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Evidence Synthesis

8.1 INTRODUCTION

It is unusual for a policy question to be informed by a single study. Interest in

more diffuse areas, such as health-care delivery or broad public health measures,

means that health-care evaluations become more realistically complex and there

is an inevitable demand to make use of the huge volume of published and

unpublished evidence. A quantitative synthesis of multiple studies has become

known as a meta-analysis, whose procedures for randomised trials have become

increasingly formalised by the Cochrane Collaboration (Section A.2). This has led

to parallel developments for observational studies (Stroup et al., 2000), and in the

context of social science by the Campbell Collaboration (Section A.2).

A Bayesian approach to such ‘standard’ meta-analyses is considered in

Section 8.2, emphasising the additional flexibility that arises both from the

use of prior information and the adoption of Markov chain Monte Carlo methods

for dealing with more complex models (Section 8.2.2). In particular, Section

8.2.3 illustrates the ability to handle the tricky and controversial issue of

dependence of the treatment effect on baseline risk. The basic meta-analysis

procedure can be further extended to increasingly complex contexts. First, we

examine the somewhat specific but useful issue of indirect comparison analyses

(Section 8.3), which are required when multiple studies have been carried out

in which multiple treatments have been compared in different combinations,

and we wish to draw inferences about specific treatment contrasts. Second, we

examine the broader topic of generalised evidence synthesis (Section 8.4), in which

studies of possibly different designs are pooled in order to estimate quantities of

interest – a wide range of alternative models for pooling are available, broadly

following the structure outlined for handling historical data (Section 5.4).

Since the basic methodological procedures were established in Section 3.17,

this chapter relies heavily on a series of quite detailed examples, featuring

prediction from meta-analyses (Example 8.1), meta-analysis with rare events

(Example 8.2), dependence on baseline risk (Example 8.3), indirect comparisons

in drug trials (Example 8.4), synthesis of RCTs and observational studies
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(Example 8.5), and two examples of the synthesis of multiple studies to estimate

the effects of a screening programme (Examples 8.6 and 8.7).

Many of the ideas in this chapter were suggested by Eddy et al. (1992) under

the general label ‘confidence profile method’, and promulgated with numerous

worked examples and accompanying software (FAST*PRO). They used directed

conditional independence graphs (Section 3.19.3) to represent the qualitative

way in which multiple contributing sources of evidence relate to the quantity of

interest, explicitly allowing the user to discount studies due to their potential

internal bias or their limited generalisability (Section 7.3). Their analysis was

essentially Bayesian, although it was possible to avoid specification of priors and

use only the likelihoods. The need to make explicit subjective judgements

concerning the existence and extent of possible biases, and the limited capacity

and friendliness of the software, have perhaps limited the application of this

technique. However, throughout this chapter we show that modern software

can allow straightforward implementation of their ideas, and we fully acknow-

ledge their foresight in promoting these concepts.

8.2 ‘STANDARD’ META-ANALYSIS

8.2.1 A Bayesian perspective

A standard classical meta-analysis will comprise a series of K studies each

estimating a treatment effect �k, k ¼ 1, . . . ,K, by means of a likelihood which

can be expressed, possibly approximately, as

yk � N[�k,s
2
k ], (8:1)

whether the sample variances s2k are generally considered known or estimated.

Following the development in Section 3.17, individual estimates of the �k can be

termed a fixed-effects analysis in which there is no pooling; at the other extreme

an analysis in which all the �k are assumed equal may be termed pooled-effect.

An intermediate random-effects analysis (DerSimonian and Laird, 1986) treats

the �k as if they were drawn from a population distribution, generally taken as

�k � N[�,t2]:

As mentioned in Section 3.17, a variety of classical techniques are available for

estimating t2; see Sutton et al. (2000) and Whitehead (2002) for recent reviews.

From a Bayesian perspective, it is natural to treat meta-analysis as a standard

problem of multiplicity (Section 3.17), and follow the approach taken in con-

texts such as subset analysis (Section 6.8.1), multi-centre trials (Section 6.8.2),

multiple N-of-1 studies (Section 6.11) and institutional comparisons (Section

7.4). Thus, if we are willing to treat the trials as exchangeable, the ‘true’
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treatment effect in each trial is considered a random quantity drawn from some

population distribution, in exactly the same manner as the standard random-

effects approach to meta-analysis. However, the latter tends to focus on estimat-

ing an overall treatment effect, while a full Bayesian approach also concentrates

on estimating trial-specific effects and, as we shall see below, permits a variety of

useful extensions. A simple ‘empirical Bayes’ meta-analysis has already been

presented in Example 3.13.

The Bayesian approach requires prior distributions to be specified for the

mean effect size �, the between-studies standard deviation t, and possibly the

within-study variances; as in other hierarchical models, specifying default

‘reference’ priors for t is not straightforward (Section 5.7.3).

Someof the potential advantages of the Bayesian approach tometa-analysis are

rather briefly summarised below (Sutton et al., 2000); of course, many of these

issues can also be tackled from a classical perspective, but perhaps with less

flexibility.

1. Unified modelling. The conflict between fixed- and random-effects meta-

analysis is overcome by explicitly modelling between-trial variability

(which could be assumed to be small). The ‘random-effects’ distribution

can also be much more flexible than the standard normal assumption, for

example partitioned into subgroups within which studies might be assumed

equal or exchangeable.

2. Borrowing strength. As in all areas of Bayesian hierarchical modelling, an

exchangeability assumption leads to each experimental unit ‘borrowing’ infor-

mation from the other units, leading to a shrinkage of the estimate towards the

overallmean, and a reduction in thewidth of the interval estimate. This degree

of pooling depends on the empirical similarity of the estimates from the indi-

vidual units.

3. Exact likelihoods. It is not necessary to adopt approximate normal likelihoods,

although care may be required in dealing with nuisance parameters (Section

8.2.2).

4. Allowing for uncertainty in all parameters. The full uncertainty from all the

parameters is reflected in the widths of the intervals for the parameter

estimates; these will therefore tend to be wider than those from a classical

random-effects analysis.

5. Allowing for other sources of evidence. Other sources of evidence can be

reflected in the prior distributions for parameters, or in pooling multiple

types of study (Section 8.4).

6. Allowing direct probability statements on different scales. Quantities of interest

can be directly addressed, such as the probability that the true treatment

effect in a typical trial is greater than 0. It is also possible to make inferences

on a variety of scales, such as risk difference, risk ratio and odds ratio (Carlin,

2000; Warn et al., 2002).
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7. Predictions. The ease of making predictions within a Bayesian framework

allows, for example, current meta-analyses to be used in designing future

studies. For example, we may use the basic normal model to predict the

treatment effect �new in a new trial by

�new � N[�, t2]: (8:2)

Rather than making predictions based on the ‘plug-in’ random-effects distri-

bution p(�newj�̂�, t̂t), we can use the full predictive distribution

p(�newjdata) ¼
Z

p(�newj�, t) p(�, tjdata) d� dt, (8:3)

which fully takes into account the uncertainty concerning � and t. This may

be easily achieved when using MCMC methods by simulating a value �new at

each iteration; the simulated values form a sample from the full predictive

distribution (8.3).

It could be argued that this predictive distribution is a more appropriate

summary of the treatment than conclusions regarding the mean effect �.
Such a predictive distribution may also be valuable as the basis for power

calculations for confirmatory clinical trials (Section 6.5), and could also act

as a prior distribution in their analysis. Predictions of effects in future

populations are also required if the analysis is to contribute to a policy

model, and these may need to be adjusted for different patient characteris-

tics.

8. Assessing compatibility between meta-analyses and individual clinical trials.

Suppose we have observed data yobs in a new trial and we wish to assess

their compatibility with a meta-analysis. We may consider yobs as providing

a likelihood term for a new treatment effect �new, and the issue becomes one

of assessing compatibility between a likelihood and a prior p(�newjdata)
obtained from (8.3). We have already considered such comparisons in

Section 5.8, where Box’s method was outlined. This compares yobs with

the predictive distribution of new data Ynew, given by

p(Ynewjdata) ¼
Z

p(Ynewj�new) p(�newjdata) d�new:

Specifically, as a form of two-sided P-value, we calculate twice the minimum

tail area 2min(p(Ynew < yobsjdata), p(Ynew > yobsjdata) ). This is easily

achieved when using MCMC by generating �new, then generating Ynew from

p(Ynewj�new), and counting the proportion of simulated Ynews that exceed or

are less than yobs.

Suppose both prior p(�newjdata) and likelihood p(yobsj�new) can be assumed

approximately normal with distributions N[�̂�new,�2=m] and N[�new,�2=n]
respectively. Then Box’s procedure is equivalent to a two-sided test based

on a standardised comparison
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Z ¼ yobs � �̂�new

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�1 þ n�1

p :

Example 8.1 illustrates the comparison of predictions Ynew from meta-

analyses with observed yobs in new trials, to show the conflict may not be

as great as is often claimed – see also Berry (2000).

9. Cumulative meta-analysis. It is natural to use a cumulative meta-analysis

as external evidence when monitoring a clinical trial (Henderson et al.,

1995), and cumulative meta-analysis can also be given a Bayesian inter-

pretation as providing a prior distribution (Lau et al., 1995; see also Section

5.4): in this situation the Bayesian approach relies on the assumption of

exchangeability of trials but avoids concerns with retaining Type I error

over the entire course of the cumulative meta-analysis.

10. ‘Meta-regression’. It is reasonably straightforward to investigate the rela-

tionship between treatment effect and study-level factors. For example,

suppose we have measured a covariate xk on each study. Then we could

fit the model

�k ¼ �adjk þ �(xk � x), (8:4)

where �adjk is the treatment effect adjusted for the covariate and might be

assumed to have a population distribution �adjk � N[�, t2]. However, par-

ticular care is required for examining the relationship with baseline rates

(Section 8.2.3).

11. Publication bias. It is feasible to model the effects of different degrees of

publication bias, although any conclusions must necessarily be somewhat

dependent on uncheckable assumptions (Silliman, 1997; Begg et al., 1997;

Givens et al., 1997; Smith et al., 2000).

These methods are not restricted to randomised trials and may equally be

applied to meta-analyses of case–control and other observational studies, with

the usual caveats about adjustment for potential bias.

Example 8.1 ISIS: Predictionaftermeta-analyses

Reference: Higgins and Spiegelhalter (2002).

Background: Example 3.13 described a meta-analysis carried out in 1993
which showed an apparent survival benefit from magnesium sulphate
following myocardial infarction. When the ISIS-4 ‘megatrial’ announced
its result of no benefit from magnesium, the apparent conflict with the
meta-analysis led to a long-running argument – see Higgins and Spie-
gelhalter (2002) for a recent analysis. Here we derive a predictive distri-
bution for the effect expected in a new trial based on the data available in
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the meta-analysis and presented in Example 3.13, and see whether that
prediction is really in conflict with the results observed in ISIS-4. We
carry out a full Bayesian analysis on all the parameters, and check
sensitivity to prior assumptions.

Statistical model: The normal approximation for the log(odds ratios) de-
scribed in Section 2.4.1 is adopted.

Priordistribution: As a baseline analysis, m and t, the between-study mean
and standard deviation, are given uniform priors.

Computation/software: MCMC methods implemented using WinBUGS.

Evidence from study: The data contributing to the meta-analysis were
given in Table 3.8. In ISIS-4 2216/29 011 (7.6%) deaths were observed
in the magnesium arm, slightly in excess of the 2103/29 039 (7.2%)
deaths observed under placebo. This corresponds to a log(OR) of
yobs ¼ 0:06, with standard deviation 0.03.

Bayesianinterpretation: Summaries of the simulated values of m and t are
given in Table 8.1 under the uniform prior assumptions. It can be seen that
the between-trial heterogeneity is poorly estimated from these data in that
the 95% interval is extremely wide, and therefore some prior sensitivity
might be expected. Nevertheless the 95% interval for the overall odds
ratio does exclude 1. The predicted log(OR) ynew in a new trial has an
extremelywide interval, and this is reflected in the predictive distribution of
the observed log(OR) Ynew in a trial of the size of ISIS-4, which has a point
prediction of 0.56 but a 95% prediction interval from 0.10 to 2.43.We note
that the huge sample size of ISIS-4 means that the distribution of Ynew is
essentially the same as ynew. The observed log(OR) of yobs ¼ 0:06 lies
well within this interval with a one-sided tail area of 0.12; Box’s compati-
bility measure is the probability of observing such an extreme result,

Table 8.1 Comparison of meta-analysis with megatrial. Ynew are the results
from a further trial that would be predicted from the meta-analysis. The observed
data yobs from ISIS-4 are well within the 95% prediction interval.

Parameter Median 95%
interval

Median
OR

95% interval
for OR

m: mean effect �0.59 �1.35 to �0.01 0.56 0.26 to 0.99
t: between-trial SD 0.55 0.02 to 1.62
ynew: prediction of effect in new trial �0.58 �2.28 to 0.89 0.56 0.10 to 2.43
Ynew: prediction of log(OR) to

be observed in new trial
�0.59 �2.29 to 0.88 0.56 0.10 to 2.43

yobs: observed log(OR) in ISIS-4 0.06 0.00 to 0.12 1.06 1.00 to 1.13
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2� 0:12 ¼ 0:24. This analysis does not therefore indicate strong conflict
between the meta-analysis and the megatrial.

Sensitivity analyses: Six alternative prior distributions for t give predictive
distributions for Ynew shown in Figure 8.1. As expected from the discus-
sion in Section 5.7.3, the Gamma(0.001,0.001) (a) (equivalent to a root-
inverse-gamma on t), DuMouchel (e) and half-normal with tu ¼ 1:0 (f)
tend to support smaller values of t and hence produce narrower poster-
ior intervals, while the uniform on t2 (b) leads to very wide intervals. We
note that s0 ¼ 0:36, roughly corresponding to an average of 31 events
per trial (in fact a total of 286 events are recorded in Table 3.8, or an
average of 36 events per trial).

The resulting one-sided P-values P(Ynew < yobs) ranged from 0.06 (for
(a) and (f) ) to 0.18 (for (b) ), so under no assumption was there particu-
larly strong evidence of incompatibility.

−4.0 −2.0 0.0 −4.0 −2.0 0.0

0.0
0.5
1.0
1.5
2.0

0.0

2.0
1.5
1.0
0.5

(c) Uniform on τ

−4.0 −2.0 0.0 −4.0 −2.0 0.0

0.0
0.5
1.0
1.5
2.0

(d) Uniform shrinkage

0.0

2.0
1.5
1.0
0.5

(e) DuMouchel

−4.0 −2.0 0.0
y.new y.new

−4.0 −2.0 0.0

0.0
0.5
1.0
1.5
2.0

(f) Half-normal

0.0

2.0
1.5
1.0
0.5

(b) Uniform on τ2(a) G(0.001,0.001) on 1/τ2

Figure 8.1 Alternative predictive distributions for the observed log(OR) in a trial
the size of ISIS-4, arising from six different prior distributions on t. The actual
observed log(OR) was 0.058, and hence was not seriously in conflict with any of
the predictive distributions.
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8.2.2 Some delicate issues in Bayesian meta-analysis

The Bayesian approach to meta-analysis promises additional flexibility but

raises some tricky issues, some of which are generic to hierarchical models

and some more specific to this context. These include the following:

The between-study standard deviation t. Comparative studies show that

when there are few studies and hence t cannot be accurately estimated from

the data alone, the prior for this parameter may become important and the

empirical Bayes approach, in which the uncertainty about the between-study

variability is ignored, tends to provide intervals that are too narrow. Priors on

the heterogeneity parameter have already been discussed in Section 5.7.3, in

which it was noted that Higgins and Whitehead (1996) use proper priors

derived from a series of meta-analyses. It is important to check the sensitivity

to the prior on t – see Example 8.1.

Exact likelihoods and nuisance parameters. The standard normal approxi-

mation given in (8.1) may not be appropriate when the studies are small or

their results extreme, as the resulting likelihoods may not be approximately

normal. For example, suppose in the kth trial there are ntk and nck in the

treatment and control groups respectively, and we observe rtk and rck deaths.

If either ntk and nck is small, or mortality rates are near 0% or 100%, we may

adopt a full binomial model instead of the normal approximation of Section 2.4.

Specifically, we assume

rtk � Bin[ ptk, ntk],

rck � Bin[ pck, nck],

where the mortality probabilities are expressed as

logit(ptk) ¼ �k þ �k,

logit(pck) ¼ �k:
(8:5)

Hence �k is the logit(mortality rate) in the control group of trial k, and the

treatment effect �k is the log(odds ratio).

The �k can also be called ‘study effects’ or ‘baseline rates’ and require careful

handling. Generally theywill be considered as nuisance parameters, except in the

situation where a relationship between treatment effect and underlying risk is

suspected (Section 8.2.3). Eliminating such nuisance parameters is a problem

within all schools of statistical inference: see Section 3.18 for a brief review.

In the context of meta-analysis the following methods have been adopted:

. ‘Approximate pivotal quantity’. The standard normal approximation in (8.1)

has a distribution which does not depend on the baseline �k.
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. ‘Conditional likelihood’. By conditioning on the value of a statistic we derive a

likelihood which depends only on the parameter of interest: see Liao (1999)

for a Bayesian application of this procedure in meta-analysis.

. Prior distributions. The appropriate joint prior distribution for the �k and the �k
presents a particular problem. The ‘study effects’ �k might be given independ-

ent uniform priors, but a choice must be made between the logit (�k) and

probability (pck) scale. Random study effects can be assumed if the control

group risks are considered exchangeable, but a normal distribution may not

be appropriate. Finally, it may be reasonable to assume the �k and the �k are
correlated, and hence carry out a ‘bivariate meta-analysis’ (van Houwelingen

et al., 1993). This is essential if one is explicitly investigating the relationship

between effect and baseline risk (Section 8.2.3), but it has been argued that it

would be appropriate in any situation in which one assumes random �k. The

reasoning is as follows: if the �k and the �k are assumed independent, (8.5)

shows that the variance of the treatment risks is forced to be greater than the

variance of the control risks. Of course this may be a reasonable assumption,

but it should be explicitly acknowledged.

Example 8.2 examines a meta-analysis of trials with rare events, and explores

the sensitivity of conclusions to a range of these modelling options.

Example 8.2 EFM:meta-analyses of trialswith rare events

References: Sutton and Abrams (2001), Sutton et al. (2002).

Intervention: Electronic foetal heart rate monitoring (EFM) in labour, with
the aim of early detection of altered heart-rate pattern and hence a
potential benefit in perinatal mortality.

Aimof study: EFM was gradually introduced in the early 1970s, and early
evaluation of its impact in terms of perinatal death was in terms of either
non-randomised comparative studies or before–after studies. A large
body of evidence was collected which suggested that EFM was indeed
clinically effective in reducing the risk of perinatal death. Despite this
body of evidence a number of randomised trials were conducted, which
were much smaller in terms of sample sizes, but which suggested that
there was little benefit, if any, from the use of EFM. Here we consider the
evidence from the randomised trials, with emphasis on the difficulties
associated with rare events.

Studydesign: Meta-analysis of nine randomised trials.

Outcomemeasure: Perinatal mortality, as measured by the odds ratio in
deaths per 1000 births, odds ratios less than 1 favouring EFM. We note
that Sutton and Abrams (2001) consider the risk difference, which is
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directly related to the number needed to treat (NNT) and hence a policy
decision (Section 3.14).

Statistical model: There are a number of options for dealing with the
nuisance parameters in this model, i.e. the control group risks (Section
3.18), acknowledging that the standard normal approximation for the log
(odds ratio) likelihood within each study may be inappropriate due to the
rarity of perinatal deaths.

(a) Fixed effects. A normal approximation to the likelihood for the
observed log(odds ratio) (Section 2.4), with the log(odds ratios)
yk assumed to be independent.

(b) Approximate normal likelihood, randomeffects. A normal approxi-
mation to the likelihood for the observed log(odds ratio) (Section
2.4), with the log(odds ratios) assumed to have the distribution
yk � N[m, t2].

(c,d) Binomiallikelihood, randomeffects. An exact binomial model (8.5),
with the log(odds ratios) assumed to have the distribution yk �
N[m, t2]. The control group risks are assumed independent, with
options (c) and (d) representing different assumptions (see below).

An exchangeable model for the control group risks could also have
been adopted.

Priordistribution: m and t, the between-study mean and standard deviation,
are given uniform priors. For the full binomial models (c) and (d),
two alternative priors for each study’s control group mortality pck are
considered: (c) pck is given an independent uniform prior, and
(d) fk ¼ logit(pck) is given an independent uniform prior.

Computation/software: MCMC methods implemented using WinBUGS.

Evidence from study: The randomised data are presented in Figure 8.2.
We note that trial 8 has a high mortality rate in the control group, which
would cast doubt on a simplistic normal assumption for exchangeable
control groups risks. The 0s in trials 3 and 6 also suggest that conclu-
sions may be sensitive to ways of dealing with the nuisance parameters.

Bayesian interpretation and sensitivity analyses: Figure 8.2 shows the
estimated odds ratios for each trial and for the population, for each of
the four models (a) to (d). The approximate normal random-effects
model (b) is consistently more conservative in its estimate than the
models using a binomial likelihood, and also more precise. The binomial
model (d) with a uniform prior on the logit of the control risks is more
conservative than model (c) with a uniform prior on the control risks – this
is presumably because model (d) will tend to estimate smaller control
risks than model (c) and hence will reduce any apparent benefit of EFM.

276 Evidence synthesis

Chapter 8 Evidence Synthesis 17.11.2003 4:58pm page 276



0.01 0.05 0.10 0.50 1.00 5.00 10.00 50.00

OVERALL

9

8

7

6

5

4

3

2

1

ID
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   deaths         deaths

      1/175    1/175

      2/242    1/241

      0/253    1/251

      3/463    0/232

      1/445    0/482

      0/485    1/493

    14/6530    14/6554

     17/122    18/124

      2/746    9/682

(a) fixed

(b) normal random

(c) Binomial, uniform risks

(d) Binomial, uniform logits

Figure 8.2 Four different models for a meta-analysis of nine trials of electronic
foetal monitoring. The rare events lead to considerable sensitivity of conclusions to
assumptions concerning the form of the likelihood and prior distributions on nui-
sance parameters.

Table 8.2 shows that the three random-effects models also give rise to
different estimates of t, although each has a wide interval with the bulk of
the density near 0. There is likely to be considerable additional sensitivity
to prior assumptions concerning t.

Comments: This example shows there can be sensitivity to likelihood
assumptions as well as prior distributions, and that analyses with rare
events have to be handled with care. In particular, the traditional normal
approximation, used in so many of our examples, would lead to exces-
sive confidence in the conclusion, whereas the RCTs provide little evi-
dence of efficacy on their own.
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Table 8.2 Posterior summaries for between-trial standard deviation t from three
different random-effects models.

Model Median of t 95% interval

(b) Approximate normal likelihood, random effects: 0.32 0.01 to 1.50
(c) Binomial likelihood, random effects, uniform

on control risks:
0.54 0.01 to 2.25

(d) Binomial likelihood, random effects, uniform
on logit control risks:

0.75 0.09 to 2.82

Sutton and Abrams (2001) present both case–control and cohort data
addressing this comparison: randomised and observational data could
be combined by, for example, using the (possibly discounted) observa-
tional data as a prior for the meta-analysis presented above (Hornbuckle
etal., 2000), or by conducting a generalised evidence synthesis in which
different study designs are pooled in a hierarchical model (Section 8.4).

8.2.3 The relationship between treatment effect and
underlying risk

The appropriate means of modelling the dependence of effect on baseline risk

has been the subject of some controversy. There is general agreement that it is

natural to investigate the linear model

�k ¼ �adjk þ �(�k � �), (8:6)

where �adjk is now the treatment effect adjusted for a measure of baseline risk �k,

also known as a ‘study effect’. �adjk might be assumed to have a distribution

�adjk � N[�, t2]: (8:7)

We note from (8.6) and (8.7) that the treatment effect �k has distribution

�k � N[�þ �(�k � �), t2], (8:8)

and hence the treatment effect in any future trial with true baseline risk � can

be obtained by substitution in (8.8). In particular, the effect is expected to be 0

when � obeys

�0 ¼ ��

�
þ �;

278 Evidence synthesis

Chapter 8 Evidence Synthesis 17.11.2003 4:58pm page 278



the solution to this equation is known as the ‘breakeven’ point. MCMC methods

allow inferences to be drawn about this quantity, as demonstrated in Example

8.3. Such models have been investigated by McIntosh (1996), Thompson et al.

(1997), Sharp and Thompson (2000) and Arends et al. (2000).

The controversy arises in the specification of a prior for the ‘study effects’ �k.

Thompson et al. (1997) assume independent priors and hence fixed study

effects, but this is strongly criticised by Houwelingen and Senn (1999), who

argue that since this introduces an additional nuisance parameter for each trial,

the procedure will be ‘inconsistent’ in the sense that under broad assumptions it

will, as the number of trials grows, not tend to give the correct underlying

relationship. In their reply the authors claim that fixed study effects are stand-

ard methodology, for example in using logistic regression, and will only give

misleading conclusions in extreme situations. These alternative approaches are

investigated in Example 8.3.

Van Houwelingen and Senn (1999) also make the important point that there

will always, in a sense, be dependence between effect and baseline, since if there

is no relationship on a logit scale, there would be on an absolute risk scale. An

important aim may therefore be to find a scale on which the effect is most

independent of baseline.

Example 8.3 Hyper:Meta-analysesof trials adjusting forbaseline rates

References: Hoes et al. (1995) and Arends et al. (2000).

Intervention: Drug treatment in mild to moderate hypertension.

Aimof study: To determine whether drug treatment reduced mortality and
to see whether the size of the treatment effect depended on the event
rate in the control group.

Study design: Meta-analysis of 12 randomised trials with considerable
variability in baseline risk.

Outcomemeasure: All-cause mortality per 1000 patient-years of follow-up.

Statistical model: A random-effects Poisson regression model was as-
sumed. In a similar manner to Section 3.18, for the ith study the numbers
of deaths rti and rci in treatment and control groups are assumed

rti � Poisson(mti),

rci � Poisson(mci),

using the notation of Section 2.6.2. The Poissonmeans are expressed as

mti ¼ log(nti=1000)þ fi þ yi,

mci ¼ log(nci=1000)þ fi,
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where nti and nci are the patient-years of follow-up in the treatment and
control groups. Hencefi is the log of the rate per 1000 patient-years in the
control group of trial i, and the treatment effect yi is the log(rate ratio).

The dependence of treatment effect on baseline rate is then modelled
exactly as described in Section 8.2.3.

Prior distribution: For the baseline analysis, m and t, the between-study
mean and standard deviation, are given uniform priors. Following the
discussion in Section 8.2.3, two priors are considered for each study’s
control log(event rate) fi: independent uniform priors, and exchangeable
with a normal distribution

fi � N mf, t
2
f

h i
,

where mf, tf are given uniform priors.

Computation/software: MCMC methods implemented using WinBUGS.

Evidence fromstudy: The data are given in Table 8.3. Figure 8.3(a) shows
the observed rate ratios from Table 8.3 plotted against the observed
control group rates. There is a clear suggestion of a relationship.

Bayesian interpretation: Figure 8.3(b) shows the estimated rate ratios eyi

plotted against the estimated control group rates efi when adjusting for
baseline, assuming independent uniform priors for the fi. There is clear
shrinkage towards theassumedstraight line,with the control group rate for
centre 2 estimated to be even smaller than that observed. The intersection

Table 8.3 Data from 12 randomised trials of drug treatment for mild-to-
moderate hypertension: r is the number of deaths, n is the patient-years of follow-
up, and rates are events per 1000 patient-years.

Treatment group Control group

rt nt ratet rc nc ratec

10 595.2 16.8 21 640.2 32.8
2 762.0 2.6 0 756.0 0.0
54 5 635.0 9.6 70 5600.0 12.5
47 5 135.0 9.2 63 4960.0 12.7
53 3 760.0 14.1 62 4210.0 14.7
10 2 233.0 4.5 9 2084.5 4.3
25 7 056.1 3.5 35 6824.0 5.1
47 8 099.0 5.8 31 8267.0 3.7
43 5 810.0 7.4 39 5922.0 6.6
25 5 397.0 4.6 45 5173.0 8.7
157 22 162.7 7.1 182 22 172.5 8.2
92 20 885.0 4.4 72 20 645.0 3.5
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(a) Observed data
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(b) Fitted data, independent baselines
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(c) Fitted data, exchangeable baselines

Control group rate per 1000 patient years
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Figure 8.3 Estimated control group rates and rate ratios in 12 studies under
different assumptions. (a) can be considered as fixed-effect estimates of control
rate and treatment effects. In (b), the treatment effect is assumed linearly related to
independent log(control group rates), whereas in (c) the log(control group rates) are
assumed exchangeable and hence shrunk towards a common value.
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Table 8.4 Results from fitting independent and exchangeable control group rates.

Independent control
rates

Exchangeable control
rates

Parameter Median 95% interval Median 95% interval

b Dependence on baseline �0.38 �0.57 to �0.17 �0.33 �0.55 to �0.09
ef0 ‘Breakeven’ control rate 6.00 3.67 to 8.01 6.06 2.73 to 8.80
t Residual SD 0.10 0.01 to 0.28 0.10 0.01 to 0.30

of the upper and lower prediction intervals with the null rate ratio 1 cor-
responds to the interval for ef0, the control group rate at which there is no
treatment effect. The corresponding estimates are shown in Table 8.4.

Figure 8.3(c) shows the consequences of assuming the control rates
are exchangeable: the estimates are shrunk towards a common value,
particularly the smaller study 2. The reduced spread in the control group
rates with the exchangeable analysis has resulted in increased uncer-
tainty.

After adjusting for baseline risk, there is very little residual between-
study heterogeneity suggesting it may be reasonable to set t ¼ 0 and
assume all heterogeneity is explained by baseline risk.

Sensitivity analyses: Alternative priors for the between-study standard
deviation t have little influence on this analysis.

Comments: Acknowledging functional dependence of treatment and base-
line rates brings about a reduction in the apparent gradient, compared
with that obtained by plotting the raw data. Assuming exchangeable
control group rates brings some shrinkage but has little influence on
the conclusions. There is little residual variability around the fitted line.

8.3 INDIRECT COMPARISON STUDIES

Suppose that a number of experimental interventions are investigated in a series

of studies, where each study compares a subset of the interventions with a

control group. We would like to draw inferences on the treatment effects

compared with control, and possibly also make comparisons between treat-

ments that may well never have been directly compared. We shall call these

indirect comparisons, although the term mixed comparisons has also been used.

Song et al. (2003) carry out an empirical investigation and report that such

comparisons arrive at essentially the same conclusions as ‘head-to-head’ com-

parisons.

A specific application arises in the context of ‘active control’ studies. Suppose

an established treatment C exists for a condition, and a new intervention T is
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being evaluated. The efficacy of T would ideally be estimated in randomised trial

with a placebo P as the control group, but because of the existence of C this may

be considered unethical. Hence C may be used as an ‘active control’ in a head-

to-head clinical trial, and inferences about the efficacy of T may have to be

estimated indirectly, using past data on comparisons between C and P.

Let �jk represent the expected response (on an appropriate scale) of treatment

j being given in study k, where the control is labelled as j ¼ 0. A simple model

might express �jk as

�jk ¼ �k þ �jk, (8:9)

where �k denotes a ‘study effect’ and �jk a treatment effect in the kth study. It is

often convenient to set �0k ¼ 0, so that we can interpret �k as the response in

the control group. Equation (8.9) needs to be further constrained in order to

estimate parameters: we might assume a common treatment effect across all

studies �jk ¼ �j, or a random effect in which the �jk are assumed drawn from

some population distribution, say, �jk � N[�j, t2j ] (Higgins and Whitehead,

1996; Hasselblad, 1998). A variety of models are possible for the distributions

of the �k and �jk: Higgins and Whitehead (1996) point out that if we wish the

contrasts between all possible treatment pairs (including control) to have the

same distribution, then we need to assume a multivariate normal distribution

for the �jk with a particular correlation structure. Example 8.4 re-examines a

published example of such an analysis.

Example 8.4 Blood pressure: Estimating effects that have never been
directlymeasured

Reference: Gould (1991).

Intervention: Alternative therapies for lowering blood pressure.

Aim of study: To estimate the contrast between two therapies that have
never been compared head-to-head. Gould (1991) suggests such an
inference could then be used to design a direct comparison study.

Available evidence: Table 8.5 displays the results from a set of eight
crossover experiments comprising randomised comparisons and
single-arm studies (Gould, 1991), showing mean and standard deviation
of change in blood pressure, and sample size in each group. Four
treatments (control, A, B and C) have been given, but there has been
no direct comparison between treatments A and B and it is this contrast
that is of particular interest.

Statisticalmodel: Let yjk be the mean response recorded in Table 8.5 for
the jth treatment in the kth study. We assume
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Table 8.5 Sample sizes m, mean and standard deviation of responses under
each treatment given in eight studies: e.g. study 1 compared A with C, while
study 2 randomised between control and B in a 1:2 ratio. The problem is to
compare treatments A and B.

Control ( j ¼ 0) A( j ¼ 1) B( j ¼ 2) C( j ¼ 3)

Study m Mean SD m Mean SD m Mean SD m Mean SD

1 41 8.90 7.49 39 6.05 10.28
2 47 5.51 8.72 100 6.21 8.02
3 53 3.75 7.07 54 10.20 9.39
4 47 3.04 9.20 44 8.43 8.17
5 30 2.97 7.69 32 6.53 7.80
6 69 3.99 8.04
7 68 5.28 7.58
8 67 3.34 8.01

yjk � N fjk,
s2

mjk

� �
,

and assume fjk ¼ fk þ yj (8.9), where y0 ¼ 0 so that fk is the response in
the control group in study k (although there was not necessarily an actual
control in the kth study) and y1, y2, y3 measure the mean effects of
A, B, C over placebo, respectively. Some of the studies have only a single
arm, and if we assume fixed study effects then these will contribute no
information (except in contributing to the estimate of s2). Since all the
studies were carried out in a common research programme by the same
investigators, it may be reasonable to adopt exchangeable study effects
fk, with

fk � N mf, t2f
h i

:

The treatment effects y1, y2, y3 are taken as independent fixed effects.
We may use the following distribution theory to obtain a likelihood for s
(Section 2.6.5). The observed standard deviations sjk have the property

(mjk � 1)s2jk
s2

� w2mjk�1,

and hence (mjk � 1)s2jk � G((mjk � 1)=2, 1=(2s2)).

Prospective analysis?: No.
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Table 8.6 Posterior summaries.

Parameter Median SD 95% interval

md Control mean 4.01 0.50 3.00 to 4.98
y1 A 9.37 0.79 7.87 to 10.98
y2 B 6.10 0.87 4.28 to 7.73
y3 C 6.92 1.08 4.83 to 9.07
y1 � y2 A vs. B 3.28 1.16 1.08 to 5.68
s sampling sd 8.18 0.22 7.79 to 8.63
tf between-study sd 0.46 0.48 0.02 to 1.78

Prior distribution: Uniform distributions are given to log (s), mf, tf and
each of the yj.

Loss functionordemands: None specified.

Computation/software: MCMC implemented in WinBUGS, with inferences
based on 10 000 iterations after a burn-in of 1000.

Bayesian interpretation: The results are shown in Table 8.6, revealing the
between-study standard deviation tf to have a wide interval. The indirect
analysis allows a posterior distribution to be obtained for y1 � y2 which
mightbeused indesigningasuitable trial foradirectcomparisonofAandB.

8.4 GENERALISED EVIDENCE SYNTHESIS

As noted when discussing observational studies in Chapter 7, in some circum-

stances randomised evidence will be less than adequate due to economic,

organisational or ethical considerations (Black, 1996). Considering all the

available evidence, including that from non-randomised studies, may then be

necessary or advantageous. Droitcour et al. (1993) describe the limitations of

using either RCTs or databases alone, in that RCTs may be rigorous but

restricted, whereas databases have a wider range but may be biased. They

introduce what they term cross-design synthesis, an approach for synthesising

evidence from different sources, with the aim ‘not to eliminate studies of overall

low quality from the synthesis, but rather to provide the information needed to

compensate for specific weaknesses’. Although not a strictly Bayesian approach,

they are essentially explicitly modelling potential biases (Section 7.3), and then

attempting to generalise the results of clinical trials for broader populations.

Rubin (1992) emphasises pooling evidence through modelling in order to ‘build

and extrapolate a response surface’, which models the true treatment effect

conditional on both the design of the study and subgroup factors.

Cross-design synthesis was outlined in a report from the US General Account-

ing Office (General Accounting Office, 1992), but a Lancet (1992) editorial was
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critical of this approach, suggesting it would deflect attention from carrying out

serious controlled trials: this was denied in a subsequent reply by Chelimsky et

al. (1993). A commentary by Begg (1992) suggested they had underestimated

the difficulty of the task, and appeared to assume that randomised trials and

databases could be reconciled by statistical adjustments, whereas selection

biases and differences in experimental rigour could not be eliminated so easily.

A non-Bayesian case study is provided by Belin et al. (1995) who combine

observational databases in order to evaluate interventions to increase screening

rates, but need to impute missing data in some studies.

One must clearly be very cautious in such an endeavour, balancing the desire

to make use of all available evidence with due acknowledgement of potential

weaknesses. It is not a purely technical exercise, and must be carried out in

loose collaboration with subject-matter experts. Nevertheless, it is natural to

take a Bayesian approach to the synthesis of multiple study designs, in which

relationships are assumed between some underlying parameters of the different

studies. Such relationships may involve a huge variety of both deterministic

models and probabilistic dependence, and again fall naturally into the tax-

onomy of relationships already explored in the use of historical data (Section

5.4)

(a) Irrelevance. It is always an option, possibly on purely subjective grounds, to

declare certain studies irrelevant to the issue under study.

(b) Exchangeable. Typically we may be able to classify our studies according to a

‘type’, say randomised, case–control or cohort: this naturally leads to hier-

archical exchangeability assumptions, which can specifically allow for the

quantitative within- and between-study-type heterogeneity, and incorpor-

ate prior beliefs regarding qualitative differences between the various

sources of evidence. Figure 8.4 shows a stylised graphical representation

of a possible model, in which treatment effects are assumed exchangeability

within study type, and also that mean study effects are exchangeable.

Examples of this approach include Prevost et al. (2000) who pool random-

ised and non-randomised studies on breast cancer screening (Example 8.5),

Larose and Dey (1997) who similarly assume open and closed studies are

exchangeable, and Dominici et al. (1999) who examine migraine trials and

pool open and closed studies of a variety of designs in a four-level hierarch-

ical model. There is a clearly a difficulty in making such exchangeability

assumptions, since there are few study types and hence little information on

the variance component. Prior assumptions may be very important, and

priors for the degree of ‘similarity’ between alternative designs might be

empirically informed by studies comparing the results of RCTs and observa-

tional data, such as listed in Section 7.3.

(c) Potential biases and (d) Equal but discounted. Both biases and discounting can

be incorporated into a model for between- and within-study-type variation

such as that shown in Figure 8.4.
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Figure 8.4 Hierarchical model in which the effects �ij in studies of type i are assumed
exchangeable with mean �i, and the study-type effects �i are assumed exchangeable with
mean �0.

(e) Functional dependence. Suppose we are interested in drawing inferences on a

quantity f about which no direct evidence exists, but where f can be

expressed as a deterministic function of a set of ‘fundamental’ parameters

� ¼ �1, . . . , �N . For example, f might be the response rate in a new popula-

tion made up of subgroups about which we do have some evidence. More

generally, we might assume we have available a set of K studies in which we

have observed data y1, . . . , yK which depend on parameters c1, . . . , cK ,

where each ck is itself a function of the fundamental parameters �. This
structure is represented graphically in Figure 8.5. This situation sounds very

complex but in fact is rather common, when we have a lot of studies, each of

which informs part of a jigsaw, and which need to be put together to answer

the question of interest. See Example 8.6 for a case where the fundamental

parameters have directly relevant evidence, and Example 8.7 in which the

fundamental parameters have only indirect evidence.

Fundamental parameters

Study-specific parameters

Data

Quantity of interest

y1

y1 yK

q

yK

f

. . .

. . .

Figure 8.5 Data yk in each of K studies depend on parameters ck, which are known
functions of fundamental parameters �. We are interested in some other function f of �,
and so need to propagate evidence from the yk.
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(f) Equal. It is of course possible to assume the treatment effect is common

across studies of different designs. For example, Li and Begg (1994) present

a non-Bayesian analysis of pooling controlled and single-arm studies, in

which each is assumed to have a common treatment effect but the study

effect is taken as random – this is essentially an application of the indirect

comparison models considered in Section 8.3, in which some of the studies

are non-comparative since only one treatment is given.

Such models allow enormous room for imagination and complexity, and

graphical representations (Spiegelhalter, 1998) have been found to be very

useful in clarifying the underlying structure. There is also considerable flexibil-

ity in the logical and stochastic assumptions: for example, Dominici et al. (1999)

assume that between-study variability follows a ‘mixture of normals’ distribu-

tion to allow for skewness. Nevertheless, such analyses may be controversial,

since there may be strong dependence on assumptions and there is concern that

including studies with ‘poor’ designs will weaken the analysis. Careful sensitiv-

ity analyses are clearly vital, and perhaps one reason for the limited uptake of

such syntheses is that they are not seen as ‘clean’ methods, with each analysis

being context-specific, less easy to set quality markers for, easier to criticise as

subjective and so on.

Example 8.5 Screen: generalisedevidence synthesis

Reference: Prevost et al. (2000).

Intervention: Mammographic screening for breast cancer.

Aimofstudy: Breast cancer has the potential to be particularly amenable to
screening in that RCTs and observational studies clearly indicate that
prognosis is extremely good for early stage tumours, especially in
women over 50 years of age. In order to assess the magnitude of this
potential benefit, a number of RCTs and observational studies have been
conducted world-wide. Whilst it is accepted that RCTs provide a ‘gold
standard’ by which to assess efficacy, it has been argued that the
inclusion of observational evidence may help in the estimation of effect-
iveness that may be seen in a potential population. However, observa-
tional studies are often subject to various biases and therefore any
synthesis must be flexible enough to allow these to be incorporated.
This study therefore developed a hierarchical Bayesian model in which
prior opinions regarding the relative plausibility of different sources of
evidence may also be included.

Studydesign: Synthesis of evidence from five RCTs and five observational
studies which evaluated screening in women over 50.

Outcomemeasure: Breast cancer mortality per 1000 patient-years.
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Statisticalmodel: The three-level model follows that shown in Figure 8.4.
Let yik be the observed log(risk ratio) in the ith study of type k, where
k ¼ 1 (RCT), 2 (observational), and s2ik its associated variance. Then we
assume

yik � N[yik, s2ik],

yik � N[mk, n
2
k ],

mk � N[m0, t
2]:

(8:10)

The yik represent the underlying effect, on the log(risk ratio) scale, in
the ith study of type k. The yik are distributed about an overall effect for
the kth type of study, mk, with n2k representing the between-study variabil-
ity for those studies of type k. At the third level of the model the study-
type effects are distributed about an overall population effect, m0, with t2

representing the between-study-type variability. As with many other
meta-analytic models the level 1 variances, s2ik, can be replaced by the
estimated sample variances s2ik, derived in this case using the methods
described in Section 2.4.3. In this case prior distributions are required for
m0, t2 and the n2k .

Prospective analysis?: No.

Priordistribution: A prior distribution for each of the n2k is derived using the
techniques described in Section 5.7.3. We assume we are 95% sure that
the true underlying risk ratio for a study of a particular type will be within a
range from four times to a quarter the overall risk ratio of that type, which
means that the upper 95% point of the prior distribution for each nk is
log (16)=(2� 1:96) ¼ 0:71. A half-normal distribution (Section 2.6.7)
nk � HN[0:362] has this property.

In a similar manner a prior for the between-type variance, t2, can be
derived from assuming 95% belief that the underlying risk ratio for a
particular study type will be less than double or more than half the overall
population effect. On this basis, a half-normal prior distribution
t � HN[0:182] is obtained.

For m0, the overall population effect, a relatively vague prior distribution
is specified on the basis that the overall relative risk is unlikely to exceed
500 in favour of either screening or control, and therefore a prior distribu-
tion form0 has standard deviation log (500)=1:96 ¼ 3:17, orm0 � N [0,10].

Loss functionordemands: None used.

Computation/software: MCMC in WinBUGS.

Evidence fromstudy: Figure 8.6 displays the observed risk ratios (together
with 95% confidence intervals) for the five RCTs and five observational
studies.
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Figure 8.6 Observed risk ratio of breast cancer mortality in RCTs and observa-
tional studies in women over 50, together with Bayesian estimates of overall
synthesis.

Bayesian interpretation: Figure 8.6 also displays the results, in terms of
estimates and 95% intervals, of applying model (8.10) using the prior
distributions derived above. In terms of the individual study estimates
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there is the usual shrinkage towards the overall study-type estimates,
the degree of shrinkage dependent upon the within-study variances, and
towards the overall population estimate for the study-type overall esti-
mates. The overall population estimate is very little different from the
overall RCT estimate, but the 95% interval for the population effect is
considerably larger than that for the RCTs. The key point is that the effect
of synthesising both RCT and observational evidence has not been to
change our overall estimate of the effectiveness of breast cancer
screening, but rather to be less certain about this estimate.

Sensitivityanalysis: Table 8.7 shows the results of changing the prior distri-
butions for the variance parameters used in the analysis above, together
with that for m0, the overall population effect. As an alternative to the prior
distributions described above for the variance parameters, uniform distri-
butions over the range 0 to 5 are assumed on a standard deviation scale,
and the prior distribution for m0 is made even more diffuse. The prior
distribution for t has the largest effect on the estimates for m0, m1 and m2,
which is due to the fact that there are only two study types in this example,
and therefore relatively little data on which to estimate t2.

A further sensitivity analysis was undertaken by Prevost et al. (2000)
regarding the plausibility of introducing the observational evidence at all
into the analysis. In a manner similar to the discounting of historical
evidence (Section 5.4), they considered letting n2, the between-study
standard deviation for the observational studies, be a function of n1 the
between-study standard deviation of the RCTs, i.e. n2 ¼ a� n1. In this

Table 8.7 Sensitivity analysis of estimates of population risk ratio, em0 ,
pooled risk ratio for randomised studies, ey1 , and pooled risk ratio for
observational studies, ey2 (95% credible interval), under different prior distributions.

Prior for t Prior for nj( j ¼ 1, 2) Prior for m0

N(0,10) N(0,10 000)

HN(0.033) HN(0.125) em0 : 0.65 (0.46, 0.86) 0.65 (0.47, 0.90)
ey1 : 0.68 (0.56, 0.82) 0.68 (0.56, 0.83)
ey2 : 0.62 (0.42, 0.81) 0.61 (0.41, 0.84)

U(0,5) em0 : 0.65 (0.44, 0.92) 0.65 (0.44, 0.92)
ey1 : 0.69 (0.53, 0.85) 0.69 (0.53, 0.85)
ey2 : 0.62 (0.39, 0.88) 0.62 (0.39, 0.88)

U(0,5) HN(0.125) em0 : 0.61 (0.24, 1.47) 0.80 (0.19, 13.15)
ey1 : 0.70 (0.57, 0.88) 0.70 (0.56, 0.87)
ey2 : 0.52 (0.30, 0.80) 0.49 (0.26, 0.80)

U(0,5) em0 : 0.59 (0.15, 1.47) 0.67 (0.28, 3.64)
ey1 : 0.70 (0.57, 0.85) 0.70 (0.58, 0.86)
ey2 : 0.50 (0.22, 1.00) 0.52 (0.21, 0.99)
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case a can be used to represent beliefs about the relative credibility of the
two types of evidence. As an illustration they consider placing a N[3,1]
prior distribution on a, which corresponds to prior beliefs that the RCTs
could be ‘valued’ three times as highly as the observational studies, but
that is also consistent with them being valued as much as five times the
observational studies or in fact on an equal basis with the RCTs. Re-
estimating the overall population relative risk incorporating this prior dis-
tribution yields an estimate of 0.66 with 95% credible interval from 0.47 to
0.92. As with the main three-level analysis above, the point estimate is
similar to the overall population relative risk, but the uncertainty surround-
ing this estimate is now greater than both one based on only theRCTs and
a full Bayesian three-level model.

Comments: A wide range of models could be applied to these data. For
example, an alternative approach would be to use the observational
evidence as a prior distribution for a likelihood based on only the
RCTevidence. The model could also be extended to include covariates,
and allow prediction on new populations. Nevertheless, there may be
difficulties in overcoming suspicion of non-randomised studies, in spite
of downweighting and sensitivity analysis.

Example 8.6 Maple: estimatingcomplex functionsof parameters

Reference: This example forms Chapter 27 of Eddy et al. (1992).

Intervention: Neonatal screening for maple syrup urine disease (MSUD),
an inborn error in amino acid metabolism, the early detection of which
should lead to reduced rates of retardation.

Aimof study: To estimate the probability of retardation without screening,
and the change in retardation rate associated with screening. The latter
is denoted ed ¼ yn � ys, where yn is the retardation rate in those not
screened, and ys is the rate in those screened.

Study design: Modelling exercise using results from multiple epidemi-
ological cohort studies.

Outcomemeasure: Expected retardations.

Statisticalmodel: The data described above are all assumed to arise from
binomial distributions with the appropriate parameters. The functional
relationships shown in Table 8.8 then exist.

The graphical model is shown in Figure 8.7, using the graphical tool for
WinBUGS.
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Table 8.8 Model and notation for maple syrup urine disease example.

Factor Notation Derivation

Probability of MSUD r
Prob. of early detection
with screening

fs

Prob. of early detection
without screening

fn

Prob. of retardation with
early detection

yem

Prob. of retardation without
early detection

ylm

Prob. of retardation for a case
of MSUD who is screened

ysm fsyem þ (1� fs)ylm

Prob. of retardation for a case of
MSUD who is not screened

ynm fnyem þ (1� fn)ylm

Expected retardations per 100 000
newborns who are screened

100 000ys ysm r

Expected retardations per 100 000
newborns who are not screened

100000yn ynm r

Change in retardations due to
screening 100 000 newborns

ed ys � yn

n.r n.s n.n n.em n.lm

r.lmr.emr.nr.sr.r

theta.n

theta.nmtheta.sm

theta.lmtheta.emphi.nphi.s

r

e.d

theta.s

theta.nm

name: theta.nm type: logical link: identity

value: phi.n * theta.em + (1-phi.n) * theta.lm

Figure 8.7 A graphical model underlying the maple syrup urine disease example.
The observed data at the top of the graph depend on denominators and unknown
proportions. The quantities of interest are functions of those proportions, where a
double arrow corresponds to a deterministic function. This illustration is taken from
WinBUGS, and shows the logical definition of node ynm, the probability of retarda-
tion for a case of a MSUD patient who is not screened.
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Prospective analysis?: No.

Prior distribution: The prior distributions for all the binomial parameters
used by Eddy et al. are the ‘non-informative’ Jeffreys priors, i.e.
Beta[0.5, 0.5] (Section 5.5.1).

Loss functionordemands: None.

Computation/software: MCMC analysis using WinBUGS; 100 000 iter-
ations were carried out.

Evidence from study: There was no direct evidence on the change in
retardation rate in screened and unscreened populations. The data
shown in Table 8.9 were used, as provided by Eddy et al. (1992).

Bayesianinterpretation: The posterior distribution of ed had the properties
shown in Table 8.10. Eddy et al. display a normal approximation to the

posterior distribution for ed, with an estimate of �0.35 (95% interval from

�0.69 to �0.19). Our wider interval accurately reflects the skewed poster-

ior distribution.

Comments: This example illustrates the synthesis of evidence from mul-
tiple studies, with appropriate allowance for the uncertainty of the par-
ameter estimates. Further extensions could include allowance for
various biases and uncertainty on the inputs to the model.

Table 8.9 Data used in maple syrup urine disease example.

Factor Notation Outcomes Observations

Probability of MSUD r 7 724 262
Prob. early detection with screening fs 253 276
Prob. early detection without screening fn 8 18
Prob. retardation with early detection yem 2 10
Prob. retardation without early detection ylm 10 10

Table 8.10 Results for maple syrup urine disease example.

Parameter Notation Posterior mean 95% credible
interval

Expected retardations per 100 000
newborns who are not screened

yn 0.65 (0.25, 1.27)

Change in expected retardations
due to screening 100 000 newborns

ed �0.35 (�0.77, �0.11)
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Example 8.7 HIV: synthesisingevidence frommultiple sourcesand iden-
tifyingdiscordant information

Reference: Ades and Cliffe (2002).

Intervention: Alternative strategies for screening for HIV in pre-natal clinics:
universal screening of all women, or targeted screening of current intra-
venous drug users (IDUs) or women born in sub-Saharan Africa (SSA).

Aimofstudy: To determine the optimal policy, taking into account the costs
and benefits. However, Ades and Cliffe (2002) point out that the formu-
lation is not wholly realistic as the decision to screen universally through-
out England has now been taken, and in any case a strategy of targeted
testing may not be politically acceptable.

Study design: Synthesis of multiple sources of evidence to estimate par-
ameters of the epidemiological model shown in Figure 8.8. The relevant
fundamental parameters are described in Table 8.11. However, direct
evidence is only available for a limited number of these parameters.

Outcomemeasure: SSA and IDU women will be screened under both uni-
versal and targeted strategies, and hence the only difference between the
strategies comprises the additional tests and additional cases detected

SSA

Risk group? HIV infection?

+
c

Yes

+
d

+
e

−
1−e

−
1−d

−
1−c

f

No

1−f

Yes
g

No

1−g

Yes

h

No

1−h

Already diagnosed?

IDU

Rest

a

b

(1−a−b)

Figure 8.8 Probability tree showing how the proportions of women in different risk
groups can be constructed.
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Table 8.11 Definition of fundamental parameters in HIV model.

Label Parameter

a Proportion of women born in sub-Saharan Africa
b Proportion of women who are intravenous drug users
c HIV infection rate in SSA
d HIV infection rate in IDUs
e HIV infection rate in non-SSA, non-IDUs
f Proportion HIV already diagnosed in SSA
g Proportion HIV already diagnosed in IDUs
h Proportion HIV already diagnosed in non-SSA, non-IDUs

in the non-SSA, non-IDU group. Additional tests per 10 000 women
comprise those on non-SSA, non-IDU women who are not already
diagnosed, and so the rate is given by 10 000(1� a� b)(1� eh). The
rate of new HIV cases detected is 10 000(1� a� b)e(1� h).

Statisticalmodelandevidencefromstudy: Table 8.12 summarises the data
sources available – full details and references are provided by Ades and
Cliffe (2002) who also describe their efforts to select sources which are
as ‘independent’ as possible.

Table 8.12 Available data from relevant studies, generally only allowing direct
estimation of functions of fundamental parameters of interest.

Data items and sources Parameter being estimated Data

1 Proportion born in SSA, 1999 a 11044 / 104 577
2 Proportion IDU last 5 years b 12 / 882
3 HIV prevalence, women born in

SSA, 1997–8
c 252 / 15428

4 HIV prevalence in female
IDUs, 1997–9

d 10 / 473

5 HIV prevalence, women not born in
SSA, 1997–8

dbþ e(1� a� b)
1� a

74 / 136 139

6 Overall HIV seroprevalence in
pregnant women, 1999

caþ dbþ e(1� a� b) 254 / 102 287

7 Diagnosed HIV in SSA women
as a proportion of all diagnosed
HIV, 1999

fca
fcaþ gdbþ he(1� a� b)

43 / 60

8 Diagnosed HIV in IDUs as a
proportion of non-SSA
diagnosed HIV, 1999

gdb
gdbþ he(1� a� b)

4 / 17

9 Overall proportion HIV diagnosed
fcaþ gdbþ he(1� a� b)
caþ dbþ e(1� a� b)

87 / 254
10 Proportion of infected IDUs

diagnosed, 1999 g
12 / 15

11 Prop of serotype B in infected
women from SSA, 1997–8

w 14 / 118

12 Prop of serotype B in infected
women not from SSA, 1997–8

dbþ we(1� a� b)
dbþ e(1� a� b)

5 / 31
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The crucial aspect is that there is no direct evidence concerning the vital
parameters e and h for the low-risk group, and hence their value must be
inferred indirectly from other studies. For this reason the parameter w is
introduced which is not part of the epidemiological model: the assump-
tion that the low-risk group has the same prevalence of subtype B as
SSA women, and that all IDU women are subtype B, allows use of data
source 12 on non-SSA women.

Priordistribution: Uniform priors for all proportions are adopted.

Computation/software: MCMC methods implemented using WinBUGS.

Bayesian interpretation: The posterior estimates and intervals for the pro-
portions underlying the studies are given in Table 8.13, together with the
quantities of interest.

Sensitivity analyses: Here we focus on the consistency of data sources
rather than the usual analysis of sensitivity to model assumptions. We
have synthesised all available data, but the results may be misleading if
we have included data that do not fit our assumed model. A simple way
of assessing possible conflict is to compare the observed proportion in
the 12 sources with that fitted by the model, and it is apparent that the
observation for source 4 is only just included in the 95% interval, while
the data for source 12 lie wholly outside its estimated interval. This is
only a crude method, since a source may strongly influence its estimate,
so a better procedure is to leave each source out in turn, re-estimate the
model, and then predict the data we would expect in a source of that

Table 8.13 Estimates of parameters underlying the available data. Estimates of
quantities of interest in selecting a screening strategy are also shown.

Quantity Observed
proportion

Estimate 95% interval P-value
(excl 4)

1 Proportion SSA 0.106 0.106 0.104 to 0.108 0.47
2 Proportion IDUs 0.0137 0.0088 0.0047 to 0.149 0.46
3 HIV prevalence in SSA 0.0163 0.0172 0.0155 to 0.0189 0.27
4 HIV prevalence in IDUs 0.0211 0.0120 0.0062 to 0.0219 0.004
5 HIV prevalence non-SSA 0.000544 0.000594 0.000478 to 0.000729 0.35
6 Overall HIV prevalence 0.00248 0.00235 0.00217 to 0.00254 0.21
7 SSA as proportion of all

diagnoses
0.717 0.691 0.580 to 0.788 0.50

8 IDU as proportion of non-SSA
diagnoses

0.235 0.298 0.167 to 0.473 0.40

9 Proportion HIV diagnosed 0.343 0.350 0.296 to 0.408 0.47
10 Proportion IDU already

diagnosed
0.800 0.747 0.517 to 0.913 0.44

11 Prop subtype B in SSA 0.119 0.111 0.065 to 0.171 0.43
12 Prop subtype B in non-SSA,

1997–8
0.161 0.285 0.201 to 0.392 0.23

Additional tests per 10 000,
10 000(1� a� b)(1� eh)

8856 8789 to 8898

Additional HIV cases detected,
10 000(1� a� b)e(1� h)

2.49 1.09 to 3.87
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size. This predictive distribution, easily obtained using MCMC methods,
is then compared to the observed data and a P-value calculated in a
parallel manner to Box’s test of prior/data compatibility described in
Section 5.8 (although here we seek to criticise the data rather than the
‘prior’ based on the remaining studies). We may term these ‘cross-
validatory P-values’.

Removing data source 4 from the analyis leads to the cross-validatory
P-values shown in Table 8.13. The small P-value for source 4 shows its
lack of consistency with the remaining data, whereas the predictions for
the remaining data seem quite reasonable. Removing source 4 from the
analysis leads to an estimate of 8810 (8717 to 8872) for additional tests
per 10 000, and 2.73 (1.31 to 4.12) for additional HIV cases detected, so
the removal of this divergent source does not in fact have much influence
on the conclusions. The estimates for the fundamental parameters are
presented in Table 8.14.

Comments: Example 9.5 extends this example to include cost-effective-
ness analysis.

Table 8.14 Estimates of fundamental parameters in HIV model, ignoring
evidence from source 4.

Label Parameter Median 95% interval

a Proportion of women born in SSA 0.106 0.104 to 0.108
b Proportion of women who are IDUs 0.013 0.007 to 0.022
c HIV infection rate in SSA 0.0172 0.0156 to 0.0189
d HIV infection rate in IDUs 0.0046 0.0015 to 0.012
e HIV infection rate in non-SSA, non-IDUs 0.00051 0.00039 to 0.00065
f Proportion HIV already diagnosed in SSA 0.32 0.24 to 0.40
g Proportion HIV already diagnosed in IDUs 0.78 0.55 to 0.93
h Proportion HIV already diagnosed

in non-SSA, non-IDUs
0.40 0.22 to 0.67

8.5 FURTHER READING

Sutton et al. (2000) review the whole area of meta-analysis and Bayesian

methods in particular: other reviews are provided by Jones (1995), Normand

(1999) and Hedges (1998). See also the book edited by Stangl and Berry (2000).

Empirical Bayes approaches for meta-analysis have received most attention in

the literatureuntil recently, largely because of computational difficulties in theuse

of fully Bayesian modelling (Raudenbush and Bryk, 1985; Stijnen and van

Houwelingen, 1990). However, the full Bayesian hierarchical model has been

investigated extensively by DuMouchel and Harris (1983), DuMouchel (1990),
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DuMouchel andWaternaux (1992) andAbramsandSansó (1998)using analytic

approximations, and also using MCMC methods (Morris and Normand, 1992;

Smith et al., 1995). Carlin (1992), for example, considers meta-analyses of both

clinical trials and case–control studies; he examines the sensitivity to choice of

reference priors, and explores checking the assumption of normal random effects.

There have beenmany comparative studies of the full Bayesian approach, includ-

ing trials (Rogatko, 1992; Su and Po, 1996; Tunis et al., 1997) and observational

studies (Biggerstaff et al., 1994; Su and Po, 1996; Tweedie et al., 1996).

Tutorial articles on the confidence profile method include Eddy (1989), Eddy

et al. (1990a, 1990b) and Shachter et al. (1990). The method has been used in

meta-analysis of the benefits of antibiotic therapy (Baraff et al., 1993), mam-

mography in women aged under 50 (Eddy et al., 1988) and angioplasty (Adar et

al., 1989).

8.6 KEY POINTS

1. A unified Bayesian approach appears to be applicable to a wide range of

problems concerned with evidence synthesis.

2. The Bayesian approach provides a natural structure for many subtle issues

that arise in meta-analyses, such as adjusting for baseline risk.

3. Priors on nuisance parameters can be important when there is limited

evidence, such as when there are rare events or few studies.

4. ‘Indirect’ comparisons enable one to infer comparisons where there is limited

or no head-to-head evidence.

5. Generalised evidence synthesis is likely to become increasingly important as

evidence from disparate studies is used in the construction of health-policy

models.

6. Complex synthesis models make extensive use of assumptions, only some of

which can be empirically checked, and careful sensitivity analysis is vital.

EXERCISES

8.1. Repeat the analysis in Example 3.13 but using a full Bayesian analysis as

in Section 8.2, using WinBUGS. Given the relatively small number of

studies, it is important to consider the sensitivity of the posterior results

to the prior distribution for the between-study variability (Section 5.7.3):

explore the options illustrated in Example 8.1.

8.2. Table 8.15 is adapted from Berry (2000) and presents the results of six

RCTs which evaluated cholesterol reduction compared to control in terms

of coronary deaths in patients who had previously suffered a myocardial

infarction.
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Table 8.15 RCTs evaluating cholesterol reduction compared to control in terms of
coronary deaths in patients who had previously suffered a myocardial infarction.

Intervention Control

Study Deaths Total Deaths Total

CDP 398 2224 535 2789
Newcastle 25 244 44 253
Edinburgh 34 350 35 367
Stockholm 47 279 73 276
Oslo 37 206 50 206
MRC 35 322 37 323

(a) Obtain and compare the posterior distribution for the overall pooled

odds ratio using a random-effects meta-analysis based on: (i) a normal

approximation to the likelihood arising from the observed log(odds

ratio) and standard error in each RCT; (ii) modelling the events in

the two arms of each RCT using binomial distributions.

(b) In each case assess the sensitivity of the results to the prior distribution

assumed for the between-study variability, as in Example 8.1.

(c) An additional large-scale RCT (4S) was reported after those in Table

8.15, in which 111 deaths occurred out of 2221 patients in the

intervention arm, and 189 deaths occurred out of 2223 patients in

the control arm. The observed effect in the 4S trial was considered to be

in conflict with that of those in Table 8.15. Obtain the predictive

distribution based on the six RCTs in Table 8.15 for a future RCT and

therefore assess whether the assertion that there was a conflict was in

fact warranted, and in particular whether the sensitivity analyses

considered in (a) affect this assessment.

8.3. Geddes et al. (2000) consider a meta-analysis of 23 RCTs which compared

the use of atypical anti-psychotic drugs with haloperidol in patients with

schizophrenia. The summary data are shown in Table 8.16 with the

relevant dose. Evaluate whether there is evidence for an effect of dose on

treatment effect.

8.4. Using the techniques described in Section 8.2.3, investigate the extent to

which the effect of diuretic therapy on risk of pre-eclampsia considered in

Exercise 3.12 depends upon the baseline level of risk.

8.5. In Example 8.2 a meta-analysis of nine RCTs evaluating the effect of

electronic foetal heart rate monitoring on perinatal mortality was pre-

sented. In addition to the nine RCTs, Sutton and Abrams (2001) also

considered evidence from the seven non-randomised comparative studies

and ten before–after studies which are presented in Table 8.17 together

with the results for the RCTs. Explore the effect that consideration of both

randomised and non-randomised evidence has on the conclusions

obtained in Example 8.2 when: (a) the non-randomised evidence is
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Table 8.16 Standardised effect sizes and associated standard errors (SE) for 23
RCTs evaluating comparing atypical anti-psychotic drugs with haloperidol in patients
with schizophrenia.

Study Standardised effect size SE Dose

1 �0.014 0.158 12.0
2 �0.070 0.150 15.0
3 �0.191 0.136 15.0
4 �0.663 0.312 8.0
5 �0.488 0.320 20.0
6 þ0.455 0.254 11.0
7 �0.273 0.250 20.0
8 þ0.129 0.309 6.0
9 �0.109 0.142 10.0
10 �0.779 0.330 22.5
11 �0.765 0.225 7.6
12 �0.214 0.214 7.5
13 �0.775 0.437 13.5
14 þ0.216 0.116 16.0
15 þ0.018 0.105 10.0
16 �0.406 0.145 20.0
17 �0.234 0.146 17.5
18 �0.112 0.075 10.0
19 �0.294 0.147 16.0
20 �0.469 0.131 17.5
21 �0.903 0.365 20.0
22 �0.237 0.048 12.5
23 þ0.049 0.099 9.4

8.5. considered as prior evidence, either at ‘face value’ or downweighted; and

(b) when both the randomised and non-randomised sources of evidence

are considered within a single hierarchical model following the methods of

Section 8.4 and Example 8.5. You will need to make some explicit prior

assumptions about the size of the potential bias of the non-randomised

studies, and conduct suitable sensitivity analysis.

8.6. In addition to the 17 single-arm studies evaluating either radiotherapy

alone (RTx) or radiotherapy together with adjuvant chemotherapy

(RTxþChm) following surgery for childhood medulloblastoma reported in

Table 5.7, Sutton et al. (2000) also considered six RCTs comparing the two

interventions and summarised in Table 8.18. Using the prior distribution

for the difference in 5-year survival rates between the two therapies in

Exercise 5.6, together with the RCT evidence in Table 8.18, obtain a

posterior distribution for the difference: (a) using the evidence from the

single-arm studies at ‘face value’; (b) possibly downweighting the uncon-

trolled evidence or allowing for bias; (c) modelling both the randomised

and non-randomised sources of evidence within a single model following

the methods of Section 8.4.
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Table 8.17 RCTs, non-randomised comparative studies and before–after
studies evaluating electronic foetal heart rate monitoring (EFM) in terms of
perinatal mortality.

Study Year of publication EFM Control

Deaths Total Deaths Total

RCTs
1 1976 1 175 1 175
2 1976 2 242 1 241
3 1978 0 253 1 251
4 1979 3 463 0 232
5 1981 1 445 0 482
6 1985 0 485 1 493
7 1985 14 6530 14 6554
8 1987 17 122 18 124
9 1993 2 746 9 682
Non-randomised
1 1973 2 1162 17 5427
2 1973 0 150 15 6836
3 1975 1 608 37 6179
4 1977 1 4210 9 2923
5 1978 1 554 3 692
6 1979 0 4978 2 8634
7 1982 10 45880 45 66208
Before–after
1 1975 4 991 0 1024
2 1975 7 1161 9 1080
3 1975 14 11599 1 1950
4 1976 15 4323 1 3529
5 1977 53 4114 21 3852
6 1978 35 15357 6 7312
7 1980 19 4240 2 4503
8 1980 15 6740 5 8174
9 1984 13 7582 2 7911
10 1986 7 17409 5 17586

Table 8.18 Five-year survival rates and standard errors for RCTs comparing radio-
therapy alone (RTx) with radiotherapy together with adjuvant chemotherapy
(RTxþChm) following surgery for childhood medulloblastoma.

Study RTxþChm RTx

S5 SE(S5) S5 SE(S5)

1 0.55 0.026 0.42 0.020
2 0.58 0.058 0.60 0.054
3 0.74 0.083 0.56 0.099
4 0.59 0.060 0.50 0.065
5 0.17 0.217 0.63 0.341
6 0.46 0.114 0.30 0.118
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8.7. In Example 8.7, suppose an additional trial came to light which showed an

HIV prevalence of 10/10 000 in non-SSA, non-IDU women.

(a) Does this study conflict with the available evidence?

(b) How would its inclusion alter the findings?
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