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9.1 INTRODUCTION

In this chapter we go beyond making inferences based on single or multiple

studies in order to focus on the consequences of adopting particular health

interventions. This broader perspective reflects the increasing attention given to

the cost-effectiveness of new and existing treatments, leading to the develop-

ment of technology-appraisal agencies, such as the National Institute of Clinical

Excellence (NICE) in the UK, which are intended to give guidance to health

providers and decide on treatments to be covered under relevant reimbursement

schemes. We need, however, to take careful account of the context of the

evaluation, particularly with regard to specification of prior distributions and

loss functions, and a framework is outlined in Section 9.2.

As is clear from the name, cost-effectiveness analysis requires a focus on the

dual outcomes of costs and effectiveness, and a typical formulation requires

specification of a model for both, which will contain parameters whose plausible

values will depend on both judgement and evidence. The ‘standard’ approach to

cost-effectiveness analysis is outlined in Section 9.3, in which the value of

concepts such as incremental net benefit and the cost-effectiveness plane are em-

phasised. In many circumstances randomised trial evidence may be lacking or

limited to certain aspects of the model, leading naturally to the use of the

generalised evidence synthesis techniques outlined in Chapter 8.4. In Section

9.4 we identify two alternative approaches to combining evidence synthesis

with a cost-effectiveness model. The first approach is termed two-stage: in the

first stage the evidence from multiple sources is synthesised and used as a basis

for the distributions given to parameters; in the second stage, the effects of the
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resulting uncertainty are propagated through the cost-effectiveness model. The

second stage, in which distributions are placed on unknown parameters, has

become known in the cost-effectiveness literature as probabilistic sensitivity

analysis. The second, integrated, approach simultaneously carries out the syn-

thesis and cost-effectiveness analysis. The two-stage approach is illustrated in

Section 9.5, in which cost-effectiveness acceptability curves are introduced and

shown to be easily handled in the Bayesian framework, illustrated using closed-

form, Monte Carlo and MCMC approaches. The integrated approach is then

demonstrated in Section 9.6.

In view of the potential complexity of the resulting models and analysis it is

important that there is a clear description of the different components of uncer-

tainty, and in Section 9.7 a taxonomy is provided. This is applicable to complex

cost-effectiveness models, typically discrete-state, discrete-time Markov models,

which are commonly used to make predictions of the longer-term consequences

of a particular intervention. Section 9.8 describes their structure and the use of

simulation methods both for micro-simulation of individual cases and probabil-

istic sensitivity analysis.

Since this chapter emphasises decisions as well as inferences, a strict decision-

theoretic approach may be appropriate (see Sections 3.14 and 6.2). For example,

Luce and Claxton (1999) point out that hypothesis testing is of limited relevance

in economic studies, andwhen a cost-effectiveness analysis is being used as one of

the inputs into a formal decision concerning drug regulation or health policy,

they recommend a full decision-theoretic approach in which an explicit loss

function of the decision-maker is assessed. Such a loss function can also be used

as a basis for valuing the expected benefit from further evidence, and this expected

value of information approach to deciding research priorities is discussed in Section

9.10; a brief critique of this approach is contained in Section 9.11. Finally, we

briefly consider the role of regulatory authorities and the particular issues that

arise in relation to Bayesian analysis (Section 9.12).

The combined literature on these topics is becoming large and only selected

references will be provided: Briggs (2000) introduces many of these issues in a

non-technical style, and we make extensive use of Spiegelhalter and Best (2003)

although with some changes in notation. We also note a special issue on

Bayesian methods of the International Journal of Health Technology Assessment

in Health Care which features many relevant articles (Luce et al., 2001), and the

primer by O’Hagan and Luce (2003).

9.2 CONTEXTS

Throughout this book we have emphasised that it is vital to take into account

the context in which a clinical trial is being either designed or analysed and

interpreted, and more generally when evaluating any health-care intervention.

The appropriate prior opinions, and the possibility of explicit loss functions,
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depend crucially on whose behalf any analysis is being reported or a decision is

being made.

This becomes particularly important when considering the ‘end stage’ of an

evaluation – predicting the effects of actually getting the intervention into

practice. We can address this issue using the broad categories of stakeholders

introduced in Section 3.1:

. Sponsors, e.g. pharmaceutical industry, medical charities or granting agencies.

In deciding whether to fund studies, they will be concerned with the potential

‘payback’ from research (Section 9.10), which in industry takes the form of a

portfolio of drug development programmes. For such ‘internal’ analyses it will

be quite reasonable for prior distributions to be based on subjective judgements

and for loss functions to be based, in industry, on profitability. Very different

considerations apply for ‘external’ analyses done onbehalf of others – see below.

. Investigators, i.e. those responsible for the conduct of a study, whether funded

by industry or publicly. In previous chapters we have focused primarily on

those carrying out a single study, whose main concern is with the accuracy of

the inferences to be drawn from their work, although again they may carry

out a cost-effectiveness analysis on behalf of others.

. Reviewers, e.g. regulatory bodies (Section9.12). Theywill be concernedwith the

appropriateness of the inferences drawn from the studies, and so may adopt

their own prior opinions and reporting standards (Section 3.21). Regulatory

bodieswill generally only be concernedwith safety and efficacy issues, and cost-

effectiveness analyses will be dealt with by health-policy agencies.

. Policy-makers, e.g. agencies or clinicians setting health policy. Health-care

organisations may be concerned with the cost-effectiveness of an interven-

tion, although the sponsor or investigator may carry out this analysis on their

behalf. Any analysis is likely to be open to external scrutiny, and hence any

prior distributions used at this stage would need to be evidence-based or

subject to careful justification and sensitivity analysis. Values would be soci-

etally based such as quality measures based on surveys, and future costs and

benefits may be discounted according to accepted criteria.

. Consumers, e.g. individual patients or clinicians acting on their behalf.

These would ideally demand individualised prognostic predictions under

available alternative interventions, which could be combined with the pa-

tient’s own utility function. We shall not deal with such individualised deci-

sion-making here, although it has been recommended that clinical trial

results are presented in such a form as to help such judgements to be made

(Simes, 1986).

There is a large literature on the appropriate means of dealing with values,

whether concerning utility measures, quality adjustments, discount rates for

costs and benefits, and so on, but these important issues are beyond the scope of

this book. See Claxton et al. (2000) for a brief overview from a health-economic
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perspective, including a contrast between the perspective of health-policy agen-

cies and the wider society in general.

9.3 ‘STANDARD’ COST-EFFECTIVENESS ANALYSIS

WITHOUT UNCERTAINTY

Cost-effectiveness analyses aim to combine information regarding both clinical

effectiveness and economic costs. Given known mean economic costs mc1 and

mc2 under two different treatment options T1 and T2, and similar estimates of

mean clinical effectiveness, me1 and me2, define �c ¼ mc2 �mc1, �e ¼ me2 �me1

as the incremental mean costs and effectiveness. Then the incremental cost-

effectiveness ratio (ICER) is defined by

ICER ¼ �c
�e

¼ mc2 �mc1

me2 �me1

: (9:1)

The ICER can be considered as the cost per unit increase in effectiveness by

adopting treatment option T2 rather than T1.

Until recently almost all cost-effectiveness analyses reported findings in terms

of the ICER. Nevertheless, whilst the ICER appears appealing, difficulties arise in

both the calculation of confidence intervals and its interpretation when the

denominator is negative or zero. Figure 9.1 (O’Hagan et al., 2000) shows a cost-

effectiveness plane divided into four quadrants corresponding to different signs of

�c and �e, with the line �c ¼ K�e drawn, where K represents a maximum

acceptable cost per unit of effectiveness; we shall discuss the specification of K

at the end of this section.

A conceptual difficulty with the ICER is that its interpretation changes

according to the sign of �e. Quadrants II and IV correspond to the ‘domination’

of T1 and T2 respectively, in that one treatment is both less costly and more

effective; in these quadrants the ICER is negative and the interpretation is clear.

In quadrant I, T2 is more costly but more effective: in area IA, T2 is an

acceptable choice as the additional benefit is achieved at a smaller unit cost

than K (here ICER < K), whereas in IB, T2 would be unacceptable. In quadrant

III, T2 is less costly but less effective: in area IIIA, T2 would be considered

unacceptable as insufficient gains in cost were being obtained for the effective-

ness lost, the ICER being less than K, whereas in the area IIIB, where T2 is

acceptable, the ICER is greater than K.

Thus, if there is any possibility that �e < 0, it could be very misleading to base

any conclusions on possible values of the ICER, since T2 is favoured by small

values of the ICERwhen �e < 0, and large values of the ICERwhen �e > 0. In fact,

the area where T2 is favoured corresponds to all the cost-effectiveness plane lying

below the dashed line, which includes all possible values of the ICER. See O’Hagan

et al. (2000) and Heitjan et al. (1999) for further discussion and illustrations.
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Figure 9.1 Interpretation of different segments of the incremental cost-effectiveness
plane. The dashed line represents �c ¼ K�e, where K is the willingness to pay for a unit of
benefit. Since the incremental net benefit INB ¼ K�e � �c, the dashed line represents
INB ¼ 0, the breakeven point. The incremental cost-effectiveness ratio ICER ¼ �c=�e.

The incremental net benefit (INB) function has been proposed as an alternative

means of interpretation of cost-effectiveness analyses which avoids the problems

associated with the ICER, and is defined by

INB(K) ¼ K�e � �c: (9:2)

INB(K) as defined by (9.2) represents the incremental net monetary benefit in

terms of economic costs, and provides a connection to classical cost–benefit

analysis. INB can also be transformed to the incremental net health benefit, in

which case INB�(K) is given by

INB(K)=K ¼ INB�(K) ¼ �e � �c=K: (9:3)

It is straightforward to see that the regions in Figure 9.1 which correspond to

INB > 0, i.e. acceptability of T2, represent all the regions below the dashed line,

i.e. IA, IV and IIIB.
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Setting INB ¼ 0 yields the ‘breakeven’ cost per unit effectiveness K0 ¼ �c=�e
which is numerically equal to the ICER, and this value can be subject to

deterministic sensitivity analysis of alternative assumptions.

The value K must be handled with care. Taking the perspective of a health-

care agency, it represents their ‘willingness to pay’ for the gain of a unit of

effectiveness. Such a value would not usually be considered as fixed, nor as a

random quantity. Instead it is natural to carry out an analysis of sensitivity to

alternative values of K, with values of around $50000 perhaps being con-

sidered reasonable in the USA, and lower values such as £20000 in the UK. See

Claxton et al. (2000) for a recent discussion of this quantity.

9.4 ‘TWO-STAGE’ AND INTEGRATED APPROACHES TO

UNCERTAINTY IN COST-EFFECTIVENESS MODELLING

Let c represent state-of-the-world parameters in a cost-effectiveness model, for

example the true mean cost and benefit of an intervention, and let X be a set of

unknown generic outcomes of interest, both costs and benefits, taking on a

value x. Suppose, for a specified value of c, we can specify a predictive distribu-

tion p(xjc), the chance variability between outcomes on future patients. Our

primary interest is in E(Xjc) ¼
R
x p(xjc)dx ¼ mc, the expected outcome in a

homogeneous population. mc will often be available in closed form, say when

using discrete-time, discrete-state Markov models (Section 9.8).

Any uncertainty concerning c may be expressed as a distribution p(c), from
which we can obtain a joint distribution for mc, the expected costs and benefits

of the intervention. By considering different interventions we can thus obtain

a joint distribution over the incremental expected costs and effectiveness from a

new intervention, denoted �c and �e respectively, the quantities of interest in

a cost-effectiveness analysis (Section 9.3). In practice this will generally require

simulation of a value of c from p(c), which is propagated through the cost-

effectiveness model to obtain mc, which in turn provides a value for �c, �e.
Repeated simulations provide a joint distribution for �e, �c, and hence a distri-

bution for any functions of �c, �e such as the INB. The construction and analysis

of this joint distribution has been termed probabilistic sensitivity analysis in the

cost-effectiveness literature, to distinguish it from deterministic sensitivity analy-

sis in which parameters are varied systematically across ranges.

Two approaches are possible. The two-stage approach proceeds as follows. First,

p(c) is constructed as a closed-form distribution, based on subjective judgements,

data analysis or a combination of the two: p(c) can be thought of as a prior

distribution even though it may be partly based on evidence. Generally the

elements ofcwill be assumed independent and parametric distributions adopted.

Values ofc are then simulated from p(c) and the cost-effectivenessmodel provides

the relevant outcomes �e, �c. This is a natural application of Monte Carlo methods

(Section 3.19.1) in homogeneous populations, which has become a standard tool
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in risk analysis to deal with ‘second-order uncertainty’, as opposed to first-order

‘chance’ uncertainty (Section 9.7). It is implementable as a Microsoft Excel1

macro, either from commercial software such as @RISK (Palisade Europe,

2001) and Crystal Ball (Decisioneering, 2000), or self-written. Here, however,

we use the freely available WinBUGS software (Section 3.19.3) in order to facili-

tate both approaches. A schematic representation is shown in Figure 9.2(a).

Applications of the two-stage approach are demonstrated in Example 9.1 for the

simple normal case, and Example 9.3 for a more complex model.

The integrated or unified approach unifies the two stages described above, in

that p(c) is taken to be a posterior distribution arising from a data analysis,

which feeds directly into the cost-effectiveness model without an intermediate

summary step. This corresponds to a full Bayesian probability model and

(b) Unified approach(a) Two-stage approach

Unknown
parameters

Unknown
parameters

Subjective
judgement

Data and
subjective
judgement

Available
evidence

Cost-
effectiveness

model

Cost-
effectiveness

model

Predictions
of effect of
intervention

Predictions
of effect of
intervention

Figure 9.2 Schematic graph showing the two approaches to incorporating uncertainty
about parameters into a cost-effectiveness analysis. (a) The two-stage approach subjec-
tively synthesises data and judgement to produce a prior distribution on the parameters
which is then propagated through the cost-effectiveness model. (b) The unified or inte-
grated approach adopts a fully Bayesian analysis: after taking into account the available
evidence, initial prior opinions on the parameters are revised by Bayes theorem to
posterior distributions, the effects of which are propagated through the cost-effectiveness
model in order to make predictions. An integrated Bayesian approach ensures that the
full joint uncertainty concerning the parameters is taken into account.
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requires MCMC rather than simply Monte Carlo techniques, since in effect the

evidence from the data has to be propagated ‘against the arrow’ in order to give

the uncertainty on the parameters, and then ‘forwards’ through the cost-

effectiveness model; a schematic representation is shown in Figure 9.2(b).

Implementation will generally be in a full MCMC program such as WinBUGS:

see Examples 9.2 and 9.4. The potential advantages and disadvantages of this

integrated approach over the two-stage process are discussed in Section 9.9.2.

9.5 PROBABILISTIC ANALYSIS OF SENSITIVITY TO

UNCERTAINTY ABOUT PARAMETERS: TWO-STAGE

APPROACH

From a strict decision-theoretic approach, any uncertainty about the param-

eters �c, �e is irrelevant to decision-making, and their expectations need only be

placed in (9.2) for a specified K, and T2 chosen if INB > 0. Nevertheless, for

reasons outlined in Sections 3.14 and 6.2, and discussed further in Section

9.11, it is generally considered appropriate to specify a measure of certainty that

T2 is in fact an acceptable option. Confidence intervals for INB can be derived

within the classical framework, but a Bayesian approach is natural and

straightforward and allows the inclusion of additional prior information.

If we take the two-stage approach (Section 9.4) and assume that a joint prior

distribution (�e, �c) is available based on judgment, data, or a mixture of the two,

then this can be plotted on the cost-effectiveness plane shown in Figure 9.1 and

the probability of specific conclusions may be obtained by integrating over the

appropriate areas (Grieve, 1998). As mentioned in Section 9.4, this has become

known as probabilistic sensitivity analysis (Briggs and Gray, 1999). In addition,

Heitjan et al. (1999) suggest obtaining the distribution of the ICER conditional

on being in each quadrant of Figure 9.1.

A joint distribution on (�e, �c) implies a distribution on INB. If we denote

E[�e] ¼ �e, V[�e] ¼ t2e , E[�c] ¼ �c, V[�c] ¼ t2c , Corr[�e, �c] ¼ �, and similarly for

costs, then without further distributional assumptions we have, for

INB ¼ K�e � �c, that

E[INB] ¼ K�e � �c, (9:4)

V[INB] ¼ K2t2e � 2K�tetc þ t2c : (9:5)

Thus we can plot E[INB] and, for example, its �2 standard deviation interval for

different values of K. The breakeven point K0 occurs at �c=�e.

In terms of decision-making it is natural to consider the probability that

INB(K) in (9.2) is positive for any given value of K, i.e.

Q(K) ¼ P(INB(K) > 0): (9:6)
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Q(K) is referred to as the cost-effectiveness acceptability curve (CEAC); see van

Hout et al. (1994). Although Q(K) has been interpreted in frequentist terms, the

CEAC is most naturally handled within a Bayesian approach.

It may be reasonable to make a normal approximation to the distribution of

INB, and then the CEAC is given by

Q(K) ¼ P(INB > 0) ¼ F
K�e � �cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2t2e � 2K�tetc þ t2c
p

 !
, (9:7)

and this expression is exact if we assume bivariate normality (Section 2.6.10)

for �e, �c – it is also possible to solve (9.7) explicitly to find the value K at which,

for example, Q(K) ¼ 0:95 or some other desired level of ‘significance’. O’Hagan

et al. (2000) describe various closed-form approximations when normality is not

assumed, but in this situation it seems preferable to move to the MCMC ap-

proaches as described in the next section.

Not all inferences of interest can be obtained in closed form even when

assuming joint normality for �e, �c, and in this case it can be better computation-

ally to model the joint distribution in two stages: from Section 2.6.10 we see

that �e � N[�e, t
2
e ], and �cj�e is normal with mean and variance

E[�cj�e] ¼ �c þ
�tc
te

(�e � �e),

V[�cj�e] ¼ t2c (1� �2):
(9:8)

Thus we can simulate �e followed by �cj�e. This is illustrated in Example 9.1.

Example 9.1 Anakinra: Two-stage approach to cost-effectiveness
analysis

Reference: van Hout et al. (1994).

Intervention: Human recombinant interleukin-1 receptor antagonist (ana-
kinra) in the treatment of sepsis syndrome.

Aim of study: To assess the cost-effectiveness of anakinra compared to
placebo.

Studydesign: RCT with 25 patients per arm.

Outcomemeasure: Effectiveness measured by survival (proportion surviv-
ing), and costs of treatment measured in Dutch guilders. The guilder,
now replaced by the euro, was valued at around 2.2 to the US dollar.

Statistical model and evidence from study: Table 9.1 shows the data for
one of the outcomes of the trial. There is clearly substantial evidence of a
clinical benefit, but considerable uncertainty about increases in costs.
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Table 9.1 Available data from anakinra study.

Quantity Estimate SD Correlation

ye: Increase in effectiveness (survival) 0.28 0.123
0.34

yc: Increase in costs (guilders) 1380 5657

Prior distribution: We may approximate a joint prior as having the same
properties as the sample data shown in Table 9.1, so that
me ¼ 0:28, te ¼ 0:123, mc ¼ 1380, tc ¼ 5657, r ¼ 0:34. By further as-
suming joint normality, the contours for (yc, ye) may be plotted as in
Figure 9.3.

Computation/software: The distribution of INB can be obtained exactly
from (9.4) and (9.5), while the CEAC is given by (9.7). Other calcula-
tions, such as the distribution of the ICER and the probabilities of lying in
each of the quadrants, are carried out by Monte Carlo methods imple-
mented using WinBUGS, taking advantage of the conditional sampling
scheme described in (9.8).

Bayesian interpretation: Figure 9.3(a) plots cost per extra survivor when
K ¼ 5000 and 35 000 guilders. The probabilities of lying in quadrants I,
. . . , IV are 59.3%, 0.3%, 0.9%, 39.6% respectively, so that there is
around a 40% chance that anakinra dominates placebo in costs and
benefits. The ICER has median 5146 and 95% interval �79 260 to
þ57990. However, it is not clear whether the high values occur in
quadrant I or III, which would have a completely different interpretation.
Heitjan etal. (1999) report that if the ICER is in quadrant I, then it has an
interval from 791 to 163 400 additional guilders per life saved, while if the
ICER is in quadrant III, the interval is from 8400 to 4 580 000 guilders
saved per life sacrificed. While these conditional statements reveal the
different nature of the ICER in different quadrants, their interpretation is
not straightforward.

Figure 9.3(b) plots the distribution of the incremental net benefit INB
for K ¼ 5000, 35 000, 100 000: for K ¼ 5000 there appears to be almost
complete indifference between the options, while the INB increases
substantially as the willingness to pay per additional survivor increases.
The mean and 95% intervals for the INB for a wide range of K are shown
in Figure 9.3(c), while Figure 9.3(d) plots Q(K) ¼ P(INB > 0) against K:
the analysis suggests, on balance, that anakinra is cost-effective pro-
vided K is greater than around 5000 guilders, and we can be 95% sure
that anakinra is cost-effective provided K is greater than around 45 000
guilders. Whether this would provide an appropriate basis for recom-
mendation of the treatment depends on the decision-maker.
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Figure 9.3 Results for anakinra study. (a) Joint distribution of (ye, yc), superimposed
on lines representing maximum acceptable cost per additional survivor K ¼ 5000,
35 000. (b) Distribution of incremental net benefit for K ¼ 5000, 35 000, 100 000.
(c) E[INB] and 95% intervals for a range of values of K. (d) Cost-effectiveness
acceptability curve.

Sensitivityanalyses: The primary sensitivity analysis concerns the specifi-
cation of K.

9.6 COST-EFFECTIVENESS ANALYSES OF A SINGLE

STUDY: INTEGRATED APPROACH

In the previous section we assumed p(�e, �c) was a prior distribution based on a

subjective synthesis of evidence and judgement. We now suppose we have data

sources available from which to derive a posterior distribution p(�e, �cj data), and
adopt the integrated approach outlined in Section 9.4. We emphasise that �e
and �c must be population mean effectiveness and cost increments, in order to

make measures additive across individuals. Hence, although cost data will

generally have a highly skewed distribution, we must be careful to make

inferences about their mean rather than some other measure of location.
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Data sources available may include clinical trials, meta-analyses, observa-

tional studies and so on, and in later sections we shall consider how to exploit

various sources of evidence. Here we shall only consider data from a single

clinical trial, in which we assume we have observed pairs (eij, cij) representing
the observed effect and cost when treatment i is given to patient j. The process of

modelling the joint sampling distribution of (eij, cij) within each treatment group

requires care and statistical insights which are beyond the scope of this book –

we refer to O’Hagan and Stevens (2002a) for a variety of approaches in this

context. An obvious starting point is to assume bivariate normality (O’Hagan et

al., 2001), although the skewness of the cost data will generally make this

unreasonable and log-costs might better be assumed normal. Cost data are

frequently bimodal and a mixture of distributions may be appropriate

(O’Hagan and Stevens, 2001; Cooper et al., 2003c). It is also natural to consider

a two-stage approach in which we model effectiveness and then costs condi-

tional on effectiveness: this is the approach taken in Example 9.2. In any of

these situation the complexity of the necessary inferences makes MCMC the

computational procedure of choice; Fryback et al. (2001a) provide a further

example of a posterior distribution being used as a direct input to probabilistic

sensitivity analysis using WinBUGS.

Example 9.2 TACTIC: integratedcost-effectivenessanalysis

References: O’Hagan et al. (2001), O’Hagan and Stevens (2001, 2002a).

Intervention: Turbuhaler (treatment 2), a novel inhaler for asthmatics,
compared to conventional CFC pressurised metered dose inhaler
(pMDI, treatment 1).

Aim of study: To investigate whether asthmatic patients who were con-
sidered to be adequately treated using a conventional pMDI could be
transferred to Turbuhaler without decrease in the effect of treatment,
whilst reducing average costs.

Studydesign: RCT with prospective collection of costs: we use the data of
O’Hagan et al. (2001) which comprise only the UK portion of the study.

Outcome measure: Number of days with exacerbation and total costs in
pounds sterling.

Plannedsample size: The original trial was designed to be able to detect a
10% improvement in the proportion of patients experiencing no exacer-
bations during the course of the trial, from 50% on pMDI to 60% on
Turbuhaler.

Evidencefromstudyandstatisticalmodel: The summary data are presented
in Table 9.2. Turbuhaler patients suffered fewer exacerbations: the high
proportion with no exacerbations suggests a normal distribution for
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Table 9.2 Results from UK portion of TACTIC trial of Turbuhaler compared
to pMDI: log-costs are given separately for patients with and without
exacerbations.

Treatment n No. Log-costs (mean and SD)

exacerbations With exac. No exac.

T1 pMDI 58 26 (45%) 6.02 (1.11) 5.87 (1.47)
T2 Turbuhaler 62 36 (58%) 6.37 (0.98) 6.13 (0.85)

clinical outcome is unreasonable and instead we follow O’Hagan and
Stevens (2001) in adopting a binary outcome to measure benefit:
eij ¼ 0 if exacerbation occurred, 1 otherwise, with proportion fi in
treatment group i.

Figure 9.4 shows the distribution of log-costs in the two treatment
groups and according to whether exacerbations were experienced: it is
important to note that there were two extremely high costs of 19 871 and
26201 in the pMDI group who suffered no exacerbations, which are
extremely influential in a normal model for costs (O’Hagan et al., 2001)
and lead to a higher standard deviation for log-costs. Nevertheless, the
empirical distributions in Figure 9.4 suggest adopting a dependent model
in which log-costs are assumed normally distributed with mean and
standard deviation dependent on treatment and exacerbation. We thus
have a model

eij � Bern[fi],

log (cij)jeij ¼ 0 � N[li0, s2i0],

log (cij)jeij ¼ 1 � N[li1, s2i1]:

The mean costs mci in each treatment group are therefore a weighted
average of the means in each exacerbation group and hence, from the
known properties of the log-normal distribution (Section 2.6.8), are

mci ¼ (1� fi)e
li0þs2i0=2 þ fie

li1þs2i1=2,

from which we can derive the mean cost and effectiveness differences

yc ¼ mc2 �mc1,

ye ¼ f2 � f1,

which are the inputs to the cost-effectiveness analysis.

Prospective analysis?: No.
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Figure 9.4 Costs for TACTIC data, broken down by treatment (pMDI or Turbu-
haler) and whether exacerbations occurred or not.

Priordistribution: O’Hagan and Stevens (2001) use an informative prior for
the clinical effectiveness (f1, f2), with a mean of 0.1 on f2 � f1 which
matches the difference used in the power calculations. This initial bias
may be considered unreasonable by any regulatory body unless based
on substantial evidence, and in any case the evidence from the trial is
reasonably strong, and so we adopt independent uniform priors on f1

and f2 (an alternative might be uniform on logit(f2) and on ye ¼ f2 � f1,
but this has negligible impact).

For the log-cost distributions, we assume independent uniform priors
for the li0, li1. Partly in view of the potential influence of individual
observations, and because we might expect the variability in costs to
be similar, O’Hagan and Stevens (2001) suggest assuming
s10, s11, s20,s21 exchangeable in order to ‘smooth’ the four observed
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standard deviations towards a common value. We shall assume the
log (s)s are normally distributed, such that

log sij � N[ms, t
2
s]; i ¼ 1, 2, j ¼ 0, 1,

where ms, ts are given uniform priors.

Loss functionordemands: No.

Computation/software: MCMC using WinBUGS.

Bayesianinterpretation: Figure 9.5(a) plots the joint posterior distribution of
ye and yc, showing they are reasonably independent: the posterior
probability is 0.53 that Turbuhaler is cheaper, and 0.93 that it is more
effective; the probability that it dominates pMDI is 0.51. Figure 9.5(b)
shows the posterior distribution of the incremental net benefit assuming
K ¼ £500 per patient prevented from having exacerbations – a value at
which there is approximate indifference as to the preferred treatment.
The expected INB and 95% intervals are displayed in Figure 9.5(c),
showing a steady preference for Turbuhaler as the willingness to pay
for preventing exacerbations increases. The CEAC in Figure 9.5(d)
suggests we can be 90% sure of the cost-effectiveness of Turbuhaler
provided that K exceeds £5000. Estimates and intervals for relevant
quantities are given in Table 9.3; comparison of the estimates of the ss
with those shown in Table 9.3 reveals the shrinkage arising from the
exchangeability assumption.

(a) Joint distribution

theta.e
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theta.c

−1.0E+4
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5.00E+3
(b) INB for K = 500

K : maximum cost per unit effectiveness
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Figure 9.5 Plots of (a) joint distribution of incremental mean benefits ye and mean
costs yc, (b) distribution of incremental net benefit assuming K ¼ £500, (c) the
expected INB and 95% interval, and (d) the CEAC for a range of K. These plots are
direct output from WinBUGS.
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Table 9.3 Prior-to-posterior cost-effectiveness analysis of Turbuhaler compared to
pMDI: results are given assuming that the standard deviations of the log-costs are
either exchangeable or independent.

Parameter Posterior (exch.) Posterior (indep.)

Median 95% interval Median 95% interval

Effect of pMDI f1 0.45 0.33 to 0.58 0.45 0.33 to 0.58
Effect of Turbuhaler f2 0.58 0.45 to 0.70 0.58 0.45 to 0.70
Excess effect of Turbuhaler ye ¼ f2 � f1 0.13 �0.04 to 0.30 0.13 �0.04 to 0.30
Mean cost of pMDI mc1 862 581 to 1620 983 625 to 2222
Mean cost of Turbuhaler mc2 835 626 to 1235 817 620 to 1225
Excess mean cost of Turbuhaler yc ¼ mc2 �mc1 �21 �801 to 455 �161 �1409 to 371
SD of log-costs, pMDI, exac. s10 1.12 0.89 to 1.41 1.14 0.89 to 1.51
SD of log-costs, pMDI, no exac. s11 1.37 1.08 to 1.84 1.52 1.17 to 2.08
SD of log-costs, Turbuhaler, exac. s20 1.02 0.80 to 1.34 1.01 0.78 to 1.39
SD of log-costs, Turbuhaler, no exac. s21 0.92 0.72 to 1.20 0.87 0.70 to 1.14
INB(500) 89 �394 to 851 438 �238 to 1652
INB(5000) 694 �350 to 1783 2834 �829 to 6455
INB(10 000) 1349 �528 to 3194 5423 �1685 to 12380
Q(500) 0.64 0.90
Q(5000) 0.90 0.94
Q(10 000) 0.92 0.93

Sensitivityanalysis: The assumption of exchangeable ss is the only form of
informative prior that is currently being used. If we adopt independent
uniform priors on the ss we obtain the results shown in the final two
columns of Table 9.3. The independence assumption allows the two
outlying costs to exert a strong influence on s11, which in turn substan-
tially increases the estimated mean cost of pMDI (mc1). This increases
the INB of Turbuhaler, which substantially increases the probability Q(K)
of cost-effectiveness even for low values of K. The posterior probability is
0.72 that Turbuhaler is cheaper, and 0.93 that it is more effective: the
probability that it dominates pMDI is 0.68.

Given the extreme sensitivity to two outlying costs, it would be import-
ant to identify the precise reasons for these values, and ideally collect
further cost information on additional patients.

9.7 LEVELS OF UNCERTAINTY IN COST-EFFECTIVENESS

MODELS

Approaches to uncertainty in cost-effectiveness analysis have been extensively

reviewed by Briggs and Gray (1999), who emphasise the distinction between

conducting ‘deterministic’ sensitivity analysis in which inputs to a model

are systematically varied within a reasonable range, and ‘probabilistic’ sensitiv-

ity analysis in which the relative plausibility of unknown parameters is taken

into account.
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We can relate these different approaches to analysis of sensitivity to different

sources of uncertainty; similar taxonomies have been described by Briggs

(2000) and the US Panel on Cost-Effectiveness (Manning et al., 1996).

1. Chance variability. This is the unavoidable within-individual predictive

uncertainty concerning specific outcomes, which will be empirically demon-

strated by variability in outcomes between homogeneous individuals. We are

usually not interested in this ‘first-order’ uncertainty (Briggs, 2000) since

our focus is on the expected outcomes in homogeneous populations, but we

shall illustrate its calculation in Section 9.8.

2. Heterogeneity. This source concerns between-individual variability in

expected outcomes, due to either (a) identifiable subgroups of individuals

with characteristics such as age, sex and other covariates, or (b) unmeasur-

able differences (latent variables). These are termed ‘patient characteristics’

by Briggs (2000). We shall generally want to use deterministic sensitivity

analysis to see how expected outcomes vary between identifiable subgroups,

possibly followed by probabilistic averaging over population subgroups

according to their incidence.

3. Parameter uncertainty. This concerns within-model uncertainty as to

the appropriate values for parameters. Parameters can be divided into two

types:

(a) States-of-the-world, which could, in theory, be measured precisely if

sufficient evidence were available (e.g. risks, disease incidences): these

have also been termed ‘parameters that could be sampled’ (Briggs,

2000). These can have distributions placed on them, corresponding

to the ‘second-order’ uncertainty used in risk analysis (Burmaster

and Wilson, 1996), and so be subject to probabilistic sensitivity

analysis.

(b) Assumptions, which are quantitative judgements placed in the model

which can only be made precise through consensus agreement, for

example discount rates for health benefits. These can be considered as

one source of ‘methodological uncertainty’ (Briggs, 2000), and sensitiv-

ity to assumptions can only be carried out deterministically by rerunning

analyses under different scenarios.

The appropriate category for a quantity is not always clear. For

example, whether values placed on quality-of-life scales are states-of-

the-world or assumptions is a controversial point, and costs might also

be placed in either category.

4. ‘Ignorance’. this between-model uncertainty describes our basic lack of

knowledge concerning the appropriate qualitative structure of the model,

for example, the dependence of hazard rates on background factors and

history. This is also a component of ‘methodological uncertainty’ (Briggs,

2000). Deterministic sensitivity analysis takes the form of running through

alternative models, although there is a Bayesian argument that model
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structure can itself be considered as an unknown state-of-the-world and be

subject to probabilistic sensitivity analysis (Draper, 1995).

In this chapter we shall primarily be concerned with probabilistic sensitivity

analysis, although we will also illustrate deterministic sensitivity analysis with

respect to parameter assumptions.

9.8 COMPLEX COST-EFFECTIVENESS MODELS

We have so far considered the situation in which the necessary estimates of

effectiveness and costs are derived directly from clinical trial data. However, a

clinical trial may neither address precisely the population of interest, nor last long

enough for the rate of important long-term outcomes to be accurately assessed. In

the former situation the trial results may need to be adjusted in order to generalise

the cost-effectiveness analysis to other populations of interest (Rittenhouse,

1997), whichmay involve the type of adjustments used in cross-design synthesis

(Section 8.4) and the explicit modelling of biases in observational studies (Section

7.3). In the latter case we will need a model for long-term outcomes, such as the

Markov models that have been used extensively in cost-effectiveness analysis.

9.8.1 Discrete-time, discrete-state Markov models

These models are generally applied to the development of a disease process over

time, and assume that in each ‘cycle’ an individual is in one of a finite set of

states, and that there is a certain chance of transferring to a different state at the

next cycle. The ‘Markov’ label refers to the assumption that the chance of

entering a new state at the start of each cycle does not depend on the path

the individual took to their current state (although the chance may depend on

the cycle and other risk factors). There are obviously many extensions to this

reasonably flexible framework (Briggs and Sculpher, 1997, 1998).

We shall first formally describe the generic structure of the model for a single

homogeneous set of patients with common parameters. Assume a discrete-time

model comprising N cycles labelled t ¼ 1, . . . , N, and that within each cycle t a

patient remains in one of R states, and that all transitions occur at the start of

each cycle. The probability distribution at the start of the first cycle t ¼ 1 is

represented by the row vector p1, and we assume a transition matrix Lt whose

(i, j)th element Lt, ij is the probability of moving from state i to state j between

cycle t� 1 and t; thus the probability, for example, of being in state j during the

second cycle is �i�1iL2, ij. Hence, the marginal probability distribution pt

during cycle t > 1 obeys the recursive relationship

pt ¼ pt�1Lt: (9:9)

322 Cost-effectiveness, policy-making and regulation

Chapter 9 Cost-Effectiveness, Policy-Making and Regulation 17.11.2003 5:00pm page 322



Suppose the cost, at current prices, of spending a cycle in state r is

Cr, r ¼ 1, . . . , R and there is a fixed entry cost C0. It is standard practice in

economic evaluations to discount costs that occur in future years, at rate �c
(say) per cycle. Then the total cost acquired by each patient in the population is

expected to be

mc ¼ C0 þ�
N

t¼1

�tC
0

(1þ �c)
t�1

: (9:10)

Similarly, if the benefits associated with spending one cycle in each state are

given by a row vector b, discounted at rate �b per cycle, the total expected

benefit for each patient is

me ¼ �
N

t¼1

�tb
0

(1þ �b)
t�1

: (9:11)

We note that different types of benefit may be reported, for example both life-

years (b ¼ 1) and quality-adjusted life-years (QALYs), in which case b comprises

a row vector of quality adjustments. A range of discount rates may also be

explored: for example, guidance from NICE in the UK currently recommends

that costs should be discounted at �c ¼ 6% per annum, while benefits are

discounted at �b ¼ 1:5% (NICE, 2001). However, they add that sensitivity

analyses should include assumptions of �b ¼ 0% and 6%.

Suppose there are S discrete subgroups labelled by s. The model described

above can clearly be extended to allow, say, for different transition matrices

within subgroups by extending the notation to Lst: this possibility is explored in

detail in Spiegelhalter and Best (2003).

9.8.2 Micro-simulation in cost-effectiveness models

If we are using a more complex model in which it is not possible to write a

formula for the expected outcomes, then it may be necessary to perform a much

more complex simulation involving the trajectories of individual patients – this

is known as micro-simulation. The sample mean of the simulations can be used

as an estimate of the expected outcome in the population, and this approach

does have the side-effect of giving the whole distribution of outcomes and, in

particular, the variance among the population. This ‘first-order simulation’

approach is illustrated by Briggs (2000) and has been extensively exploited in

the context of evaluating screening interventions (Cronin et al., 1998).

For example, if we wished to explore this approach for the model described

in Section 9.8.1, then we could simulate a starting state y1 from the

distribution �1. We then simulate this individual’s next state y2 from
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the distribution comprising the yth1 row of L2, and so on. The discounted costs

and benefits for the individual are then

C ¼ C0 þ�
N

t¼1

Cyt

(1þ �c)
t�1

, (9:12)

B ¼�
N

t¼1

byt

(1þ �b)
t�1

: (9:13)

Averaging over many simulated patients (iterations) gives Monte Carlo esti-

mates of the required expectations and also the variability of each outcome due

to chance; Example 9.3 illustrates this process.

Note that if we simulate a patient under two treatments, then the incremental

net benefit for that patient is estimated as

INB ¼ K(B2 � B1)� (C2 � C1):

We could therefore estimate the proportion of the population for which the

INB > 0 – this has been termed the ‘probability of net benefit’ (Willan, 2001).

O’Hagan and Stevens (2002b) emphasise that this estimated population pro-

portion must be carefully distinguished from the probability plotted in a CEAC,

which reflects our uncertainty about the expectation over the whole population,

and does not in any way take into account heterogeneity in benefit.

9.8.3 Micro-simulation and probabilistic sensitivity analysis

The previous section has described micro-simulation of individual patients, but

this is all carried out for fixed parameters value c. Performing a probabilistic

sensitivity analysis to allow for uncertainty in parameters is considerably more

difficult in this context, and care must be taken. It would be tempting, but

potentially misleading, to carry out a double simulation, in which a parameter

value cj is sampled from p(c), followed by simulation of an outcome Xj condi-

tional on cj. The problem is that the variability in the subsequent Xjs combines

that due to parameter uncertainty and that due to chance variability; unfortu-

nately the two cannot be easily disentangled.

We first note that the total variance of X can be written, using the identity

(2.14) for conditional variances, as

V[X] ¼ Ec[V(Xjc)]þ Vc[E(Xjc) ], (9:14)

i.e. the expectation with respect to c of the conditional variance of X, plus the

variance of the conditional expectations. For a probabilistic sensitivity analysis

we are only really interested in the second term, since the first term is concerned

with chance variability in the population of patients.
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These two components may be separated using a time-consuming nested

simulation procedure (Halpern et al., 2000). We briefly discuss the necessary

computations, when assuming a distribution p(c) derived from either the two-

stage or integrated approach. A value cj for c is simulated from p(c), followed

by simulation of N (where N is large) values of the outcome X
j
1, . . . ,X

j
N condi-

tional on cj. The sample mean X
j

N and variance V
j
N are stored. Monitoring XN

and VN will allow estimation of the components of the overall variability shown

in (9.14), since Vc[XN ] will estimate variability due to parameter uncertainty,

while Ec[VN ] gives that due to chance variability. This technique will be labori-

ous, particularly when heterogeneity is present, although Ec[VN ] may perhaps

be reasonably estimated using only a limited set of c. See Cronin et al. (1998) for

an application.

Example 9.3 HIPS: Cost-effectiveness analysis using discrete-time
Markovmodels

References: Spiegelhalter and Best (2003) and Fitzpatrick et al. (1998).

Intervention: Prosthesis for total hip replacement (THR).

Aim of study: To model the costs and outcomes of THR in a specific
subgroup, men aged 65–74, assuming a Charnley prosthesis as a
baseline analysis.

Studydesign: Cost-effectiveness model.

Outcome measure: Effectiveness measured by life expectancy and
QALYs, and costs of treatment measured in pounds sterling.

Statisticalmodel:We assume a discrete-time, discrete-state Markov model
with cycles of 1 year. Figure 9.6 illustrates the various states and pos-
sible transitions between states. Patients initially enter state 1 (primary
THR) at time t ¼ 0. The first cycle (t ¼ 1) is assumed to start immediately
following the primary operation; patients have either died at operation or
post-operatively, in which case they enter state 5 (death), otherwise they
remain in state 1. In each subsequent cycle, surviving patients remain in
state 1 until they either die from other causes (progress to state 5) or
their hip replacement fails and they require a revision THR operation.
Since the need for revision and the operation are assumed simultan-
eous, patients undergoing a revision operation enter one of two states
depending on whether they die at or post-operation (state 2) or survive
(state 3). Surviving patients progress to state 4 (successful revision
THR) in the following cycle, unless they die from other causes (progress
to state 5). Patients in state 4 remain there until they either die from other
causes (state 5) or require another revision THR operation, in which
case they progress back to states 2 or 3 as before. We also assume a
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Operative death
after revision
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Figure 9.6 Markov model for outcomes following primary total hip replacement.

transition from state 2 to state 5 in the cycle following operative death
after a revision THR. This is slightly artificial but is necessary to avoid
multiple counting of revision costs if patients were to remain in state 2.

We assume lop is the operative mortality rate, gt is the chance of
revision in year t, lt is the mortality rate t years after primary operation,
and r is the re-revision rate which is assumed constant. The vector of
state probabilities in cycle t ¼ 1 is �1 ¼ (1� lop, 0, 0, 0, lop). We shall
only consider one stratum, men between 65 and 74, and take 25 cycles
of the model assumed to run between ages 70 and 95. The transition
matrix Lt, jk is the probability of being in state j in year t � 1 and moving
to state k at the start of year t; the transition probability matrix for
t ¼ 2, . . . , 25 is given by

1� gt � lt lopgt (1� lop)gt 0 lt
0 0 0 0 1
0 0 0 1� lt lt
0 rlop r(1� lop) 1� r� lt lt
0 0 0 0 1

2
66664

3
77775:

Baselineassumptions for theparametersof themodel aregiven inTable
9.4; sources for these assumptions are provided in Fitzpatrick et al.
(1998). Notable is the assumption that the revision risk increases linearly
with time since operation, and constant re-revision risk. Health-related
quality of life (HRQL) is measured in QALYs based on the degree of
severity of pain patients would be likely to experience in different states
of the model. Based on results from a Canadian study (Laupacis et al.,
1993), Fitzpatricketal. (1998)assignvaluesv1 ¼ 1, v2 ¼ 0:69, v3 ¼ 0:38
and v4 ¼ 0:19 for the HRQL of patients experiencing no, mild, moderate
and severe pain, respectively. They then assume that after a successful
THR operation, 80% of patients experience no pain and 20% experience
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Table 9.4 Baseline parameters of total hip replacement model using a Charnley
prosthesis: benefit weights b are 1 for life expectancy, b ¼ qk for QALYs.

Parameter Value

Operative mortality rate lop 0.01
Revision rate gt ¼ h(t � 1) 0:0016(t � 1)
Re-revision rate r 0.04
Mortality rate lt 0.038 (65–74)

0.091 (75–84)
0.196 (84þ)

Primary cost C0 £4052
Revision cost C2, C3 £5290
Cost discount rate dc 6%
Benefit discount rate db 1.5%
Quality weights q1 0.938

q2 �0.622
q3 �0.337
q4 0.938
q5 0

mild pain. For patients whose hip replacements fail, they assume that
15% experience severe pain and 85% experience moderate pain in the
year preceding the year of the revision operation, with a 50–50 split
between those experiencing moderate pain and severe pain in the year
of operation. We therefore calculate quality weights for each state in our
Markov model as follows:

q1 ¼ 0:8v1 þ 0:2v2 ¼ 0:938,

q2 ¼ 0þ 1:06� (0:85v3 þ 0:15v4 � 0:8v1 � 0:2v2) ¼ �0:622,

q3 ¼ (v3 þ v4)=2þ 1:06� (0:85v3 þ 0:15v4 � 0:8v1 � 0:2v2) ¼ �0:337,

q4 ¼ 0:8v1 þ 0:2v2 ¼ 0:938,

q5 ¼ 0:

We note that the rather odd negative weights arise from the need to
essentially ‘subtract’ quality from preceding years.

Prior distribution: One relevant state-of-the-world parameter in our model
for prognosis following THR is the revision ‘hazard’ parameter h. It may
be reasonable to assume uncertainty of �50% about our assumed
revision hazard which we now denote h0. This gives an approximate
95% interval of (h0=1:5, h0 � 1:5) for h, which corresponds to a prior
standard deviation on the log scale of around 0.2 (Table 5.2). We
therefore specify the prior distribution for the log-hazard parameter as

log (h) � N[ log (h0), 0:22]: (9:15)
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Computation/software: MCMC methods implemented using WinBUGS.

Bayesianinterpretation:

1. The closed-form calculation of expectations using (9.10) and (9.11) is
shown in the ‘closed-form’ column of Table 9.5. Note that the expected
life-years are around 10, and are not substantially reduced by quality
adjustment.

2. The micro-simulation study showing variability among individuals is
shown in ‘population distribution’ columns. The huge chance variability
in the population is evident: however, as emphasised in Section 9.7, this
between-individual variability is not of primary interest. The sampled
means match the closed-form values up to Monte Carlo error – 100 000
iterations are used as the variability is so great, and even then the
agreement for expected life-years is not good.

3. The final columns show the probabilistic sensitivity analysis by sampling
from p( log (h) ) given in (9.15), and calculating the closed-form expect-
ations at each iteration. This shows that the uncertainty about the
revision hazard has a very limited effect on the expectations, particularly
for life expectancy.

Table 9.5 Predicted outcomes from hip replacement in men aged 65–74 years.
The baseline expectation is obtained in closed form assuming known parameters.
The population distribution is obtained by micro-simulation of individuals. The
probabilistic sensitivity analysis summarises the predictive distribution of the
expectation, allowing for a subjective prior distribution on the hazard rate.

Parameter Closed-form
expectation

Population
distribution

Prob. sens. analysis

Mean SD Median 95% interval

Life-years 9.939 9.954 5.426 9.939 9.936 to 9.941
QALYs 9.17 9.18 4.96 9.17 9.10 to 9.22
Costs 4458 4453 1220 4459 4334 to 4629

9.8.4 Comprehensive decision modelling

The primary advantage of a Bayesian approach is that it allows the synthesis of

all available sources of evidence – whether from RCTs, databases, or expert

judgement – into a single coherent and explicit model that can then be used to

evaluate the cost-effectiveness of alternative policies. The approach has been

termed ‘comprehensive decision modelling’, and can be thought of as extending

the evidence synthesis methods described in Chapter 8 to allow for costs in
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particular and for utilities in general, and possibly incorporating a predictive

model for the natural history of a disease. Alternatively, it can be thought of as

extending standard economic modelling techniques such as decision or Markov

models so that they are probabilistic.

Parmigiani (2002) discusses such models in detail, pointing out that models

should be ‘requisite’, in the sense of only being as complex as necessary. Ideally

such models should allow a variety of viewpoints to be considered and incorpor-

ate the ‘best possible’ evidence, while encouraging analysis of sensitivity to both

deterministic inputs and uncertain parameters. From a computational perspec-

tive, comprehensive decision models might be implemented in spreadsheets if a

two-stage Monte Carlo approach is being adopted, or using MCMC software if

integrated evidence synthesis and predictions are desired.

A number of case studies have been reported. Parmigiani and Kamlet (1993)

and Parmigiani (1999) apply the idea to screening for breast cancer, and many

sources of evidence are brought together in a single model that predicts the

consequences of alternative screening policies, while Cronin et al. (1998) use

micro-simulation at the level of the individual patient to predict the conse-

quences of different policy decisions on lowering expected mortality from pro-

state cancer. Samsa et al. (1999) consider ischaemic stroke and construct a

model for natural history using data from major epidemiological studies, and

a model for the effect of interventions based on databases, meta-analysis of

trials, and Medicare claim records. They also use micro-simulation of the

long-term consequences of different stroke-prevention policies in order to com-

pare their cost-effectiveness. Matchar et al. (1997), Parmigiani et al. (1996,

1997), and Parmigiani (2002) consider further use of their Stroke Prevention

Policy Model. Fully integrated applications using WinBUGS have also been

reported by Cooper et al. (2002, 2003a, 2003b).

9.9 SIMULTANEOUS EVIDENCE SYNTHESIS AND

COMPLEX COST-EFFECTIVENESS MODELLING

The previous section has illustrated the two-stage approach to incorporating

uncertainty into a complex cost-effectiveness model, and we now consider the

full integration with Bayesian prior-to-posterior analysis.

9.9.1 Generalised meta-analysis of evidence

Example 9.2 provided a simple case for the integrated framework using the

evidence from a single study and without a complex cost-effectiveness model,

but the common situation in which evidence is available from a variety of

sources demands a more challenging statistical analysis of the kind discussed
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in detail in Chapter 8. If the evidence comprises a set of similar trials then a

standard Bayesian random-effects meta-analysis may be sufficient. In more

complex situations there may be multiple studies with relevance to the quan-

tities in question but which may suffer from a range of potential inadequacies,

such as being based on different populations, having non-randomised control

groups, outcomes measured on different scales, and so on. As described in

Section 8.4, it is natural to extend Bayesian random-effects modelling to allow

variance components corresponding to different study designs (i.e. assuming

study types are exchangeable), resulting in hierarchical models with a study

type ‘level’. There are clearly a number of issues in carrying out such potentially

controversial modelling, such as when to judge studies or study types as

‘exchangeable’, how to put appropriate prior distributions on variance compon-

ents, and how to carry out sensitivity analyses.

We shall consider as an illustration a somewhat simple formulation of such a

model. Suppose we have a set of studies that are each intending to estimate a

single parameter � but, due to differences in populations studied and so on, any

particular study (if carried out meticulously) would in fact be estimating a

biased parameter �h. Here �h � � is the ‘external bias’, and a standard

random-effects formulation might then assume �h � N[�, t2] (note that the

mean would not necessarily be � if we suspected systematic bias in one direc-

tion). However, suppose that due to quality limitations there is additional

‘internal bias’ in the study, so that the true parameter being estimated is

�h þ �h. Then we might assume �h � N[0, �2
�h] if we did not suspect that the

internal bias would favour one or other treatment. If we assume all the studies

have the same potential for external bias, then we are left with a random-effects

model in which, for study h, the data are estimating a parameter

�h � N[�, t2 þ �2
�h]

� N[�, t2h=qh],

where qh ¼ t2=(t2 þ �2
�h) can be considered the ‘quality weight’ for each study,

being the proportion of between-study variability unrelated to internal biasing

factors. Thus a high-quality randomised trial might have q ¼ 1, while a non-

randomised study may be downweighted by assigning q ¼ 0:1. Note that if we

assume all studies are of equal ‘quality’, then we have the standard random-

effects meta-analysis.

Estimates or prior distributions of the between-study variance t2 and the

quality weights qh might be obtained from a possible combination of empirical

random-effects analyses of RCTs of this intervention, historical ‘similar’ case

studies, and judgement. Of course, sensitivity analysis of a range of assumptions

about the quality weights can be carried out.

This technique is illustrated in Example 9.4.
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Example 9.4 HIPS (continued): Integrated generalised evidence synthe-
sis andcost-effectivenessanalysis

Reference: Spiegelhalter and Best (2003).

Available evidence: In order to illustrate the trade-off between increased
costs and benefits, we shall compare the cost-effectiveness of the
Charnley prosthesis with a hypothetical alternative cemented prostheses
costing an extra £350 but with some evidence for lower revision rates.
We assume that all other costs (operating staff/theatre costs, length of
hospital stay, X-rays etc.) are the same for both prosthesis types, and that
the same method of QALY assessment is applicable for both types of
prosthesis.

For illustration, we assume that the revision hazard for our hypothet-
ical alternative is similar to that for the Stanmore prosthesis (a popular
alternative to the Charnley in practice). Evidence on the relative revision
hazards for the two prostheses is limited. The report by NICE on cost-
effectiveness of different prostheses for THR (NICE Appraisal Group,
2000) cites three sources providing direct comparisons between Charn-
ley and Stanmore revision rates:

1. The Swedish Hip Registry (Malchau and Herberts, 1998) provides non-
randomised data submitted from all hospitals in Sweden from 1979, with
record linkage to further procedures and death. Nine-year follow-up
results are used for around 30 000 Charnley and 1000 Stanmore
prostheses.

2. A British RCT (Marston etal., 1996) randomised around 400 patients to
each of Charnley or Stanmore and reported a mean follow-up of 6.5
years.

3. A case series (Britton et al., 1996) of around 1200 patients in a single
hospital with a mean follow-up of 8 years.

The available evidence from these three sources on revision hazards for
Charnley and Stanmore prostheses is summarised in Table 9.6.

Statisticalmodel: We assume the following model for pooling evidence
on the revision hazard ratio for Stanmore versus Charnley prostheses.
Let nik and rik denote the total number of patients receiving prosthesis i
(1 ¼ Charnley, 2 ¼ Stanmore) in study k, and the number requiring a
revision operation, respectively. We assume rik is binomially distributed
with proportion pik, although a little care is required in relating these
cumulative failure rates to a hazard ratio. From Section 2.4.2 we know
that, assuming proportional hazards, the hazard ratio HRk for Stanmore
versus Charnley prostheses obeys
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Table 9.6 Summary of evidence on revision hazards for Charnley and Stanmore
prostheses: hazard ratios less than 1 are in favour of Stanmore.

Charnley Stanmore Estimated hazard ratio

Source Number of
patients

Revision
rate

Number of
patients

Revision
rate

HR (95% int.)

Fixed-effectsmodel
Registry 28 525 5.9% 865 3.2% 0.55 (0.37 to 0.77)
RCT 200 3.5% 213 4.0% 1.34 (0.45 to 3.46)
Case Series 208 16.0% 982 7.0% 0.44 (0.28 to 0.66)

Common-effectmodel
0.52 (0.39 to 0.67)

Quality weights [Registry, RCT, Case Series] Random-effectsmodel
[0.5, 1.0, 0.2] 0.61 (0.36 to 0.98)
[1.0, 1.0, 1.0] 0.54 (0.37 to 0.78)
[0.1, 1.0, 0.05] 0.82 (0.36 to 1.67)

HRk ¼
log (1� p2k)
log (1� p1k)

and hence

log (HRk) ¼ log (�log (1� p2k) )� log (�log (1� p1k) ):

Denoting the ‘complementary log–log’ parameter by
log (� log (1� p1k) ) ¼ ck leads to the following likelihood:

rik � Bin[pik, nik], i ¼ 1, 2,

log (�log (1� p1k) ) ¼ ck,

log (�log (1� p2k) ) ¼ ck þ logHRk:

We consider three models: (a) fixed effects assuming independent
intervention effects HRk; (b) common effect in which HRk ¼ HR; and (c)
random effects. The random-effects analysis with quality weights de-
scribed in Section 8.4 leads to the model

log (HRk) � N log (HR),
t2

qk

� �
,

where HR is the overall estimate of the revision hazard ratio pooled
across studies.
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Priordistributions: For the fixed and common effects, independent uniform
prior distributions are placed over the study effects ck and log (HRk) or
log (HR). For the random-effects model, three studies do not provide
sufficient evidence to accurately estimate the between-study standard
deviation t, and so substantial prior judgement is necessary. We would
expect considerableheterogeneity in revision ratesbetweenstudies, even
if they are internally unbiased, and so assume t has a normal distribution
with mean 0.2 and standard deviation 0.05 (approximate 95% interval 0.1
to 0.3), corresponding to expecting �50% variability in true hazard ratios
betweenstudies,with 95%uncertainty limits of 20% to80%variability (e.g.
at the upper end of the interval, e1:96�0:3 ¼ 1:8 or � 80% variability in
hazard). Our knowledge of the potential biases of registries and case
series suggests downweighting the non-randomisedevidence.As abase-
line assumption for the quality weights we take qk equal to 0.5, 1.0 and 0.2
for the registry, RCT and case series studies, respectively. This corres-
ponds to assuming that ‘bias’ in the registry and case series studies leads
toa two-or fivefold increase in the revision rate variance, respectively, over
and above the between-study variability expected for RCTs.

Computation/software: MCMC methods implemented using WinBUGS.

Bayesianinterpretation: The results of the evidence synthesis are given in
Table 9.6. The ‘fixed-effects’ estimates of the hazard ratio for each source
are shown in the first three rows, revealing reasonable concordance
between the non-randomised studies but with the randomised trial show-
ing some evidence against the Stanmore. Forcing a common hazard ratio
leads to the registry overwhelming the other sources (row 4 of Table 9.6).
The results of a baseline random-effects analysis, with qualityweights 0.5,
1, 0.2, are shown in row 5 of Table 9.6, with the hazard ratio estimated in
favour of the Stanmore but with the 95% interval only just excluding 1.

Feeding these simulated parameter values into the cost-effectiveness
model developed in Example 9.3 provides the estimated incremental
changes in benefits and costs associated with a Stanmore rather than
a Charnley prosthesis shown in Table 9.7. The estimated expected
benefit is somewhat marginal, equivalent to 21 additional days (0.0579
� 365) of discounted quality-adjusted survival, but the CEAC suggests
reasonable confidence of cost-effectiveness provided one is willing to
pay more than around £10000 per QALY.

Sensitivityanalyses:As a sensitivity analysis, we consider two other choices
of quality weights. First, we can further downweight all non-randomised
evidence by taking qk equal to 0.1, 1.0 and 0.05, respectively, which leads
to an equivocal result with substantial uncertainty, as shown in Table 9.6.
At the opposite extreme, setting all quality weights to 1 permits the
domination of the registry data, leading to increased benefit.
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The sensitivity of the final conclusions to the choice of quality weights
is examined in Figure 9.7(a), which also illustrates the sensitivity to two
different discount rates for health: 0% and 6%. It is clear that the choice of
quality weights has a much stronger influence than the discount rates:

Table 9.7 Incremental changes in expected benefits and costs associated
with using Stanmore rather than Charnley prostheses in men aged 65–74,
assuming a synthesis of evidence using quality weights (0.5, 1.0, 0.2) for registry,
RCT and case series data, respectively. INB(K) is the incremental net benefit per
patient when the maximum acceptable cost per unit of effectiveness is K, and
Q(K) ¼ P(INB(K) > 0) is the CEAC. Costs are discounted at 6% per annum,
benefits at 1.5% per annum.

Parameter Median Prediction
95% interval

Incremental change in expected life-years 0.0026 0.0001 to 0.0049
Incremental change in expected QALYs 0.0579 0.0007 to 0.1078
Incremental change in expected costs 219 87 to 372
INB(5 000) 71 �362 to 452
INB(10 000) 360 �352 to 991
INB(15 000) 649 �344 to 1529
Q(5 000) 0.66
Q(10 000) 0.87
Q(15 000) 0.92
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Figure 9.7 CEACs for a Stanmore compared to a Charnley prosthesis. (a) corre-
sponds to the baseline analysis with quality weights (0,5, 1.0, 0.1) for registry, RCT
and case series data, respectively, showing limited sensitivity to the annual discount
rate for health benefits. (b) uses quality weights of (0.1, 1.0, 0.05); substantial down-
weighting the non-randomised evidence prevents a strong conclusion of cost-effec-
tiveness. (c) weights all sources equally, and the increased role of the registry data
leads to a high probability of cost-effectiveness.
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if the non-randomised evidence is substantially downweighted (Figure
9.7(b)) the CEAC shows poor evidence for cost-effectiveness regardless
of K, while equal weighting (Figure 9.7(c)) shows strong evidence for
moderate K, even when discounting costs at 6%.

9.9.2 Comparison of integrated Bayesian and two-stage
approach

To recap on Section 9.4, the integrated approach to evidence synthesis and cost-

effectiveness analysis simultaneously derives the joint posterior distribution of

all unknown parameters from a Bayesian probability model, and propagates the

effects of the resulting uncertainty through the predictive model underlying the

cost-effectiveness analysis. In contrast, the ‘two-stage’ approach would first

carry out the evidence synthesis, summarising the joint posterior distribution

parametrically, and then in a separate analysis use this as a prior distribution in

a probabilistic sensitivity analysis in the cost-effectiveness model.

The advantages of the integrated approach include the following. First, there

is no need to assume parametric distributional shapes for the posterior probabil-

ity distributions, which may be important for inferences for smaller samples.

Second, and perhaps more important, the appropriate probabilistic dependence

between unknown quantities is propagated (Chessa et al., 1999), rather than

assuming either independence or being forced into, for example, multivariate

normality. This can be particularly vital when propagating inferences which are

likely to be strongly correlated, say when considering both baseline levels and

treatment differences estimated from the same studies.

The disadvantages of the integrated approach are its additional complexity

and the need for full MCMC software. The ‘two-stage’ approach, in contrast,

might be implemented in a combination of standard statistical and spreadsheet

programs. However, experience with such spreadsheets suggests that they

might not be particularly transparent for complex problems, due to clumsy

handling of arrays and opaque formula equations.

9.10 COST-EFFECTIVENESS OF CARRYING OUT

RESEARCH: PAYBACK MODELS

9.10.1 Research planning in the public sector

Any organisation funding clinical trials must make decisions concerning the

relative importance of alternative proposals, and hence there have been

increased efforts to measure the potential ‘payback’ of expenditure on research.

Buxton and Hanney (1998) review the issues and propose a staged
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semi-quantitative structure, while Eddy (1989) suggested a fully quantitative

model based on assessing the future numbers to benefit and the expected

benefit, with a subjective probability distribution over the potential benefits to

be shown by the research. However, Eddy’s limited approach was not adopted

by its sponsors, the US Institute of Medicine, who preferred a more informal

method that employed weights.

It is clearly possible to extend this broad approach to increasingly sophisti-

cated models within a Bayesian framework, and Hornberger and Eghtesady

(1998) state that ‘by explicitly taking into consideration the costs and benefits of

a trial, Bayesian statistical methods permit estimation of the value to a health

care organisation of conducting a randomised trial instead of continuing to treat

patients in the absence of more information’. Clearly this is a particular example

of a decision-theoretic Bayesian approach, applied at the planning stage of a

trial (Section 6.5) rather than at interim analyses (Section 6.6.4). Examples

include Detsky (1985), Hornberger et al. (1995) and Hornberger and Eghtesady

(1998) and others who explicitly calculate the expected utility of a trial in order

to select sample sizes; such calculations can also, in theory, be used to rank

studies that are competing for resources, and hence to decide whether the trial is

worth doing in the first place.

The early analysis by Detsky (1985) assumed that a trial would need to

achieve statistical significance in order to have an impact on future treatments,

but Claxton (1999b) strongly argues that dependence on such inferential

methods, whether classical or Bayesian, will lead to sub-optimal use of health

resources. He recommends a full decision-theoretic approach to both fixed

(Claxton and Posnett, 1996) and sequential (Claxton, 1999b) trials, basing

his analysis on quantifying the expected benefit of further experimentation.

This value of information approach is outlined briefly in Section 9.10.3.

9.10.2 Research planning in the pharmaceutical industry

Given the ‘bottom line’ of profitability in the pharmaceutical industry, it is

natural to attempt to apply a decision-theoretic approach to individual trial

design, designing a research programme for a specified intervention, and for

selecting among competing research opportunities. Many of these ideas have

already been discussed in the context of individual clinical trials, but here we are

concerned with the ‘corporate’ context: a whole research programme in which

there are multiple competing projects at different stages of drug development.

Bergman and Gittins (1985) review quantitative approaches to planning a

pharmaceutical research programme. Many of the proposed methods are so-

phisticated uses of bandit theory (Section 6.10) in order to allocate resources in

a dynamically changing environment, but Senn (1996, 1997b) suggests a fairly

straightforward scheme based on the Pearson index, which is the expected net

present value divided by expected net present costs. He discusses the difficulties
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of eliciting suitable probabilities for the success of each stage of a drug develop-

ment programme, conditional on the success of the previous stage, but suggests

that formal Bayesian approaches involving subjective probability assessment

and belief revision should be investigated in this context.

An integral part of this process is a realistic assessment of the chances of

regulatory approval, and subsequent sales in the light of future competition and

so on: although there must inevitable be a degree of speculation in these

assessments, it still seems preferably to have explicit recognition of the relevant

uncertainties when making decisions as to whether to pursue a particular

development programme.

9.10.3 Value of information

Suppose we are deciding whether to adopt treatment 1 or treatment 2 as a

policy, and wondering whether to fund further research to more accurately

determine their relative advantages. The true costs and effectiveness are de-

noted by �. Based on current information, the incremental net benefit INB(�) is
positive for � in a region Q2, where treatment 2 would be preferred, and

negative for � in Q1, where treatment 1 would be preferred. We do not know

�, but suppose that we have a current posterior for which E[INB(�)jdata] > 0

and so, on balance, treatment 2 is preferred. If, in fact, � is in Q2 then we have

made the right decision and there is no gain in knowing the exact value of �,
whereas if � is truly in Q1 we have made the wrong decision and stand to lose

�INB(�). The value of perfect information, VPI(�), is defined as the amount we

would gain by knowing � exactly: VPI(�) is 0 when INB(�) > 0, and �INB(�)
when INB(�) < 0, which can be expressed as

VPI(�) ¼ max (�INB(�), 0):

Hence our expected value of perfect information, EVPI, is

EVPI2 ¼ E[max (�INB(�), 0)jdata], (9:16)

where the subscript 2 indicates that treatment 2 is the currently preferred

option. By symmetry, the EVPI when E[INB(�)jdata] < 0, i.e. when treatment

1 is the preferred option, is

EVPI1 ¼ E[max (INB(�), 0)jdata]:

This quantity is easy to calculate using MCMC by simulating values of �,
calculating INB(�) and the VPI, and recording its Monte Carlo average over

many iterations. However, we shall see in Example 9.5 that care must be taken

with the Monte Carlo error.
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We can obtain the EVPI in closed form if INB(�) has a normal distribution, and

this also sheds some light on the interpretation of this quantity. Suppose

INB(�) � N[�I , t
2
I ],

where the standardised statistic is denoted zI ¼ �I=tI ; we assume �I > 0 and

hence treatment 2 is preferred. For simplicity of notation we shall temporarily

drop the subscripts and denote INB by Y. Then EVPI ¼ E[max (�Y, 0)], and
therefore

EVPI ¼
Z 0

�1
�y

e�(y��)2=(2t2)ffiffiffiffiffiffi
2�

p
t

dy

¼
Z ��=t

�1
(� tt� �)

e�t2=2ffiffiffiffiffiffi
2�

p dt (substituting t ¼ (y� �)=t)

¼ �t
Z �z

�1
t
e�t2=2ffiffiffiffiffiffi
2�

p dt� �F(� z)

¼ t
e�z2=2ffiffiffiffiffiffi

2�
p � zF(� z)

" #
: (9:17)

The expression in square brackets is denoted L(z) and is known as the ‘unit

normal loss function’ (Claxton et al., 2000). Figure 9.8 shows L(z) plotted

against the ‘tail area’ F(� z): the latter is P(INB(�) < 0jdata), the posterior

probability that the wrong treatment is being preferred. The direct relation-

ship in Figure 9.8 reveals that L(z) is qualitatively equivalent to the tail area

(being around 30–50% of its value in the region of interest), and hence EVPI

in (9.17) is, approximately, proportional to the probability of making a wrong

preference, weighted by t, which reflects the potential importance of

drawing a wrong conclusion. We also note that when zI ¼ 0, which occurs

when K achieves its breakeven point, the EVPI reaches its maximum of

t=
ffiffiffiffiffiffi
2�

p
.

In terms of applying the EVPI to a population of current and future patients

over the time horizon of a health-care intervention (T), the EVPI requires an

adjustment to account for the incidence It of patients in each time period t and

the discount rate �c, so that

EVPIPOP ¼ EVPI��
T

t¼1

It

(1þ �c)
t�1

, (9:18)

assuming no discounting in the first period.
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Figure 9.8 Plot of ‘unit normal loss function’ against P: the EVPI is the unit normal
loss function multiplied by the standard deviation of the incremental net benefit.

Example 9.5 HIV (continued): Calculating the expected value of perfect
information

Reference: Ades and Cliffe (2002) – see Example 8.7.

Costs and utilities: Ades and Cliffe (2002) specify the cost per test as
T ¼ 3, and the net benefit K per maternal diagnosis is judged to be
around £50 000, with a range of £12 000 to £60 000. In this instance
there is explicit net monetary benefit from maternal diagnosis and so it
may be reasonable to take K as an unknown parameter, and Ades and
Cliffe (2002) perform a probabilistic sensitivity analysis by giving K a
somewhat complex prior distribution. In contrast, we prefer to continue to
treat K as a willingness to pay for each unit of benefit, and therefore
follow previous examples and conduct a deterministic sensitivity analy-
sis in which K is varied up to £60 000.

The prenatal population in London is N ¼ 105 000, and hence the
annual incremental net benefit is

INB ¼ N(1� a� b)(Ke(1� h)� T(1� eh)):
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We can also calculate the CEAC, given by Q(K) ¼ P(INB > 0jdata).
Finally, we consider the calculation of the EVPI, as defined by (9.16).

This is calculated in two ways: first, using MCMC methods; and second,
by assuming a normal approximation to the posterior distribution of
INB(K) and using (9.17). Taking a 10-year horizon and discounting at
6% per year gives a multiplier of 7.8 (not discounting the first year) in
(9.18).

Bayesian interpretation: Following the findings in Example 8.7, the
analysis is conducted without data source 4. Figure 9.9(a) shows the
normal approximations to the posterior distributions of INB for different
values of K. The expected INB and 95% limits are shown in Figure 9.9(b)
for K up to £60 000, indicating that the policy of universal testing is
preferred on balance provided that the benefit K from a maternal diag-
nosis is greater than around £10 000; K is certainly judged to exceed this
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Figure 9.9 (a) and (b) show incremental net benefits, (c) cost-effectiveness accept-
ability curve, and (d) expected value of perfect information for universal versus
targeted prenatal testing for HIV. Note that the EVPI is maximised at the threshold
value of K at which the optimal decision changes.
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value. The CEAC in Figure 9.9(c) points to a high probability of universal
testing being cost-effective for reasonable values of K. Figure 9.9(d) shows
the EVPI (�2 Monte Carlo errors) calculated using 100 000 MCMC iter-
ations and also using the normal approximation to the distribution of INB
and (9.17). The Monte Carlo error is considerable even after 100 000
iterations and care must clearly be taken when using MCMC to calculate
the EVPI. Nevertheless, (9.17) provides an adequate approximation. The
EVPI is substantial for low values of K, but for values around £50 000 the
EVPI is negligible. Hence, there appears to be little purpose in further
research to determine the parameters more accurately.

The EVPI is intended for use in deciding whether to pursue a research

programme, how to design it, and when to stop. First, the EVPI must be higher

than the cost of research in order to pass the first ‘hurdle’ for a proposed

programme to overcome, and this should continue to hold throughout

the programme. Roughly, when the chance of making a wrong decision,

weighted by its consequences, is sufficiently low then the programme can stop

and a firm recommendation can be made. Another element of a value of infor-

mation approach to research planning is that of partial expected value of perfect

information (PEVPI), which considers each parameter in the cost-effectiveness

analysis in turn, and thus informs the decision whether to conduct future

research to yield more precise estimates of particular parameters. Claxton et

al. (2001) provide a worked example.

In practice, no further research is going to lead to perfect information. Hence,

the most relevant quantity may be the expected value of sample information

(EVSI), which is essentially the EVPI allowing for the sampling error of a trial.

This must exceed the sample costs to overcome the hurdle for a specific proposed

trial, and the EVSI minus sample costs is known as the expected net benefit from

sampling (ENBS). This model allows for unbalanced allocation of patients

between arms, and the ability to revise design based on interim analyses

(Claxton and Thompson, 2001; Claxton et al., 2001), in order to optimise the

ENBS. Felli and Hazen (1998, 1999) extend this utility perspective to sensitivity

analysis, suggesting that an analysis should be considered sensitive to a par-

ticular uncertain input if the expected gain in utility from eliminating the

uncertainty about that input exceeds a certain specified threshold.

9.11 DECISION THEORY IN COST-EFFECTIVENESS

ANALYSIS, REGULATION AND POLICY

The debate about the formal role of decision theory in policy-making is continu-

ing, and here we briefly run through some arguments for and against. Claims

for its use include the following:
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. Decision theory and economic argument clearly state that maximised

expected utility is the sole criterion on which to choose between two options.

Therefore measures of ‘significance’, posterior tail areas of incremental net

benefit, and high probabilities on a CEAC are all irrelevant. (Claxton and

Posnett, 1996). Claxton et al. (2000) point out that ‘Once a price per effect-

iveness unit has been determined, costs can be incorporated, and the decision

can then be based on (posterior) mean incremental net benefit measured in

either monetary or effectiveness terms’.

. To maximise the health return from the limited resources available from a

health budget, health-care purchasers should use rational resource allocation

procedures. Otherwise the resulting decisions could be considered as ir-

rational, inefficient and unethical.

. Uncertainty is taken into account through evaluating the benefit of further

experimentation, as measured by a value of information analysis.

. This framework provides a formal basis for designing trials, assessing whether

to approve an intervention for use, deciding whether an intervention is cost-

effective, and commissioning further research.

. Specifying all necessary values may be difficult, but it is necessary for rational

decision-making. Claxton (1999b) suggests the first step should be to establish

a normative framework that best meets the needs of a system, and separately

to conduct studies to see how to get the research into practice.

Among the arguments against are the following:

. The standard criticisms of decision-theoretic approaches to trials apply

(Section 6.2): in particular, it is not realistic to specify a full model for the

possible impact of research results (which may not even be ‘significant’) on

clinical practice.

. The idea of a null hypothesis (the status quo), which lies behind the use of

‘statistical significance’ or posterior tail areas, is fundamentally different from

that of an alternative hypothesis (a novel intervention). The consequences

and costs of the former are generally established, whereas the impact of the

latter must contain a substantial amount of judgement. Often, therefore, a

choice between two treatments is not a choice between two equal contenders

to be decided solely on the balance of net benefit – some convincing evidence

is required before changing policy.

. A change in policy carries with it many hidden penalties: for example, it may

be difficult to reverse if later found to be erroneous, and may hinder the

development of other, better innovations. It would be difficult to explicitly

model these phenomena with any plausibility.

. Value of information analysis is dependent on having the ‘correct’ model,

which is never known and generally cannot be empirically checked. Sensitiv-

ity analysis can only compensate to some extent for this basic ignorance.
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9.12 REGULATION AND HEALTH POLICY

9.12.1 The regulatory context

Regulatory bodies have a duty to protect the public from unsafe or ineffective

therapies. Opinions on the relevance of Bayesian methods to drug or device

regulation cover a broad spectrum: Whitehead (1997b, p. 204) and Koch

(1991) see any use of priors as being controversial and inappropriate, while

on the other hand Matthews (1998) claims that the use of sceptical priors

‘should not be optional but mandatory’. Keiding (1994) criticises the ‘ritual

dances’ currently prescribed for regulation, but wonders whether Bayesian

methods will allow anything less ridiculous. O’Neill (1994), as a senior US

Food and Drug Administration (FDA) statistician, acknowledges the appropriate

conservatism arising out of the use of sceptical priors, and considers that

Bayesian methods should be investigated in parallel with other techniques.

The full decision-theoretic approach (Section 9.11) takes an even more radical

perspective. Claxton (1999a) and Claxton et al. (2000) suggest that agencies use

decision theory for regulation, and evaluate the expected value of further investi-

gation in order to assess whether sufficient evidence is available to permit

approval. The crucial idea is that current demands for statistical significance

(e.g. two independent studies with P < 0:05) is an inadequate criterion as it takes

no account of the potential population at risk, the potential consequences of

inappropriate approval, and the costs of obtaining more evidence.

9.12.2 Regulation of pharmaceuticals

The website of the FDA allows one to search for references to Bayesian methods

among their published literature (Section A.2), although much of the discussion

concerns medical devices (see Section 9.12.3). Guidelines for population phar-

macokinetics are provided (US Food and Drug Administration, 1999a), which

can be thought of as an empirical Bayes procedure (Section 6.12). There is also

an interesting use of a Bayesian argument in the approval of the drug enox-

aparin (Lovenox). The transcript of the Cardiovascular and Renal Drugs Advis-

ory Committee meeting on 26 June 1997 (US Food and Drug Administration,

1986, pp. 212–218) shows the pharmaceutical company had been asked to

make a statement about the effectiveness of enoxaparin plus aspirin as com-

pared to placebo (aspirin alone), whereas their clinical trial had used an active

control of heparin plus aspirin. They therefore used meta-analysis data compar-

ing heparin plus aspirin with aspirin alone in order to produce a posterior

distribution on the treatment comparison of interest: an example of indirect-

comparison inference (Section 8.3). Analyses were repeated using the meta-

analysis data directly, but also expressing scepticism about its relevance and
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reducing its influence, with results being expressed as posterior probabilities of

treatment superiority over placebo. The committee welcomed this analysis and

voted to approve the drug.

It is important to note that the latest international statistical guidelines for

pharmaceutical submissions to regulatory agencies state that ‘the use of Baye-

sian and other approaches may be considered when the reasons for their use are

clear and when the resulting conclusions are sufficiently robust’ (International

Conference on Harmonisation E9 Expert Working Group, 1999). Unfortunately

they do not go on to define what they mean by clear reasons and robust

conclusions, and so it is still open as to what will constitute an appropriate

Bayesian analysis for a pharmaceutical regulatory body.

9.12.3 Regulation of medical devices

The greatest enthusiasm for Bayesian methods appears to be in the FDA Center

for Devices and Radiological Health (CDRH). They co-sponsored a workshop on

Bayesian methods in November 1998, and have proposed a document Statistical

Guidance on Bayesian Methods in Medical Device Clinical Trials (US Food and Drug

Administration, 1998a).

Campbell (1999) described the potential for Bayesian methods in assessing

medical devices, emphasising that devices differed from pharmaceuticals in

having better-understood physical mechanisms, which meant that effectiveness

was generally robust to small changes. Since devices tended to develop in

incremental steps, a large body of relevant evidence existed and companies did

not tend to follow established phases of drug development. The fact that an

application for approval might include a variety of studies, including historical

controls and registries, suggests that Bayesian methods for evidence synthesis

might be appropriate. However, the standard conditions apply that the source

and robustness of the prior information must be assessed, and that Bayesian

analysis does not compensate for poor science and poor experimental design.

Campbell drew attention to the Transcan Breast Scanner, whichwas approved

by the CDRH in April 1999 (US Food and Drug Administration, 1999b).

A primary ‘intended use’ study on 72 women was supplemented by two add-

itional studies of differing designs, using a hierarchical multinomial logistic

regression model with study introduced as a random effect. MCMC simulation

methods were used by means of the BUGS software. Searching the FDA website

reveals a growing number of device submissions that exploit Bayesian reasoning.

9.13 CONCLUSIONS

In this chapter we have attempted to explore a range of concerns that arise in

cost-effectiveness modelling, but acknowledge that there are a number of issues
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that we have passed over. In particular, we have not explored the sensitivity of

the conclusions to ‘ignorance’ (Section 9.7) about the structure of the appropri-

ate model: alternative models that could be used in this context include sur-

vival-type models with competing risks. It is vital to admit that even a

reasonably complex model, such as that investigated in our example, cannot

be assumed to be realistic and must be subject to careful criticism (Russell,

1999; Sculpher et al., 2000).

As attempts are made towards evidence-based health policy in both clinical

and public health contexts, models will inevitably become more complex and,

while the methods described in this chapter may appear complicated, we feel that

techniques such as these may well become commonplace in the future. If deci-

sions made with the help of such analyses are to be truly accountable, it is

important that the models and methods are transparent, easily updatable, and

can be run by many parties in order to check sensitivity. Models implememented

in spreadsheet programs have some of these characteristics, but we feel that user-

friendly Bayesian simulation programs could contribute substantially to the field.

9.14 KEY POINTS

1. A Bayesian approach allows explicit recognition of multiple perspectives

from the stakeholders involved.

2. Cost-effectiveness analyses fall naturally into a Bayesian framework,

whether or not the evidence synthesis is carried out separately (the two-

stage approach) or integrated in with the cost-effectiveness analysis.

3. Comprehensive decision modelling is likely to become increasingly important

in making both healthcare and policy decisions.

4. Increased attention to pharmacoeconomics may lead decision-theoretic

models for research planning to be explored, although this will not be

straightforward.

5. There appears to be great potential for formal methods for planning in the

pharmaceutical industry.

6. The regulation of devices is leading the way in establishing the role of

evidence synthesis.

7. We expect this to be a significant area of research activity over the coming

years.

EXERCISES

9.1. Consider the TACTIC study described in Example 9.2, and suppose we try

to use the simple bivariate normal model of Section 9.5 to analyse this

problem.
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(a) Run the WinBUGS code for Example 9.2, and record the posterior

correlation between �e and �c under the exchangeable model.

(b) Plot the joint posterior samples for �e �c and check whether bivariate

normality might be a reasonable assumption.

(c) Making this assumption, use the methods of Section 9.5 to estimate the

CEAC and INB, and hence check whether these analytical methods

yield similar conclusions to those used in Example 9.2.

9.2. Gray et al. (2002) report the results of an economic analysis carried out

alongside an RCT to evaluate the use of an intensive blood glocose control

policy in patients with type 2 diabetes. Table 9.8 reports the results of the

trial in terms of both costs and event-free years. They differentiate between

the actual costs observed during the trial, and those adjusted for the fact

that during the trial patients required additional clinical visits, and thus

incurred additional costs above those seen in routine clinical practice. The

latter estimate of costs is referred to as non-trial. Using the methods of

Section 9.5, examine whether the policy of intensive glucose control is

cost-effective for the different scenarios summarised in Table 9.8, i.e.

whether to use trial costs or adjusted trial costs and/or whether to discount

either costs or costs and life-years. Gray et al. (2002) did not report the

correlation between costs and life-years, so consider assessing cost-effect-

iveness either (a) assuming specific values for the correlation �, or (b)

placing a suitable prior distribution on �.
9.3. Consider the case of whether to use prophylactic antibiotics for women

undergoing Caesarean sections described in Exercise 3.13. The problem

may be formulated as a cost-effectiveness decision model and evaluated

using WinBUGS, taking into account sources of uncertainty.

The odds ratio for infection (antibiotics vs. control) is estimated to be

0.40 (95% CI from 0.33 to 0.47) from a Cochrane systematic review, while

the probability of wound infection without antibiotics is estimated to be

Table 9.8 Mean costs (£ at 1997 prices) and event-free life-years for intensive and
conventional blood glucose control in patients with type 2 diabetes.

Discount
rate

Intervention
(n ¼ 2729)

Control
(n ¼ 1138)

Difference

Mean SD Mean SD Mean 95% CI

Costs (£)
Total trial 0% 9608 8343 9869 120222 �261 �1027 to þ505

6% 6958 5774 7170 8689 �212 �761 to þ338

Total non-trial 0% 8349 8153 7871 11841 þ478 �275 to þ1232
6% 6027 5674 5689 8615 þ338 �207 to þ882

Event-free years
Within trial 0% 14.89 6.93 14.29 7.06 þ0.60 þ0.12 to þ1.10

6% 9.17 3.20 8.88 3.44 þ0.29 þ0.06 to þ0.53
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Table 9.9 RCTs evaluating the effectiveness of using prophylactic antibiotics for
women undergoing elective Caesarean sections in terms of infection rates. (Study
quality: A¼Good, B¼OK, C¼Poor.)

Antibotics Control
Study

Study Year Infections Total Infections Total quality

Dashow 1986 3 100 0 33 A
De Boer 1989 1 11 5 17 B
Duff 1982 0 42 0 40 B
Jakobi 1994 4 167 5 140 B
Lewis 1990 1 36 1 25 B
Mahomed 1988 12 115 15 117 A
Rothbard 1975 0 16 1 16 C

0.08, based on observing 60 infections in 750 women. The costs of

administering antibiotics include a fixed cost of £10 plus between 4 and

7 minutes of consultant’s time at £1 per minute. The hospital costs for

Caesarean section without infection are £173 per day, and the average

length of stay is 6.7 days (SE 0.33). If there is infection, the average length

of stay rises to 8.8 days (SE 0.55) and the daily cost to £262. Utilities are

assumed known at 0.95 QALYs without infection and 0.80 QALYs with

infection.

(a) Obtain an algebraic expression for the incremental net benefit of using

antibiotics for various choices of K, the acceptable cost per QALY.

(b) Use the information provided above to obtain the posterior distribu-

tions for the INB, and hence plot the cost-effectiveness acceptability

curve.

9.4 Extend the model in Exercise 9.3 to take account of the actual meta-

analysis of RCTs considering only elective Caesarean sections presented in

Table 9.9 (Cooper et al., 2002). Explore the sensitivity to downweighting

studies according to their assessed quality.

9.5 In Example 9.5, Ades and Cliffe (2002) carried out a probabilistic sensitivity

analysis for K, the net benefit of a maternal diagnosis. They adopted a

distribution representing an estimate of £50 000, with a range from

£12000 to £60 000.

(a) What might be a suitable functional form for a prior distribution with

these qualities?

(b) With such a prior distribution, carry out a probabilistic sensitivity

analysis and estimate the incremental net benefit, the probability of

cost-effectiveness and the EVPI.

9.6 In Example 9.4, what would be the effect of including a (hypothetical)

additional randomised trial in which 28/400 (7%) of Charnley prostheses

had needed revision, compared to 16/400 (4%) of Stanmore?
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