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ABSTRACT

This paper reviews the analysis of prospective epidem-
iological studies using general linear models to describe disease
incidence. It is shown that, apart from problems arising from
the large size of most studies of this type, these models may be
fitted by maximum likelihood (using GLIM, for example) assuming
a Poisson likelihood. Alternative methods for dealing with
large-scale data are discussed, and some simple procedures for
dealing with common problems are outlined. The relationship of

the approach to multiple logistic analyses is indicated.

1. INTRODUCTION

Aetiological studies are concerried to elucidaté the factors
relating to the onset of a disease in individuals. There are two

types of such studies and prospective studies., For reasons of

2129

Copyright © 1982 by Marcel Dekker, Inc.




2130 CLAYTON

economy and feasibility, the former are more commonly used and
many recent papers have clarified the issues involved in their
statistical analysis. This paper aims to review the methods of
analysis of prospective studies.

It is a central tenet of this paper that prospective
aetiological studies yield censored observations of failure times.
The risk of contracting one of the diseases with which most
epldemiological research is presently concerned, such as cancers
and cardiovascular disease, increases with time within an
individual (or at least does not decrease). Thus, it is not un-
reasonable to lmagine that, given sufficient time, any studied
individwal would succumb to any particular disease considered.
That such observations are not made may be attributed firstly to
the finite duration of observation imposed by study feasibility,
and secondly by the actions of other diseases, which eliminate
individuals from further consideration by rather more drastic
means. With this view, 1t might be regarded as more relevant to
study not whether or not disease onset 1s observed in a given
individual, but when it occurs.

In recent years, a considerable literature has accumilated
concerning the analysis of censored survival time data. Most of
this work concerns prognostic studies which seek to measure the
time to death (or relapse) of patients after the commencement of
treatment upon first diagnosis. Prospective epidemiological
studies are superficially very similar to these, but pose their
own particular problems. These are rarely addressed specifically,
and arise mainly because:

(a) it is not always clear from which origin survival time

of an individual is to be measured, and

(b) prospective studies are usually (although not always) of

very large scale and pose special data-processing
problems; although methods which reguire 1terati§e
solution involving many passes through the entire data
are, these days, feasible, they could not be embarked
upon lightly,
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To this list of problems could be added the further re-
guirement that such analyses must be convinclng and readily ex-
plainable to non-statisticians. Although, perhaps, this require-
ment is not unique to epldemiological studies, it is particularly
important in that area. The long term aim of aetiological studies
is the prevention of disease, and the implementation of their
findings involves the exertion of considerable political and
soclal pressure. Such campaigns cannot readily be launched on the
basis of analyses, understandable only to statisticians. For this
reason, this paper will endeavour to relate proposed analyses to

traditional epidemiological techniques, notably the 'standard-

et

isation' of rates.

2. 'THE MEASUREMENT OF INCIDENCE RATES

Consider first a disease, the risk of onset of which remains
approximately constant with time within an individual. It is well
known that the distribution of time-to-onset of such a disease in
a homogeneous population is an exponential distribution. If, for
an individual who is healthy at t, the probability of onset of
disease during the interval t + t + 6t is ASt, then the dis-

tribution of time~to-onset 1s given by
£(t) = et (1)

It is useful, also, to introduce the ‘survivor function'

F(t) = S f(wan = e Xt
t

In general failure-time theory, A is usually called the ‘'hazard'
or 'failure rate'. In epldemiological terminology, when t rep-
resents time to first onset of clinically recognisable disease,
then A ie the 'incidence rate' of the disease. The estimation of
such an incidence rate from a prospective study is relatively
straight forward. Let the i-th individual studied have been
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studied from time to toi up to tli at which time, eilther onset

of the studied disease occurred or observation of the individual

had to be terminated for some other reason. Let d, indicate which

of these possibilities occurred with values 1 and é respectively.
Let us assume, for the present, that the mechanism of

censoring is unrelated to the disease process, (although we

shall discuss this assumption later). Then, the log-likelihood

for a group of N such individuals, all subject to the same in-

cidence rate, is given by

N (et % (e, ) Y
L(}) = % log )0 2 ()P ' (2)
1=1 F(t ,) '
ol
N
= .1%1 {di logh - )‘(tli - toi)} (3)

Now this likelihood is exactly the same as would be obtained by
assuming {di} to be independently distributed Poisson variates
with exPectations )\(tli - toi)' This assumption is clearly false
since d; camnot exceed 1 and (tli - toi) are sometimes random
variables rather than known constants. However, the likelihood
is exactly the same as if the Poisson assumption held true, and
this fact can be used to considerably simplify estimation. 1In
particulaf, the asymptotic properties of the mé;{hum 1likelihood
estimate A of the incidence rate, X holds good. It is given

by; '

N
T4
. =4y
vos (1)
N
ifl(tli = tos)

the total number of new cases observed, divided by the total of

the periods of observation. This expression occurs in several
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epidemiological texts as the definmition of the incidence rate.
Confidence interva1§ may be obtained for A by noting that,
asymptotically, logA is distributed approximately normally with
variance l/Edi. ‘Exact' interval estimation is not possible
without knowledge of the values the periods of observation

(tli - toi) would have been in those individuals who suffered
onset of the disease. These cannot be known exactly for real
studies.

Alternatively, a Bayesian approach may be adopted. A gamma
distribution provides the most convenient prior for A, yielding
another gamma distribution as posterior. For large samples this
approach yields the same interval esfimates as the asymptotic
apmroach described above. '

Tt should be noticed that, since inference depends only upon
the intervals (tli - toi)’ and not upon either time alone, the
choice of the origin for the time scale is, for the moment, ir-
relevant. This remains so until we consider time-dependent risks

in section 7.

3. MODELLING INDIVIDUAL DIFFERENCES

It would, of course, be a very unambitious study which sought
only to estimate the incidence rate of a disease in a population.
In general, prospective studies involve measurements on the
individuals studied at the time of their admission, {toi}. Thus,
each individual will be characterised by vector, X, say, of ob-
servations of social, geographical and behavioural variables (or
factors)which may or may not be‘related to disease incidence. We
shall call this the 'risk factor' vector in line with the usual
epidemiological terminology.

In general, there will be more than one risk factor. Some
factors may be of great interest to the investigators, and some
may be well known but be so important that they cannot be ignored
in the analysis. Risk factors may be categorical variables (such
as social class, occupation, area of residence), or may be con-

tinuous measurements (such as blood pressure and serum cholesterol) .
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The way of investigating the effects of such risk factors is
to assume some parametric form for the dependence of incldence |
rate upon risk factor, A(x|B) say, where B is a vector of param-
eters. The most convenient functional form is the general linear

model (Nelder and Wedderburn, 1972)

6(A) = u + B'x (5)

The natural choice of 'link' function, g(A) is the logarithm,
since this ylelds sufficlent statistics for p and B (as is the
case for a simple Poisson dependent variable). With this link,
the model is

log(Ar) = u + E:E (52)

then it is clear that models specifying 'no interaction' betiween
risk factors predict that factors act together multiplicatively
in their joint effect upon the incidence rate. This model seems
to perform well in a number of situations, at least as a first
approximation. The best known examples are the multiple factors
related 1n the incldence of coronary heart disease, as established
by the Framingham study and elsewhere, and the joint effect of
cigarette smoking and asbestos exposure in lung cancer.

It is important to notice, however, that two factors
operating through two different and independent mechanisms would
affect incidence additively rather than multiplicatively. It
should also be noted that the implications of additive or multi—
plicative effects of risk factors may be quite different for
preventive strategies. The fact that the logarithmic 1link is more
natural statistically should not mean that its cholce does not
require some investigation.

It has been pointed out elsewhere (Altkin and Clayton, 1980)
that such a model for incldence rates may be fitted using the GLIM
progran (Baker and Nelder, 1978). The program may be tricked into
constructing the correct likelihood by declaring the binary
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variable {di} as the YVAR (with POISSON errors), the link as LOG,
and by using the quantities log (tli - toi) as OFFSET. However,
since most epidemiological prospective studies involve thousands
rather than hundreds of individuals and since GLIM holds a data
natrix of only limited size, this solution is usually not feasible.
If the risk factors are categorical, this difficulty may be
circumvented by first forming a data summary consisting of a
multi-way table contalning in each cell (a) the number of new
cases observed and (b) the total 'person-time' observation for the
specified combination of categories of risk factors. The data in
this table may then be entered into GLIM, with each cell rep-

resenting one UNIT. The cell subscripts represent FACTORS in the

analysis, and the two cell entries are treated exactly as described
in the previous paragraph for the ungrouped data.

Even for risk factors, which are contlnuous measurements, a
perfectly satisfactory approximate solution may be obtained by
binning the data into strata with respect to the factor value, and
asslgning some central value (such as the within-stratum mean) to
each stratum.

An example of these grouping methods is lllustrated below.
Table I shows some data taken from a study described by Morris et

i TABLE T

Calorie Intake

Bus Bus Bank A11 three
drivers conductors workers  occupations

Range  (Mean)

229 (2145 1 (60%3) 2 (520) 3 (6671) 6 (179%H)
2250-2499 (2145) & (11011) & (ha9s) 3 (16126) 11 (31632)
2500-2759 (2672) 4 (14646) 3 (17497) 5 (22643) 12 (54786)
2750-2999 (2895) 3 (15516) 2 (10921) 5 (30712) 10 (57149)

3000-  (3369) 1 (23481) 3 (19410) 3 (52574) 7 (9546%)

13 (70707) 14 (57553) 19(128726) 46 (256986)




TABLE IT

Model o

Deviance

(Chi-squared) Chane®

Overall mean only 14 21.342
+ Occupation 12 19.386 1.956
+ Calorie intake 8 5.771 13.615
TABLE TIITI
Effect
Factor i ps .
Level Additive Multiplicative
(Log scale) S.E. %

Calorie Intake

—2249 0.0 (By definition) 100
2250-2499 0.1118 0.5101 112
2500-2749 -0.4288 0.4996 65
2750-2999 -0.5916 0.5182 55

3000- -1.4650 0.558 23
Occupation
Bus drivers 0.0 (By definition) 100
Bus conductors 0.3384 0.3888 140
Bank staff -0.1131 0.3611 89
TABLE IV
First-step Maximum likelihood
Estimate of © Estimate of ©
Drivers/Conductors 0.678 0.667
Drivers/Bankers 1.411 1.112
Conductors/Bankers 1.532 1.573

R ]
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al elsewhere (Morris et al., 1979). The data relates dietary

measurements (one week weighed survey) in three different occup-

ational groups, to subsequent incidence of coronary disease. The

table shows the number of rew cases of disease observed, together
with (in parentheses) the man-months of observation, according to
occupafion and to total daily calorie intake. Tables 2 and 3 show
the results of log-linear model-fitting, concentrating upon the
effect of total calorie intake, expressed as a 5-level categorical
variable. TableiI shows the likelihood-ratio chi-sguared
analysis,and Table III shows the fitted effects in the 'main
effects' model.

There is a strong gradient of decreasing risk with increasing
calorie intake, but more modest effects of occupation. Indeed,

the occupation effects are not statistically significant, but are

retained in the model because of the a priori importance of this
factor in the design of the investigation.

If the calorie intake effect is modelled by log-linear
regression on the stratum means of calorie intake (2145 up to
3369), rather than treating the variable as a categorical variable,
the final chi-squared test of fit of the model becomes 7.023 on
11 degrees of freedom. Thus the change in chi-squared for in-
clusion of calorie intake is 12.363 rather than 13.615, but on :
only 1 rather than 4 degrees of freedom. The estimated regression ‘

coefficient is -0.001310 which compares very closely with the
value of -0.001309 obtained by repeating the same GLIM analysis
upon the ungrouped data.

4, COMPUTING PROBLEMS

Two practical difficulties are encountered with the methods
described above. The first arises out of the now rather surp-
rising lack of generally available survey analysls programs which
will form the multiway-tables required in directly machine-read-
able form. A notable exception is the Rothamsted General Survey
Program (RGSP), which has interfaces to both GLIM and GENSTAT
(Beasley et al., 1980).
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The second difficulty arises out of the fact that, although
highly convenient and almost universally available, GLIM is not

particularly efficient for larger problems. For categorical risk
factors, and providing the multiplicative model (Logarithmic 1ink)
only is required, a much more efficient algorithm is provided by
the 'iterative scaling procedure'. Slight modification of the
classical algorithm is required to ensure that the fitted values
are correctly offset with the person-time observation (an A.N.S.I.

Fortran algorithm is available from the author) .

5. RELATTIONSHIP TO THE 'MULTIPLE LOGISTIC' METHOD

Those familiar with the epidemiological literature will have
recognised that the method proposed above is different from that
usually employed in the analysis of prospective studies, the
'multiple logistic' method, although it resembles it in many ways.
The multiple logistic fits the model

logit 7= log " =p +8 .x (6)
1-m

where T is the probability of an individual suffering disease on-
set during the period of observation. This model first obtained
wide recognition in epidemiological research wlth the work of
Truett et al (1967), who fitted the model using the assumption of
multivariate normality of the risk factor variables within disease
groups (this is equivalent to classical discrimimnt analysis).
Later workers, following Walker and Duncan (1967), dropped the
multivariate normal assumption and fitted the model directly by
maximum likelihood (but at the cost of an iterative, rather than
single-pass solution). A full discussion of the model is given by
Cox (1970).

This method has several serious disadvantages, however.
Firstly, and perhaps most seriously, it relies upon each ind-

ividual being observed for the same period of time, so that the
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probabilities, v, are comparable. This is not achievable in real
studies, (a) because recruitment to the study often extends over
years so that, at the time of analysis, some individuals have been
observed for longer than others; (b) because of migration from
the study population, and (c¢) because of deaths from other causes.
This problem can be clrcumvented to some extent, but only by dis-
carding data.

The second disadvantage is that the logistic model does not
allow the analysis to extend to variables which change during the
observation period. Thus, although it is possible to take account
of age-at-entry to the study upon subsequent risk, it is not pos-
sible to take account of any ageing occurring during the study.
This difficulty is particularly serious for studies of long-
duration. Its resolution with the present approach will be dis-
cussed in a later section.

These difficulties apart, the models are very similar. With
the assumption of no change in risk with time, the relationship
between the incidence rate, A, and the probability of disease on-

set during ty > t,, 7, may easily be shown, from (1), to be
T =1 - exp {—(tl - to).A}
so that

log{- log(l - m}= logx + log('tl - to)
Thus, the analysis of probabilities of onset using the complemen-
tary log-log transformation is equivalent to analysing incidence
rates using the simple logarithmic 1link. It is well known that,
for small m, the logit and complementary log-log transformaiions
are nearly ldentical.

Incidentally, a side effect of the widespread use of the
multiple logistic method has been to refer to the probability of
onset m, quite incorrectly, as an incidence rate. Thus, we have

the appearance of the terms '5-year incidence rate' and '10-year




2140 CLAYTON

incidence rate'. Such a confusion is to be deplored, and is a
recent phenomenon. William Farr, for example, in his writings a
century ago drew a clear distinction between the two measures.
The same point was made by Elandt-Johnson (1975) in the American
Journal of Epidemiology, and provoked some controversy in later

issues of that Journal.

6. SOME SIMPLE METHODS

Before moving on to more difficult matters, it is worth
noting that, arising out of the general theory described in
earlier sections, there are some methods requiring only very
simple calculations.

The first of these 1s for the analysis of the k x 2 summary
table of cases and person-time observation, where the prime inter-
est is in the 2-level risk factor. Obviously, the k-level factor
is included so that its effect may be discounted in the analysis,
and it might be generated by crossing several 'nuisance' factors.

Let Aij(i =1. .k; j=1, 2) be the incldence rates
corresponding to each cell of the table, and let dij’ Tij
resent the corresponding observed number of new cases and person-

rep-

time observation. The ‘main-effects' multiplicative model may be

written

Ail = G.Aiz for all i,

or [}

Ail/XiZ for all i.

Thus, © represents the relative incidence rate between columns
within rows of the table, It is easily shown that the maximum
likelihood estimate of 6 may be obtained by solving

i 711 “i2
T ¢
i 1712 T:'Ll

ZW, 4. T
i
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by iterative refinemerts of the weights
W, = 1/(e.Til + Tiz), starting from 6 = 1.

The first step of this iteration itself provides a fully con-
sistent estimate, although it is only fully efficient in the
neighbourhood of 6 = 1. This first-step estimator is closely
related to the Mantel-Haenszel estimator of the common odds-ratio
in the 2 x 2 x k table, and the fact that the rirst stage of the
procedure leads to quite a good estimate means that convergence
is very rapid; a single refinement stage is all that will be re-
quired, except when 6 is very far from 1.

The standard error of log 6 is given by the expression

ol

12)7

o 2
S.E. (log @) —.{§ w.oer. T, (d.ll + d

where Wi are the final weights. Of course, if the first step
estimate is used, the first value of this expression gives the
null s.e. of the log of the estimate, so that a test of HO:G =1
may be constructed., An alternative test will be discussed im-
mediately below.

This case seems to be the only one in which relatively simple,
yet efficient, estimates of at least some of the parameters of the
general multiplicative model, (54) may be obtained. However, some
simple methods remaln, based upon tests of hypotheses. In epld-
emiology, the analysis of prospective studies often involves the
examination of a large number of potential risk factors 'in search
of hypotheses'. Typically, there will be one or *wo known factors
related to both risk of disease, and to the level of the new
factor(s) to be screened. It is not desirable to embark upon a
full model-fitting ékercise (involving, as it does, some consider-
able computation) for each such factor. Although, of course,
nominal significance levels must be treated with considerable
caution, hypothesis tests can be most useful; particularly tests
based upon 'score statistics' (Cox and Hinkley, 1974).



2142 : CLAYTON

We shall comsider, first, the score test for column effects
in the k x m table of incidence rates (the equivalent test for Trow
effects is obvious). This test involves calculating the vector, I,
of discrepancies between the observed number of cases of disease
in each column and the number 'expected' on the basis of the

distribution of the row variable; 1i.e.

r, = d_j —§ (di, Tij/Ti.)
The score test is a chi¥squafed test on (m-1) degrees of freedom,

and is given by the quadratic form

X = rax (8)
(m-1) 4.f.

where © indicates a generalised inverse, and R is the matrix

- } 2
Rk = S5 E(di Ty /T5.) E{di- Ty 5 Ty/ (T4, )%}

(5jk is the Kronecker delta). This test is, however, rather
cumbersome to calculate and an extremely close approximation is
provided by the Pearsonian (O-E)Z/E formula;

x2 = 2{(rj)2/z(di-Tij/Ti-) , a conservative approximation.
J i

This test could be used on the data of Table 1 to test
whether there is a difference between the calorié intake groups,
over and above any occupational differences. In this example the
true score test and the approximate Pearsonian test agree closely,
yielding chi-squared values of 13.647 and 13.558 respectively, and
also agree closely with the likelihood ratio chi-squared value of
13.615 (table II).

However, these tests are not ideal for examining the effect
of calorie intake, since they are on 4 degrees of freedom and
ignore the fact that the calorie breakdown reflects an underlying

continuum. They could not, therefore, be expected to be sensitive
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against an alternative hypothesis of a steady trend in risk with
increasing total calorie intake. The remainder of this section is
concerned with some more sensitive methods for detecting relation-
ships betﬁeen incidence rates and risk factors measured on a
continuous interval scale.

When the continuous factor, %, is the only one under consider-

ation, the log-linear model (5(a)) becomes

log A = p + B.X
Although the maximum likelihood estimate of 8 requires iterative
computation, the score test for 8§ = 0 is remarkably simple and
deserves to be more widely known in epidemiology. If Xi is the
value of the factor for the i-th individual, di indicates whether
or not (with values of 1 and O respectively) onset of disease was
observed in that individual, and Ti represents the time for which
he or she was observed, then it may easily be shown that con-
siderations leading to the log likelihood of the form of (2) and
(3) lead to the score statistic

ag | KR T4 Ty
_ N
where X, = z_ 4, X, /d.,
i=1
the 'expected value which is the mean of all measurements using

the observation times, Ti' as weights. The sampling variance of

this statistic is simply

(SD2 -Yoz)/d. (10)
where 2 N
2
8y =2 T, X5/ T.,
0 Tt

the mean square of X, using observation times as weights. Thus,
from (9) and (10) a simple asymptotic standard normal deviate test

may easily be constructed.
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This method is convenient, simple and can provide convincing
evidence of an effect of a continuous factor. It may also be
readily adapted to examlne an association within strata of the
study population. Such an analysis can indicate, firstly, whether
the stratifying variable, by confounding, has spuriously exag-
gerated the effect of the factor considered and, secondly, whether
the effect is consistent throughout the data. Using the super-
seript (J) to indicate strata, the procedure is to compare the
observed s?ratum means for ‘'cases’, igl), with their ‘'expected’
values YO(J). The overall test for the effect of X, after ad-
Justment for the stratifying variable is given by comparing the

overall mean in cases,

7 o= (3) (3 (3)

X;=a ™ xY/Ta,
with s s

7* (9 (3 &)

X,=r4, XAY'/ T4,

0 3 0 3

which is the 'expected' value which takes account of the relation-
ship between disease incidence and the stratifying variable.

. —_— -
The sampling variance of the difference (X, - Xo) is

1

Z: d_(j) {(SO(J>)2 - (XO(J))Z}/{E d‘(j) 2}
J

This method is simple, convincing and computationally tractable.

An example of its use is discussed at the end of the next section.

7. TIME DETENIENCE OF RISKS

So far, the discussion has been concerned solely with problens
in which it is to be assumed that incidence rates do not vary with-
in the study period. This will usually only be a legitimate as-
sumption for studies with a very short duration of follow-up. In
general, risk of onset of disease will vary during the observation
period for several reasons, notably

(a) increase of risk with increasing age of the subject,
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(b) increase of risk with increase in duration of the length

of time exposed to causal agents, and

(c) dependency of risk upon the duration of time in the

study.

(d) Secular effects operating at the time of disease onset;

i.e. dependency of risk upon chronological time.

Most of the literature concerning survival data is concerned
with determining effect of various factors upon prognosis.
Usually, in such studies, patients are admitted to the study on
diagnosis of the disease. Thus, it is survival time, measured from
the start of study, which is of prime interest. The variation of
risk throughout the study is dominated by the progression of the
disease, so that the relationship of risk to time under study is
of most importance. In prospective studies of previously healthy
individuals this is no longer the case and, a priori, it is more
natural to expect the first two reasons for time dependency of
risk to be dominant. In general, however, these variables must be
expected to be heavily confounded so that it might be difficult to
disentangle their effects. Only in certain cases will duration of
exposure to a causal agent be known, so that the first choice of
time scale will be age, although it may be a surrogate for some
other scale.

The multiple logistic analyses described earlier cannot allow
for such dependencies. For example, age at entry into a study may
be incorporated into the model as a risk factor, but any effect of
ageing during the study is ignored. The present approach is, how-
ever, easily adapted. The contribution to the log~likelihood of
an individual observed from t until t and subject to incidence
rates A(t) and corresponding survivor function, F(t) may easily be

shown to be

d log A(tl) - A(tO’tl)

where tl
Atgrty) = 5 7 a(w) au
%
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and, as before, d indicates whether or not onset of the disease was
observed. In its simplest form, ihe log-linear model would specify
that the incidence rates for individuals with risk factor vector X
as being

log A(t/x) = log ay(t) + B .x (Cox, 1972)

In this form the model specifies that the effect of the factors is
not time dependent, but it is perfectly straightforward to in-
corporate 'interaction' terms to allow the factor effects to vary
with time.

There are four possible approaches to the problem of what to
do about xo(t). We shall consider them, briefly, one by one.

7.1 KNOWN Ao(t)

This provides ithe most simple amalysis. Aitkin and Clayton
(op. cit.) show that the analysis of this problem in GLIM is
straightforward; as before, the indicator variable, d, is de-
clared as the YVAR with POISSON errors, but, now, log Ao(to, ti)
must be used as OFFSET. Note that Ao(to, tl) is the 'expected’
value of 4 if the known rates, Ao(t) had applied throughout the

interval:

Ao(to,tl) = ftl Ao(u)du
Many readers will recognise that this analysis is essentially the
traditional method of indirect standardisation, instead of
analysing incidence rates, one analyses the ratio of observed new
events to those expected had Ao(t) applied. Thus, if Ao(t) is
known, all the analyses described in earlier sections may be ap-
plied with this small modification. However, this argument also
shows that the method of indirect standardisation depends upon
knowledge of Ao(t), and only rarely is this the case. In trad-
itional epidemiological analyses, Ao(t) is provided by a suitable
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set of 'index' rates. In the absence of such a suitable set of
rates, it is necessary to adopt one of the remaining three

strategies.

7.2 ASSUME A PARAMETRIC FAMILY FOR Ao(t)

if Ao(t) is not known (as is usually the case), it might be
that, at least, we may assume it to be a member of a parametric
family of functions, Ao(t;l) say. Aitkin and Clayton (op. cit.)
have shown how certain families might be fitted using GLIM.
Essentially the approach is to use the method described above for
estimation of the regression equation conditional upon the current
estimate of y, then to update the estimate of y, to re-estimate
the regression equation and so on. There are two difficulties
with this approach. Firstly, the choice of parametric function
may be difficult. Where t represents either duration of exposure
to some factor or age (which may or may not be a surrogate for
duration of exposure to, as yet, unknown factors), there is
empirical evidence to suggest that a power-law relationship of the
form

3
Aolt) = vi(t - vy)

provides an appropriate model in a wide range of settings (see,
for example, Doll. 1972). When, however, t represents the time
elapsed since admlssion into a prospective study, it is more dif-
ficult to suggest an appropriate function. Two processes may
operate. Heterogeneity of risk within a selected cohort will
yield an apparent fall in incidence with time as the high risk
groups succumb early (this model underlies the Pareto distribution,
a common failure-time distribution). On the other hand, there is
a well known tendency in prospective studies for a selection bias
towards healthy individuals, so that initial incidence might be
low. The combined effects of these two processes might produce a

variety of shapes of curve.



2148 CLAYTON

A second difficulty with this approach is, again, the com-
putation involved with the scale of data generally encountered in
prospective studies. Several passes through the raw data would
be required for each model to be fitted.

7.3 ASSUME A STEP-FUNCTION FORA(t)

An alternative approach is to stratify the time axis, and to
assume constant incidence rates within time bands. For example,
if t represents age, an individual might be assumed to be subject
to incldence rate ll between the ages of 30 and 39, 12 between the
ages of 40 and 49 and so on. The log-linear model might then be
written, for the i-th age band,

It may easily be shown that the likelihood for this model is
identical to that which would be obtained if each individual
studied were to be treated as several 'pseudo individuals' -

are for each age band within which he is observed. Thus, an
individual observed from age 35 until he suffers onset of disease
at age 55 may be treated as if he were three different people:
(a) one person of age 30-39, five years observation, no onset of
disease; (b) one person of age 40-49, 10 years observation, no
onset of disease; (c) one persén of age 50-39, 5 years ob-~
servation, suffering disease onset.

With this device, the methods described in earlier sections
for the constant incidence rate model may be used. In particular,
for categorical factors, the data may be summarised in multiway
tables prior to analysis; the time axis becomes simply another
dimension of the table. The formation of such tables is fairly
straightforward but cannot usually be carried out directly by a
survey analysis program, since one individual is required to
contribute to several cells of the table. Where the survey anal-

ysis system allows a user-supplied input routine, the problem is
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TABLE V
Barnk staff Bus dxivers
Age at No. Energy Age at No. . Energy
aftack of intake (kecal) attack  of intake (kcal)

of CHD cases Observed Expected of CHD cases Observed Expected

4o-49 4 2769 3015 L4o-49 2 2918 2853
50-59 8 2514 2894 50-59 L 2808 2838
60-69 Vé 2725 2846 60-69 6 2458 2833

Total i9 2645 2902 Total 12 2651 2838

Bus conductors All occupations

Age at No. Energy Age at No. Energy
attack  of intake (kcal) attack  of intake (kcal)
of CHD cases Observed Expected of CHD cases Observed Expected
50-59 5 2515 2845 4049 6 2819 2961
60-69 9 2718 2828 50-59 17 2583 2867

- 264 28
Total 14 2646 2834 60-69 22 2649 35

Total 45 2647 2864

easily solved by writing a routine which reads the data for an
individual and, on successive calls, passes the data for 'pseudo
individuals' to the main program. If this facility is not
available, then a preprocessor program must be written to expand
the data to a disc file of ‘'pseudo individuals’.

Table V is taken from Morris et al (op. cit.) and shows one
such analysis using the observed and 'expected' mean method des-
crived in section 6. The experience of the three occupational
cohorts in three age bands is examined; association between risk
and total calorie intake is remarkably consistent. The 'expected’
means in 'all ages' now takes account of differences in age struc-
ture of the different occupations and, likewise, those in the
'all occupations' column standardises for occupation. The overall

'expected’ mean adjusts for both age and occupation, and differs
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TABLE VI

Calorie Intake
Age

-2249 2250-2499 2500-2749 2750-2999 3000~
Lo-49 0 (2298) 1 (4u60) 1 (9461) 3 (10260) 1 (21349)
50-59 3 (7359) 5 (14096) 4 (24203) 2 (24438) 3 (41713)
60-69 3 (6675) 4 (10597) 7 (17439) 5 (18902) 3 (27321)

highly significantly from the observed mean calorie intake in the
coronary disease cases (é. n. 4. = 3.36, P<0.001).

Table VI shows, for all occupations, observed number of cases
and (in parentheses) the person-weeks observation in the calories
X age classification. Again, age refers not to the age at entry
to the study, but the age at which exposure to risk is observed.
Fitting the multiplicative model to this table yields, for the
age-ad justed multiplicative effects of the calorie-intake groups;
100% (vy definition), 95.9%, 66.7%, 52.6% and 22.6%. These multi-
plicative effects may be thought of as age-standardised incidence
ratios, and Mantel and Stark (1968) have referred to their
calculation as 'internal' indirect standardisation - indirect
standardisation without an external reference set of rates. The
numerical method given by these authors is the weighted form of
the iterative scaling procedure mentioned in section 4.

The score test, (8), for the column effect in table 6 yields
a chi-squared of 11.991 on 4 degrees of freedom for the effects of
calorie intake after allowing for age effects, and the approximate
form of the test gives 11.914, In this context, this test is
closely related to the log rank test of Peto and Peto (1972),

The device of 'discretising’' the time scale can be useful
when fitting smooth parametric families to Ao(t) to avoid some of
the computational difficulties mentioned in 7.2. All disease
experience within a discrete band is treated as if it were ex-
perienced at some central time. This method is approximate, but

allows the data to be grouped before model fitting. Gehan and
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8iddiqui (1973) have discussed essentially this method for fitting
the Weibull distribution (power law for A(t) ).

7.4 ARBITRARY Ao(t)

Finally, it is possible, using the method of Cox (1972) to
consider arbitrary Ao(t). The likelihood is based upon construc-
tion, for each 't' at which a case of disease occurs, the set of
individuals at risk. Thus, when 't' represents age, the risk set
is made up of all those individuals under observation at the age
at which a case of disease occurred. Clearly, the computational
problems of this procedure are considerable with the scale of data
commonly encountered in prospective studies. However, little
efficiency is lost by the replacement of each risk set by a much
smaller one made up of the index case and several ‘controls’,
randomly sampled from the disease-free members of the risk set.
Mantel has described this method as a 'synthetic retrospective
study' (Mantel, 1973):. The procedure seems to have little to re-
commend it except for studies which involve very laborious coding
of records; -wsuch coding may then be restricted to the cases and
relatively few controls (see, for example, Morris et al 1973) .

8. MULTIPLE TIME AXES

The methods of section 7 apply regardless of which time axis
is to be considered. Often, however, more than one time variable
will need to be considered simultaneously. Ultimately, it may be
desirable to attempt to disentangle, say, age, time since entry
into the study, and duration of exposure to pathogen. The methods
described above may readily be adapted to such an analysis, though
methods 7.1 and 7.2 will probably not be practicable., Method 7.4
reduces simply to the choice of controls 'matched' with respect to
all three time variables. Method 7.3 simply requires further pro-
liferation of 'pseudo individuals’. Each individual may contribute
to any cell in the three-way grid formed by stratifying the time
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variables; if he suffers disease onset, this is ascribed to the
cell in which it occurred, and this total observation fime is
partitioned between all the cells in the grid.

The algorithm for partitioning the observation time is simple
and requires only routines for choosing the earliest and latest of
a set of dates and for calculating the elapsed time between two
dates. For example, if we wish to determine the observation time
of one individual (a2) during the age range 40-49, (b) within 2-4
years of entry to the study and (c¢) with 5-10 years of first
exposure to some risk factor; then the procedure is as follows.

i. Choose the LATEST of the three dates:

Date of birth + 40 years,
Date of entry into study + two years, and
Date of first exposure + five'years.

ii. Choose the EARLIEST of the four datess
Date of birth + 50 years
Date of entry into study + four years,
Date of first exposure + 10 years, and
Date of exit from study.

- 1ii, If (ii) precedes (i), then the individual
makes no contribution to this cell,
Otherwise, the observation time contributed
is the time interval from date (i) until
date (1i).

Analysis of the resultant multiway tables may procede as des-
cribed in the remainder of this paper. It is interesting at this
stage to mention ’'birth cohort effects’, i.e. effects attributable
to the chronological date of birth of an individual. This time
variable is not a time axis in the sense considered here, since it
does not vary within individuals, but, birth cohort effects may be
manifested as a particular form of interaction between age and

chronological time.

9. MULTIVARIATE PROBLEMS

A casual reader might be forgiven for thinking that multi-

variate problems had already been discussed! BEarlier sections
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discussed analyses involving multiple risk factors, and section 8
discussed analyses involving ‘multivariate time', but in all these
problems only a single disease process is involved and it is
modelled by a single stochastic process. Thus, the theory is es-
sentially that of a univariate problem. However, aetiological
studies present problems in which more than one disease process 1s
involved. These problems have received little atfention, and
present some considerable difficulties, and, although it would not
be appropriate to deal with them in detail here, they should be
pointed out.

The first problem is that of 'family history', relatlng the
disease experience of an individual to the disease experience of
his parents, his siblings and other relatives. Adequate models of
this problem must involve more than one stochastic process, these
being to some extent interdependent. Elsewhere, I have suggested
a class of models which seem to have highly desirable character-
istics (Clayton, 1978). This paper also discusses some methods of
inference from prospective studies. Unfortunately, Oakes (1981)
has pointed out that the method of estimation proposed overstates
the precision of the key parameter estimate.

The second important problem involves multiple disecase

processes within the same individual. This is usually referred to

as the problem of ‘competing risks' and has been discussed in de-
tail by Prentice et al (1978). Here we have followed conventional
epldemiological practice in concentrating upon incidence of one
particular disease. Death from (and usually even incidence of)
other diseases preclude further observation of the individual and
has, therefore, been treated as simply a mechanism of censoring.
This is legitimate only if the different disease processes are in-
dependent of one another. Unfortunately, the nature of the censor-
ing is such that no information is available for testing the truth
of this assumption. The only sensible way out of this impass
would seem to be the use of computer simulation to investigate the
importance of the difficuity in any pérticular case. The models
mentioned above for the family history problem (Clayton, 1978),

would seem very suitable for this purpose.
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