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Basic Concepts from
Traditional Statistical

Analysis

The Bayesian approach, to a considerable extent, supplements rather than

replaces the kind of analyses traditionally carried out in assessing health-care

interventions, and in this chapter we shall briefly review some of the basic ideas

that will subsequently be found useful. In particular, probability theory is

fundamental to Bayesian analysis, and we therefore revise the basic concepts

with a natural emphasis on Bayes theorem. We also consider random variables

and probability distributions with particular emphasis on the normal distribu-

tion, which plays a vital role in summarising what the observed data can tell us

about unknown quantities of interest. A particularly important practical aspect

is the transformation of output from standard statistical packages into a form

amenable to Bayesian interpretation.

Bayesian analysis makes a much wider use of probability distributions than

traditional statistical methods, in that not only are sampling distributions re-

quired for summaries of data, but also a wide range of distributions are used to

represent prior opinion about proportions, event rates, and other unknown

quantities. The shapes of distributions therefore become particularly important,

as they are intended to represent the plausibility of different values, and so we

shall provide (in starred sections) extensive graphical displays as well the usual

formulae.

Most of the issues addressed in this chapter are covered in a concise and

readable manner in standard textbooks such as Altman (2001) and Berry et al.

(2001b). In addition, Clayton and Hills (1993) consider a likelihood-based

approach to many of the models that are frequently encountered in epidemi-

ology and health-care evaluation.
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2.1 PROBABILITY

2.1.1 What is probability?

Suppose a is some event which may or may not take place, such as the next toss

of a coin coming up heads. Although we may casually speak of the ‘probability’

of a occurring, and give it a mathematical notation p(a), it is perhaps remarkable

that there is no universally agreed definition of what this term means. Perhaps

the currently most accepted interpretation is the following: p(a) is the proportion
of times a will occur in an infinitely long series of repeated identical situations.

This is known as the ‘frequentist’ perspective, as it rests on the frequency with

which specific events occur. However, a number of other interpretations of

probability have been made throughout history, and we shall consider a differ-

ent, ‘subjective’, definition in Section 3.1.

There is little dispute, however, about the mathematical properties of prob-

ability. Let a and b be events, and H represent the context in which a and b

might arise, and let p(ajH) denote the probability of a given the context H: the

vertical line represents ‘conditioning’. Then p(ajH) is a number that satisfies the

following three basic rules:

1. Bounds.

0 � p(ajH) � 1,

where p(ajH) ¼ 0 if a is impossible and p(ajH) ¼ 1 if a is certain in the context

H.

2. Addition rule. If a and b are mutually exclusive (i.e. one at most can occur),

p(a or bjH) ¼ p(ajH)þ p(bjH):

(We note that, for technical reasons, it is helpful if Rule 2 is taken as holding

for an infinite set of mutually exclusive events.)

3. Multiplication rule. For any events a and b,

p(a and bjH) ¼ p(ajb,H)p(bjH):

We say that a and b are independent if p(a and bjH) ¼ p(ajH)p(bjH) or equiva-
lently p(ajb,H) ¼ p(ajH): thus the fact that b has occurred does not alter the

probability of a. The multiplication rule can equivalently be expressed as the

definition of conditional probability,

p(ajb,H) ¼ p(a and bjH)

p(bjH)
,

provided p(bjH) 6¼ 0.
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The explicit introduction of the context H is unusual in standard texts and we

shall subsequently drop it to avoid accusations of pedantry: however, it is always

useful to keep in mind that all probabilities are conditional and so, if the situation

changes, then probabilities may change. We shall see in Section 3.1 that this

notion forms the basis of subjective probability, in whichH, the context, represents

the information on which an individual bases their own subjective assessment of

the degree of belief, i.e. probability, of an event occurring.

Example 2.1 illustrates that these rules can be given an immediate intuitive

justification by comparison with a standard experiment.

Example 2.1 Dice: Illustrationof rulesof probability

Suppose H denotes the roll of two perfectly balanced six-sided dice, and let
‘�’ denote ‘is equivalent to’.

Rule 1. For a single die: if a � ‘throw 7’, then p(a) ¼ 0; if a � ‘throw � 6’,
then p(a) ¼ 1. If c is the sum of the two dice: then if c � ‘13’, then p(c) ¼ 0;
if c � ‘� 12’, then p(c) ¼ 1.

Rule 2. For a single die: if a � ‘throw 3’, b � ‘throw 4’, then

p(a or b) ¼ p(a)þ p(b) since a and b are mutually exclusive

¼ 1=6þ 1=6 ¼ 1=3:

Rule3. If we throw two dice: if a � ‘first die throw 2’, b � ‘second die throw
5’, then

p(a and b) ¼ p(a)p(b) since a and b are independent

¼ 1=6� 1=6 ¼ 1=36:

If a � ‘total score of the two throws is greater than or equal to 6’, b � ‘first
die throw 1’, then

p(a and b) ¼ p(ajb)p(b)
¼ 1=3� 1=6 ¼ 1=18:

Suppose we also consider the events ‘a and b’ and ‘a and b’, where b

represents the event ‘not b’. Then ‘a and b’ and ‘a and b’ are mutually exclusive

and together form the event a, and hence, using Rule 2, we have the identity

p(a) ¼ p(a and b)þ p(a and b) (2:1)

which is known as ‘marginalisation’. Further, by using Rule 3, we obtain

p(a) ¼ p(ajb)p(b)þ p(ajb)p(b), (2:2)

Probability 11
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which is known by the curious title of ‘extending the conversation’ (or ‘extending

the argument’). Example 2.2 shows these expressions follow naturally from

considering the full ‘joint’ distribution over all possible combinations of events.

Example 2.2 Prognosis:Marginalisationandextending the conversation

Suppose we wish to determine the probability of survival (up to a specified
point in time) following a particular cancer diagnosis, given that it depends
on the stage of disease at diagnosis amongst other factors. Whilst directly
specifying the probability of surviving, denoted b, may be difficult, by
extending the conversation to include whether the cancer was at an early
stage, denoted a, or not, denoted a, we obtain from (2.1),

p(b) ¼ p(bja)p(a)þ p(bja)p(a):

Forexample, supposepatientswithearly stagediseasehaveagoodprogno-
sis, say p(bja) ¼ 0:80, but for late stage it is poor, say p(bja) ¼ 0:20, and that
of new diagnoses the majority, 90%, are early stage, i.e. p(a) ¼ 0:90
and p(a) ¼ 0:10. Then the marginal probability of surviving is p(b) ¼
0:80� 0:90þ 0:20� 0:10 ¼ 0:74.

Table 2.1 shows all possible combinations of events and their probabilities,
as well as themarginal probabilities that, appropriately, appear in themargin
of the table. The joint probabilities of events have been obtained byRule 2 so
that, for example, p(b and a) ¼ p(bja)p(a) ¼ 0:80� 0:90 ¼ 0:72:

Table 2.1 Probabilities of all combinations of survival and stage, including
marginal probabilities.

Early stage
a

Late stage
a

Survive b 0.72 0.02 0.74
Not survive b 0.18 0.08 0.26

0.90 0.10 1.00

2.1.2 Odds and log-odds

Any probability p can also be expressed in terms of ‘odds’ O, where

O ¼ p

1� p
and

p ¼ O

1þ O
,
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so that, for example, a probability of 0.20 (20% chance) corresponds to odds of

O ¼ 0:20=0:80 ¼ 0:25 or, in betting parlance, ‘4 to 1 against’. Conversely,

betting odds of ‘7 to 4 against’ correspond to O ¼ 4=7, or a probability of

p ¼ 4=11 ¼ 0:36.
The natural logarithm (denoted log) of the odds is termed the ‘logit’, so that

logit(p) ¼ log
p

1� p

� �
:

2.1.3 Bayes theorem for simple events

A number of properties can immediately be derived from Rules 1 to 3 of Section

2.1.1. Since p(b and a) ¼ p(a and b), Rule 3 implies that p(bja)p(a) ¼ p(ajb)p(b), or
equivalently

p(bja) ¼ p(ajb)
p(a)

� p(b): (2:3)

We have proved Bayes theorem! In words, this vital result tells us how an initial

probability p(b) is changed into a conditional probability p(bja) when taking into

account the event a occurring: it should be clear by this description that we are

interpreting Bayes theorem as providing a formal mechanism for learning from

experience.

Equation (2.3) also holds for b, so that

p(bja) ¼ p(ajb)
p(a)

� p(b), (2:4)

and dividing (2.3) by (2.4) we obtain the odds form for Bayes theorem:

p(bja)
p(bja)

¼ p(ajb)
p(ajb)

� p(b)

p(b)
: (2:5)

Thus p(b)=p(b) ¼ p(b)=(1� p(b) ), the odds on b before taking into account the event
a, which is changed into the new odds p(bja)=p(bja) after conditioning on a.

Equation (2.5) shows how Bayes theorem accomplishes this transformation

without even explicitly calculating p(a), and this insight is exploited in Section 3.2.

Example 2.3 Prognosis (continued): Bayes theorem for single events

Suppose we were given Table 2.1, and wanted to use Bayes theorem to tell
us how knowing the stage of the disease at diagnosis revises our probabil-
ity for survival a. Initially, before we know the stage, p(b) ¼ 0:74 from the

Probability 13
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marginal probability in Table 2.1. Suppose we find out that the disease is at
an early stage, i.e. a, where we know from Table 2.1 that
p(ajb) ¼ 0:72=0:74 ¼ 0:97 and p(a) ¼ 0:9. Hence from (2.3) we obtain a
revised probability of survival

p(bja) ¼ 0:97

0:9
� 0:74 ¼ 0:80,

matching what, in fact, we knew already.

To use the odds form of Bayes theorem (2.5) we first require the initial odds
for survival, i.e. p(b)=p(b) ¼ 0:74=0:26 ¼ 2:85, and the ratio
p(ajb)=p(ajb) ¼ 0:97=0:69 ¼ 1:405. Then from (2.5) we obtain the final
odds on survival as 2:85� 1:41 ¼ 4:01, corresponding to a probability
p(bja) ¼ 0:80 (up to rounding error).

The two forms of Bayes theorem both give the required results and can be
thought of as a means of moving from a marginal probability in a table to a
conditional probability having taken into account some evidence. As we
shall see in Section 3.2, it is this use of Bayes theorem that is used in many
diagnostic testing situations without any controversy.

2.2 RANDOM VARIABLES, PARAMETERS AND

LIKELIHOOD

2.2.1 Random variables and their distributions

Random variables have a somewhat complex formal definition, but it is suffi-

cient to think of them as unknown quantities that may take on one of a set of

values: traditionally a random variable is denoted by a capital Latin letter, say

Y, before being observed and by a lower-case letter y as a specific observed

value. This convention tends to be broken in Bayesian analysis, in which all

unknown quantities are considered as random variables, but we shall try to

keep to it where it clarifies the exposition.

Loosely speaking, p(y) denotes the probability of a random variable Y taking

on each of its possible values y. p(y) is formally known as the probability density

function, and the probability that Y does not exceed y, P(Y4y), is termed the

probability distribution function. We shall tend to use ‘probability distribution’ as

a generic term, hopefully without causing confusion.

Probability distributions may be:

Binary.WhenY can takeononeof twovalues,weshall generallyuse thenotation

Y ¼ 1 for when an event of interest occurs, and Y ¼ 0 when it does not: this is
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known as aBernoulli trial, after Jakob Bernoulli (1654–1705). The correspond-

ing probability distribution obeys the rules p(Y ¼ 1) ¼ 1�p(Y ¼ 0), and is said
to have a Bernoulli distribution (Section 2.6.1); see Example 2.4.

Discrete. p(y) forms a discrete distribution when Y can take on one of a list of

values, say 0, 1, 2, 3, . . . . The binomial (Section 2.6.1) and Poisson (Section

2.6.2) distributions are used in this book.

Continuous. Suppose Y can, in theory, take on values measured to an arbitrary

degree of precision (of course, in practice, rounding of measurements prevents

this). This means that calculus is needed, and the probability of Y lying in any

specified interval I is obtained by the integral
R
I
p(y) dy. The continuous

distributions met most often in this book are the normal (Section 2.3) and

the uniform (Section 2.6.4), although a wide range of others are discussed in

Section 2.6: many of these are useful as prior distributions for unknown

quantities.

Following Rule 1 in Section 2.1.1, all probability distributions should assign

total probability 1 to the set of all possible events – these are known as ‘proper’

probability distributions. For continuous distributions this would mean that they

integrated to 1, i.e.
R
p(y) dy ¼ 1. In some theoretical exercises it can be useful to

imagine ‘improper’ distributions that do not obey this rule, for example uniform

distributions over the entire range �1 to 1. In practice, however, all distribu-

tions used in our examples will be proper (this can in any case always be achieved

by truncating such a distribution at very low and high values).

The expressions derived in Section 2.1 for simple events have their counter-

parts for continuous random variables x, y. To express how the probability of y is

changed when taking into account an observation x, we write Bayes theorem as

p(yjx) ¼ p(xjy)
p(x)

� p(y): (2:6)

To obtain the (marginal) distribution p(x) from the joint distribution p(x,y), we

require the continuous counterpart to (2.1),

p(x) ¼
Z

p(x,y) dy; (2:7)

shows how this is particularly important in Bayesian analysis as there may be

many unknown quantities but we may only be interested in one at a time.

Finally, the notion of extending the conversation (see (2.2) ), given by

p(x) ¼
Z

p(xjy) p(y) dy, (2:8)

expresses how a conditional distribution p(xjy) is ‘averaged over’ by a distribu-

tion p(y) in order to produce a distribution on x.

Random variables, parameters and likelihood 15
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Bayesian methods make repeated use of such integrations, and indeed the

technical problems of carrying them out has, in the past, hampered the devel-

opment of the approach. Fortunately, in subsequent chapters their use will be

implicit and intuitive, with the necessary integrations made reasonably

straightforward either by simplifying assumptions of normal distributions, or

by using modern simulation methodology.

2.2.2 Expectation, variance, covariance and correlation

If we have a distribution, p(y), for an unknown quantity, Y, and we require the

expectation (mean) of Y then this is given by

E(Y) ¼�k
i¼1yi p(yi) (2:9)

if the distribution is discrete, and by

E(Y) ¼
Z

y p(y) dy (2:10)

if the distribution is continuous.

The variance of Y is defined as

V(Y) ¼ E(Y � E(Y) )2

¼ E(Y2)� E(Y)2,

which may be calculated, for example, using E(Y2) ¼
R
y2p(y) dy. The standard

deviation is then defined as SD(Y) ¼
ffiffiffiffiffiffiffiffiffiffi
V(Y)

p
.

The ‘covariance’ of X and Y is defined as

Cov(X,Y) ¼ E(XY)� E(X)E(Y) (2:11)

and measures the association between X and Y. However the covariance is not

generally easy to interpret, and a better summary measure is the correlation,

which is the covariance scaled by the standard deviations of the variables:

Corr(X,Y) ¼ Cov(X,Y)

SD(X)SD(Y)
: (2:12)

Corr(X,Y) is a number between �1 and 1 which, loosely speaking, expresses

how close X and Y are to lying on a straight line: Corr(X,Y) is near 1 for a

positive relationship, near 0 when X and Y are unrelated, and near �1 for a

negative relationship.
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Conditional expectation and variance*

We return to the relationship between joint and marginal distributions intro-

duced in (2.7). X has both a conditional mean and variance defined for each

value y, i.e. E(Xjy) and V(Xjy), and a marginalmean and variance defined for the

marginal distribution of X alone, i.e. E(X) and V(X). Their relationship can be

shown to be as follows:

E(X) ¼ EY [EX (XjY)], (2:13)

V(X) ¼ VY [EX (XjY)]þ EY [VX (XjY)], (2:14)

where the subscripts indicate the relevant variable for the expectation or

variance. Some interpretation of these expressions might be obtained by assum-

ing that Y will be the interim results of a study, and X will be the final results.

Then (2.13) shows that our overall expectation of the final results can be

calculated by first conditioning on the interim data as if they were known,

and then taking our expectations (with respect to the interim data) of those

conditional expectations. Equation (2.14) is more complex and says that our

overall uncertainty about the final outcomes can be broken down into two

components: our uncertainty about its conditional expectation given the in-

terim data, and our expectation of its conditional variance.

We shall use these expressions in the context of prediction: first for normal

variables in Section 3.13, and then in Section 9.8.3 within the context of micro-

simulation in complex cost-effectiveness models.

2.2.3 Parametric distributions and conditional independence

A central aspect of statistical inference is learning about the assumed under-

lying distribution of quantities we observe, and this is generally carried out by

assuming that the probability distributions follow a particular parametric form

p(yj�), i.e. the distribution of Y depends on some currently unknown parameter

�. Parameters are usually given Greek letters: in Bayesian inference they are

considered as random variables but the usual convention of capital and lower-

case letters is ignored, to no apparent detriment.

For example, for a Bernoulli variable Y such that p(Y ¼ 0) ¼ 1� �,
p(Y ¼ 1) ¼ �, we may write this likelihood in the form

p(yj�) ¼ �y(1� �)1�y
; y ¼ 0, 1: (2:15)

A standard assumption in traditional statistics is that a set of random variables

Y1, . . . , Yn are independent and identically distributed (i.i.d.). If we are willing

to adopt a parametric distribution, this corresponds to assuming that each is

drawn independently from a probability distribution p(yj�) where � is some

unknown parameter or parameters, and hence by Rule 3 of Section 2.1.1

their joint distribution is

Random variables, parameters and likelihood 17
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p(y1, . . . , ynj�) ¼
Yn
i¼1

p(yij�): (2:16)

This is an example of what is known as conditional independence, since each Yi is

independent of the others, conditional on �. We shall discuss in Section 3.4 how

this expression can be derived rather than directly assumed.

2.2.4 Likelihoods

Much of traditional statistical inference is based on noting that, once data y

have been observed, p(yj�) can be considered as being a function of �, and can

tell us the extent to which different values of � are supported by the data. When

p(yj�) is considered in this way it is known as the likelihood, and plays a very

important role in Bayesian analysis, as it summarises all the information that

the data y can provide about the parameter �. It is important to note that any

function of � that is proportional to p(yj�) can be considered as the likelihood,

since multiplying p(yj�) by any value that does not depend on � does not affect

the range of values of � being supported.

The likelihood function expresses the relative plausibility of different values of �,
with the value of � for which the likelihood is a maximum is referred to as the

maximum likelihood estimate. We can use a range of values which are best

supported by the data as an interval estimate for �, and it can be argued

(Clayton and Hills, 1993) that a reasonable range is defined by values of the

likelihood above exp (� 1:962=2) ¼ 14:7% of the maximum value – the reason

for this choice will become apparent in Section 2.4.1. In practice, constructing

intervals in such a manner is laborious, and in general we try to approximate

likelihood functions by the normal distribution, as discussed in Section 2.4.

Consider, for example, n individuals in a study; we measure whether the ith

individual responds to treatment, Yi ¼ 1, or not, Yi ¼ 0. If we assume a set

of independent Bernoulli trials such that the probability of response is �,
then, using (2.15) and (2.16), we can obtain the joint distribution for all n

individuals as

p(y1, . . . , ynj�) ¼
Yn
i¼1

p(yij�)

¼
Yn
i¼1

�yi (1� �)1�yi (2:17)

¼ �y1þ...þyn (1� �)(1�y1)þ...þ(1�yn)

¼ �y1þ...þyn (1� �)n�(y1þ...þyn)

¼ �r(1� �)n�r
, (2:18)
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where r ¼�iyi is the number of responders. This likelihood is maximised at

�̂¼ r=n; hence the maximum likelihood estimate is the proportion of responders.

The independence of the individual responsesmeans that the probability (2.18) is

the same regardless of the actual sequence, and hence if we were told that there

were 3 successes out of 10 trials, our likelihood would be precisely the same.

Example 2.4 Response: CombiningBernoulli likelihoods

Suppose we observed the responses of 10 individuals to a drug, and the
particular sequence observed is 0,1,0,0,0,1,0,1,0,0. Let y be the probability
of a random patient responding to the drug. There are 3 successes and 7
failures, and the probability of the data, i.e. the likelihood, is given by

p(y1, . . . , y10jy) ¼ y3(1� y)10�3 ¼ y3(1� y)7: (2:19)

Figure 2.1 shows this likelihood plotted for different values of y and scaled
to have maximum value 1. We return to this example in Section 2.4.1.
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Figure 2.1 Likelihood function for the probability y of response, after observing 10
individuals of whom 3 responded. The likelihood is scaled relative to its maximum
value obtained at the maximum likelihood estimate ŷy ¼ 0:3, and the interval (0.09,
0.61) is based on values with relative likelihood above exp (� 1:962=2) ¼ 0:147.
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2.3 THE NORMAL DISTRIBUTION

The normal (Gaussian) probability distribution is fundamental to much of

statistical analysis and features in the majority of the examples covered in this

book. We shall make frequent reference to properties of the normal distribution,

and therefore it is worth some revision.

We shall use the expression

Y � N[�,�2]

to represent the assumption that the random quantity Y comes from a normal

distribution with mean � and variance �2 (standard deviation �), which means

that

p(y) ¼ 1ffiffiffiffiffiffi
2�

p
�
exp �1

2

(y� �)2

�2

 !
; �1 < y < 1: (2:20)

We also occasionally make use of the notation p(y) ¼ N[yj�, �2]. We note

that the inverse of the variance, 1=�2, is known as the precision of the

distribution.

We shall often want to make use of areas under a normal distribution, for

example the probability that Y is greater than 0 (a ‘tail area’), or the range that

comprises, say, 95% of the distribution (a ‘95% interval’). Let Z � N[0, 1]
denote a standard normal variable with mean � ¼ 0 and standard deviation

� ¼ 1: the shape of its probability distribution is given in Figure 2.2. Tables or

computer programs generally provide the standard normal ‘distribution func-

tion’ F(z) ¼ P(Z4z), the probability that Z is less than or equal to z, and Table

2.2 displays some useful values for F(z).
We note the useful property

F(z) ¼ 1�F(�z): (2:21)

For any tail area �, we denote the corresponding normal deviate by z�, so that

P(Z4z�) ¼ � (2:22)

z� ¼ F�1(�), (2:23)

where F�1 represents the inverse of F. Hence (2.21) leads to the identity

z� ¼ �z1��:

Perhaps the most familiar value is F�1(0:025) ¼ z0:025 ¼ �1:96 ¼ �z0:975:
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Figure 2.2 Probability distribution of a standard normal variable Z � N[0,1]. The
shaded area represents F(�1) ¼ P(Z4�1) ¼ 0:159.

For a general normal quantity we can easily derive tail areas and intervals

from F(z), using the fact that if Y � N[�,�2], then (Y � �)=� is a standard

normal variable Z � N[0, 1]. Hence

P(Y4y) ¼ P
Y � �

�
4

y� �

�

� �
¼ P Z4

y� �

�

� �
¼ F

y� �

�

� �
: (2:24)

Thus, if we want to know P(Y4y) we calculate the standardised statistic

z ¼ (y� �)=� and consult a table such as Table 2.2 to obtain F(z).
Alternatively, if we want, say, a 99% interval for Y, we use a table to find that

the 99% interval for Z is (�2:576, 2:576), and then transform this to an

interval for Y of (�� 2:576�, �þ 2:576�).
An important property of normally distributed quantities is that they retain

normality under addition or subtraction. For example, if Y1 and Y2 are inde-

pendent quantities such that Y1 � N[�1,�
2
1], and Y2 � N[�2,�

2
2], then their sum

has distribution

Y1 þ Y2 � N[�1 þ �2,�
2
1 þ �2

2], (2:25)

i.e. their sum is normally distributed with mean equal to the sum of the means,

and variance equal to the sum of the variances. We shall find this property

very helpful when making predictions (Section 3.13). In many health-care
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applications we also frequently consider the difference between two independent

quantities; when they are both normally distributed we have

Y1 � Y2 � N[�1 � �2,�
2
1 þ �2

2], (2:26)

i.e. their difference is normally distributed with mean equal to the difference of

the means, and variance equal to the sum of the variances.

2.4 NORMAL LIKELIHOODS

In many contexts it will be reasonable to assume that the data relevant to a

parameter � will be, after m ‘observations’, summarised by a statistic Ym with a

normal distribution

Ym � N �,
�2

m

� �
, (2:27)

where � is the parameter of interest, generally a treatment effect defined on a

suitable scale, and �2 is assumed known: note that ‘observations’ is in quotes as

we will find it convenient to use this form even when m is an ‘effective’ number

of observations. After having observed a particular ym, in traditional statistical

terms ym can be considered as an estimate of the true treatment effect �, with

standard error �=
ffiffiffiffi
m

p
.

Table 2.2 Some normal tail areas, expressed as percentages, where 100� ¼ 100F(z�) ¼
100P(Z4z�). From this table we can read, for example, that a symmetric 90% interval for
Z would be (�1:645, 1:645), while a one-sided 90% interval could be (�1, 1:282) or
(�1:282, 1).

zE 100�F(zE) zE 100�F(zE)

0.00 50.0
�0.50 30.8 0.50 69.2
�0.842 20.0 0.842 80.0
�1.00 15.9 1.00 84.1
�1.282 10.0 1.282 90.0
�1.50 6.7 1.50 93.3
�1.645 5.0 1.645 95.0
�1.960 2.5 1.960 97.5
�2.00 2.3 2.00 97.7
�2.326 1.0 2.326 99.0
�2.50 0.6 2.50 99.4
�2.576 0.5 2.576 99.5
�3.00 0.1 3.00 99.9
�3.090 0.1 3.090 99.9
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Much of our approximate analysis is based on assuming a normal likelihood

(2.27) in quite general contexts. These can be characterised as situations in

which it is considered reasonable to quote the results of fitting a statistical model

in terms of estimates and standard errors, for example after using standard

statistical packages. This can, unfortunately, involve some effort transforming

forwards and backwards between the quantities of interest and the somewhat

unintuitive scales on which a normal likelihood is more appropriate. However,

the examples in this book should demonstrate the value of becoming familiar

with this process. It is worth emphasising that, since the likelihood is a function

of � and not a distribution for �, it is not appropriate to speak, for example, of the

mean, variance or tail-area of a likelihood.

We now consider a range of types of data on which the results of different

interventions may be compared, detailing the parameters for which it may be

appropriate to assume a normal likelihood, and describing how the results of

standard regression analyses can be exploited. Obviously there are many areas,

particularly with small samples, which cannot be adequately modelled assuming

normality. This generally indicates a computational shift away from closed-form

analysis and into simulation methodology, which will be discussed in Section

3.19.2.

2.4.1 Normal approximations for binary data

Suppose our data comprise a series of observations in which an event has

occurred or not, and we wish to compare the probability of such events under

two different interventions. For two events with probabilities p1 and p2, the odds

ratio (OR) is

OR ¼ p1

1� p1

�
p2

1� p2
, (2:28)

which is a standard way of reporting changes in the chances of events due to an

intervention, on a scale between 0 and 1. In many circumstances the event is

‘negative’ (e.g. death or disease recurrence) and the ‘new’ intervention is in the

numerator of (2.28), making odds ratios less than 1 favour the new. However,

this will not always be the case and care must be taken. We note that for rare

events, (1� p1) and (1� p2) are near 1, and hence the odds ratio is approxi-

mately the relative risk or risk ratio (RR) ¼ p1=p2, and an odds ratio of, say, 0.7

can also be referred to as a 30% risk reduction. However, we shall try to avoid

the term ‘relative risk’ due to potential confusion.

In order to make the assumption of a normal likelihood more plausible, it is

convenient to work with the natural logarithm of the odds ratio so that it takes

values on the whole range between �1 and þ1. Thus

log (OR) ¼ � ¼ log
p1

1� p1

� �
� log

p2

1� p2

� �
, (2:29)
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and so the interventions are compared through their difference on the logit scale

(Section 2.1.2). This is the standard scale underlying logistic regression analy-

sis. In our analyses we will tend to perform calculations on the log(OR) scale,

but report results as odds ratios, which are more intuitive. To assist slightly in

the interpretation of log(odds ratios), we note that for small values of

� ¼ log (OR), we have the approximation

� � log (1þ �)

so that, for example, log (OR) ¼ �0:1 corresponds roughly to OR ¼ 0:9, or a

10% risk reduction (the exact figure is OR ¼ 0:905). So for small treatment

effects, 100 � log(OR) is approximately the percentage change in risk.

Use of the logit scale has the effect of improving the normal approximation of

the likelihood. For example, Figure 2.3 shows the likelihood from Example 2.4

plotted on both the original probability scale and on the log(odds) scale, and the

improvement is clear. We now argue why it might be appropriate for likelihood-

based intervals to comprise all parameter values with support greater than

14.7% of the maximum, as already quoted in Section 2.2.4 – the following

paragraph may be skipped without loss of continuity.

First, note that if the likelihood really were N[�,�2=m], then from (2.20) it has

a maximum of
ffiffiffiffi
m

p
=(

ffiffiffiffiffiffi
2�

p
�). Hence, relative to its maximum, the likelihood has

ordinate exp [�(y� �)2=2�2]. Second, a 95% interval would comprise values

�� 1:96�=
ffiffiffiffi
m

p
. Plugging these values into the formula for the normal distribu-

tion (2.20) therefore reveals that the boundaries for the 95% interval would

have ordinate relative to the maximum of e�1:962=2 ¼ 0:147. Transforming the

x-scale of the likelihood does not change the relative ordinates in any way, and

hence exactly the same interval is obtained by using this value of 14.7% on the

original likelihood on the untransformed scale. Therefore, as long as there is

some transformation that can give a reasonable normal approximation, the

value of 14.7% of the maximum is justified.

Suppose N observations have been cross-classified by two binary factors, say

intervention and response, leading to the following 2� 2 table:

Intervention
New Control

Event Death a b aþ b
No death c d cþ d

aþ c bþ d N

The maximum likelihood estimate of the odds of death under the new

intervention is a=c (the number of deaths divided by the number of survivors),

under the control is b=d, and of the odds ratio OR is (a=c)=(b=d). � ¼ log (OR)
could be estimated by log [(a=c)=(b=d)], but in fact the estimator of choice is
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Figure 2.3 Likelihood function for the probability of disease, after treating 10 indivi-
duals of whom 3 were successes, plotted on both probability and log(odds) scale. The
improvement to the normal approximation is clear.

�̂� ¼ log
(aþ 1

2
)(dþ 1

2
)

(bþ 1
2
)(cþ 1

2
)

" #
, (2:30)

where �̂� represents an estimate of �. Lower mortality with the new intervention

is represented by OR < 1, or negative values of �. The estimator has approxi-

mate variance

V(�̂�) ¼ 1

aþ 1
2

þ 1

bþ 1
2

þ 1

cþ 1
2

þ 1

dþ 1
2

: (2:31)

The 1
2
s have the effect of lessening the bias of the estimator and preventing

problems with small numbers of events, and will generally have a negligible

effect with reasonable sample sizes. Adjustment for confounding factors, using

either a Mantel–Haenszel analysis or logistic regression, will also provide an

estimate �̂� with estimated standard error s, and provided N is not too small it

will be reasonable to assume a normal likelihood with V(�̂�) ¼ s2.

In the notation of (2.27), we need to set ym ¼ �̂� and �2=m ¼ V(�̂�). Strictly
speaking, it is unnecessary to select appropriate values of �2 and m since we

Normal likelihoods 25

Chapter2 Basic concepts from traditional statistical analysis 17.11.2003 11:45am page 25



could just use V(�̂�) in any analysis, but we shall find that this formulation is

useful both for calculation and interpretation. There are two options:

1. We might fix m as the sample size N and so obtain �2 ¼ N V(�̂�).

2. We might fix � at some specific value, and choose m such that m ¼ �2=V(�̂�).
It turns out that in many contexts � ¼ 2 is a suitable choice. For example,

consider a balanced randomised trial with a rare event occurring approxi-

mately equally often in each arm, so that a � b and c and d are very large

compared to a and b. Then, from (2.31),

V(�̂�) � 2

a
� 4

m
,

where m ¼ aþ b is the number of events. Thus if we take � ¼ 2 and

m ¼ �2=V(�̂�), we should find that m has an approximate interpretation as

the number of events underlying the estimate of �. This is likely to be easier

to interpret than a variance on a log(OR) scale, which is fairly incompre-

hensible. We shall find in Section 2.4.2 that � ¼ 2 is also an appropriate

choice in survival analysis, in that it also leads to m representing the effective

number of events underlying the estimate.

If we are parameterising in terms of differences in proportions rather than the

log(odds ratio), it may still be possible to assume a normal likelihood with large

sample sizes, where ym is the difference in sample response rates. Strictly

speaking, �2 then depends upon the unknown response rates, but an estimate

of �2 may be used.

Example 2.5 GREAT: Normallikelihood froma 2� 2 table

The GREAT trial of early treatment for myocardial infarction, to be de-
scribed in greater detail in Example 3.6, gave rise to the following data:

Treatment
New Control

Event Death 13 23 36
No death 150 125 275

163 148 311

Using (2.30) gives an estimated log(OR) of ym ¼ �0:736, with estimated
variance (2.31) of 0:131 ¼ 0:3622. Taking s ¼ 2, we obtain m ¼ 4=0:131 ¼
30:5, which is reasonably near the observed number of events (36)
and gives an intuitive idea of the amount of evidence underlying the
estimate.
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favours home therapy  <-            Mortality odds ratio              ->  favours control
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−1.2 −1 −0.8 -0.6 −0.4 −0.2 0.2

log (odds ratio)

Figure 2.4 Normal likelihood for y ¼ log (OR) in the GREAT trial, with the upper
axis labelled on the log(OR) scale. The lower scale is marked in terms of OR ¼ ey

for ease of interpretation.

Assuming a normal sampling distribution ym � N[y, s2=m] leads to the
likelihood shown in Figure 2.4, which is plotted on the log(OR) scale but
with axes labelled on both OR and log(OR) scales.

2.4.2 Normal likelihoods for survival data

Suppose we have a set of measurements of time to some event, say death or

disease recurrence, often referred to as survival data. This event is assumed to

occur with hazard rate h(t), which is the chance of an event in a short interval of

time following t. Survival under two different interventions with hazard rates

h1(t) and h2(t) may be compared by their hazard ratio, HR ¼ h1(t)=h2(t): the
common ‘proportional hazards’ assumption assumes HR is constant with time.

The hazard ratio varies between 0 and 1, and once again it is convenient to

work with its natural logarithm,

log (HR) ¼ � ¼ log
h1(t)

h2(t)

� �
: (2:32)
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In our analyses we will tend to perform calculations on the log(HR) scale, but

report results as hazard ratios: generally events will be ‘negative’, such as death

or disease recurrence, and so HR < 1 or � < 0 will favour the treatment in the

numerator, which is usually the new intervention.

We note an important connection between hazard ratios and survival prob-

abilities (although this derivation can be skipped). Let T be a random survival

time with probability density p(t), and let S(t) ¼ P(T > t) be the chance of

surviving beyond t. The hazard rate h(t) is the instantaneous chance of dying,

given survival until t, and hence h(t) ¼ p(t)=S(t). Thus the cumulative hazard

H(t) obeys

H(t) ¼
Z

h(t)dt ¼
Z

p(t)=S(t) dt ¼ � log S(t):

Thus if we assume a proportional hazard model with HR ¼ h1(t)=h2(t), then we

have

HR ¼ h1(t)

h2(t)
¼ H1(t)

H2(t)
¼ log S1(t)

log S2(t)
:

From this it follows that if p1 and p2 are the chances of surviving until some

fixed time under the two interventions being compared, then under the propor-

tional hazards assumption

HR ¼ log p1

log p2
, (2:33)

log (HR) ¼ � ¼ log
log p1

log p2

� �
: (2:34)

This means that if we know the two survival proportions and are willing to

assume proportional hazards, then we can transform onto a log(HR) scale. This

relationship is shown in Figure 2.5, from which can be read approximate values

of log(HR) corresponding to changes in survival probabilities. For example, if a

new treatment is thought to change 5-year survival from p2 ¼ 20% to

p1 ¼ 40%, then Figure 2.5 suggests this corresponds to a log(hazard ratio) of

around �0:5, or HR ¼ 0:61. The precise value is given by � ¼ log [ log (p1)=
log (p2)] ¼ �0:56, corresponding to HR ¼ 0:57.

Suppose that the first intervention corresponds to an active treatment T, and

the second to a control C. Often the results of a survival analysis may be given in

terms of an observed log-rank test statistic Lm, which is defined as the excess of

events under T, compared to that expected were there no treatment effect,

where m is the total number of events observed. Lm is often denoted as O� E

(observed minus expected). Assuming proportional hazards, we have the
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p2 = Survival proportion under control intervention
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Figure 2.5 Log(hazard ratios) corresponding to changes from survival probability p2
under a control treatment, to p1 under a new treatment, where log (HR) ¼ �
¼ log [ log (p1)= log (p2)].

following approximation in the particular case of equal allocation and follow-up.

If there have been OT events on treatment, and OC events on control, then the

expected number of events in the treatment group under the null hypothesis

is approximately m=2, and hence the log-rank statistic is Lm ¼ OT �m=2 ¼
(OT � OC)=2. It can be shown (Tsiatis, 1981) that, for large trials, ym ¼
4Lm=m ¼ 2(OT � OC)=m is an approximate estimate of the log(hazard ratio) �, and

ym � N[�, 4=m]:

Hence we can set � ¼ 2 and adopt a normal likelihood.

If the estimated variance of the log-rank statistic, denoted V[O� E], is pro-

vided in the report of the study, this will take into account different censoring,

follow-up and so on. Now

V[O� E] ¼ V[Lm] ¼ V[mym=4] ¼ m2V[ym]=16 � m=4,
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and hence V[O� E] can be equated to m=4 in order to obtain the effective

number of events m. In more general circumstances we might adjust for

covariates using a Cox regression analysis, and hence obtain an estimate �̂�
and its standard error s: if we then set � ¼ 2 we may obtain an ‘implicit’ event

count m ¼ �2=s2, in the same manner as in Section 2.4.1.

2.4.3 Normal likelihoods for count responses

Suppose events occur at a rate l per unit of population or time. Then our

responses will be a count y of the number of events in, say, T units of population

or time, which will usually be assumed to have a Poisson distribution with

mean lT (Section 2.6.2). For two series of events with rates l1 and l2, the rate
ratio (RaR) l1=l2 is a standard way of reporting changes in the rates of events

due to an intervention. The rate ratio varies between 0 and 1.

It is again convenient to work with the natural logarithm of a rate ratio,

� ¼ log (l1=l2), which may be estimated either directly from observed rates or

from a Poisson regression.

Suppose we have observed the following data:

Treatment
New Control

Events r1 r2
Patient-years of follow-up n1 n2

Here n1 and n2 are assumed to be large. The maximum likelihood estimate of the

rate ratio is (r1=n1)=(r2=n2), and � ¼ log (RaR) can be estimated by

�̂� ¼ log
(r1 þ 1

2
)=n1

(r2 þ 1
2
)=n2

: (2:35)

RaR < 1, or negative values of �, indicate a lower event rate with the new

treatment. The estimator has approximate variance

V(�̂�) ¼ 1

r1 þ 1
2

þ 1

r2 þ 1
2

: (2:36)

As with binary and survival data, a normal likelihood can be assumed provided

the number of events is not too small, and once again we shall generally set

� ¼ 2.
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2.4.4 Normal likelihoods for continuous responses

Suppose that difference in mean response is the outcome measure of interest, m

individuals are allocated to each treatment in a trial, and their individual

responses are assumed normal with variance �2=2. Let � be the true difference

in mean response, and ym be the difference in group sample means. Then

ym�N[�, �2=m]. (If �2 is unknown, then a full Bayesian analysis with a prior

on �2 is possible: with a specific choice of prior one obtains the standard

Student’s t distribution for ym (Section 5.5.1).)

2.5 CLASSICAL INFERENCE

In this section we give the briefest of summaries of standard statistical analysis

when normal likelihoods can be assumed: for a comparative discussion of the

basis for these and Bayesian techniques, we refer to Chapter 4.

The normal likelihood

ym � N �,
�2

m

� �

leads to � being estimated by �̂� ¼ ym with an accompanying two-sided 95%

confidence interval of ym � 1:96� �=
ffiffiffiffi
m

p
; this may be given the standard

sampling-theory interpretation that 95% of the intervals produced using this

procedure will contain the true parameter. If we wish to test a null hypothesis,

say H0: � ¼ 0, we may examine whether the two-sided 95% interval excludes

H0, or equivalently use zm ¼ ym
ffiffiffiffi
m

p
=� as a standardised test statistic to refer to

normal tables and, for example, declare the result ‘statistically significant at the

two-sided 5% level’ if jzmj > 1:96. We may also calculate the ‘P-value’ Pm

associated with zm, which is the probability of observing data as extreme as zm
under the null hypothesis. This can be taken as

Pm ¼ min (P(Z5zm), P(Z4zm) ) ¼ min (F(�zm), F(zm) ),

although generally the ‘two-sided’ P-value is considered a more appropriate

summary of ‘extremeness’ for H0: � ¼ 0, being

2Pm ¼ P(Z > jzmj) ¼ F(� jzmj):

Suppose we are designing a clinical trial with proposed size n to detect an alter-

native hypothesis H1: � ¼ �A > 0, and we decide that the result will be declared

statistically significant and in favour of H1 if a two-sided 100(1� 2�)% interval

based on a future estimate Yn lies wholly above 0, corresponding to the future

standardised statistic Zn > �z�: typically � ¼ 0:025 and so�z� ¼ �z0:025 ¼ 1:96.
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In this context this event is equivalent to Pn42�, and 2� is therefore the

probability of obtaining a statistically significant conclusion in either direction if

the null hypothesis is in fact true. 2� may be termed the ‘significance level’, the

‘size’, or the Type I error of the study, and is often denoted �. The null

hypothesis will be rejected in favour of H1 provided Yn > �z��=
ffiffiffi
n

p
, which

from (2.21) and (2.24) will occur with probability

1�F
�z��=

ffiffiffi
n

p
� �

�=
ffiffiffi
n

p
� �

¼ 1�F �z� �
�
ffiffiffi
n

p

�

� �
¼ F

�
ffiffiffi
n

p

�
þ z�

� �
:

The probability that a trial of n observations will lead to a statistically signifi-

cant conclusion at the 2� level, given that the alternative hypothesis is true, is

known as the power of the study, conventionally denoted 1� �, and hence

1� � ¼ F
�A

ffiffiffi
n

p

�
þ z�

� �
: (2:37)

From (2.37) we can easily see that the sample size necessary to obtain a

specified power, say 100(1� �)%, will obey

�A
ffiffiffi
n

p

�
þ z� ¼ F�1(1� �) ¼ z1��,

and therefore

n ¼ (z1�� � z�)
2 �

2

�2A
: (2:38)

Typical values might be � ¼ 0:025, 1� � ¼ 0:80 and so, from Table 2.2,

(z1�� � z�)
2 ¼ (0:842þ 1:96)2 ¼ 7:85.

Note that some care is required in specifying � and n. Our formulation is

based on assuming that the estimate of the treatment effect has distribution

yn � N[�, �2=n]. Suppose, however, that we are performing a two-arm study

with n patients per group, in which yn ¼ y2 � y1, the difference in group means.

Then �2 must be the variance of the difference between the responses from a

random pair of patients, one from each arm. This will be the sum of the

sampling variances in the two arms.

Example 2.6 Power: Choosing the sample size fora trial

Suppose we are designing a trial for a new cancer treatment which it is
hoped will raise 5-year survival from 20% to 40%. From the analysis in
Section 2.4.2, this is equivalent to a hazard ratio of log (0:40)= log (0:20)
¼ 0:57 when assuming proportional hazards, or a log(hazard ratio) of
yA ¼ �0:56. We note the above discussion of power has assumed an
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alternative hypothesis yA > 0, whereas our yA is negative. However, we
may simply reverse the role of null and alternative hypotheses and take
yA ¼ 0:56: this is equivalent to redefining the hazard ratio as control hazard
divided by new intervention hazard instead of its inverse. Taking s ¼ 2, the
power of a study in which n events occur is given by (2.37): assuming
E ¼ 0:025 generates the power curve shown in Figure 2.6. From (2.38),
80% power is achieved at n ¼ 7:85� 22=(0:56)2 ¼ 100: power rises slowly
above this size of trial. Under the alternative hypothesis we expect about a
30% overall 5-year mortality in the trial, and so to observe 100 deaths we
might recruit about 330 patients, 165 in each arm, and follow them for
approximately 5 years.

n = number of deaths
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Figure 2.6 Power of a clinical trial in which n events are to be observed, and the
alternative hypothesis is a rise from 20% survival to 40% survival, equivalent to a
hazard ratio (control/new) of 1/0.57 ( log(hazard ratio) ¼ yA ¼ 0:56):Power
¼ F(yA

ffiffiffi
n

p
=sþ zE). 80% power is achieved at n ¼ 100.

In Example 2.6 we took the alternative hypothesis as � > 0, leading to a power

curve that rises for increasing values of �. However, we shall be using many

examples where low values of � correspond to benefit of the new intervention,

and hence care must be taken in using the equations. This rather technical point
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is considered in detail in Section 6.5, where we also show how to take into

account uncertainty about parameters when conducting power calculations.

2.6 A CATALOGUE OF USEFUL DISTRIBUTIONS*

Bayesian analysis makes use of a wide range of standard, and not so standard,

parametric probability distributions in two contexts:

. Sampling distributions for individual data points or summary statistics form the

basis for likelihoods, just as in classical statistical inference. We shall make use

of standard distributional families such as the normal, binomial, and Poisson,

but also more unusual choices such as the log-normal for cost data.

. Prior distributions for parameters form the very core of Bayesian inference, and

the shape of the chosen distribution becomes vital as it represents the relative

plausibility for different parameter values. It is therefore important to have a

supply of flexible parametric families that can express properties such as

skewness and having heavy tails, and so although many of the prior opinions

used in this book can be approximated by a normal distribution, we shall also

require less standard forms such as the beta, root-inverse-gamma, and half-

normal.

These two contexts come together in the use of ‘conjugate’ distributions, which

are families of prior distributions that ‘fit together’ with particular sampling

distributions. These are discussed in Section 3.6.2 and are useful for illustrating

Bayesian analysis in simple examples, but modern computational techniques

have reduced their importance.

A familiarity with the uses, shapes and properties of different families of

distributions can be very valuable, and Bayesian texts contain extensive cata-

logues of distributions and their mathematical properties: see, for example, Lee

(1997), Bernardo and Smith (1994), Gelman et al. (1995) and Carlin and Louis

(2000). Here we focus on the distributions that will be used in the examples in

this book. We shall first discuss their derivation and give formal expressions for

their distributional form, expectation and variance, but our primary focus will

be on displaying their shapes and discussing their possible use in practical

circumstances. We omit explicit restrictions on ranges of parameters when

they are clear from the context.

This section might best be used as a reference throughout the book.

2.6.1 Binomial and Bernoulli

A discrete binomial variable Y arises as the sampling distribution of the total

number of ‘successes’ in n independent Bernoulli trials, each with probability � of
success. The likelihood �y(1� �)n�y

gives the probability for a specific sequence of
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n� y ‘failures’ and y ‘successes’ (Section 2.2.3), and there are
n

y

� �
such se-

quences. Thus Y � Bin[n, �] represents a binomial distribution with properties:

p(yjn, �) ¼ n

y

� �
�y(1� �)n�y

; y ¼ 0, 1, . . . , n, (2:39)

E(Yjn, �) ¼ n�, (2:40)

V(Yjn, �) ¼ n�(1� �): (2:41)

The binomial with n ¼ 1 is simply a Bernoulli distribution, denoted Y �
Bern[�].

Shape. The examples in Figure 2.7 illustrate the decreasing relative variability

and the tendency to a normal distribution that occurswhen sample size increases.

Use. The binomial is used as a sampling distribution for empirical counts that

occur as proportions. Uses in this book include preference studies (Section 4.4.4),

meta-analysis (Section8.2.2,Example8.2), andevidence synthesis (Example8.6).

2.6.2 Poisson

Suppose there are a large number of opportunities for an event to occur, but the

chance of any particular event occurring is very low. Then the total number of

events occurring may often be represented by a discrete variable Y, where

Y � Poisson[�] represents a Poisson distribution with properties:

p(yj�) ¼ �ye��

y!
; y ¼ 0, 1, 2, 3, . . . , (2:42)

E(Yj�) ¼ �, (2:43)

V(Yj�) ¼ �: (2:44)

In many applications it will arise as a total number of events occurring in a

period of time T, where the events occur at an unknown rate l per unit of time,

in which case the expected value of Y is � ¼ lT.

Shape. The examples in Figure 2.8 show that if events happen with a constant

rate, observing for longer periods of time leads to smaller relative variability and

a tendency towards a normal shape. Comparison of Figure 2.8 with Figure 2.7

shows that, when sample size increases, a binomial might be approximated by a

Poisson with the same mean.

Use. The Poisson distribution is used for count data, as in Example 8.3.
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(a) θ = 0.3, n = 5

y
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(b) θ = 0.3, n = 20
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(c) θ = 0.3, n = 100
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Figure 2.7 Binomial distributions for the number of successes in n ¼ 5, 20, 100
Bernoulli trials, each with probability � ¼ 0:3 of success.

2.6.3 Beta

Beta distributions form a flexible and mathematically convenient class for

quantities constrained to lie between 0 and 1, and so can be used as a prior

distribution for unknown proportions. Y � Beta[a, b] represents a distribution

with properties:

p(yja,b) ¼ G(aþ b)

G(a)G(b)
ya�1(1� y)a�1

; y 2 (0, 1), (2:45)

E(Yja,b) ¼ a

aþ b
, (2:46)

V(Yja,b) ¼ ab

(aþ b)2(aþ bþ 1)
: (2:47)
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(a)   Rate = 0.3,  T = 5 
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(b) Rate = 0.3 , T = 20

y
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(c) Rate = 0.3, T = 100

y
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Figure 2.8 Poisson distributions representing the number of events occurring in time
T ¼ 5, 20, 100, when the rate at which an event occurs in a unit of time is r ¼ 0:3: the
Poisson distributions therefore correspond to � ¼ 1:5, 6 and 30.

G(a) represents the gamma function, a generalisation of the factorial for non-

integers, in that G(a) ¼ (a� 1)! if a is an integer. A Beta[1,1] distribution is

uniform between 0 and 1 (see Figure 2.9(b) and Section 2.6.4).

Shape. The examples in Figure 2.9 show the flexibility of the family, with a

tendency to normal as both parameters become larger.

Use. The sole use of beta distributions is for uncertain proportions where they

are ‘conjugate’ to the binomial family of sampling distributions (Section 3.6)

and hence make the necessary computations straightforward. However, we saw

in Section 2.4.1 that in most applications with binary data it is much more

flexible and convenient to transform the quantity of interest from a proportion

(defined on a (0,1) scale) to log(odds) (defined on the full range of �1 to 1).
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0.0 0.2 0.4 0.6 0.8 1.0

(d) a = 5, b = 5

y
0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

2

4

6

8

10

12

(e) a = 15, b = 5

y
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(f) a = 150, b = 50

y
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.9 Beta distributions for different parameter values showing the flexibility of
the family: note change in y-axis for (f ).

Therefore, we shall find limited use for the beta except in tutorial examples (see

Examples 3.3 and 8.6).

2.6.4 Uniform

Like the beta distribution, a uniform distribution on a range (a, b) is generally
adopted for an unknown parameter. Y � Unif [a, b] means that:

p(yja,b) ¼ 1

b� a
; y 2 (a, b), (2:48)

E(Yja,b) ¼ aþ b

2
, (2:49)

V(Yja,b) ¼ (b� a)2

12
: (2:50)
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Shape. The shape of this distribution hardly needs plotting, but an example is

given in Figure 2.9(b). Uniform distributions can also be given over a discrete set

of values (see Example 3.2).

Use. The only use in this book is as a means of expressing indifference

concerning the prior plausibility of a range of values – a so-called ‘non-informa-

tive’ or reference prior (Section 5.5.1). We shall frequently use it in this manner

and merely refer to a ‘uniform prior’, which means uniform over a range that is

large enough to encompass all plausible values of �.

2.6.5 Gamma

Gamma distributions form a flexible and mathematically convenient class for

quantities constrained to be positive. Y � Gamma[a, b] represents a gamma

distribution with properties:

p(yja, b) ¼ ba

G(a)
ya�1e�by; y 2 (0, 1), (2:51)

E(Yja,b) ¼ a

b
, (2:52)

V(Yja,b) ¼ a

b2
: (2:53)

Particular cases include the Gamma[1, b] distribution, which is exponential with

mean 1=b, and the Gamma[ 1
2
v, 1

2
], which is the same as the chi-squared distri-

bution �2
v on v degrees of freedom. A useful piece of distribution theory is that if

Y1, . . . , Yn are a set of i.i.d. N[�, �2] variables with mean Y and sample

variance S2 ¼�i(Yi � Y)2=n, then �i(Yi � �)2=�2 � �2
n , and nS2=�2 � �2

n�1.

We shall use this in Example 8.4.

Shape. The examples in Figure 2.10 show the family to be reasonably flexible.

Use. One justification is that the gamma distribution ‘conjugate’ to the Poisson

family (Section 3.6.2). However, as with binary data, we shall see in Section

2.4.3 that in most applications it is much more flexible and convenient to

transform the quantity of interest from a rate (defined on a (0,1) scale) to a

log-rate (defined on the full range of �1 to 1), and then use normal approxi-

mations.

An alternative popular use has been as a prior distribution for the precision

parameter (1/variance) of a normal distribution, for which it is also conjugate

(Section 3.6.2). This is equivalent to using a root-inverse-gamma distribution

for the standard deviation (see Section 2.6.6).
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(b)   a = 0.1 ,  b = 0.1 (c)   a = 3 ,  b =3 

(d) a = 3, b = 0.5
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(e)   a = 30 ,  b = 5

y

(f) a = 10, b = 0.5

y

Figure 2.10 Gamma distributions. (a) is exponential with mean 1, (a), (b) and (c) all
have the same mean but different shapes, (d) is a �2

6 distribution with mean 6, while (e)
has the same mean as (a) but a different shape and becomes increasingly close to normal
as the parameters both increase. (f) is a �2

20 distribution.

2.6.6 Root-inverse-gamma

If X � Gamma[a,b], then 1=
ffiffiffiffi
X

p
� RIG[a,b]. Y � RIG[a,b] represents a root-in-

verse-gamma distribution with properties (Bernardo and Smith, 1994, p. 431):

p(yja, b) ¼ 2ba

G(a)

1

y2aþ1
e�b=y2 ; y 2 (0, 1), (2:54)

E(Yja,b) ¼
ffiffiffi
b

p
G(a� 1

2
)

G(a)
, (2:55)

V(Yja,b) ¼ b

a� 1
� E2(Yja, b): (2:56)

We note that the variance is only defined for a > 1.
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Shape. The examples in Figure 2.11 show that the family can have the

somewhat curious property of forcing the quantity away from 0.

Use. The RIG is the implied prior distribution for a standard deviation when a

gamma distribution is used for a precision, and so is frequently implicitly

adopted in Bayesian analysis. However, it is almost never plotted, and the

shape is perhaps not what was intended in many applications, given its property

of rejecting low values. We shall therefore adopt it with some caution in Section

5.7.3 and in Example 8.1.

2.6.7 Half-normal

The half-normal arises by folding a normal distribution around 0: formally, if

X � N[0, �2], then jXj � HN[�2]. Thus Y � HN[�2] represents a half-normal

distribution with properties:

p(yj�2) ¼
ffiffiffiffiffiffiffiffi
2

��2

r
e
�y2

2�2 ; y 2 (0, 1), (2:57)

E(Yj�2) ¼
ffiffiffi
2

�

r
�, (2:58)

V(Yj�2) ¼ �2 1� 2

�

� �
, (2:59)

and a median of F�1(0:75) � ¼ z0:75 � ¼ 0:773 �, using the notation of Section

2.3.

(a) a = 0.1,  b = 0.1

y
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(b) a = 3, b = 1

y
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(c) a = 3, b = 3
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Figure 2.11 Root-inverse-gamma distributions. Note the different scale for (a), which
has a very long right-hand tail. Comparing (c) with (b) shows that increasing b retains
the shape but multiplies the mean and standard deviation by b.
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Shape. The examples in Figure 2.12 show the family to express maximum

support for 0, with the rate of decline governed by �.

Use. The half-normal is useful to express support for values near 0, with �
controlling the upper range of support. This is applied to standard deviations in

Section 5.7.3, and illustrated in Examples 8.1 and 8.5.

2.6.8 Log-normal

The log-normal is a distribution on positive values, like the gamma, root-inverse-

gamma, and half-normal. It is defined as the exponential of a normal variable (this

can cause confusion). Thus if Y � LN[�, �2], then log (Y) � N[�, �2].
Y � LN[�, �2] represents a log-normal distribution with properties:

p(yj�,�2) ¼ 1ffiffiffiffiffiffi
2�

p
�y

e�( log y��)2=2�2 ; y 2 (0,1), (2:60)

E(Yj�,�2) ¼ e�þ�2=2, (2:61)

V(Yj�,�2) ¼ e2�þ�2 (e�
2 � 1): (2:62)

Shape. The examples in Figure 2.13 show that a range of skewed distributions

can be represented, although the right-hand tail is remarkably long. For

example, Figure 2.13(b) has a broadly similar shape to the Gamma[0.1, 0.1]

shown in Figure 2.11(a): however, while the latter has mean 1 and standard

deviation
ffiffiffiffiffiffi
10

p
¼ 3:2, the LN[0, 3] has mean e4:5 ¼ 90, and standard deviation

(a) σ = 0.2

y
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y y
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(c) σ = 5
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0.6

0.8

Figure 2.12 Half-normal distributions, with maximum at 0 and declining support for
increasing y.
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Figure 2.13 Log-normal distributions. Comparing (c) with (b) shows that � acts as a
scale parameter and does not change the shape of the distribution.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e9(e9 � 1)

p
¼ 8100. Thus although the gamma and log-normal are sometimes

considered as alternative options for skewed distributions, the much heavier tail

of the log-normal should be kept in mind.

Use. The log-normal can be used as a sampling distribution for positive obser-

vations such as costs (Example 9.2), or as a prior distribution for posi-

tive parameters such as variances (Examples 6.10 and 9.2). We have seen in

Section 2.4 that in many situations we carry out inferences on logarithms of

quantities, and then transform results back to a more interpretable scale. Thus

in our examples that use normal theory, our posterior distributions of odds

ratios, hazard ratios and rate ratios are in fact log-normal distributions.

2.6.9 Student’s t

A standardised Student’s t distribution arises as the ratio of a standard normal

variable to the square root of an independent �2 variable divided by its degrees

of freedom, and has a prominent role in classical statistics as the sampling

distribution of a sample mean divided by its estimated standard error. It also

occurs as a posterior distribution for the mean of a normal distribution given a

specific choice of prior for the unknown variance (DeGroot, 1970).

Y � t[�, �2, v] represents a Student’s t distribution with v degrees of freedom,

which has properties:

p(yj�,�2,v) ¼
G( vþ1

2
)

G( v
2
)
ffiffiffiffiffi
�v

p
�

1

1þ (y��)2

v�2

� �vþ1
2

; y 2 (1, 1), (2:63)

E(Yj�,�2,v) ¼ �, (2:64)
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V(Yj�,�2,v) ¼ �2 v

v� 2
; (2:65)

the mean only exists if v > 1, and the variance only exists if v > 2.

Shape. Figure 2.14 shows the heavy-tailed nature of the t distribution, with

high degrees of freedom looking increasingly normal.

Use. Apart from arising as a posterior distribution, it can also be used as a

sampling distribution when some outliers are expected.

2.6.10 Bivariate normal

X and Y are said to have a bivariate normal distribution, denoted

X,Y � BN[�X ,�Y ,�X ,�Y ,	], if

p(x,yj�X ,�Y ,�X ,�Y ,	)¼
1

2��X�Y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p exp � Q

2(1� 	2)

� �
; x, y 2 (1,1), (2:66)

where Q is the quadratic expression

Q ¼ (x� �X )
2

�2
X

� 2	(x� �X )(y� �Y )

�X�Y

þ (y� �Y )
2

�2
Y

:

The distribution has properties

E(X) ¼ �X , E(Y) ¼ �Y , V(X) ¼ �2
X , V(Y) ¼ �2

Y ,

and covariance and correlation
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Figure 2.14 Student’s t distributions with � ¼ 0, � ¼ 1: other values of � and � will
change the location and scale but not the shape.
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Cov(X,Y) ¼ 	�X�Y , Corr(X,Y) ¼ 	:

In addition, the conditional distribution of Yjx is normal with mean and

variance

E(Yjx) ¼ �Y þ 	 �Y

�X

(x� �X ),

V(Yjx) ¼ �2
Y (1� 	2):

(2:67)

The conditional variance �2
Y (1� 	2) is never more than the unconditional vari-

ance �2
Y , showing that knowing the value of X never increases our uncertainty

about Y. In addition, the conditional mean is a linear function of x – this is

known as the ‘regression’ of Y on X. The bivariate normal generalises naturally

to higher dimensions but we shall not require this extension for this book.

Shape. Figure 2.15 shows a ‘contour plot’ of a bivariate normal distribution,

where contours are ellipses obtained as solutions of Q ¼ constant.

Use. The bivariate normal can be used as a sampling distribution of two correl-

ated quantities, such as in Example 9.1 where it is used to describe the joint

x

y
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Figure 2.15 A bivariate normal distribution with parameters �X ¼ 1, �Y ¼ 2,
�X ¼ 3, �Y ¼ 2, 	 ¼ 0:5, with expanding ellipses enclosing 5%, 25%, 50%, 75% and
95% of the probability distribution.
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distribution of costs and benefits. It also arises naturally as a prior distribution

for two possibly correlated unknown parameters, such as the baseline rate and

treatment effect in a clinical trial or epidemiological study (Section 8.2.3): see

Example 8.3 for an example in a meta-analysis of observational studies.

2.7 KEY POINTS

1. Bayesian analysis rests wholly on probability theory, and all inferences can

be derived from three basic rules.

2. The sampling distributions for data are used to derive likelihoods for un-

known parameters, and so familiarity with classical methods helps in Baye-

sian analysis.

3. Normal approximations for likelihoods play a very important role.

4. Bayesian analysis makes use of a wide range of parametric probability

distributions, both as a basis for likelihoods and as prior distributions.

EXERCISES

2.1. A coin is tossed and lands ‘heads’.

(a) What is your assessment of the probability that a second toss of

the coin will also yield a ‘head’?

Before the coin was tossed for the first time it was randomly selected from

two possible coins, one a ‘fair’ coin, i.e. with with both ‘head’ and ‘tail’, and

the other a ‘double-headed’ coin.

(b) What is your assessment of the probability that the second toss of the

coin will now yield a ‘head’?

2.2. Consider a case of disputed paternity, and the blood groups of the mother,

the child and the alleged father. The mother has blood type O and

the alleged father has blood type AB: let F denote the event that he is the

true father. If the child has blood group O then the alleged father can be

excluded from the paternity case. After testing, the child has blood type B,

and Mendelian genetics implies P(BjF) ¼ 0:5. The blood bank gives

P(Bj �FF) ¼ 0:09 for Caucasians. What is P(FjB), i.e. the probability that the

alleged father really is the father given that the child has blood type B, (a)

as a general function of P(F), and (b) when P(F) ¼ 0:5?
2.3. Lee (1997) considers the case of twins and whether they are monozygotic

(M) or dizygotic (D). Monozygotic twins develop from the same egg, look

very similar (often being referred to as identical twins) and are always of

the same sex, whilst dizygotic twins can look very similar too, but can be of

different sexes. Therefore, P(GGjM) ¼ P(BBjM) ¼ 0:5, P(GGjD) ¼ P(BBjD)
¼ 0:25, and P(GBjM) ¼ 0, P(GBjD) ¼ 0:5.
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(a) By extending the argument, express P(GG) in terms of p(M), the prior

probability that a set of twins is monozygotic.

(b) Again in terms of p(M), find the probability that if twins are both girls

they are dizygotic, i.e. P(DjGG).
(c) Find P(DjGG) when p(M) ¼ 0:5.

2.4. In a study of a drug, 20 out of 50 patients respond. (a) Find the maximum

likelihood estimate for the response rate, and use a normal approximation

for the likelihood for the log(odds) to find a 95% interval of values for the

response rate which are supported by the data. A second study is per-

formed, but due to time constraints only 20 patients are observed, of

whom 8 respond. (b) For the second study, what is the most likely value

for the response rate and an approximate 95% interval?

2.5. Gardner et al. (2000) report the results of a trial to investigate whether a

progesterone emitting intra-uterine device (IUD) can reverse endometrial

changes in women being treated for breast cancer with tamoxifen. At the

end of the trial 5 out 56 women in the IUD group were discovered to have

a submucous fibroid, whilst the corresponding number in the control

group was 13 out of 53. Obtain a normal approximation to the likelihood

for the log(odds ratio), and hence give a 95% interval for the odds ratio.

2.6. In the breast cancer trial of Exercise 2.5, women recruited had received

tamoxifen for varying lengths of time, and the investigators felt that it was

important to adjust for this and other possible confounders (including

parity, menopausal status, body-mass index and age) in any analysis.

They therefore used logistic regression to obtain an adjusted odds ratio

of 0.23 with associated 95% confidence interval (CI) from 0.07 to 0.76.

Obtain a normal approximation to the likelihood for the adjusted log(odds

ratio).

2.7. Allen-Mersh et al. (1994) reported the results of a trial in which patients

undergoing chemotherapy for liver metastases were randomised to receive

it either systematically, as was standard, or via hepatic arterial infusion

(HAI). Of 51 randomised to HAI 44 died, and of 49 randomised to systemic

therapy 46 died.

(a) Obtain a rough normal approximation to the likelihood for the

log(hazard ratio).

(b) The reported hazard ratio was 0.60 (95% CI from 0.40 to 0.95). Why

might the approximation be so poor?

2.8. Shepherd et al. (2002) report the results of the PROSPER placebo-

controlled RCT to evaluate the use of pravastin in elderly patients on a

combined primary endpoint of death from coronary heart disease, non-

fatal myocardial infarction, or stroke (fatal or non-fatal). Of 2891 patients

randomised to pravastatin, 408 experienced the primary endpoint, whilst

in the placebo group of 2913 patients 473 experienced it. (a) Obtain a

rough estimate of the log(hazard ratio), assuming equal follow-up. The

authors reported the results of a Cox proportional hazards regression
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model adjusting for a large number of baseline characteristics, which

resulted in a 15% proportionate reduction in the hazard of the primary

endpoint with 95% CI from 3% to 26%. (b) Obtain a normal approximation

to the likelihood for the adjusted log(hazard ratio).

2.9. The PROSPER RCT in Exercise 2.8 also considered whether cancer inci-

dence was higher in those patients receiving statin therapy. In the statin

arm 245 cancers occurred out of 2891 patients, and in the placebo arm

199 cancers occurred in 2913 patients.

(a) Obtain a normal approximation to the likelihood for the log(odds

ratio).

(b) Calculate a classical two-sided P-value.

(c) Assess whether the data support a change in cancer incidence with

statin use.

2.10. Suppose that 10% of patients taking anti-retroviral therapy currently

experience a particular adverse event. Preliminary evidence suggests a

new therapy might reduce this rate to 5%.

(a) What is the hypothesised log(odds ratio)?

(b) Estimate the number of events that would be required in an RCT in

order to detect such a change, assuming a two-sided 5% level of

statistical significance is to be used with a required power of 80%.

(c) How many patients would be required in each arm of an RCT in order

to observe this many events?
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