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Comparison of Alternative
Approaches to Inference

4.1 A STRUCTURE FOR ALTERNATIVE APPROACHES

It would be misleading to dichotomise statistical methods as either ‘classical’ or

‘Bayesian’, since both terms cover a bewildering range of techniques. A rough

taxonomy can be developed by distinguishing two characteristics: whether or not

prior distributions are used for inferences, and whether the objective is estima-

tion, hypothesis testing or a decision requiring a loss function of some form.All six

combinations of these elements have been investigated in theory and, to some

extent, in practice, and Table 4.1 assigns a label to each possible combination.

This categorisation can be made finer still, and in Section 3.20 an attempt

was made to delineate the different schools of Bayesianism that exist. Empirical

Bayes techniques can be considered as essentially Fisherian since there is no

formal introduction of prior opinion, while reference Bayesian methods, based

on attempts at ‘objective’ priors, fall somewhat between the Fisherian and

proper Bayesian approaches. We acknowledge that many of the examples in

Table 4.1 A taxonomy of six possible ‘philosophical’ approaches to statistical infer-
ence, depending on the objective and the formal quantitative use of prior information.

Objective

Inference
(estimation)

Hypothesis
testing

Decision
(loss function)

Use of
prior
evidence

Informal Fisherian Neyman–Pearson Classical
decision theory

Formal Proper Bayesian ‘Bayes factors’ Full decision-theoretic
Bayesian
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this book do not use informative prior distributions, and their results could be

(approximately) obtained by a likelihood analysis.

With so many options the resulting arguments about their relative merits

inevitably become somewhat complex, and in this chapter we can only highlight

some major issues. The standard approach in the evaluation of medical interven-

tions is a mixture of Fisherian and Neyman–Pearson philosophies and is briefly

summarised in Section 4.2, although Neyman–Pearson ideas have attracted

particularly strong criticism from both Fisherian and Bayesian perspectives

(Section 4.3). P-values are critically compared with Bayes factors in Section 4.4.

In themidst of often polemical arguments, it has also been argued that it would

be ‘a great pity if differences of technical approach were exaggerated into differ-

ences about qualitative issues’ (Cox and Farewell, 1997), while Armitage (1993)

maintains it is not appropriate to polarise the argument as a choice between

extremes. It also appears reasonable to suggest that the appropriate approach

may depend crucially on context (Section 3.1): for example, both Koch (1991)

andWhitehead (1993) claim that a proper Bayesian approachmay be reasonable

at early stages of a drug’s development but is not acceptable in phase III trials.

4.2 CONVENTIONAL STATISTICAL METHODS USED IN

HEALTH-CARE EVALUATION

Conventional approaches to inference can be divided into the two broad schools

of Fisherian and Neyman–Pearson.

The Fisherian approach regarding inference on an unknown intervention

effect � is based on the likelihood function (Section 2.2.4), which expresses

the relative support given to the different values of � by the data. This gives

rise to a maximum likelihood estimate comprising the most supported value for

�, and intervals based on ranges of values of � with most likelihood. More

controversially, Fisher suggested summarising the evidence against specified

null hypotheses by P-values (the chance of getting a result as extreme as that

observed were the null hypothesis true), although this was only intended as an

informal guide to the strength of evidence in the specific experiment being

reported (Goodman, 1999a). Hill et al. (2000) provide a good historical back-

ground, emphasising that the likelihood alone could be used for comparing

hypotheses without calculation of P-values.

The Neyman–Pearson approach has a different perspective, rooted in an

attempt at a theory of ‘inductive behaviour’, in seeking procedures for hypoth-

esis testing and estimation that satisfy certain properties in long-run repeated

use. Specifically, it focuses on the chances of making various types of error when

making decisions on the basis of the data so that, for example, clinical trials are

traditionally designed to have a fixed Type I error � (the chance of incorrectly

rejecting the null hypothesis), usually taken as 5% or 1%, and fixed power (one

minus the Type II error �, the chance of not detecting the alternative hypoth-
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esis), often 80% or 90%. Similarly, formulae for 95% confidence intervals are

designed so that, in 95% of situations in which they are appropriately used, they

will contain the true parameter value. The problem, as discussed in detail by

Goodman (1999a), is that this restricts us in what we can say about the specific

experiment being analysed.

In practice, a combined approach has developed, which is perhaps ironic in view

of the enmity between the initial protagonists of the approaches (see below). Senn

(1997b) points out that clinical trials are generally designed from a Neyman–

Pearson standpoint, but analysed from a Fisherian perspective using P-values as

measures of evidence. Methods used for observational methods and evidence

synthesis tend to be more Fisherian, but Goodman (1999a) argues that the

most common form of statistical analysis is to use P-values but, inappropriately,

to interpret them as saying something about long-run properties.

Advantages of the conventional framework include its apparent separation of

the evidence in the data from subjective factors, the general ease in computa-

tion, its wide acceptability and established criteria for ‘significance’, its rele-

vance to the drug regulatory framework in which quality control of statistical

submissions must be ensured, the availability of software, and the existence of

robust non- and semi-parametric procedures.

Nevertheless, there has been continual criticism of these traditional ap-

proaches since their introduction in the 1920s and 1930s, and their develop-

ment has been marked by considerable animosity and vituperative argument.

When Neyman (1934) presented his theory of confidence intervals at a meeting

of the Royal Statistical Society, Arthur Bowley, a strong advocate of the method

of ‘inverse probability’ (the Bayesian approach), was given the task of proposing

the vote of thanks. Towards the end of his remarks he said: ‘I am not at all sure

that the ‘‘confidence’’ is not a ‘‘confidence trick’’. He then went on to suggest a

Bayesian approach was necessary: ‘Does that really take us any further? . . . Does

it really lead us towards what we need – the chance that in the universe which

we are sampling the proportion is within . . . certain limits? I think it does not’.

Fisher opened the discussion of Neyman (1935) on the attack: ‘Were it not for

the persistent efforts which Dr Neyman and Dr Pearson had made to treat

what they speak of as problems of estimation, by means merely of tests of

significance, he had no doubt that Dr Neyman would not have been in any

danger of falling into the series of misunderstandings which his paper revealed’.

Egon Pearson then came to Neyman’s defence, saying that ‘while he knew there

was a widespread belief in Professor Fisher’s infallibility, he must, in the first

place, beg leave to question the wisdom of accusing a fellow-worker of incompe-

tence without, at the same time, showing that he had succeeded in mastering

the argument’.

In a strong attack on traditional methods, Cornfield (1976) claims that ‘the

paradox is that a solid structure of permanent value has, nevertheless, emerged,

lacking only the firm logical foundation on which it was originally thought to

have been built’. Generic criticisms include the failure of traditional methods to
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incorporate formally the inevitable background information that is available

both at design and analysis, that they take no account of the consequences of

the conclusions, and, from a more ideological perspective, that they disobey

certain reasonable axioms of rational behaviour (Section 3.1). In addition, there

is no doubt that classical inferences are often misinterpreted, in that P-values

are mistaken for probabilities of null hypotheses being true, and 95% confidence

intervals as meaning there is a 95% chance of their containing the true value.

Our personal opinion is that the strongest argument against Neyman–Pearson

methods and P-values is their disobedience of the likelihood principle: this

crucial idea is now discussed within the context of sequential analysis.

4.3 THE LIKELIHOOD PRINCIPLE, SEQUENTIAL

ANALYSIS AND TYPES OF ERROR

4.3.1 The likelihood principle

This principle (Berger andWolpert, 1988) states that all the information that the

data provide about the parameter is contained in the likelihood: we have already

seen in Sections 3.2 and 3.3 how data only influence the relative plausibility of an

alternative hypothesis through the relative likelihood and hence Bayesian infer-

ence automatically obeys this principle. This simple idea, however, has very

strong consequences, as the following classic example demonstrates.

Example 4.1 Stopping:The likelihoodprinciple inaction

Goodman (1999a) considers the following classic problem. Suppose we
hear that six people have each been given treatments A and B, and asked
which they prefer. Five preferred A, and one preferred B. What evidence is
this against the null hypothesis that A and B are preferred equally in the
population?

Let y be the true unknown proportion in the population preferring A, with
y ¼ 0:5 corresponding to the null hypothesis of ‘no preference’. Then the
likelihood arising from the experiment is proportional to y5(1� y) (Section
2.2.4) and the likelihood principle states that all the evidence about y to be
derived from this experiment can be extracted from this function, using
either likelihood or Bayesian methods.

In contrast, let us consider the P-value: the probability of observing a result
at least as extreme as the data, given the null hypothesis H0: y ¼ 0:5. But
what results are ‘at least as extreme’? Suppose we are told that the
experimenter decided in advance that six people were to be included,
and the first five preferred A and the final one preferred B. The possible
results of the experiment and their probabilities under H0 are shown in
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Table 4.2 under ‘Design 1’, with the ‘at least as extreme as observed’
outcomes highlighted in bold: these probabilities come from the binomial
(0.5,6) distribution (Section 2.6.1). It is not clear how to handle the
probability of the observation itself when defining what is ‘as extreme’ –
here we adopt the standard convention of including half its probability so
that the one-sided P-value is 1

2 (6=64)þ 1=64 ¼ 0:0625, with a two-sided
P-value of 0.13; note that Goodman (1999a) considers the one-sided
P-value including the whole contribution from the observed data, leading
to P ¼ 0:11. We may be disappointed that the result is not ‘significant’ at
P < 0:05.

Table 4.2 Two different experimental designs: (1) ask six subjects whether they
prefer A or B; (2) ask subjects sequentially until one prefers B and then stop.
Observed data comprise 5 preferences for A and one for B. Highlighted values
indicate potential data ‘at least as extreme’ as that observed under the null
hypothesis H0 of no overall preference in the population, i.e. the probability of either
preference is 0.5.

Design 1 Design 2

Y1 ¼ No. subjects
preferring A

Probability
under H0

Y2 ¼ First subject
preferring B

Probability
under H0

0 1/64 1 1/2
1 6/64 2 1/4
2 15/64 3 1/8
3 20/64 4 1/16
4 15/64 5 1/32
5 6/64 6 1/64
6 1/64 7 1/128

8 1/256
etc. etc.

But then we hear that a mistake has been made in reporting the results,
and that the experimenter in fact used a different (and admittedly rather
strange) sampling procedure (Design 2): he had decided to carry on
experimenting until he found someone who preferred B, and then stop.
Table 4.2 again shows the possible results with those ‘at least as extreme
as observed’ highlighted: the probabilities follow a ‘geometric’ distribution
in which the chance of first getting a B preference on the nth trial is 1=2n.
This time the P-value is 1

2 (1=64)þ 1=128þ 1=256þ . . . ¼ 1
2 (1=64)þ 1=64

¼ 3=128 ¼ 0:023, with a two-sided P-value of 0.046, and we might now be
delighted that it is ‘significant’ at P < 0:05.

A likelihood and Bayesian approach to this problem is described in
Section 4.4.4.
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In Example 4.1 the intention of the experimenter dictated the conclusions to

be drawn from the results, and the P-values depended on what would have

happened had something else been observed (Berry, 1987). The likelihood

principle claims such behaviour is nonsensical, since only the observed data

influence the conclusions and this is through the likelihood alone.

4.3.2 Sequential analysis

In a sequential experimental design the data are periodically analysed and the

study stopped if sufficiently convincing results obtained. Such repeated analysis

of the data can have a strong effect on the overall Type I error in the experiment,

since there are many opportunities to obtain a false positive result. The trad-

itional approach to sequential analysis identifies classes of ‘stopping boundaries’

with fixed overall Type I error �, and then chooses designs with minimum Type

II error � (maximum power) for particular alternative hypotheses. At the end of

a study P-values and confidence intervals should be adjusted for the sequential

nature of the design (Whitehead, 1997a).

Sequential data fall naturally within the Bayesian framework, as the posterior

distribution following each observation becomes the prior for the next (Section

3.12). As forcefully argued by Cornfield (1976), (3.25) shows that the evidence

for taking alternative decisions depends only on the relative likelihood of alterna-

tive hypotheses (the Bayes factor), prior probabilities, and utilities, and hence

provides a direct decision-theoretic justification for the likelihood principle within

sequential trials. Sequential analysis therefore provides a primary focus for

disagreement between frequentist and Bayesian approaches, since the likelihood

principle means that concern about frequentist stopping rules retaining Type I

error is entirely misplaced, and we can analyse trials at will. Criticism has been

forceful: Anscombe (1963) baldly states that ‘Sequential analysis is a hoax’, and

(1975) considers that ‘provided the investigator has faithfully presented his

methods and all of his results, it seems hard indeed to accept the notion that I

should be influenced in my judgement by how frequently he peeked at the data

while he was collecting it’.

We find the following argument particularly persuasive. If we were to assign

weights to the relative importance of the two types of error that could be made,

any resulting design would seek to minimise a linear combination of the Type I

error rate � and Type II error rate �. Perhaps surprisingly, such a design would

obey the likelihood principle, and this led Cornfield (1966) to point out that

the entire basis for sequential analysis depends upon nothing more profound than a

preference for minimising � for given � rather than minimising their linear combination.

Rarely has so mighty a structure, and one so surprising to scientific common sense,

rested on so frail a distinction and so delicate a preference.

We shall return to this topic when discussing sequential clinical trials in

Section 6.6.
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4.3.3 Type I and Type II error

Neyman–Pearson theory has been strongly criticised from both a Bayesian and

Fisherian perspective. Anscombe (1963) says ‘the concept of error probabilities

of the first and second kinds . . . has no direct relevance to experimentation . . .

The formalism of opinions, decisions concerning further experimentation and

other required actions, are not dictated in a simple prearranged way by the

formal analysis of the experiment, but call for judgement and imagination’.

The selection of values for error rates in trials seems particularly arbitrary:

Healy (1994) asks ‘Why the invariable 5% for �? Conditional on this, why the

larger 10% or even 20% for �? Is it really more important not to make a fool of

yourself than it is to discover something new?’ Sheiner (1991) provides a strong

polemic against hypothesis testing and in favour of an approach in which ‘we

gather data to model and quantify nature’; shifting attention from hypothesis

testing to confidence intervals does not really avoid the problem, since these are,

essentially, just the set of hypotheses that cannot be rejected at a certain � level.

We have already identified the crucial issue that arises in any context in

which simultaneous analysis of multiple studies, or multiple analyses of the

same study, is required. The traditional approach warns that repeated hypoth-

esis testing is bound to raise the chance of a Type I error (incorrectly rejecting a

true null hypothesis), and so suggests some adjustment, such as Bonferroni, to

try to retain a specified overall Type I error. This will typically give larger

P-values and wider confidence intervals.

The problem lies in deciding the set in which to embed the particular analysis

being carried out. Cornfield (1976) asks, with some irony: ‘Do we want error

control over a single trial, over all the independent trials on the same agent, on the

same disease, over the lifetime of an investigator, etc.?’ The need for any such

adjustment,which necessarily depends on the number of hypotheses being tested,

has been strongly questioned even from a non-Bayesian perspective, particularly

in epidemiology; Cole (1979) states that ‘in every study, every association should

be evaluated on its own merits: its prior credibility and its features in the study at

hand. The number of other variables is irrelevant’. Greenland and Robins (1991)

are among the many who have argued that some adjustment is necessary, but

rather than being based on Type I errors, it should be derived from an explicit

model that reflects assumptions about variability, andhence leads naturally to the

approach to multiplicity outlined in Section 3.17.

4.4 P-VALUES AND BAYES FACTORS*

4.4.1 Criticism of P-values

We noted in Section 4.3 that sequential trials present a particular problem for

P-values. Other arguments against this procedure are that the null hypothesis
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may be neither plausible nor of great interest, the arbitrariness of the 0.05 and

0.01 level, and that P-values tend to create a false dichotomy between ‘signifi-

cant’ and ‘non-significant’ which is inappropriate for consequent policy deci-

sions. Furthermore, the definition of ‘more extreme’ and hence the value of P

itself may be unclear even in some simple circumstances, such as testing

association in a 2� 2 table of counts, as well as requiring the choice between

one- or two-sided tests.

The strongest criticism is, perhaps, that P-values focus on statistical rather

than practical significance and hence their interpretation can be very dependent

on sample size. This is illustrated in Example 4.2.

Example 4.2 Preference:P-valuesasmeasuresof evidence

Freeman (1993) considered four hypothetical studies in which equal
number of patients are given treatments A and B and asked which they
prefer, with results shown in Table 4.3. Each results in an identical ‘signifi-
cant’ two-sided P-value of 0.04. However, as Freeman states, the first trial

Table 4.3 Four theoretical studies all with the same two-sided P-value for the
null hypothesis of equal preference in the population.

Number of patients
receiving A and B

Numbers
preferring A:B

%
preferring A

two-sided
P-value

20 15 : 5 75.00 0.04
200 115 : 86 57.50 0.04

2 000 1046 : 954 52.30 0.04
2000 000 1 001445 : 998 555 50.07 0.04

would be considered too small to permit reliable conclusions, while the
last trial (with a preference proportion of 50.07%) would be considered
as evidence for rather than against equivalence, since the preference
rates are, from any practical perspective, equally balanced. Thus equal
P-values can lead to very different conclusions depending on the sample
size.

4.4.2 Bayes factors as an alternative to P-values: simple
hypotheses

We have already seen (Section 3.3) that the Bayes factor or likelihood ratio is

the natural way to compare the support for two alternative hypotheses: when

these hypotheses are ‘simple’ (i.e. there are no unknown parameters), the Bayes

factor is a measure of the evidence in the data alone and is not affected by any
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prior probabilities. In the rather unrealistic situation that data are only reported

as being ‘significant at the 100�% level’, the Bayes factor is

BF ¼ p(‘significant’jH0)

p(‘significant’jH1)
¼ �

1� �
(4:1)

where � and � are the standard Type I and Type II error rates (Example 3.7).

It is important to note the behaviour of (4.1) as the sample size increases but

the alternative hypothesis H1 remains fixed. In this case the power of the study

increases, and hence � decreases and the Bayes factor decreases towards �: we

are left with the conclusion of Peto et al. (1976) that a ‘significant’ result

provides more evidence against the null hypothesis for larger sample sizes.

This finding can be contrasted with Lindley and Scott (1984), who preface

their statistical tables with the claim that ‘all significance tests are dubious because

the interpretation to be placed on the phrase ‘‘significant at 5%’’ depends on the sample

size: it is more indicative of the falsity of the null hypothesis with a small sample than

with a large one’. We therefore appear to have contradictory claims that both

smaller and larger studies suggest increased evidence against the null hypothesis

when reporting a ‘significant’ result.

For simple alternative hypotheses, Royall (1986) explains this apparent para-

dox by contrasting two situations: thatwe know a studywas significant at the 5%

level, and that we know the exact P-value was 5%. The first was covered by (4.1),

while the second is now considered for normal distributions. Suppose

ym � N[�,�2=m]

and we wish to compare two simple hypotheses H0: � ¼ 0 against

H1: � ¼ �A > 0. Then the Bayes factor is the likelihood ratio

BF ¼ p(ymj� ¼ 0)

p(ymj�A)
¼ exp � m

2�2
[y2m � (ym � �A)

2]
� �

¼ exp �m �A
�2

ym � �A
2

� �� �
: (4:2)

This reveals the intuitive behaviour that for ym < �A=2, the Bayes factor will

exceed 1 and hence favour H0, while if ym > �A=2 the Bayes factor will be less

than 1 and favour H1.

Equation (4.2) can also be written

BF ¼ exp �
ffiffiffiffi
m

p
zm� þ

m�2

2

� �
(4:3)

where � ¼ �A=� is a standardised version of the alternative hypothesis, and

zm ¼ ym
ffiffiffiffi
m

p
=� is the standardised test statistic for H0. The crucial observation

is that, for fixed zm and hence fixed P-value, the Bayes factor will increase
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with increasing sample sizem, and hence support Lindley and Scott’s observation

that smaller sample sizes are more indicative of the falsity of the null hypothesis.

The apparent paradox for simple alternative hypotheses is seen to be resolved

by being clearer by what we mean by a ‘significant’ result: when we only know

a result achieved significance at a fixed level, the evidence against H0 increases

with sample size, while if we know the exact significance level, evidence against

H0 decreases with sample size. This reveals the complexity of comparing Bayes

factors with P-values, and we shall now add to the potential confusion by

considering composite alternative hypotheses, which are seen to obey both the

behaviours contrasted above.

4.4.3 Bayes factors as an alternative to P-values: composite
hypotheses

In most cases in which P-values are currently used H1 will be ‘composite’, in

that it encompasses a range of parameter values � as alternatives to the single

value specified by H0, typically � ¼ 0. We therefore need a method to obtain an

overall likelihood p(datajH1) in order to obtain the Bayes factor, i.e.

p(datajH0)=p(datajH1).
A likelihood-based solution is to use the ‘minimum’ Bayes factors, BFmin,

under H1 (Goodman, 1999b). For a general alternative hypothesis H1: � 6¼ 0

in the normal model considered in (4.2), the minimum Bayes factor occurs

when �A ¼ ym, and from (4.3) is

BFmin ¼ exp (� z2m=2), (4:4)

where zm ¼ ym
ffiffiffiffi
m

p
=� is the standardised test statistic for H0. This produces a

direct mapping between one-sided P-values, given by F(zm), and minimum

Bayes factors that is displayed as part of Figure 4.1: using Jeffreys’ descriptions

contained in Table 3.2, a two-sided P-value (denoted 2P) of 0.001 is ‘decisive

evidence’, 2P ¼ 0:01 is on the border of ‘strong’ and ‘very strong’, and

2P ¼ 0:05 is ‘substantial’. The minimum Bayes factor thus leads to conclusions

that are qualitatively similar to P-values but obey the likelihood principle and so

are unaffected by stopping rules. However, they still suffer from the criticism

displayed in Example 4.2: all the four studies have significance corresponding

(up to a normal approximation) to a z statistic of z0:04=2 ¼ �2:05, and hence

would have the same minimum Bayes factor of exp (�2:052=2) ¼ 1=8:2: ‘sub-
stantial’ evidence against H0.

As an alternative to a likelihood-based approach, in a full Bayesian analysis

we need to specify a prior p(�jH1) under the alternative hypothesis. If we assume

�jH1 � N[0, �2=n0],

then from (3.23) we have that
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ymjH1 � N 0, �2 1

n0
þ 1

m

� �� �
,

and hence the Bayes factor is easily shown to be

BF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

n0

r
exp

�z2m
2(1þ n0=m)

� �
: (4:5)

n0 can approximately be interpreted as the number of ‘imaginary’ observations

taking on the value of the null hypothesis � ¼ 0, and hence reflects prior

support under H1 for parameter values ‘near’ (but not exactly) H0. The problem

then becomes that of assessing a reasonable value for n0. This will be considered

in Section 5.5.4 in which priors that explicitly consider the ‘truth’ of a (null)

hypothesis are discussed, but we now note that Kass and Wasserman (1995)

suggest that n0 ¼ 1 (a prior equivalent to a single observation) may be a

reasonable choice in many circumstances.

Figure 4.1 displays the resulting relationship between two-sided P-values and

Bayes factors for different choices of m=n0, the ratio of data sample size to prior

sample size under the alternative hypothesis. It is clear that Bayes factors can

produce very different results from the standard measures of evidence, with a

tendency towards preference for the null hypothesis: when m=n0 is large we

note that

BF �
ffiffiffiffiffi
m

n0

r
BFmin: (4:6)

An alternative way of examining the relationship between Bayes factors and

P-values is shown in Figure 4.2, in which the change in Bayes factor with

increasing ratio m=n0 is shown for fixed P-values. For example, evidence that is

labelled as 2P ¼ 0:001 is considered only just ‘strong’ when the sample size is

small relative to the prior precision, but becomes ‘very strong’ for moderate

sample sizes, and then reduces to only ‘substantial’ for overwhelming large

experiments. This non-monotonic relationship to sample size appears to

match well the intuitive desire for measures of evidence brought out in

Example 4.2.

As we have noted in Section 4.4.2, the importance of sample size and

plausibility of benefits in interpreting P-values has often been stressed even

within the non-Bayesian literature: for example, the ISIS-4 investigators state

that ‘when moderate benefits or negligibly small benefits are both much more

plausible than extreme benefits, then a 2P ¼ 0:001 effect in a large trial or

overview would provide much stronger evidence of benefit than the same

significance level in a small trial, a small overview, or a small subgroup analysis’

(Collins et al., 1995). Examination of Figure 4.2 shows that their insight is again
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Figure 4.1 Bayes factors compared to P-values for composite normal hypotheses,
showing bands corresponding to Jeffreys levels of evidence. The minimum Bayes
factor is the Bayes factor against the maximum likelihood estimate for the parameter
under H1.

matched by the behaviour of the Bayes factor: smaller benefits being more

plausible correspond to n0 being relatively large, and hence m=n0 lies in the

‘dip’ of Figure 4.2 in which stronger evidence is shown compared to smaller

sample sizes. However, Figure 4.2 suggests a conclusion that is not mentioned

by Collins et al. (1995) but seems quite appropriate: if the ‘large trial or

overview’ becomes extremely large but still only significant at 2P ¼ 0:001,
then the evidence for benefit will start to decline again.

For composite hypotheses it appears that neither of the views contrasted in

Section 4.4.2 holds: there is no simple monotonic relationship between Bayes

factors and P-values, and it is perhaps not surprising that so much apparent

confusion has arisen.

Bayes factors can be obtained in the presence of nuisance parameters,

but this makes the dependence on the prior distribution of even more concern.

This is an area of substantial research and discussion (Kass and Raftery,

1995).
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Figure 4.2 Bayes factors for composite normal hypotheses for fixed P-values and
different m=n0 ratios, i.e. ratio of observed to prior sample size, with areas delineated by
Jeffreys’ levels of evidence.

4.4.4 Bayes factors in preference studies

Consider the preference studies used in Examples 4.1 and 4.2, in which the

underlying proportion of individuals preferring option A to B is assumed to be �.
Then the number of preferences r for option A out of m independent trials has a

binomial distribution (Section 2.6.1)

p(rj�,m) ¼ m

r

� �
�r(1� �)m�r:

The maximum likelihood estimator is �̂� ¼ r=m, and so the minimum Bayes

factor for the null hypothesis H0: � ¼ 0:5 is

BFmin ¼ p(rj� ¼ 0:5)

p(rj� ¼ �̂�)
¼ 1

2m

r

m

� �r

1� r

m

� �m�r

:
.
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Assuming p(�jH1) is a uniform prior (as suggested by Jeffreys) gives the predict-

ive distributions

p(rjm,H0) ¼
m

r

� �
1

2m
, (4:7)

p(rjm,H1Þ ¼
1

mþ 1
: (4:8)

Equation (4.7) is simply the Binomial probability when � ¼ 0:5, and (4.8)

shows r has a uniform distribution over all its possible values 0, 1, 2, . . . ,m,

and is a special case of the beta-binomial distribution (Section 3.13.2) with

a ¼ 1, b ¼ 1. Hence the exact Bayes factor is

BF ¼ m

r

� �
mþ 1

2m
: (4:9)

For both the likelihood and Bayesian approaches we can use approximations

for large samples by calculating the P-value, obtaining a corresponding z-

statistic, and substituting in (4.4) and (4.5). For the Bayesian approximation

we do, however, need to specify a normal distribution for p(�jH1) instead of a

uniform distribution, and the problem lies in choosing the normal variance. In

‘interesting’ situations the Bayes factor is driven by the ordinate of the p(�jH1) at
the null hypothesis, and so we choose a normal distribution that has the same

ordinate as a uniform distribution, namely 1. Were �jH1 � N[0:5,�2=n0], then
the ordinate at � ¼ 0:5 would be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0=(2��2)

p
. �2 is the variance of a single

obervation under H0, and so �2 ¼ �(1� �) ¼ 1
4
and equating the resulting

ordinate
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0=�

p
to 1 gives n0 ¼ �=2 ¼ 1:57, not far from the value of

n0 ¼ 1 suggested by Kass and Wasserman (1995). Thus, for a preference

study with a standardised test statistic of zm, our approximate Bayes factors are

BFmin � exp (� z2m=2), (4:10)

BF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

1:57

r
exp

�z2m
2(1þ 1:57=m)

� �
: (4:11)

The quality of these approximations is explored in Example 4.3.

We again emphasise that the Bayes factors, whether likelihood or Bayesian,

are unaffected by whether the designs were sequential or fixed sample size.

Example 4.3 Preference (continued): Bayes factors in preference
studies

Table 4.4 shows the quality of the approximate Bayes factors for the prefer-
ence data, using the exact Bayes factors in (4.9), and approximations (4.10)
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and (4.11). The approximations for the Bayes factors appear reasonable,
particularly for the minimum Bayes factor. For Example 4.1, both Bayes
factors express minimal evidence against the null hypothesis, as would be
expected from Figure 4.1. For the data in Example 4.2, the increasing
sample size leaves the minimum Bayes factor constant at ‘substantial’
evidence against H0, whereas the full Bayes factor changes from favouring
H1 to favouring H0, and then steadily increases its support for H0. This
behaviour reflects the pattern shown in Figure 4.2 for increasing sample
size and fixed P-value, following approximately the trajectory of 2P ¼ 0:05.

Table 4.4 Bayes factors for preference studies when m individuals asked whether they prefer A or B.
The first row is from Example 4.1 and the other four rows from Example 4.2. zm is a standardised test
statistic that would give rise to the observed one-sided P-value. The approximate Bayes factor assumes
n0 ¼ 1:57.

m r
prefer A

ŷy One-sided
P-value

zm Minimum Bayes factor Bayes factor

Exact Approx Exact Approx

6 5 0.83 0.063 1.53 0.23 0.31 0.65 0.86
20 15 0.75 0.02 2.05 0.07 0.12 0.31 0.53

200 115 0.575 0.02 2.05 0.10 0.12 1.20 1.41
2 000 1046 0.523 0.02 2.05 0.12 0.12 4.30 4.37

2 000 000 1 001445 0.500 722 5 0.02 2.05 0.12 139.8 138.0

Rather than formulating these problems as hypothesis tests, it may be much

more appropriate to assess a reasonable prior for � and then report

p(� > 0:5jr,m) – the posterior probability that a majority of the population

prefer A to B. Of course, such a measure suffers from exactly the same criticism

of the P-values in Example 4.2: the posterior probability may be high even

though the ‘majority’ that prefers A is negligible. In this case it may be more

appropriate to assess an ‘important majority’ �S > 0:5, and consider the

p(� > �Sjr,m). See Section 6.3 for applications of these ideas in clinical trials.

4.4.5 Lindley’s paradox

Close examination of the top right-hand corner of Figure 4.1 reveals what might

appear as odd behaviour: when the ratio m=n0 is high, and the P-value is just

marginally significant against H0, the Bayes factor can be greater than 1 and

hence support H0. This somewhat surprising result is known as Lindley’s para-

dox, after Lindley (1957). An informal explanation is as follows. First, for large

sample sizes, a P-value can be small even if the data support values of � very

close to the null hypothesis, as shown for the large sample sizes in Example 4.2.

Second, such data may indeed be unlikely under the null hypothesis, but are

even more unlikely under an alternative that spreads the prior probability thinly

over a wide range of potential values. Hence the Bayes factor can support H0
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when a significance test would reject it, essentially as the lesser of two evils. An

example of this behaviour is shown in Example 4.4.

Example 4.4 GREAT (continued): ABayes factorapproach

From the ‘Evidence from study’ component of Example 3.6 we note that
the standardised test statistic is z ¼ 2:03: just significant evidence against
H0 at the traditional two-sided P < 0:05. The ‘minimum’ Bayes factor
against H0 is BFmin ¼ exp (� z2=2) ¼ 0:13 ¼ 1=7:8, corresponding to ‘sub-
stantial’ evidence against H0. Thus the classical and Bayesian approaches
align to a reasonable extent if we allow the alternative hypothesis to be
dictated by the data.

However, a fully Bayesian approach might place a prior on y ¼ log (OR)
under H1, centred on 0 and with a large variance. For example, suppose we
used a prior with n0 ¼ 0:5 which is essentially uniform over the log(OR)
scale.

Since m ¼ 30:5 we have a ratio of likelihood to prior precision of
m=n0 ¼ 61. From (4.6) the Bayes factor is approximately

ffiffiffiffiffiffiffiffiffiffiffiffi
m=n0

p
BFmin ¼

1:001 (the exact value from substitution into (4.5) is 1.04), i.e. slight
evidence in favour of H0! This is an example of Lindley’s paradox.

4.5 KEY POINTS

1. There is room for dispute over some of the fundamental principles of con-

ventional statistical analysis.

2. The likelihood principle states that only the observed data should affect

inferences: classical sequential analysis disobeys this.

3. The pragmatic interpretation of P-values strongly depends on sample size.

4. Minimum Bayes factors obey the likelihood principle, but have similar

qualitative behaviour to P-values.

5. Proper Bayes factors can, for large sample sizes relative to the prior precision,

support thenullhypothesiswhenaclassical analysiswould lead to its rejection.

EXERCISES

4.1. Confirm the form of the Bayes factor given by (4.5).

4.2. Calculate the minimum Bayes factor corresponding to the three levels of

significance considered in Figure 4.2. In what circumstances might the
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minimum Bayes factor exaggerate the evidence against the null hypoth-

esis, compared to a full Bayesian approach?

4.3. In the preference studies described in Section 4.4.4, suppose we observed

data that were just ‘significant’, with a two-sided P-value of 0.05. Assume

n0 ¼ 1:57.
(a) What sample size (approximately) would yield a Bayes factor of 1, i.e.

indifference between the null and alternative hypotheses?

(b) What observed data would have given 2P ¼ 0:05 with this sample

size?

4.4. For the PROSPER trial in Exercise 2.8 calculate the one-sided P-value, the

minimum Bayes factor, and the Bayes factor corresponding to a sceptical

prior distribution with an effective number of events n0 ¼ 1.

4.5. In Example 4.4, what would be the Bayes factor were we to adopt Kass and

Wasserman’s suggestion of n0 ¼ 1?
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