unconditional analysis for these data, in which each row of 
Table 7.2 is treated as a pair of independent binomial variables, 
gives very similar, though not identical, answers in this example. 
The unconditional residual deviances for the three models (7.20) 
are 90.56, 11.04 and 10.61. The unconditional maximum-likelihood 
estimate of Po in the second model is 1.670 with asymptotic 
standard error 0.190. As usual, the unconditional estimate is larger 
in magnitude than the conditional estimate. The unconditional 
estimate is biased away from the origin, though in this example 
the bias is small because the counts are, for the most part, 
moderately large. There are similar slight differences between 
the unconditional and conditional estimates for the third model. 
None of these differences is of s&icient magnitude to affect the 
conclusions reached. 

Thus it appears that the habitual tippler will find no comfort 
in these data. The odds for oesophageal cancer are higher by 
an estimated factor of 5.251 = exp(1.6584) in the high alcohol- 
consumption group than in the low alcohol group. This odds 
factor applies to all age groups even though the incidence of cancer 
increases with age. Approximate 95% confidence limits for the 
odds-ratio are 

which is almost identical to the interval (3.636,7.622) obtained 
from the deviance plot in Fig. 7.2. Normal approximations tend 
to be more accurate when used on the log$-scale rather than the 
$-scale. 

7.5 Some applications involving polytomous data 

7.5.1 Matched pairs: nominal response 

Suppose that subjects in a study are matched in pairs and that a 
single polytomous response is observed for each subject. Following 
the usual procedure for matched pairs, we shall suppose that the 
logarithmic response probabilities for the control member of the 
ith pair are 

Ad = (Ail, - - .  , Aik), 
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which are free to vary in any haphazard or other way from pair 1 to pair. We shall suppose in addition that the treatment effect as 
measured on the logarithmic scale is the same for all pairs. The 
logarithmic response probabilities for the treated member of the 

1 ith pair are therefore 

The probability of observing response category j for control 
subject i is 

T 

while the probabilities for the treated subject are 

Each response can be represented either as an integer R in the 
range (1, k), or as an indicator vector Z having k components. 
The components of Z are 

{ i f R = j  
otherwise. 

Consider now a given pair having logarithmic response probabilities 
X and X + A, for which the observed categories are rl  and r2 
respectively. For any given value of A,  the sufficient statistic for 
X is the vector sum, Z. = Z1 + Z2, of the observed responses. If 
Z. = (0,. . . ,2, .  . . ,0), both R1 and R2 are determined by Z. and 
the conditional distribution given Z, is degenerate. However, if 

.z. = (0 ,..., 1 ,..., 1 ,..., O), 

with non-zero values in positions i and j ,  we must have 

For i # j, the required conditional distribution is 


