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Table 13.2 Comparison of estimators for the leukaemia data 

Model (treatment o f  ties) bl SE 

Exponential 
Weibull 
Cox (Peto) 
cox (Cox) 

methods. His results (after correcting observation 6 in sample 1, 
which was censored), together with those obtained above using 
parametric survival functions, are summarized in Table 13.2. The 
estimates all fall within a range of about half a standard error, 
and the increase in standard error from the Cox model as against 
the parametric survival functions is quite small. Efron (1977) 
and Oakes (1977) discuss this phenomenon from a theoretical 
viewpoint. 

13.5 Cox's proportional-hazards model 

Cox's (1972a) version of the proportional-hazards model is only 
partially parametric in the sense that the baseline hazard function 
X(t) is not modelled as a smooth function of t. Instead, X(t) is 
permitted to take arbitrary values and is irrelevant in the sense 
that it does not enter into the estimating equations derived from 
Cox's partial likelihood (Cox, 1975). 

13.5.1 Partial likelihood 

The argument used to derive the partial likelihood function is as 
follows. First observe that we need only consider times at which 
failures occur because, in principle at least, the hazard could be 
zero over intervals that are free of failures and no contribution to 
the likelihood would be made by these intervals. Let t l  < t2 < . . . 
be the distinct failure times and suppose for simplicity that there 
are no tied failure times. The ri$k set immediately prior to 'the 
j th failure, R(tj), is the set of individuals any of whom may be 
found to fail at time tj. Thus, individuals who have previously 
failed or who have been censored are excluded from R(t j ) .  Given 
that one failure is to occur in the interval (tj - 6t, tj), the relative 
probabilities of failure for the individuals in R(tj) are proportional 
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' to the values of their hazard functions. Let x, be the value of the 
k covariate vector for the failed individual. The probability under the 

1 proportional-hazards model that the individual who fails at time 
: t j  is the one actually observed is 

where summation extends over the risk set R(tj). 
This conditional probability is the probability of observing X j  in 

sampling from the iinite population corresponding to the covariate 
vectors in R(tj), where the selection probabilities are proportional 
to exp(pTx). This is a generalization of the non-central hyper- 
geometric distribution (section 7.3.2). This argument effectively 
reverses the roles of random failure times and h e d  covariates to 
fixed failure times and covariates selected according to the proba- 
bility distribution described above. 

The partial likelihood for P is the product over the failure times 
of the conditional probabilities (13.4), and so independent of the 
baseline hazard function X(t). These conditional probabilities have 
the form of a linear exponential-family model so that 0 can be 
estimated by equating the vector sum of the covariates of the failed 
individuals to the sum of their conditional means. Note, however, 
that the conditioning event changes from one failure time to the 
next as individuals are removed from the risk set either through 
failure or through censoring. 

13.5.2 The treatment of ties 

The occurrence of ties among the failure times complicates the 
analysis, and several techniques have been proposed for dealing 
with this complication. One method due to Cox (1972a) is as 
follows. Suppose for definiteness that two failures occur at time 
t and that the vector sum of the covariates of these two failed 
individuals is sj. The factor corresponding to (13.4) is then defined 

where the sum in the denominator extends over all distinct pairs 
of individuals in R(tj). In other words we construct the finite 
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population consisting of sums of the covariate vectors for all distinct 
pairs of individuals in the risk set at time t j  . The probability under 
an exponentially weighted sampling scheme that the failures were 
those of the pair actually observed is given by (13.5), which again 
has the exponential-family form. Note however that the number 
of terms in the denominator of (13.5) quickly becomes exceedingly 
large for even a moderate number of ties at any failure time. 

Any reasonable method for dealing with ties is likely to be satis- 
factory if the number of failed individuals constitutes only a small 
fraction of the risk set. In fact the likelihood contribution (13.5) is 
exact only if failures are thought of as occurring in discrete time. In 
practice, however, ties occur principally because of grouping. With 
grouped data the appropriate likelihood (Peto, 1972) involves the 
sum over all permutations of the failed individuals consistent with 
the ties observed. Suppose, for example, that two failures are tied 
and that the failed individuals have covariate vectors x l  and xz. 
The probability for the sequence in time (xl, x2) or (x2, xl), either 
of which is possible given the tie, is 

expLsTx1) exp(pTx2) + exp(pTx2) exp(pTxl) 

CR exp(pTx) C R I  e x ~ ( ~ T x )  CR ex~(flTx) E R 2  e x ~ ( ~ T x )  ' 
(13.6) 

where Rj  is the risk set excluding x j ( j  = 1,2). Clearly the 
likelihood contribution becomes increasingly cumbersome as the 
number of ties becomes appreciable. 

Expressions (13.5) and (13.6) for the contribution to the like- 
lihood can both be derived by arguments involving exponentially 
weighted sampling from a h i t e  population without replacement. 
If the number of ties is small we may use the simpler expression 

where s is the sum of the covariate vectors of the m tied individuals 
(Peto, 1972). This term corresponds to sampling with replacement. 

13.5.3 Numerical methods 

The likelihood formed by taking the product over failure times 
of the conditional probabilities (13.4) can, in principle, be maxi- 
mized directly using the weighted least-squares method discussed 
in Chapters 2 and 8. Alternatively we can regard the covariate 
vector of the failed individuals as the response and condition on 
the set of covariates of all individuals in the risk set at each failure 
time, these being regarded as h e d .  If we write y fcr the covariate 
vector of the failed individual the log likelihood for one failure time 
takes the form 

pTy - log{C ~ x P ( P ~ x ) ) ,  

with summation over the risk set. This has the form of an 
exponential family model with canonical parameter P and b(B) 
(in the notation of section 2.2) equal to log{C exp(pTx)). The 
(conditional) mean is then given by bl(B) and the variance by b"(B). 
However, this formulation is unhelpful computationally because 
there is no explicit expression for the quadratic weight (here equal 
to the variance function) as a function of the mean. 

The computational difficulty can be avoided by a device similar 
to that used in section 13.4. Suppose that kj individuals are at 
risk immediately prior to t j  and that just one individual is about 
to fail. If we regard the observation on the failed individual as 
a multinomial observation with kj categories, taking the value 
1 for the failed observation and 0 for the remainder, then the 
contribution to the likelihood is again of the form (13.4), but now 
interpreted as a log-linear model for the cell probabilities. Thus 
the numerical methods of Chapter 5 may be used provided that the 
algorithm allows variable numbers of categories for the multinomial 
observations. 

Alternatively (Whitehead, 1980) a Poisson log likelihood may be 
used provided that a blocking factor associated with failure times is 
included. The idea here is that at each failure time each individual 
in the risk set contributes an artificial Poisson response of 1 for 
failure and 0 for survival. The mean of this response is exp(a+pTx) 
for an individual whose covariate value is x and a represents 
the blocking factor associated with failure times. Because of the 
equivalence of the Poisson and multinomial likelihoods discussed 
in section 6.4, the estimate of P and the estimate of its precision 
are identical to those obtained from the multinomial likelihood and 
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hence to the partial likelihood. 
The computations can be simpued if the number of distinct 

covariate vectors is small so that individuals in the risk set may 
be grouped into sets of constant hazard. The adjustment for ties 
is simple for the third method described above (often called Peto's 
method). In the multinomial log likelihood we set the multinomial 
total equal to the observed number of tied failures at that time. 
No adjustment to the algorithm is required. The corresponding 
Poisson log likelihood is equivalent to Peto's version of the partial 
likelihood. 

Whitehead (1980) describes the adjustments to the Poisson 
likelihood required to maximize the likelihood corresponding to 
Cox's method for dealing with ties. 

13.6 Bibliographic notes 

The recent literature on the analysis of survival data includes books 
by Cox and Oakes (1984), Elandt-Johnson and Johnson (1980), 
Gross and Clark (1975), Lawless (1982), Lee (1980), Kalbfleisch 
and Prentice (1980) and Miller (1981). 

Cox's model was proposed by Cox (1972a), and fitting via 
GLIM discussed by Whitehead (1980); the pseudo-Pois~on model 
for parametric survival functions was proposed by Aitkin and 
Clayton (1980), who also discuss the definition of residuals and 
the necessary adaptation of standard graphical techniques (see also 
Crowley and Hu 1977). For a comparison of Cox and Weibull 
models, see Byar (1983). 

13.7 Further results and exercises 13 

13.1 In medical trials the recruitment of patients frequently 
continues over a prolonged period, spanning perhaps the entire 
trial. Consider such a trial to test a new drug that is claimed to 
benefit patients suffering from angina by reducing the incidence of 
coronary disease. The protocol specxes eligible patients to be those 
aged 55-75, showing symptoms of angina who have no previous 
record of heart attack and are taking no other medication. After 
being judged eligible and consent has been obtained, a patient 
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is randomized to one of two groups, either the new drug or the 
standard treatment. 

Discuss how you might analyse the data that have accumulated 
after two years in such a trial. Consider in particular the following 
points. 

1. What are appropriate definitions of failure: 
deaths from all causes; 
deaths from coronary disease only; 
all heart attacks whetHer fatal or not. 

2. Choice of origin for the t h e  scale: 
calendar time &om the beginning of the study; 
time from individual patient randomization; 
time from first appearance of patient's angina symptoms. 

3. Non-compliance because of non-fatal side-effects: 
4. Who to include in the risk set: 

all known survivors among those randomized; 
all survivors excluding those no longer complying. 

13.2 Let X(1) < XQ) < - . - < X(n) be an ordered sample of i.2.d. 
exponential random variables of unit mean. Define the normalized 
differences 

Show that Yl, . . . , Yn are 2.i.d. exponential random variables of unit 
mean. 


