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Prior Distributions

5.1 INTRODUCTION

There is no denying that quantifiable prior beliefs exist in medicine. For example,

in the context of clinical trials, Peto and Baigent (1998) state that ‘it is generally

unrealistic to hope for large treatment effects’ and that ‘it might be reasonable to

hope that a new treatment for acute stroke or acute myocardial infarction could

reduce recurrent stroke or death rates in hospital from 10% to 9% or 8%, but not

to hope that it could halve in-hospital mortality’. However, turning informally

expressed opinions into a mathematical prior distribution is perhaps the most

difficult aspect of Bayesian analysis. Five broad approaches are outlined below:

elicitation of subjective opinion; summarising past evidence; default priors;

‘robust’ priors; and estimation of priors using hierarchical models. The discussion

mainly focuses on priors for the primary treatment effects of interest, althoughwe

also consider the difficult issue of specifying a prior for the variance component in

a hierarchical model. Finally, we consider the criticism of prior assessments, from

both an empirical and a methodological perspective.

We should repeat the statements made in Section 3.9 concerning possible

misconceptions about prior distributions: they are not necessarily prespecified,

unique, known or important. Since there is no ‘correct’ prior, Bayesian analysis

can be seen as a means of transforming prior into posterior opinions, rather than

producing the posterior distribution. It is therefore vital to take into account the

context and audience for the assessment (Section 3.1), and analysis of sensitivity

to alternative assumptions should be considered essential. Kass and Greenhouse

(1989) introduced the term ‘community of priors’ to describe the range of

viewpoints that should be considered when interpreting evidence, and the sug-

gestions in this chapter represent possible members of that community.

It is also important to keep in mind that, in certain circumstances, it may be

quite reasonable for a prior to be elicited and used solely for design purposes,

and excluded when publicly reporting a study. However, when wishing to

convince an audience of the benefits of an intervention, it may be important
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to elicit their priors and possibly their utilities (Kadane and Wolfson, 1996).

From a mathematical and computational perspective, we have seen in Section

3.6.2 that it can be convenient if the prior distribution is a member of a family of

distributions that is conjugate to the form of the likelihood, in the sense that they

‘fit together’ to produce a posterior distribution that is in the same family as the

prior distribution. We also saw in Section 2.4 that in many circumstances

likelihoods for treatment effects can be assumed to have an approximately

normal shape, and thus in these circumstances it will be convenient to use a

normal prior (the conjugate family), provided it approximately summarises the

appropriate external evidence. Modern computing power is, however, reducing

the need for conjugacy, and in this chapter we shall largely concentrate on the

source and use of the prior rather than its precise mathematical form.

5.2 ELICITATION OF OPINION: A BRIEF REVIEW

5.2.1 Background to elicitation

A true subjectivist Bayesian approach requires only a prior distribution that

expresses the personal opinions of an individual but, if the health-care interven-

tion is to be generally accepted by a wider community, it would appear to be

essential that the prior distributions have some evidential or at least consensus

support. In some circumstances there may, however, be little ‘objective’ evi-

dence available and summaries of expert opinion may be indispensable. We

shall use the generic term ‘clinical prior’ for such expert assessments.

There is an extensive literature concerning the elicitation of subjective prob-

ability distributions from experts, with some good early references on statistical

(Savage, 1971) and psychological aspects (Tversky, 1974), as well as on

methods for pooling distributions obtained from multiple experts (Genest and

Zidek, 1986). The fact that people are generally not good probability assessors is

well known, and the variety of biases they suffer are summarised by Kadane and

Wolfson (1997):

1. Availability. Easily recalled events are given higher probability, and vice versa.

2. Adjustment and anchoring. Initial assessments tend to exert an inertia, so that

further elicited quantities tend to be insufficiently adjusted. For example, if a

‘best guess’ is elicited first, then subsequent judgements about an interval

may be too close to the first assessment.

3. Overconfidence. Distributions are too tight.

4. Conjunction fallacy. A higher probability can be given to an event which is a

subset of an event with a lower probability.

5. Hindsight bias. If the prior is assessed after seeing the data, the expert may be

biased.
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Nevertheless it has been shown that training can improve experts’ ability to

provide judgements that are ‘well calibrated’, in the sense that if a series of

events are given a probability of, say, 0.6, then around 60% of these events will

occur: see, for example, Murphy and Winkler (1977) with regard to weather

forecasting.

Chaloner (1996) provides a thorough review of methods for prior elicitation

in clinical trials, including interviews with clinicians, postal questionnaires, and

the use of an interactive computer program to draw a prior distribution. She

concludes that fairly simple methods are adequate, using interactive feedback

with a scripted interview, providing experts with a systematic literature review,

basing elicitation on 2.5th and 97.5th percentiles, and using as many experts as

possible. Both Kadane and Wolfson (1996) and Berry and Stangl (1996a)

emphasise the potential benefits of two approaches: eliciting predictive distribu-

tions of future events from which an implicit prior distribution can be derived,

and asking additional questions as a consistency check.

5.2.2 Elicitation techniques

Methods used in practice can be divided into four main categories of increasing

formality, which are listed here with some experience of their use:

1. Informal discussion. Prominent individuals can be informally interviewed for

their opinion, as illustrated in Example 3.6. In a trial of paclitaxel in meta-

static breast cancer, the study’s principal clinical investigator expected the

overall success rate to be 25% and had 50% belief that the true success rate

lay between 15% and 35% (Rosner and Berry, 1995). Example 7.1 features

priors obtained from two doctors for the relative risk of venous thrombosis

associated with the use of oral contraceptives (Lilford and Braunholtz,

1996). There are clear difficulties in using such individual opinions in any

formal context.

2. Structured interviewing and formal pooling of opinion. Freedman and Spiegel-

halter (1983) describe an interviewing technique in which a set of experts

were individually interviewed and hand-drawn plots of their prior distribu-

tions elicited, while deliberate efforts were made to prevent the opinions

being overconfident (too ‘tight’). The distributions were converted to histo-

grams and averaged to produce a composite prior. This technique was also

used for trials of thiotepa in superficial bladder cancer (Spiegelhalter and

Freedman 1986) and osteosarcoma (Spiegelhalter et al., 1993). Gore (1987)

introduced the concept of ‘trial roulette’, in which 20 gaming chips, each

representing 5% belief, could be distributed amongst the bins of a histogram:

in a trial of artificial surfactant in premature babies, 12 collaborators were

interviewed using this technique to obtain their opinion on the possible

benefits of the treatment (Ten Centre Study Group, 1987). Using an elec-
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tronic tool so that individuals in a group could respond without attribution,

Lilford (1994) presented collaborators in a trial with a series of imaginary

patients in order to elicit their opinions on the benefit of early delivery. The

appropriate means of pooling such opinions is discussed in Section 5.2.3.

3. Structured questionnaires. The ‘trial roulette’ scheme described above was

administered by post by Hughes (1991) for a trial in treatment of oesopha-

geal varices and by Abrams et al. (1994) for a trial of neutron therapy.

Parmar et al. (1994) elicited prior distributions for the effect of a new

radiotherapy regime (CHART), in which the possible treatment effect was

discretised into 5% bands and the form was sent by post to each of nine

clinicians. Each provided a distribution over these bands and an arithmetic

mean was then taken: see Example 5.1 for details. Tan et al. (2003) adapted

this questionnaire, while Fayers et al. (2000) provide a similar questionnaire

and document the variability between the elicited responses.

Chaloner and Rhame (2001) provide a copy of the questionnaire they

used to elicit opinions from 58 practising HIV clinicians concerning the

baseline event rates and the potential benefit of two prophylactic treatments.

This asks the minimum information comprising a point estimate and an

estimated 95% interval. They used both post and telephone to carry out the

elicitations.

4. Computer-based elicitation. Chaloner et al. (1993) provide a detailed case study

of the use of a rather complex computer program that interactively elicited

distributions from five clinicians for a trial of prophylactic therapy in AIDS.

Kadane (1996) reports the results of an hour-long telephone interview with

each of five clinicians, using software to estimate prior parameters from the

results of a series of questions eliciting predictive probability distributions for

responses of various patient types. When a second round of elicitation

became necessary, the proposal was met by ‘little enthusiasm’. Kadane and

Wolfson (1996) provide an edited transcript of a computerised elicitation

session in a non-trial context.

We agree with Chaloner (1996) that extremely detailed elicitation methods

have not yet been shown to have any advantage over simple methods. How-

ever, it is feasible that complex policy problems, which necessarily may require

substantial subjective input, would justify a more sophisticated approach. In

any case, Chaloner and Rhame (2001) ‘recommend documenting prior beliefs

irrespective of whether a Bayesian or frequentist approach is taken to data

analysis and formal statistical monitoring’.

5.2.3 Elicitation from multiple experts

Faced with varying prior distributions elicited from multiple experts, we could

adopt one of a number of alternative strategies.
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. Elicit a consensus. If the aim is to produce a single assessment expressing the

belief of the group as a whole, then a range of techniques exist for bringing

diverse opinions into consensus, including both informal and more formal

Delphi-like methods. Care must of course be taken to avoid influence of

dominant individuals.

. Calculate a ‘pooled’ prior. The choice of a method for pooling K multiple

opinions is not clear cut, and Genest and Zidek (1986) provide a detailed

annotated review of the issues. Arithmetic pooling simply takes the average of

the height of the prior distributions for each parameter value �, so that

p(�) ¼�kpk(�)=K. This has the property that pooled probabilities for any

event, such as tail areas, are also averages of the individually assessed tail

areas. An alternative is logarithmic pooling, which takes the average of the

logarithms of the density, equivalent to using a geometric mean of the original

densities, so p(�) / [
Q

k pk(�)]
1=K . This has the apparently attractive property

that the same pooled posterior distribution is achieved, whether the pooling is

done before or after the common likelihood is taken into account. With both

proposals there is an opportunity to apply unequal weights to experts, de-

pendent on their experience or past predictive ability. A further development

is that of the supra-Bayesian, which takes the expressed opinions as data to

manipulate using a statistical model.

. Retain the individual priors. The diversity of opinion might be just as important

as the ‘average’ opinion, in that we may be interested in whether current

evidence is sufficient to convince a full range of observers as to the benefits of

a treatment, and hence to bring them into consensus. The extremes of opinion

can be thought of as marking out the boundaries of the ‘community of priors’

mentioned in Section 5.1.

Our preference is to take a simple supra-Bayesian view, and treat the expressed

heights of the prior distributions as data. Then, if we wish to assess the view of

an ‘average, well-informed participating clinician’, it seems reasonable to simply

use arithmetic pooling as in Example 5.1. Of course, we should not necessarily

assume we have a random sample of clinicians, and so our estimate may be

inevitably ‘biased’.

Example 5.1 CHART: Eliciting subjective judgementsbefore a trial

References: Parmar et al. (1994, 2001) and Spiegelhalter et al. (1994).

Intervention: In 1986 a new radiotherapy technique known as continuous
hyperfractionated accelerated radio therapy (CHART) was introduced.
The idea behind it was to give radiotherapy continuously (no weekend
breaks), in many small fractions (three a day) and accelerated (the
course completed in 12 days). There are clearly considerable logistical
problems in efficiently delivering CHART.
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Aim of studies: Promising non-randomised and pilot studies led the UK
Medical Research Council to instigate two large randomised trials to
compare CHART with conventional radiotherapy in both non-small-cell
lung and head-and-neck cancer, and in particular to assess whether
CHART provides a clinically important difference in survival that compen-
sates for any additional toxicity and problems of delivering the treatment.

Studydesign: The trials began in 1990, randomised in the proportion 60:40
in favour of CHART, with planned annual meetings of the data monitoring
committee (DMC) to review efficacy and toxicity data. No formal stop-
ping procedure was specified in the protocol.

Outcomemeasure: Full data were to become available on survival (lung)
or disease-free survival (head-and-neck), with results presented in terms
of estimates of the hazard ratio, h, defined as the ratio of the hazard
under CHART to the hazard under standard treatment. Hence, hazard
ratios less than one indicate superiority of CHART.

Planned sample sizes: Lung: 600 patients were to be entered, with 470
expected deaths, with 90%power to detect at the 5% level a 10% improve-
ment (15%to25%survival).Using themethodsdescribed inSection2.4.2,
this can be seen to be equivalent to an alternative hypothesis of
hA ¼ log (0:25)= log (0:15) ¼ 0:73. Head-and-neck: 500 patients were to
beentered,with220expected recurrences,with90%power todetectat the
5% level a 15% improvement (45% to 60% disease-free survival), equiva-
lent to an alternative hypothesis of hA ¼ log (0:60)= log (0:45) ¼ 0:64.

Statistical model: Proportional hazards model, providing an approximate
normal likelihood (Section 2.4.2) for the log(hazard ratio), d ¼ log (h),

ym � N y,
s2

m

� �
,

where ym is the estimated log(hazard ratio), s ¼ 2 and m is the ‘equiva-
lent number of events’ in a trial balanced in recruitment and follow-up.

Prospectiveanalysis?: Yes, the prior elicitations were conducted before the
start of the trials, and the Bayesian results presented to the DMC at each
of their meetings.

Prior distribution: Although the participating clinicians were enthusiastic
about CHART, there was considerable scepticism expressed by oncolo-
gists who declined to participate in the trial. Eleven opinions were
elicited for the lung cancer trial and nine for the head-and-neck. The
questionnaire used is described in detail in Parmar et al. (1994) and
summarised in Figure 5.1.
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Lung Study

Your Entry

Head & Neck

Study

Your Entry

Hypothetical

example 0 20 20 20 0 0 20 20 0 100

100

100

CHART worse than
standard by %

CHART worse than
standard by %

10 −15 5 −10 0 − 5 0 − 5 5 − 10 10 − 15 15 − 20 20 − 25 25+ TOTAL

Figure 5.1 Part of the questionnaire used to elicit clinical opinions before the CHART
trials. Participants were invited to distribute 100 points between the bins, indicating their
‘weight of belief’ in the true benefit from CHART. They were reminded to ignore the role
of sampling variability – the hypothetical example was deliberately chosen to be a
‘rather eccentric’ radiotherapist so as not to provide an example that might inappropri-
ately ‘anchor’ their opinions.
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Figure 5.2 Prior opinions for lung cancer trial elicited from 11 clinical participants in
the trial. The arithmetic average is used as the ‘pooled’ distribution.

Figure 5.2 shows the eleven lung cancer opinions as histograms. Note
that subjects 7 and 11 have very different opinions and could be taken
as extremes for a ‘community’ of priors. Here we use the arithmetic
average of the distributions as a summary, since we wish to represent
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an ‘average’ clinician. The prior distribution expressed a median antici-
pated2-year survival benefit of 10%,anda10%chance thatCHARTwould
offer no survival benefit at all. The histogramwas then transformed to a log
(hazard ratio) scale assuming a 15% baseline survival: for example, the
‘bin’ of the histogram with range 5% to 10% was transformed to one with
upper limit log [ log (0:20)= log (0:15)] ¼ �0:16 and lower limit log [ log
(0:25) = log (0:15)] ¼ �0:31. This subjective prior distribution had a mean
of �0:28 and standard deviation of 0.232 (corresponding to an estimated
hazard ratio of 0.76 with 95% interval from 0.48 to 1.19). A normal
N[m, s2=n0] distribution with these characteristics was fitted, with m ¼
�0:28, s ¼ 2, s=

ffiffiffiffiffi
n0

p ¼ 0:23,which impliesn0 ¼ 74:3.FromSection2.4.2,
this prior could alsobe thought of asaposterior havingobserveda log-rank
statistic (L ¼ O� E) such that 4L=n0 ¼ �0:28, and so L ¼ �5:5. The
expected E under the null hypothesis is n0=2 ¼ 37:2 and so the observed
O under CHART is 37:2� 5:5 ¼ 31:7. Thus the prior can be interpreted as
being approximately equivalent to a balanced ‘imaginary’ trial in which 74
deaths had occurred (32 under CHART, 42 under standard).

For the head-and-neck trial, the fitted prior mean log(hazard ratio) is
m ¼ �0:33 with standard deviation 0.26, equivalent to n0 ¼ 61:0.

The clinical prior distributions are displayed in Figure 5.3, which shows
the average transformed onto a log(hazard-ratio) scale for both lung and

Lung trial

 favours CHART <-   Hazard ratio   -> favours control 

0.4 0.5 0.6 0.8 1 1.2 1.5

Head-and-neck trial

 favours CHART <-   Hazard ratio   -> favours control 

0.4 0.5 0.6 0.8 1 1.2 1.5

Figure 5.3 Average opinion for lung cancer and head-and-neck CHART trials with
normal distributions fitted with matching mean and variance.
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head-and-neck trials. The fit of the normal distribution is quite reason-
able, and the similarity between the two sets of opinions is clear, each
supporting around a 25% reduction in hazard, but associated with con-
siderable uncertainty.

5.3 CRITIQUE OF PRIOR ELICITATION

There have been many criticisms of the process of eliciting subjective prior

distributions in the context of health-care evaluation, and claims include the

following:

1. Subjects are biased in their opinions. Gilbert et al. (1977) state that ‘innovations

brought to the stage of randomised trials are usually expected by the innov-

ators to be sure winners’, while the very fact that clinicians are participating

in a trial is likely to suggest they expect the new therapy to be of benefit

(Hughes, 1991) – we shall see that this appears to be borne out in the results

to be shown in Table 5.3. Altman (1994) warns that investigators may even

begin to exaggerate their prior beliefs in order to make their prospective trial

appear more attractive (although we could claim this already happens both

in public and industry-funded studies). Fisher (1996) believes the effort put

into elicitation is misplaced, since the measured beliefs are likely to be based

more on emotion than on scientific evidence.

2. The choice of subject biases results. The biases discussed in Section 5.2 mean

that the choice of subject for elicitation is likely to influence the results. If we

wish to know the distribution of opinions among well-informed clinicians,

then trial investigators are not a random sample and may give biased

conclusions. Fayers et al. (2000) provide a detailed case study in which

there is clear over-optimism of investigators (see Example 6.4). Lewis

(1994) says statisticians reviewing the literature may well provide much

better prior distributions than clinicians, while Chalmers (1997) suggests

even lay people are biased towards believing new therapies will be advances,

and therefore we need empirical evidence on which to base the prior prob-

ability of superiority. Pocock (1994) states that the ‘hardened sceptical

trialist, the hopeful clinician and the optimistic pharmaceutical company

will inevitably have grossly different priors’. An extreme view is that uncer-

tainty as to whose prior to use militates against any use of Bayesian methods

(Fisher, 1996).

3. Timing of elicitation has an influence. Senn (1997a) objects to any retrospec-

tive elicitation of priors as ‘present remembrance of priors past is not the

same as a true prior’, while Hughes (1991) points out that opinions are

likely to be biased by what evidence has recently been presented and by

whom.
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These concerns have led to a call for the evidential basis for priors to be made

explicit, and for effort to go into identifying reasons for disagreement and

attempting to resolve these (Fisher, 1996). Even advocates of Bayesian methods

have suggested that the biases in clinical priors suggest more attention should

be paid to empirical evidence from past trials, possibly represented as priors

expressing a degree of scepticism concerning large effects: Fayers (1994) asks,

given the long experience of negative trials, ‘should we not be using priors

strongly centred around 0, irrespective of initial opinions, beliefs and hopes of

clinicians?’. Our view is similar: elicited priors from investigators show predict-

able positive bias and should be supplemented, if not replaced, by priors

that are either based on evidence or reflect archetypal views of ‘scepticism’ or

‘enthusiasm’. Taking context into account (Section 3.1) means that it is quite

reasonable to allow for differing perspectives, and in many cases substantial

effort in careful elicitation from representative clinicians may not be worth-

while.

5.4 SUMMARY OF EXTERNAL EVIDENCE*

If the results of previous similar studies are available, it is clear they may be used

as the basis for a prior distribution. Suppose, for example, we have historical

data y1, . . . , yH each assumed to have a normal likelihood

yh � N[�h,�
2
h ],

where each of these estimates could itself be based on a pooled set of studies.

Numerous options are available for specifying the relationship between

�h, h ¼ 1, . . . ,H, and �, the parameter of interest, and we shall expand on the

list given in Section 3.16. Each option is represented graphically in Figure 5.4

using a similar convention to that in Section 3.19.3: these approaches for

handling historical data are also considered when considering historical con-

trols in randomised trials (Section 6.9), modelling the potential biases in obser-

vational studies (Section 7.3), and in pooling data from many sources in an

evidence synthesis (Section 8.2).

(a) Irrelevance. Each �h is of no relevance to �, and the prior will need to be

formulated without reference to previous studies.

(b) Exchangeable. We might be willing to assume �h, h ¼ 1, . . . ,H, and � are

exchangeable so that, for example,

�h, � � N[�, t2]:

This leads to a direct use of a meta-analysis of many previous studies.
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y1

(a) Irrelevance

Historical
data

Historical
parameters

Parameter
of interest

(Current
data)

(b) Exchangeable

(c) Potential
biases

(d) Equal but
discounted

(e) Functional
dependence

(f) Equal

.. ..
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q y
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q y

Figure 5.4 Different assumptions relating parameters underlying historical data to the
parameter of current interest: single arrows represent a distribution, double arrows
represent logical functions, and wavy arrows represent discounting.
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It is important to note that the appropriate prior distribution for � is the

predictive distribution of the effect � in a new study, and not the posterior

distribution of the ‘average’ effect �. In particular, assuming t is known and

adopting a uniform prior for � before the historical studies, we have from

Section 3.18.2 that the posterior distribution for � given the historical

studies is

�j y1, . . . , yH � N
�hyhwh

�hwh

,
1

�hwh

� �
,

where wh ¼ 1=(�2
h þ t2). Hence the prior distribution for � is

�j y1, . . . , yH � N
�hyhwh

�hwh

,
1

�hwh

þ t2
� �

:

If there is just a single historical study h, then

�j yh � N[yh, 2t2 þ �2
h ]:

In general twill be unknown and need to be estimated, although with few

historical studies it will need to be assumed known or be given an informa-

tive prior distribution.

Exchangeability is quite a strong assumption, but if this is reasonable then

it is possible to use databases to provide prior distributions (Gilbert et al.,

1977). Lau et al. (1995) point out that cumulative meta-analysis can be

given a Bayesian interpretation in which the prior for each trial is obtained

from the meta-analysis of preceding studies, while DerSimonian (1996)

derives priors for a trial of the effectiveness of calcium supplementation in

the prevention of pre-eclampsia in pregnant women by a meta-analysis of

previous trials using both random-effects and fixed-effects models.

(c) Potential biases. We could assume that �h, h ¼ 1, . . . ,H, are functions of �. A
common choice is the existence of a bias �h so that �h ¼ �þ �h. Possibilities
then include making the following assumptions:

1. �h is known.

2. �h has a known distribution with mean 0, say �h � N(0,�2
�h), and so

�h � N(�,�2
�h). This is now almost identical to the exchangeability assump-

tion, except that the previous study parameters are centred around the

parameter of interest � and not the population mean � and the potential

site of the bias may be study-specific. Adapting the results for the ex-

changeability case reveals that the posterior distribution for � given the

historical studies is

�jy1, . . . , yH � N
�hyhw

0

h

�hw
0
h

,
1

�hw
0
h

� �
,
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where w
0

h ¼ 1=(�2
h þ �2

�h), which follows by noting the predictive distri-

bution yh � N[�,�2
h þ �2

�h]. If there is just a single historical study h, then

�jyh � N[yh,�
2
h þ �2

�h];

again, with only one historical study �2
� will need to be assumed known

or have a strong prior distribution.

3. If we suspect systematic bias in one direction, we might take �h to have a

known distribution with non-zero mean, say �h � N[��, �
2
�h]: We then

obtain a prior distribution, for a single historical study,

� � N[yh þ ��, �
2
h þ �2

�h]:

(d) Equal but discounted. Previous studies may not be directly related to the one

in question, and we may wish to discount their influence: for example, in

the context of control groups, Kass and Greenhouse (1989) state that ‘we

wish to use this information, but we do not wish to use it as if the historical

controls were simply a previous sample from the same population as the

experimental controls’. Ibrahim and Chen (2000) suggest the ‘power’ prior,

in which we assume �h ¼ �, but discount the historical evidence by taking

its likelihood p(yhj�h) to a power �. For normal historical likelihoods this

corresponds to adopting a prior distribution for �, given the historical

studies, of

�jy1, . . . , yH � N
�hyhw

00
h

�hw
00
h

,
1

��hw
00
h

� �

where w00
h ¼ 1=�2

h ; � varies between 0 (totally discount past evidence) to

1 (include past evidence in its totality and at ‘face value’). If there is just a

single historical study h, then

�j yh � N[yh, �
2
h=�]:

For example, Greenhouse and Wasserman (1995) downweight a previous

trial with 176 subjects to be equivalent to only 10 subjects, and Tan et al.

(2002) take � ¼ 0:25 in basing a prior on a previous phase III study; see

Example 5.2 for a detailed illustration of using such a ‘power’ prior. We

note, however, that Eddy et al. (1992) are very strong in their criticism of

this method, claiming it has no operational interpretation and hence no

means of assessing a suitable value for �.
(e) Functional dependence. It is possible that the parameter of interest may be

logically expressed as a function of parameters from historical studies.

For example, suppose �1 were the treatment effect in men derived from a
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male-only study, and �2 were the treatment effect in women derived from a

female-only study. Then the expected treatment effect in a study to be

carried out in a population with proportion p males would be

� ¼ p�1 þ (1� p)�2,

and a prior for � could be derived from evidence on �1 and �2.
(f) Equal. This assumes the past studies have all been measuring identical

parameters: if � is a property of a single patient group rather than a

treatment effect, this assumption is essentially equivalent to direct pooling

of the past data with those in the current study, and hence is based on the

very strong assumption of exchangeability of individual patients. In our

normal model we would assume �h ¼ � and individuals are exchangeable,

and so completely pool the data to obtain a prior

�jy1, . . . , yH � N
�hyhw

00
h

�hw
00
h

,
1

�hw
00
h

� �

where w00
h ¼ 1=�2

h . If there is just a single historical study h, then

�jyh � N[yh,�
2
h ]:

Such a strong assumption may be more acceptable if a prior is to be used in

the design and not the analysis, and Brown et al. (1987) provide such an

example using data from a pilot trial.

We note that, for the Normal model, exchangeability (b), bias (c) and dis-

counting (d) could under certain circumstances all lead to the same prior

distribution for �, provided there is only one historical study. If there are

multiple studies then these three approaches will generally all lead to different

priors for �:
Various combinations of these techniques are possible. For example, Berry

and Stangl (1996a) assume a fixed probability p that each historical patient is

exchangeable with those in the current study, i.e. either option (f) (complete

pooling) with probability p, or option (a) (complete irrelevance) with probability

1� p. Example 9.3 illustrates the combination of an exchangeable and a bias

model: a past parameter �h is assumed to have distribution �h � N[�þ �h,t2],
where the additional bias term has distribution �h � N(0,�2

�h). Hence the overall
likelihood contribution from the past study is �h � N[�, t2 þ �2

�h]; the variance

can also be expressed as t2=qh, where qh ¼ t2=(t2 þ �2
�h) can be considered as a

‘quality weight’ of the past study. Values of qh near 1 mean little bias, near 0

mean substantial bias. This model formally justifies the use of ‘quality-weights’

in random-effects meta-analysis.

152 Prior distributions

Chapter 5 Prior Distributions 17.11.2003 4:50pm page 152



Example 5.2 GUSTO:Usingpreviousresults asabasis forprioropinion

References: Brophy and Joseph (1995), Fryback etal. (2001b), Harrell and
Shih (2001), Brophy and Joseph (2000) and Ibrahim and Chen (2000).

Intervention: Streptokinase (SK) compared to tissue plasminogen activator
(tPA) to dissolve clots in occluded coronary arteries following a myocar-
dial infarction. tPA is considerably more expensive than SK.

Aim of study: Two previous trials of SK versus tPA (GISSI-2 and ISIS-3)
showed minimal difference, although the stroke rate was consistently
higher under tPA.

Studydesign: Parallel-group unblinded RCT, with two SK arms with differ-
ent administrations of heparin (later pooled), tPA arm and an arm with
both SK and tPA (ignored in this analysis).

Outcomemeasure: Odds ratio (OR) of stroke and/or death, with OR < 1
favouring tPA.

Planned sample size: The sample size of the GUSTO trial was calculated
on the basis of having 80% power to detect a 15% relative reduction in
the risk of death or a 1% absolute decrease at the 5% significance level.

Statistical model: A normal likelihood was assumed based on the esti-
mated log(odds ratio) (Section 2.4.1); s has been taken as 2.

Prospective analysis?: No.

Priordistribution: It is natural to base, to some extent, a prior distribution on
the two preceding trials, whose results are shown in Table 5.1, using
data presented by Brophy and Joseph (1995). Taking the previous trials
at full weight, the pooled previous trials give rise to a prior for GUSTO
with mean 0.0002 and standard deviation s=

ffiffiffiffiffiffiffiffiffiffiffi
4604

p
¼ 0:03: a very scep-

tical prior indeed, with a 95% interval for the OR from 0.94 to 1.06.

Table 5.1 Historical and observed data for GUSTO study. The ms are the ‘effective
number of events’ in a balanced trial, obtained from setting the estimated variances
of the log(odds ratios) to s2=m: the ms do not exactly match the actual number of
events, particularly in GUSTO, due to imbalance in allocation. The ‘pooled’ results
are obtained by adding the ms and weighting the log(odds ratios) by their respective
ms: this pooledm can be relabelled n0 if it is used as the basis for a prior distribution for
GUSTO.

Trial SK
events/cases

% tPA
events/cases

% OR log(OR) m
(when � ¼ 2)

GISSI-2 985/10 396 9.5% 1067/10 372 10.3% 1.09 0.09 1847
ISIS-3 1596/13 780 11.6% 1513/13 746 11.0% 0.94 �0.06 2757
Pooled 0.0002 n0 ¼ 4604
GUSTO 1574/20 173 7.8% 714/10 343 6.9% 0.88 �0.13 1825
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However, Brophy and Joseph (2000) emphasise important differences
between the studies: the GUSTO study featured an ‘accelerated’ tPA
protocol, more aggressive use of intravenous heparin, increased revas-
cularisation in the tPA arm, and possible increased tPA benefit in US
patients. This suggests downweighting the prior evidence in some way,
and different authors have subsequently used almost all the approaches
outlined in Section 5.4. We shall focus on simple discounting (method
(d) ), but other methods are mentioned under ‘Comments’. Brophy and
Joseph (1995) ‘discounted’ the previous trials, essentially implementing
the power prior distributions of Ibrahim and Chen (2000), which is
equivalent to adjusting the prior ‘number of events’ from n0 to an0.
They considered a to be 0, 0.1, 0.5 and 1.0, equivalent to taking the
prior ‘number of events’ to be 0, 460.4, 2302 and 4604. Taking a ¼ 0 is
equivalent to treating the previous trials as irrelevant (option (a) ) and
hence selecting a uniform prior on the log(odds ratio), while taking a ¼ 1
is equivalent to assuming the trials are measuring equal parameters
(option (f) ) – note that this is not equivalent to pooling the patients on
each arm, but is equivalent to pooling the estimated treatment effects.

Loss function or demands: The GUSTO trial was designed around a 15%
reduction in mortality, so we might take an odds ratio of 0.85 to reflect a
clinically important difference.

Computation/software: Conjugate normal model.

Evidence from study: This is provided in Table 5.1. The standardised test
statistic based on the data alone is zm ¼ ym

ffiffiffiffi
m

p
=s ¼ �0:13

ffiffiffiffiffiffiffiffiffiffiffi
1825

p
=2

¼ �2:78, providing a two-sided P-value of 0.005.

Bayesian interpretation: Figure 5.5 shows plots of prior, likelihood and
posterior under different assumptions concerning a, superimposed on a
clinically important difference of 0.85. The probability that tPA is inferior to
SK is very low unless the prior trials are considered at almost full weight.
However, it is clear that although GUSTO may show ‘statistical signifi-
cance’ in that the posterior probability that OR < 1 is high, there is not
strong evidence of ‘practical significance’, in that the posterior probability
that OR < 0:85 is moderate even when the prior evidence is totally
ignored.

Sensitivity analysis: Figure 5.6 shows changing conclusions as a ranges
from 0 (ignore historical evidence) to 1 (completely pool with historical
evidence). This clearly shows evidence for benefit unless the past data
are quite strongly weighted, but even slight inclusion of past data serves
to exclude a clinically important difference of 15%.

Comments: We can fit previous approaches to this problem within the
structure outlined in Section 5.4.
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(a) Prior weight = 0%

favours tPA  <-  Odds ratio  -> favours SK
0.6 0.7 0.8 0.9 1 1.1 1.3

0.6 0.7 0.8 0.9 1 1.1 1.3 0.6 0.7 0.8 0.9 1 1.1 1.3

Likelihood
Prior
Posterior

(b) Prior weight = 10%

favours tPA  <-  Odds ratio  -> favours SK
0.6 0.7 0.8 0.9 1 1.1 1.3

(c) Prior weight = 50%

favours tPA  <-  Odds ratio  -> favours SK

(d) Prior weight = 100%

favours tPA  <-  Odds ratio  -> favours SK

Figure 5.5 Posterior estimate of the odds ratio for the GUSTO trial under different
prior assumptions: weighting the previous trial results by a factor (a) 0% (i.e. the
reference prior in which the posterior is proportional to the likelihood), (b) 10%, (c)
50% and (d) 100% (i.e. full pooling with the past data). The shaded area represents
the posterior probability that OR > 1 and hence favours SK, and is very low unless
very high weight is given to the previous trials. However, the chance of an odds ratio
less than 0.85 is only moderate even when using the trial data alone, and drops
severely for even 10% weighting of the past trial data.

(a) Irrelevance. Harrell and Shih (2001) consider that the previous trials are
entirely irrelevant toGUSTOdue to the revised tPA protocol, and so only
consider a ‘reference’ and ‘sceptical’ prior (Section 5.5): the reference
prior is uniform on the log(OR) scale and hence the posterior distribution
is the same shape as the likelihood, while the sceptical prior was centred
on the null hypothesis of OR ¼ 1, and expressed 95%belief that the true
OR lay within the bounds 0.75–1.33, i.e. it is unlikely that there is more
than a 25% relative change between the treatments: this prior is even
more diffuse than that shown in Figure 5.5(b).

(b) Exchangeable. One of the models considered by Brophy and Joseph
(2000) assumes the treatment effects in the three trials are exchange-
able, and places a normal population distribution on the three log(odds
ratios) – they use ‘diffuse’ priors on the parameters of mean and
variance of the normal population. However, both the exchangeability
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Figure 5.6 Posterior estimate of the odds ratio for the GUSTO trial downweighting
previous trial results by varying amounts (a ¼ 0 implies total discounting, whilst
a ¼ 1 implies acceptance of previous evidence at ‘face-value’).

(c) assumption, and the attempt to estimate population parameters from
just three trials (regardless of their size), make this prior formulation
somewhat doubtful.

(c) Potential biases. Acknowledging the possible systematic differences
between the trials, Brophy and Joseph (2000) also consider two possible
sources of bias: differences in revascularisation rates in GUSTO, and
differences in tPA administration between GUSTO and the previous
trials. These are applied to the hierarchical model described under (b).

(d) Equal but discounted. In a different application of the discounting ap-
proach, Fryback et al. (2001b) suggests the SK arm in GUSTO is
reasonably compatible with the SK arm in previous trials, and so
adopt aC ¼ 1=3 for SK. However, they severely discount the tPA arm
from a sample size of around 24 000 to one of 50, so that aT � 1=500
for tPA.

Now V( log (OR) ) ¼ V( logOC)þ V( logOT), where OC, OT are the odds
on death under SK and tPA, respectively. With no discounting,
V( logOC) � V( logOT) ¼ V. With differential discounting,

V( log (OR)) ¼ V( logOC)

aC
þ V( logOT)

aT
� V

1

aC
þ 1

aT

� �
:
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Thus the overall discount factor, relative to the undiscounted variance
of 2V, is a ¼ 2=(a�1

C þ a�1
T ) which is the ‘harmonic mean’ of the individ-

ual discounts. Fryback etal.’s assumptions therefore lead to an overall
discount factor of 2=(3þ 500) � 1=250, which means the prior will
have little impact on the likelihood.

(f) Equal. As an extreme of the discounting procedure, if we assume a ¼ 1
we are led to completely pool the results of the three trials.

5.5 DEFAULT PRIORS

It would clearly be attractive to have prior distributions that could be taken ‘off

the shelf ’, rather than having to consider all available evidence external to the

study in their construction: such priors can, at a minimum, be considered as

‘baselines’ against which to measure the impact of past evidence or subjective

opinion. Four main suggestions can be identified.

5.5.1 ‘Non-informative’ or ‘reference’ priors

There has been a huge volume of research into so-called non-informative or

reference priors, that are intended to provide a kind of default or ‘objective’

Bayesian analysis free from subjectivity. Kass and Wasserman (1996) review

the literature, but emphasise the continuing difficulties in defining what is

meant by ‘non-informative’, and the lack of agreed reference priors in all but

simple situations.

In many situations we might adopt a uniform distribution over the range of

interest, possibly on a suitably transformed scale of the parameter (Box and

Tiao, 1973). Formally, a uniform distribution means the posterior distribution

has the same shape as the likelihood function, which in turn means that the

resulting Bayesian intervals and estimates will essentially match the traditional

results. Results with reference priors are generally quoted as one part of a

Bayesian analysis, and may even form the main basis for inferences. For

example, Burton (1994) suggests that most doctors interpret frequentist confi-

dence intervals as credible intervals, and also that information external to a

study tends to be vague, and that therefore results from a study should be

presented by performing a Bayesian analysis with a non-informative prior and

quoting posterior probabilities for the parameter of interest being in various

regions. The fact that a reference prior may produce essentially identical con-

clusions to a classical analysis, and yet allow more flexible and intuitive presen-

tations, has led to the use of what are essentially Bayesian methods but under

names such as ‘confidence levels’ (Shakespeare et al., 2001).
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Invariance arguments may be used as a basis for reference priors (Jeffreys,

1961): for example, if we feel a reference prior on an odds ratio OR should be the

same whichever treatment is taken in the numerator of the odds ratio, then it

means that the same prior should hold for OR and 1/OR, which means that we

must be uniform on the log(OR) scale. Similar arguments can be used to justify a

uniform prior on log (�2) for a sampling variance �2, since this prior is also

equivalent to a uniform prior on log (�) (or indeed any power of �), and hence is

invariant to whether one is working on the standard deviation or variance

scale. This prior is equivalent to assuming p(�2) / ��2, or p(�) / ��1. A stand-

ard result (DeGroot, 1970; Lee, 1997) is that, for normal likelihoods, this prior,

combined with an independent uniform prior on the mean, gives rise to the

familiar classical tail areas based on a t distribution.

The real problem with ‘uniform’ priors is that they are no longer uniform if

the parameter is transformed, which is well illustrated by the problem of

assigning a reference prior to the probability � of an event. The classic solution,

dating back to Bayes and Laplace in the eighteenth century, is to give a uniform

prior for �, equivalent to a Beta[1,1]. From the beta-binomial distribution

(Section 3.13.2) we can show this leads to a uniform distribution over the

number 0, 1, . . . , n of occurrences in n Bernoulli trials, which might seem a

reasonable justification for its claim to be ‘non-informative’. However in many

of our examples we place a uniform distribution over a log(odds) scale, i.e.

log [p=(1� p)] has a uniform distribution. It can be shown that this is equivalent

to a Beta[0,0] distribution for p – an improper distribution that strongly favours

values of p near 0 or 1. As an intermediate suggestion, invariance arguments

(Box and Tiao, 1973) have led to the use of a Beta[0.5,0.5] prior, which is

proper but still favours extreme values of p (Section 2.6.3). Of course, all these

priors will give essentially the same result with a large enough set of data, but

could have some influence with rare events. Even when one has chosen a

suitable scale for a uniform prior, it may be inappropriate to term it ‘non-

informative’: Fisher (1996) points out that ‘there is no such thing as a

‘‘noninformative’’ prior. Even improper priors give information: all possible

values are equally likely’. There is a particular difficulty in assigning such a

‘reference’ prior to random-effect variances in hierarchical models, and we shall

consider this issue in Section 5.7.

5.5.2 ‘Sceptical’ priors

Informative priors that express scepticism about large treatment effects have

been put forward both as a reasonable expression of doubt, and as a way of

controlling early stopping of trials on the basis of fortuitously positive results

(Section 6.6.2). Kass and Greenhouse (1989) suggest that a ‘cautious reason-

able sceptic will recommend action only on the basis of fairly firm knowledge’,

but that these sceptical ‘beliefs we specify need not be our own, nor need they be
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the beliefs of any actual person we happen to know, nor derived in some way

from any group of ‘‘experts’’ ’.

Mathematically speaking, a sceptical prior about a treatment effect will have

a mean of zero and a shape chosen to include plausible treatment differences

which determine the degree of scepticism. Spiegelhalter et al. (1994) argue that

a reasonable degree of scepticism may be feeling that the trial has been designed

around an alternative hypothesis that is optimistic, formalised by a prior with

only a small probability � (say, 5%) that the treatment effect is as large as the

alternative hypothesis �A (see Figure 5.7).

Assuming a prior distribution � � N[0, �2=n0] and such that p(� > �A) is a

small value � implies � ¼ 1�F(�A
ffiffiffiffiffi
n0

p
=�) and so

��
z�ffiffiffiffiffi
n0

p ¼ �A, (5:1)

where F(z�) ¼ �. Now suppose the trial has been designed with size � and

power 1� � to detect an alternative hypothesis �A. Then we have the standard

relation (2.38)

�2
(z�=2 þ z�Þ2

�2A
¼ n (5:2)

between the proposed sample size n and �A. Equating �A in (5.1) and (5.2) gives

0

Benefit of new treatment

sceptical prior
enthusiastic prior

qA

Figure 5.7 Sceptical and enthusiastic priors for a trial with alternative hypothesis �A.
The sceptics’ probability that the true difference is greater than �A is � (shown shaded).
This value has also been chosen for the enthusiasts’ probability that the true difference is
less than 0.
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n0

n
¼ z�

z�=2 þ z�

� �2
:

Reasonable values might be � ¼ 0:05, � ¼ 0:1 and � ¼ 0:05, which gives

n0=n ¼ 0:257.
Thus in a trial designed with 5% size and 90% power, such a sceptical prior

corresponds to adding a ‘handicap’ equivalent to already having run a ‘pseudo-

trial’ with no observed treatment difference, and which contains around 26% of

the proposed sample size.

This approach has been used in a number of case studies (Freedman et al.,

1994; Parmar et al., 1994) and has been suggested as a basis for monitoring

trials (Section 6.6) and when considering whether or not a confirmatory study

is justified (Section 6.7). Other applications of sceptical priors include Fletcher et

al. (1993), DerSimonian (1996), and Heitjan (1997) in the context of phase II

studies, while a senior FDA biostatistician (O’Neill, 1994) has stated that he

‘would like to see [sceptical priors] applied in more routine fashion to provide

insight into our decision making’.

Example 5.3 CHART (continued): Scepticalpriors

References: Parmar et al. (1994, 2001) and Spiegelhalter et al. (1994).

Prior distribution: A scepticalprior was derived using the ideas in Section
5.5.2: the prior mean is 0 and the precision is such that the prior
probability that the true benefit exceeds the alternative hypothesis is
low (5% in this case). Thus a prior with mean 0 and standard deviation
s=

ffiffiffiffiffi
n0

p
will show a 5% chance of being less than dA if n0 ¼ (1:65s=yA)

2 by
(5.1). For the lung trial, the alternative hypothesis on the log(hazard
ratio) scale is yA ¼ log (0:73) ¼ �0:31. Assuming s ¼ 2 gives n0 ¼ 110.
For the head-and-neck trial, the alternative hypothesis is
yA ¼ log (0:64) ¼ �0:45, which gives a sceptical prior with n0 ¼ 54.

The sceptical prior distributions are displayed in Figure 5.8, with the
clinical priors derived in Example 5.1.

5.5.3 ‘Enthusiastic’ priors

As a counterbalance to the pessimism expressed by the sceptical prior, Spiegel-

halter et al. (1994) suggest an ‘enthusiastic’ prior centred on the alternative

hypothesis and with a low chance (say, 5%) that the true treatment benefit is

negative. Use of such a prior has been reported in case studies (Freedman et al.,

1994; Heitjan, 1997; Vail et al., 2001; Tan et al., 2002) and as a basis for

conservatism in the face of early negative results (Fayers et al., 1997); see
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favours CHART <-  Hazard ratio  -> favours control

Lung trial

0.4 0.5 0.6 0.8 1 1.2 1.5

Clinical prior
CHART superior survival
Control superior survival

0.857
0.143

Sceptical prior
CHART superior survival
Control superior survival

0.5
0.5

favours CHART <-  Hazard ratio  -> favours control

Head-and-neck trial

0.4 0.5 0.6 0.8 1 1.2 1.5

Clinical prior
CHART superior survival
Control superior survival

0.891
0.109

Sceptical prior
CHART superior survival
Control superior survival

0.5
0.5

Figure 5.8 Sceptical and clinical priors for both lung and head-and-neck CHART
trials, showing prior probabilities that CHART has superior survival. The sceptical
priors express a 5% prior probability that the true benefit will be more extreme than the
alternative hypotheses of HR ¼ 0:73 for the lung trial and HR ¼ 0:64 for the head-and-
neck trial.

Section 6.6.2. Dignam et al. (1998) provide an example of such a prior but call it

‘optimistic’ (Example 6.7). Such a prior is intended to represent the opinion of

an archetypal enthusiast and does not represent the opinion of an identifiable

individual.

Other options for default priors are possible: for example, Cronin et al. (1999)

adopt an ‘indifference’ prior that lies half-way between ‘sceptical’ and ‘enthusi-

astic’.

5.5.4 Priors with a point mass at the null hypothesis
(‘lump-and-smear’ priors)*

The traditional statistical approach expresses a qualitative distinction between

the role of a null hypothesis, generally of no treatment effect, and alternative

hypotheses. A prior distribution that retains this distinction would place a

‘lump’ of probability on the null hypothesis, and ‘smear’ the remaining prob-

ability over the whole range of alternatives; for example Cornfield (1969) uses a
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normal distribution centred on the null hypothesis, while Hughes (1993) uses

a uniform prior over a suitably restricted range. The resulting posterior distri-

bution retains this structure, giving rise to a posterior probability of the truth of

the null hypothesis; this is apparently analogous to a P-value but is neither

numerically nor conceptually equivalent.

A specific assumption used in our examples is the following:

H0 : � ¼ �0 with probability p,

HA : � � N �0,
�2

n0

� �
with probability 1� p,

where we label the ‘lump’ and the ‘smear’ as null and alternative hypotheses,

respectively.

Cornfield repeatedly argued for this approach, which naturally gives rise to

the ‘relative betting odds’ or Bayes factor (Section 3.3) as a sequential monitor-

ing tool, defined as the ratio of the likelihood of the data under the null

hypothesis to the average likelihood (with respect to the prior) under the

alternative. If we assume a normal likelihood ym � N[�, �2=m], then we have

shown in Section 4.4.3 that the Bayes factor is

BF ¼ p(ymjH0)

p(ymjHA)
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

n0

r
exp

�z2m
2(1þ n0=m)

� �
: (5:3)

Since

p(H0jym)
p(HAjym)

¼ BF
p

1� p
,

we can obtain the posterior probability p(H0jym).
The relative betting odds are independent of the ‘lump’ of prior probability

placed on the null (while depending on the shape of the ‘smear’ over the

alternatives), and do not suffer from the problem of ‘sampling to a foregone

conclusion’ (Section 6.6.5). Cornfield suggests a ‘default’ prior under the alter-

native as a normal distribution centred on the null hypothesis and with expect-

ation (conditional on the effect being positive) equal to the alternative

hypothesis �A. Then from the properties of the half-normal distribution (Section

2.6.7) it follows that

E(�j� > 0) ¼

ffiffiffiffiffiffiffiffi
2�2

�n0

s
: (5:4)

Equating this to �A leads to assuming a prior standard deviation under the

alternative hypothesis of
ffiffiffiffiffiffiffiffi
�=2

p
�A. This is similar to the formulation of a
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sceptical prior described in Section 5.5.2, but with probability of exceeding

the alternative hypothesis of � ¼ F(�
ffiffiffiffiffiffiffiffi
2=�

p
) ¼ 0:21 – this is larger than the

value of 5% often used for sceptical priors, but the lump of probability on

the null hypothesis is already expressing considerable scepticism. Values for

these prior distributions for 11 outcome measures are reported for the Urokinase

Pulmonary Embolism Trial (Sasahara et al., 1973, p. 27), and Example 5.4

considers one of these outcomes. This method was used in a number of major

studies alongside more standard approaches (Coronary Drug Project Research

Group, 1970; University Group Diabetes Program, 1970), although relative

betting odds were later dropped from the analysis (Coronary Drug Project

Research Group, 1975). A mass of probability on the null hypothesis has also

been used in a cancer trial (Freedman and Spiegelhalter, 1992) and for sensi-

tivity analysis in trial reporting (Hughes, 1993).

Although such an analysis provides an explicit probability that the null

hypothesis is true, and so appears to answer a question of interest, the prior

might be somewhat more realistic were the lump to be placed on a small range

of values representing the more plausible null hypothesis of ‘no clinically

effective difference’. Lachin (1981) has extended the approach to this situation

where the null hypothesis forms an interval, although Cornfield (1969) points

out that the ‘lump’ is in any case just a mathematical approximation to such a

prior.

Example 5.4 Urokinase:‘lumpandsmear’priordistributions

Reference: Sasahara et al. (1973).

Intervention: Urokinase treatment for pulmonary embolism.

Aim of study: To compare thrombolytic capability in urokinase (new) with
heparin (standard).

Study design: RCT entering 160 patients between 1968 and 1970. There
was no prespecified sample size or stopping rule, although data were
examined four times yearly by an advisory committee but not released to
the investigators.

Outcomemeasure: Eleven endpoints based on continuous measures from
angiograms, lung scans and haemodynamics.

Statisticalmodel: Normal likelihoods assumed for an estimate ym of treat-
ment effect y based onm pairs of randomised patients.

Prospectiveanalysis?: Yes, the prior elicitations were conducted before the
start of the trials, and the Bayesian results presented to the advisory
committee at each of their meetings.
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Prior distribution: A ‘lump-and-smear’ prior was assessed for each out-
come (Section 5.5.4). To select n0, Cornfield (1969) suggests setting the
expectation, given there is a positive effect, to the alternative hypothesis,
so from (5.4) the prior standard deviation s=

ffiffiffiffiffi
n0

p
is

ffiffiffiffiffiffiffiffi
p=2

p
yA, and hence

n0 ¼ 2s2=(py2A). Alternative hypotheses were assessed by members of
the advisory committee ‘based on what appeared reasonable from pre-
vious experience with thrombolytics’.

For the outcome ‘Absolute improvement in resolution on lung scan’,
we take s to be the value observed in the study, 9.35 (see below). The
alternative hypothesis was selected to be y ¼ 8, slightly less than a
1 standard deviation effect, giving rise to n0 ¼ 0:87. Thus the prior
under the alternative hypothesis is approximately equivalent to having
observed a single pair of patients, each with the same response. This is
a weak prior, but remarkably corresponds almost precisely to that rec-
ommended in recent theoretical work on Bayes factors (Kass and Was-
serman, 1995); see Section 4.4.3.

Loss functionordemands: None specified.

Computation/software: Conjugate normal analysis.

Evidence from study: For ‘Absolute improvement in resolution on
24-hour lung scan’, outcomes were available on 72 patients treated
with urokinase and 70 with heparin. The difference in mean responses
was ym ¼ 3:61, with standard error 1.11. Assuming m ¼ 71 pairs, we
have s ¼ 1:11

ffiffiffiffi
m

p
¼ 9:35, as mentioned above. Using (5.3) the ‘relative

betting odds’ (Bayes factor) can be calculated to be 0.052 – from Table
3.2 this corresponds to ‘strong’ evidence against the null hypothesis.
Setting p ¼ 0:5 to represent equal prior belief in the null and alternative
hypotheses, this leads to a probability 0:052=(1þ 0:052) ¼ 0:049 that
the null hypothesis is true.

Bayesian interpretation: Figure 5.9 shows the size of the ‘lump’ dropping
dramatically from its prior level. The result is highly significant classically:
z ¼ 3:61=1:11 ¼ 3:25, with a two-sided P-value of 0.001; Sasahara etal.
(1973) report that due to many outcome measures and sequential an-
alysis, only z > 3 would be taken as ‘significant’. Note that the Bayesian
posterior on the null is only 0.047, and so is not as extreme as the
P-value (Section 4.4.3).

Comments: In this application, m=n0 ¼ 71=0:87 ¼ 82; Figure 4.2 shows
that for such results with a classical two-sided P-value of 0.001,
the Bayes factor only provides ‘strong’ evidence against the null hypoth-
esis. The prior drawn in Figure 5.9(a) provides a clue as to the difference
between the two approaches: although the data observed are unlikely
under the null hypothesis, the prior under the alternative is so diffuse
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(a) Prior distribution

Improvement with urokinase in absolute resolution at 24-hour lung scan
−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

−5 −4 −3 −2 −1

−5 −4 −3 −2 −1

Urokinase inferior
Urokinase superior

0.5
0.5

0.5

(b) Likelihood

Improvement with urokinase in absolute resolution at 24-hour lung scan

Urokinase inferior
Urokinase superior

0.001
0.999

(c) Posterior distribution

Improvement with urokinase in absolute resolution at 24-hour lung scan

Urokinase inferior 0.001
Urokinase superior 0.999

0.049

Figure 5.9 Results from the Urokinase trial analysed by Cornfield using ‘relative
betting odds’ (Bayes factors). Data which are classically ‘highly significant’ (z ¼ 3:25,
two-sided P-value 0.001) only provide ‘strong’ evidence against the null hypothesis
(Bayes factor � 1/20).

that it gives little weight to the parameter values suggested by the
data. Hence the data are not strongly supported by either hypothesis,
although the alternative receives the benefit of the doubt.

5.6 SENSITIVITY ANALYSIS AND ‘ROBUST’ PRIORS

An integral part of any good statistical report is a sensitivity analysis of assump-

tions concerning the form of the model (the likelihood). Bayesian approaches
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have the additional concern of sensitivity to the prior distribution, both in view

of its controversial nature and because it is by definition a subjective assumption

that is open to valid disagreement. We reiterate that this fits naturally into the

idea of a ‘community of priors’ (Kass and Greenhouse, 1989).

A natural development when carrying out a Bayesian post-hoc analysis,

rather than a full Bayesian pre-study design, is to avoid all prespecification of

priors and simply report the impact of the data on a suitable range of opinion:

O’Rourke (1996) emphasises that posterior probabilities ‘should be clearly and

primarily stressed as being a ‘‘function’’ of the prior probabilities and not the

probability of treatment effects’. We can therefore take the following steps after

having observed the data:

1. Select a suitably flexible class of priors.

2. Examine how the conclusions depend on the choice of prior.

3. Identify the subsets of priors that, if seriously held, would lead to posterior

conclusions of specific interest (say, the clinical superiority of an intervention).

4. Report the results and hence allow the audience to judge whether their own

prior lies in the identified ‘critical’ subsets.

This is known as the ‘robust’ approach, and is also known as ‘prior partitioning’

(Carlin and Sargent, 1996; Sargent and Carlin, 1996). See Section 6.6.2 for

further discussion of this approach to monitoring clinical trials.

Three increasingly complex ‘communities’ of priors have been considered:

1. Discrete set. Many case studies carry out analysis of sensitivity to a limited list

of possible priors, possibly embodying scepticism, enthusiasm, clinical opin-

ion and ‘ignorance’; see, for example, Examples 6.6 and 6.7. It is also

possible to consider sensitivity to the opinions of multiple experts, perhaps

summarised by their extremes of opinion (Section 5.2.3).

2. Parametric family. If the community of priors can be described by one varying

parameter, then it is possible to graphically display the dependence of the

main conclusion on that parameter. Hughes (1991) suggested examining

sensitivity of conclusions to priors based on previous trial results and that

reflecting investigators’ opinions, and later Hughes (1993) gives an example

which features a point-mass prior on zero, and an explicit plot of the poster-

ior probability against the prior probability of this null hypothesis. Example

5.2 carries out a similar analysis in which the ‘discount’ parameter is

continuously varied, and the ‘credibility’ analysis described in Section 3.11

provides such a tool for the class of normal sceptical priors.

3. Non-parametric family. The ‘robust’ Bayesian approach has been further

explored by allowing the community of priors to be a non-parametric family

in the neighbourhood of an initial prior. For example, Gustafson (1989),

considers the ECMO study (Example 6.9) with a community centred around

a ‘non-informative’ prior but 20% ‘contaminated’ with a prior with minimal
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restrictions, such as being unimodal. The maximum and minimum posterior

probability of the treatment’s superiority within such a class can be plotted,

providing a sensitivity analysis. A similar approach has also been taken by

Greenhouse and Wasserman (1995) and Carlin and Sargent (1996).

One should, however, beware of carrying out too restricted a sensitivity

analysis. Stangl and Berry (1998) emphasise the need for a fairly broad com-

munity, taking into account not just the spread of the prior but also its location.

They also stress that sensitivity to exchangeability and independence assump-

tions should be examined and that, while sensitivity analysis is important, it

should not serve as a substitute for careful thought about the form of the prior

distribution.

There is limited experience of reporting such analyses in the medical litera-

ture, and it has been suggested (Koch, 1991; Hughes, 1991; Spiegelhalter et al.,

1994) that a separate ‘interpretation’ section is required to display how the data

in a study would add to a range of currently held opinions (Section 3.21). It

would be attractive for people to be able to carry out their own sensitivity

analysis of their own prior opinion; Lehmann and Goodman (2000) describe a

computing architecture for this, and available software and web pages are

described in Section A.2.

5.7 HIERARCHICAL PRIORS

The essence of hierarchical models was summarised in Section 3.17: by assum-

ing that multiple parameters of interest are drawn from some common prior

distribution, i.e. they are exchangeable, we can ‘borrow strength’ between

multiple substudies and improve the precision for each parameter. These models

form an essential component of much of Bayesian analysis, but their added

power does not come without cost. The three essential assumptions are: ex-

changeability of parameters �k, a form for the random-effects distribution of the

�k, and a ‘hyperprior’ distribution for the parameters of the random-effects

distribution of the �k. All these assumptions can be important, and none can

be made lightly.

5.7.1 The judgement of exchangeability

An assumption of exchangeability underlies any random-effects analysis,

whether Bayesian or classical. Nevertheless, Tukey (1977) says that ‘to treat

the true improvements for the classes concerned as a sample from a nicely

behaved population . . . does not seem to me to be near enough the real world to

be a satisfactory and trustworthy basis for the careful assessment of strength of

evidence’. But, as noted in Section 3.4, there does not need to be any actual
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population from which units are sampled, and the very fact that we are carrying

out simultaneous analysis on a number of units suggests some relationship

between them. In addition, if there are known reasons to suspect that specific

units are systematically different, then those reasons might be modelled by

including relevant covariates and then the residual variability more plausibly

reflects exchangeability; for example, Dixon and Simon (1991) discuss the

reasonableness of exchangeability assumptions in the context of subset analysis

(Section 6.8.1), and observe that any subsets of prior interest should be con-

sidered separately.

5.7.2 The form for the random-effects distribution

This is generally taken to be normal until evidence shows otherwise: if there is

no reason to suspect systematic difference between units, a central limit the-

orem argument could be used to justify normality as arising from the sum of

many small unobserved differences between units. Normality is computation-

ally helpful, although with the advent of MCMC methods it has less importance,

and ‘heavier-tailed’ distributions such as the Student’s t can be adopted

(Smith et al., 1995).

Unlike other prior assumptions, the form of the random-effects distribution

can be empirically checked from the data, although strategies for this are

outside the scope of this book; see, for example, Lange and Ryan (1989),

Christiansen and Morris (1996) and Hardy and Thompson (1998).

5.7.3 The prior for the standard deviation of the random
effects*

In a hierarchical model � � N[�,t2], the random-effects standard deviation t
plays an important role, and its value can be very influential in assessing the

uncertainty concerning � or in predicting future �s. However, there may be

limited information in the data to provide a precise estimate of t due either to

there being few units, or to each unit providing little information, or both. This

can make the prior for t particularly important, and yet neither is there any

generally accepted reference prior for t, nor are there formally established

techniques for assessing a subjective prior distribution.

Three strategies have been adopted which broadly follow the ideas for par-

ameters of primary interest described earlier: elicitation (Section 5.2), summary

of evidence (Section 5.4), and reference priors (Section 5.5).

Elicitation of opinion. In order to be able to make judgements about their

relative plausibility, we need to have a clear interpretation of what different

values of t signify. We can first note that 95% of values of � will lie in the
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interval �� 1:96t, and hence the 97.5% and 2.5% values of � are 2� 1:96� t
apart. � will often be measured on a logarithmic scale, for example as a log(odds

ratio), and hence the ratio of the 97.5% odds ratio to the 2.5% odds ratio is

exp (3:92t), roughly representing the ‘range’ of odds ratios. For example, in the

context of meta-analysis, Smith et al. (1995) thought that it was unlikely that

the between-study odds ratios would vary by more than an order of magnitude,

and hence considered exp (3:92t) ¼ 10, or t ¼ log (10)=3:92 ¼ 0:59 to repre-

sent a ‘high’ value of the standard deviation t.
An alternative approach is to imagine two randomly chosen �s drawn from

the random-effects distribution, whose difference will have distribution

�1 � �2 � N[0, 2t2] by (2.26). Their absolute difference j�1 � �2j therefore

has a normal distribution constrained to be greater than 0, which is a half-

normal distribution HN[2t2] (Section 2.6.7). This distribution has median

F�1(0:75)�
ffiffiffi
2

p
t ¼ 1:09t, which is therefore the median difference between

the maximum and minimum of a random pair of �s (Larsen et al., 2000). If � is,
for example, a log(odds ratio), then exp (1:09t) is the median ratio of the

maximum to the minimum of any random pair of odds ratios drawn from the

distribution.

Table 5.2 illustrates these two interpretations for a range of values of t when

� represents a log(odds ratio). It is apparent that t ¼ 1 corresponds to a sub-

stantial heterogeneity, with a random pair having a median ratio of 3, for

example one trial showing no effect and another showing an odds ratio of 3.

t ¼ 2 means the trials are effectively independent.

Table 5.2 Possible interpretations of t, the standard deviation of the log(odds
ratio) in a hierarchical model � � N[�, t2]. The ‘range’ exp (3:92t) is actually the ratio
of the 97.5% to the 2.5% point of the distribution of odds ratios, while exp (1:09t) is
the median ratio of the maximum to minimum odds ratio in a random pair of �s
drawn from the distribution.

t exp (3:92t): ‘range’
of odds ratios

exp (1:09t): median ratio
of random pair

0.0 1.00 1.00
0.1 1.48 1.11
0.2 2.19 1.24
0.3 3.24 1.39
0.4 4.80 1.55
0.5 7.10 1.72
0.6 10.51 1.92
0.7 15.55 2.14
0.8 23.01 2.39
0.9 34.06 2.67
1.0 50.40 2.97
1.5 357.81 5.13
2.0 2540.20 8.84

Hierarchical priors 169

Chapter 5 Prior Distributions 17.11.2003 4:50pm page 169



In conclusion, values of t from 0.1 to 0.5 may appear reasonable in many

contexts, from 0.5 to 1.0 might be considered as fairly high, and above 1.0

would represent fairly extreme heterogeneity.

When assessing a subjective prior distribution for t, we first need to consider

whether t ¼ 0 is a plausible value, representing no variability between �s. At
the other extreme, we should think of an ‘upper’ value for twhich we shall label

tu; Table 5.2 may be useful for this. A possible prior distribution is then a half-

normal distribution HN[(tu=1:96)
2] (Pauler and Wakefield, 2000). This will

have its mode at 0 and be steadily declining in t, with an upper 95% point at

tu. Its median will be F�1(0:75)� tu=1:96 ¼ 0:39tu. This is illustrated in

Figure 5.10(a) for tu ¼ 1, which may be a reasonable prior in many situations;

see Example 8.5.

Summary of evidence. It is natural to construct a prior distribution for t from an

analysis of past hierarchical models in the context being considered, in order to

determine reasonable values of t experienced in practice. Thus we could, for

example, study the typical variability between subgroups, between institutions

in their clinical performance, or between centres in multi-centre clinical trials.

In the field of meta-analysis, Higgins and Whitehead (1996) and Smith et al.

(1996) both consider empirical distributions of past ts: essentially they are

carrying out a meta-analysis of meta-analyses. Higgins and Whitehead

(1996) go on to formally construct an additional level in the hierarchical

model in which t is a random effect with a distribution. They restrict attention

to gamma distributions for t�2, and estimate that a t�2 for a new meta-analysis

has a Gamma[1.0, 0.35] distribution. Transforming this onto the t scale using
standard theory for probability distributions yields a root-inverse-gamma distri-

bution RIG[1, 0.35] (Section 2.6.6). This has its mode at t ¼ 0:48, meanffiffiffiffiffiffiffiffiffiffiffiffiffi
0:35�

p
¼ 1:05 and a standard deviation of 1. Figure 5.10(b) reveals it to

rule out low values of t.

Default ‘non-informative’ priors. A number of suggestions have been made for

placing a ‘default’ prior distribution on t or, equivalently, t2. The standard

reference prior for a sampling variance, p(�2) / ��2 (Section 5.5.1), is inappro-

priate at the random-effects level as it gives an improper posterior distribution

(Berger, 1985). Five of the main contenders are listed below.

(a) A ‘just proper’ prior. An inverse gamma distribution such as

t�2 � Gamma[0:001, 0:001]

is proper and close to being uniform on log (t). Figure 5.10(c) shows that it

gives a high weight near t ¼ 0 and so, if the likelihood supports low values

of t, it could show a preference for a low variance. This may be reasonable

behaviour but should be acknowledged.
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(a) half-normal
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(b) Gamma[1, 0.35] on 1/τ2 (c) Gamma[0.001,0.001] on 1/τ2
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(d) uniform on τ2 (e) uniform on τ (f) uniform shrinkage, s0 = 0.2

(g) uniform shrinkage, s0 = 1.0

tau tau tau

(h) Dumouchel, s0 = 0.2 (i) Dumouchel, s0 = 1.0

Figure 5.10 Alternative prior distributions on the between-unit standard deviation t:
see the text for discussion of each possible choice. (a) supports equality between units
(t ¼ 0) and discounts substantial heterogeneity (t ¼ 1); (b) is based on an empirical
summary of past meta-analyses and forces heterogeneity; (c) is an ‘almost’ improper
prior that has been widely used but gives strong preference for small t, (f) to (i) depend on
the amount of evidence in the data, with s0 ¼ 1 representing weak evidence, and
s0 ¼ 0:2 strong evidence.

(b) Uniform on t2. The uniform prior

p(t2) / constant

is recommended by Gelman et al. (1995) and can be restricted to a suitable

range to make it a proper distribution. Figure 5.10(d) shows its preference

for high values of t, which does not appear attractive.

(c) Uniform on t. The uniform prior

p(t) / constant

is a natural contender and is shown in Figure 5.10(e). Nevertheless,

it would be inappropriate to term this ‘non-informative’, as it is a fairly
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strong statement to declare that small values of t are as likely as large

values.

(d) Uniform shrinkage priors. Following Section 3.17, we assume an approxi-

mate normal likelihood with yk � N[�k,s
2
k ]. A number of authors (Chris-

tiansen and Morris, 1997b; Natarajan and Kass, 2000; Daniels, 1999;

Spiegelhalter, 2001) have investigated a prior on t2 that is equivalent to a

uniform prior on the ‘average’ shrinkage

B0 ¼ s20=(s
2
0 þ t2)

where s20 is the harmonic mean of the s2k , i.e.

1

s20
¼ 1

K
�k

1

s2k
:

Placing a uniform distribution on B0 is equivalent to 1� B0 ¼ t2=(s20 þ t2)
having a uniform distribution. This leads to

p(t2) ¼ s20

(s20 þ t2)2
,

p(t) ¼ 2ts20
(s20 þ t2)2

:

The uniform shrinkage prior distributions have the following properties:

t2 t

Mode 0 s0=3 ¼ 0:57s0
First quartile s20=

ffiffiffi
3

p
s0=

ffiffiffi
3

p
¼ 0:57s0

Median s20 s0
Mean – �s0=2 ¼ 1:57s0
Third quartile 3s20

ffiffiffi
3

p
s0 ¼ 1:73s0

Variance – –

The prior on t2 has an asymptote at 0, but the implied prior on t returns to
0 at the origin.

Suppose s2k ¼ �2
k=nk, so that

yk � N[�k, �2
k=nk]:

Three situations can be distinguished:

(i) �2
k ¼ �2, which is assumed known, such as the frequent adoption of

�2 ¼ 4. Then s20 ¼ �2=n.
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(ii) �2
k ¼ �2, which is unknown. �2 could then be given a standard

Jeffreys prior p(�2) / ��2 – this induces an appropriate dependency

between t2 and �2.

(iii) Each �2
k is unknown. The �2

k could then be assumed either exchange-

able or independent. Within-unit empirical estimates �̂�2
k can be used

to estimate s�2
0 by

1

s20
¼ 1

K
�k

nk

�̂�2
k

:

(d) Essentially, fixed effects are fitted first and then the average precision

is used as an estimate of s�2
0 . This approach is illustrated in Examples

6.10 and 8.1.

(d) In studies based on events we might equate s20 to 4=n0, where n0 represents

themeannumber of events in each study.Hence s0 ¼ 0:2corresponds to large
studies with an average of 100 events each, while s0 ¼ 1:0 corresponds to

very small studieswith an average of 4 events each. These priors are shown in

Figures 5.10(f) and 5.10(g), showing that large studies lead to strong prior

weight on low values of t and hence an expectation of the studies showing

‘similar’ results.

(e) DuMouchel priors. DuMouchel (DuMouchel and Normand, 2000) has sug-

gested a similar form to the uniform shrinkage prior but assuming a uniform

prior for s0=(s0 þ t), which implies

p(t) ¼ s0

(s0 þ t)2
,

p(t2) ¼ s0

2t(s0 þ t)2
:

(d) The distributions have the following properties:

t2 t

Mode 0 0
First quartile s20=9 s0=3
Median s20 s0
Mean – –
Third quartile 9s20 3s0
Variance – –

Note that the quartiles are at B0 ¼ 0:1, 0:5, 0:9, showing the DuMouchel

prior gives preference to either strong or weak shrinkage. Figures 5.10(h)

and 5.10(i) show the DuMouchel priors for s0 ¼ 0:2 and s0 ¼ 1:0, revealing
the preference of these priors for both low and high values of t.

In general our preference will be to use a uniform prior on t as a baseline

when there is reasonable information from the data. When prior information is
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strong or important a suitably informative prior can be chosen: the half-normal

appears particularly attractive.

These points serve to underline the importance of carefully choosing and

justifying the prior distributions used within a hierarchical setting, and subject-

ing those used to the type of sensitivity analysis adopted in Examples 6.10, 7.2,

8.1, 8.3 and 8.5.

5.8 EMPIRICAL CRITICISM OF PRIORS

The ability of subjective prior distributions to predict the true benefits of inter-

ventions is clearly of great interest, and Box (1980) suggested a methodology

for comparing priors with subsequent data. The prior is used to derive a

predictive distribution for future observations, and thus to calculate the chance

of a result with lower predictive ordinate than that actually observed: when the

predictive distribution is symmetric and unimodal, this is analagous to a trad-

itional two-sided P-value in measuring the predictive probability of getting a

result at least as extreme as that observed. With normal assumptions we can

use (3.23) but substituting m for n, to give a pre-trial predictive distribution

Ym � N �, �2 1

n0
þ 1

m

� �� �
: (5:5)

Given observed ym, the predictive probability of observing a Ym less than that

observed is

P(Ym < ym) ¼ F
ym � �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n0
þ 1

m

r
0
BB@

1
CCA, (5:6)

and hence Box’s generalised significance test is given by

2min [P(Ym < ym), 1� P(Ym < ym)]:

Another way of obtaining (5.6) is as the tail area associated with a standardised

test statistic contrasting the prior and the likelihood, i.e.

zm ¼ ym � �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n0
þ 1

m

r ,

showing that Box’s statistic explicitly acts as a measure of conflict between prior

and data.
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Example 5.5 GREAT (continued): Criticismof the prior

In Example 3.6, m ¼ �0:26, n0 ¼ 236:7, m ¼ 30:5, s ¼ 2 and hence the
predictive distribution for the observed log(OR) has mean �0:26 and
standard deviation 0.39. This is shown in Figure 5.11 with the observed
OR ¼ 0:48 (ym ¼ log (OR) ¼ �0:74) marked. Box’s measure is twice the
shaded area, which is 2F( (� 0:74þ 0:26)=0:39) ¼ 0:21. We may
also obtain this result as the standardised test statistic between prior
and likelihood z ¼ �1:25, with a two-sided P-value of 0.21. Thus there
is no strong evidence for conflict between prior and data in the GREAT
example.

There have been a number of prospective elicitation exercises for clinical

trials, and many of these trials have now reported their results. Table 5.3

shows a selection of results, including the intervals for the prior distributions

for treatment effects, the evidence from the likelihood, and Box’s P-value sum-

marising the conflict between the prior and the likelihood. The references for the

prior assessments and the data are provided at the end of the section.

Predicted odds ratio of 30-day mortality on home therapy to control
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.3

Figure 5.11 Predictive distribution for observed OR in the GREAT trial with
observed OR ¼ 0.48 (log(OR) ¼ �0:74) marked. Box’s measure of conflict
between prior and data is twice the shaded area ¼ 0.21.
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Table 5.3 A comparison of some elicited subjective prior distributions and the
consequent results of the clinical trials. In each case a pooled prior was provided,
assumed normal on a log(hazard ratio) scale – Box’s P-value is calculated on this scale.
This is transformed to a hazard ratio (HR) scale where HR < 1 corresponds to benefit
of the new treatment: median and 95% intervals are given (note the gastric cancer
results are reported with the inverse hazard ratio in Example 6.4).

Study Prior Likelihood Z P

HR 95% interval HR 95% interval

CHART (Lung)1 0.76 (0.48, 1.19) 0.76 (0.63, 0.90) 0.00 1.00
CHART (HN)1 0.72 (0.44, 1.20) 0.95 (0.79, 1.14) 1.02 0.31
Thiotepa X12 0.61 (0.37, 1.01) 1.11 (0.78, 1.59) 1.91 0.06
Osteosarcoma3 0.90 (0.55, 1.50) 1.07 (0.79, 1.45) 0.58 0.56
Gastric cancer4 0.88 (0.61, 1.28) 1.10 (0.87, 1.39) 1.00 0.32

Sources: 1Example 6.6. 2Spiegelhalter and Freedman (1986) and Richards et al. (1994). 3Spiegel-

halter et al. (1993) and Souhami et al. (1994). 4Example 6.4.

Table 5.3 shows the generally poor experience obtained from prior elicitation.

The clinicians are universally optimistic about the new treatments (median of

prior hazard ratios less than 1), whereas only two of the trials – the CHART

trials – eventually showed any evidence of benefit from the new treatment

(likelihood hazard ratio less than 1), and only the CHART lung trial showed

‘significant’ benefit. The thiotepa trial shows particularly high conflict between

data and prior, with the clinicians expecting a substantial benefit from thiotepa

which failed to materialise. This also reflects the experience of Carlin et al.

(1993) in their elicitation exercise.

Far from invalidating the Bayesian approach, such a conflict between prior

and data only serves to emphasise the importance of pre-trial elicitation of belief;

having these opinions explicitly recorded will help a data monitoring committee

to focus on the difference between anticipated and actual results. Of course,

the precise action to be taken in the face of considerable conflict will depend

on the circumstances.

5.9 KEY POINTS

1. The use of a prior is based on judgement and hence a degree of subjectivity

cannot be avoided.

2. The prior may be important and is not unique, and so a range of options

should be examined in a sensitivity analysis.

3. The quality of subjective priors (as assessed by predictions) show predictable

biases in terms of enthusiasm.

4. For a prior to be taken seriously by an external audience, its basis must be

explicitly given. A variety of models exist for using historical data as a basis

for prior distributions.
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5. Archetypal priors, expressing both scepticism and enthusiasm, may be useful

for identifying a reasonable range of prior opinion.

6. Great care is required in using default priors intended to be minimally

informative.

7. Exchangeability assumptions lead to hierarchical models that are valuable in

many situations, but such judgements should not be made casually.

8. Sensitivity analysis plays a crucial role in assessing the impact of particular

prior distributions, whether elicited, derived from evidence, or reference, on

the conclusions of an analysis.

EXERCISES

5.1. Consider tossing a drawing-pin (thumbtack) onto a flat surface.

(a) Assess your beliefs about the true proportion of times that it will fall

point-up, in terms of a best estimate, and low and high assessments.

(b) Derive a beta prior distribution for this proportion based on these

beliefs.

(c) Use the conjugate beta-binomial model of Section 3.6.2 to update these

beliefs after 12 tosses using the same hand.

5.2. Prior to the publication of the UKMedical Research Council RCT evaluating

the use of high-energy neutrons for treatment of patients with tumours of

the pelvic region (bladder, cervix, prostate and rectum) in 1991 a number of

RCTs evaluating low-energy neutrons had been reported (Errington et al.,

1991). The results of these RCTs are summarised in Table 5.4. (a) Assuming

balanced trials, approximate the log(hazard ratio) and its variance for each

of these studies. (b) Use the ‘method of moments’ (3.37) to estimate the

between-study variance t2. Use this historical evidence to establish a prior

distribution for the MRC trial, assuming (c) the new trial is estimating the

Table 5.4 Summary of RCT evidence in terms of survival at 12 months for
low-energy neutron therapy compared to conventional radiotherapy for tumours of the
pelvic region.

Study Year of
publication

Site Neutrons

Deaths(O) Expected(E) V[0-E]

Batterman 1982 Bladder and Rectum 34 32.6 5.3
Pointon 1985 Bladder 16 13.7 5.1
Duncan 1987 Bladder 26 20.1 6.7
Duncan 1987 Rectum (inoperable) 17 12.8 2.1
Duncan 1987 Rectum (recurrent) 10 7.3 2.0
Duncan 1987 Bladder 4 4.2 0.6
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mean treatment effect of the previous trials, and (d) the new trial is

exchangeable with the previous trials. The fact that the previous trials

were low-energy, and the new trial high-energy, might lead one to doubt

the exchangeability model.

(e) What model for systematic bias might be reasonable?

5.3. In Exercise 5.2, on average the oncologists claimed that they required

the survival rate for neutron therapy to be 61.5%, relative to a 1-year

survival rate of 50% in the control group, before considering it for

routine treatment. The range of equivalence was therefore taken to be

from 50% to 61.5%. For each of the situations modelled, obtain the

prior probabilities of no benefit of neutrons relative to conventional therapy,

the range of equivalence, and clinical benefit in favour of neutron therapy.

5.4. In addition to the meta-analysis in Exercise 5.2, the beliefs and

clinical demands of ten oncologists were elicited before the final analysis of

the high-energy trial data. Table 5.5 summarises the elicited prior distribu-

tions for all ten oncologists for the 1-year survival rate on neutron therapy

compared to a 50% survival rate with conventional therapy.

(a) Calculate an average histogram.

(b) Transform this to a histogram on the log(hazard ratio) scale using the

techniques in Example 5.1.

(c) Fit a normal distribution to this distribution by matching the mean and

variance or by some other method.

(d) Given the disagreement between the oncologists, do you think it rea-

sonable to create such a pooled distribution?

5.5. Prior to the publication of the HAI RCT considered in Exercise 2.7, results

from five previous RCTs had been published, and these are summarised in

terms of overall survival in Table 5.6. (a) For each trial, estimate the

Table 5.5 Elicited prior beliefs in terms of percentage survival at 12 months for high-
energy neutron therapy compared to a 50% survival rate for conventional radiotherapy
for tumours of the pelvic region.

ID Neutron 1-year survival rate (%)

15� 20� 25� 30� 35� 40� 45� 50� 55� 60� 65� 70� 75� 80� 85� 90� 95� Total

1 0 0 0 10 20 25 15 15 10 5 0 0 0 0 0 0 0 100

2 0 0 5 10 20 35 30 0 0 0 0 0 0 0 0 0 0 100

3 0 0 0 0 0 20 60 20 0 0 0 0 0 0 0 0 0 100

4 0 0 0 0 0 30 30 30 10 0 0 0 0 0 0 0 0 100

5 0 0 5 10 25 20 15 10 10 5 0 0 0 0 0 0 0 100

6 0 0 0 0 0 0 5 0 0 0 15 20 20 15 10 10 5 100

7 5 5 10 25 25 15 5 2.5 2.5 2.5 2.5 0 0 0 0 0 0 100

8 0 0 0 5 5 10 25 25 15 5 2.5 2.5 2.5 2.5 0 0 0 100

9 0 0 0 5 5 10 25 25 15 5 2.5 2.5 2.5 2.5 0 0 0 100

10 0 0 0 15 15 25 20 20 5 0 0 0 0 0 0 0 0 100
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5.6. log(hazard ratio) and the effective number of events assuming � ¼ 2.

Obtain a prior distribution for the log(hazard ratio) for overall survival of

HAI compared to control patients, assuming (b) a common effect in all

trials, (c) that the past trials are exchangeable with the current trial.

5.6. Sutton et al. (2000, p. 261) consider 17 single-arm studies of either

radiotherapy alone (RTx) following surgery for childhood medulloblas-

toma, or radiotherapy together with adjuvant chemotherapy (RTx þ
Chm) following surgery. Table 5.7 displays the 5-year survival rates

together with standard errors for all 17 studies.

Table 5.6 Summary of RCT evidence in terms of overall survival, prior to 1994, for
HAI compared to control for the treatment of non-resectable liver metastases associated
with primary colorectal cancer.

Study Year publication HAI Control O�E V[0-E]

Deaths Total Deaths Total

MSKCC 1987 43 45 48 48 �5.8 21.9
NCCTG 1990 39 39 35 35 �1.0 17.9
NCI 1987 25 32 26 32 �2.7 12.5
City of Hope 1986 9 9 6 6 �2.3 3.3
France 1992 72 81 78 82 �14.2 36.4

Table 5.7 Five-year survival rates and standard errors for single-arm studies
considering either radiotherapy alone (RTx) or radiotherapy together with adjuvant
chemotherapy (RTx þ Chm) following surgery for childhood medulloblastoma.

Study RTx þ Chm RTx

S5 SE(S5) S5 SE(S5)

1 0.83 0.030 – –
2 0.82 0.120 – –
3 0.96 0.039 – –
4 0.82 0.384 – –
5 0.55 0.188 – –
6 0.64 0.170 – –
7 0.26 0.196 – –
8 0.60 0.097 – –
9 0.36 0.170 – –
10 0.93 0.120 – –
11 – – 0.71 0.184
12 – – 0.48 0.223
13 – – 0.41 0.087
14 – – 0.32 0.057
15 – – 0.34 0.080
16 – – 0.71 0.068
17 – – 0.33 0.071

Exercises 179

Chapter 5 Prior Distributions 17.11.2003 4:50pm page 179



(a) Looking at the data, do you think a pooled effect is a reasonable

assumption?

(b) Estimate the between-study variance for each treatment using (3.37).

(c) Assuming a normal random-effects model, estimate a prior distribu-

tion for the 5-year survival in a new study, assuming exchangeability

with the previous studies.

(d) Combine these two prior distributions into a prior for the difference in

the 5-year survival rate, i.e. RTx þ Chm � RTx, in a proposed clinical

trial.

(e) Is normality a reasonable assumption for the random-effects distribu-

tion?

5.7. The trial discussed in Exercise 5.2 ended by yielding an estimated hazard

ratio of 1.52 (95% CI from 0.91 to 2.50), i.e. in favour of the control

group (Errington et al., 1991).

(a) For the data-based prior using all six previous studies, assess the

conflict of these prior distributions, using the methods of Section 5.8.

(b) Repeat this for oncologists 6 and 7.

5.8. Verify for a normal model in Section 5.4, when there is a single historical

study, the assumptions under which exchangeability, bias and discount-

ing can lead to the same prior distribution. Does this hold for multiple

studies?

5.9. Plot three half-normal prior distributions for a model parameter t which

have the properties that:

5.9. (a) the mean of t is 1.5;
5.9. (b) the median is 3; and

5.9. (c) the probability of t being greater than 1 is 5%.

5.10. For the magnesium meta-analysis in Example 3.13 calculate and plot

DuMouchel and uniform shrinkage prior distributions for the random-

effects standard deviation t.
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