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Randomised Controlled
Trials

A Bayesian: one who asks you what you think before a clinical trial in order to tell you what

you think afterwards. (Senn, 1997b)

6.1 INTRODUCTION

Randomised controlled trials are traditionally considered the ‘gold standard’ for

evaluation of health-care interventions, and have provided fertile territory for

arguments between alternative statistical philosophies. In this chapter we con-

sider a number of specific issues in which a distinct Bayesian approach is

identifiable: these include the role of decision theory, ethics of randomisation,

use of historical controls, selection of sample size, monitoring sequential studies,

subset analysis, alternative designs and so on. Some of the strongest arguments

for the Bayesian approach have been made in this context, with notable

examples being Cornfield (1976), Berry (1993) and Kadane (1995). Each of

these authors has emphasised the internal consistency of the Bayesian ap-

proach, and welcomed the need for explicit prior distributions and loss functions

as producing scientific openness and honesty: see Section 6.13 for additional

references by these and other authors.

The issues in this chapter are largely common to trials both in the public sector

and in the pharmaceutical industry. For industry-sponsored trialswe shall use the

standard language of drug development: phase I studies deal with identifying a

safe dose, usually on healthy volunteers; phase II studies are concerned with

finding an effective dose; phase III studies are intended to prove treatment benefit

over an appropriate control; and phase IV studies monitor the use and possible

side-effects of a drug in routine use. This structure is necessarily rather simplistic,

and there are increasingmoves towardhybrid studies in order to speedup thedrug

development process. Parallel phases of development can be given for complex
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public health interventions (Campbell et al., 2000): in phase I an intervention is

developed possibly through a theoretical model; in phase II explanatory trials in

tightly controlled situations seek to demonstrate the potential efficacy of the

intervention; in phase III pragmatic trials evaluate its costs and effectiveness in

practice; and in phase IV the intervention is rolled out into routine use.

We shall begin by considering the basic issue of whether a trial is for inference

or decision (Section 6.2), and then investigate the role of null hypotheses and

their relation to the demands set of a new intervention (Section 6.3). The ethics

of randomisation are then viewed from a Bayesian perspective (Section 6.4). A

substantial section explores a number of ways in which prior opinion can be

incorporated into sample-size calculations (Section 6.5), followed by a full

discussion of the many ways to tackle the important issue of trial monitoring

(Section 6.6), and the possible use of sceptical priors in deciding whether a

confirmatory trial is necessary (Section 6.7). Apart from repeated looks at the

data, ‘multiplicity’ features in many aspects of trial design and analysis, and we

briefly discuss multiple subsets, outcomes, centres and trial arms (Section 6.8).

The use of historical control groups fits naturally into a Bayesian perspective

and is treated in some detail (Section 6.9); different trial designs are then

examined, for example data-dependent allocation (Section 6.10) and multiple

N-of-1 studies (Section 6.11). We only briefly consider phase I and II studies

(Section 6.12), and discussion about the regulatory context is left until we

consider policy decisions (Chapter 9).

6.2 USE OF A LOSS FUNCTION: IS A CLINICAL TRIAL FOR

INFERENCE OR DECISION?

There has been a heated dispute about whether a clinical trial should be

considered as a decision problem, with an accompanying loss function, or as

an inference problem in which no explicit loss function is developed and conclu-

sions are based solely on the posterior distributions of quantities of interest. This

has been a point of clear distinction between different schools of Bayesianism

(Section 3.20). Here we briefly review the arguments.

1. A clinical trial should be a decision. Lindley (1994) categorically states that

‘Clinical trials are not there for inference but to make decisions’, while Berry

(1994) states that ‘deciding whether to stop a trial requires considering why

we are running it in the first place, and this means assessing utilities’. Healy

(1978) considers that ‘the main objective of almost all trials on human

subjects is (or should be) a decision concerning the treatment of patients in

the future’. The potential role for explicit statement of a loss function is a

running theme throughout discussions on sample size (Section 6.5), sequen-

tial analysis (Section 6.6.4), adaptive allocation (Section 6.10) and payback

from research programmes (Section 9.10), and many would argue that the
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eventual decision is inseparable from the design and analysis of a study.

From an economic perspective, it is claimed that a utility approach to clinical

trial design and analysis is necessary in order to prevent conclusions

based on inferential methods leading to health or monetary losses. This per-

spective derives from the observation made in Section 3.14 that only the

expected utility of a decision is relevant, and expressions of uncertainty are,

theoretically, of no concern except when deciding whether to collect further

evidence.This echoes theoriginalworkonpragmaticclinical trialsbySchwartz

et al. (1980), in which it was argued that P-values and interval estimates are

irrelevant to trials that guide decisions. The role for decision theory in health

policy and regulation will be covered in Section 9.11.

The explicit use of utility functions within the design and monitoring

of clinical trials is controversial but has been explored in a number of contexts:

for example, Berry and Stangl (1996a) discuss the problems of whether to stop

a phase II trial based on estimating the number of women in the trial and who

will respond in the future;whether to continueavaccine trial by estimating the

number of children who will contract the disease; and the use of adaptive

allocation in a phase III trial such that at each point the treatment which

maximises the expected number of responders is chosen.

2. A clinical trial provides an inference. Armitage (1985), Breslow (1990), DeMets

and Lan (1994), Simon (1977) and Orourke (1996) all describe how it is

unrealistic to place clinical trials within a decision-theoretic context, primar-

ily because the impact of stopping a trial and reporting the results cannot be

predicted with any confidence: Peto (1985), in the discussion of Bather

(1985), states that ‘Bather, however, merely assumes . . . ‘‘it is implicit that

the preferred treatment will then be used for all remaining patients’’ and

gives the problem no further attention! This is utterly unrealistic, and leads

to potentially misleading mathematical conclusions’. Peto goes on to argue

that a serious decision-theoretic formulation would have to model the sub-

sequent dissemination of a treatment.

3. It depends on the context. Whitehead (1997b, p. 208) points out that the

theory of optimal decision-making only exists for a single decision-maker,

and that no optimal solution exists when making a decision on behalf of

multiple parties with different beliefs and utilities. He therefore argues that

internal company decisions at phase I and phase II of drug development may

be modelled as decision problems, but that phase III trials cannot (White-

head, 1993).

Our personal view is that the context of evaluation often means that the

investigators who design and carry out a study are generally not the same body

who make decisions on the basis of the evidence (Section 3.1), and so, taking a

pragmatic rather than ideological perspective, our general separation of infer-

ence and decision appears reasonable.
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6.3 SPECIFICATION OF NULL HYPOTHESES

Attention in a trial usually focuses on the null hypothesis of treatment equiva-

lence expressed by � ¼ 0, but realistically this is often not the only hypothesis of

interest. Increased costs, toxicity and so onmaymean that a certain improvement

would be necessary before the new treatment could be considered clinically

superior, and we shall denote this value �S. Similarly, the new treatment might

not actually be considered clinically inferior unless the true benefit were less than

some threshold denoted �I . The interval between �I and �S has been termed the

‘range of equivalence’ (Freedman et al., 1984); often �I is taken to be 0.

This is not a specifically Bayesian idea (Armitage, 1989) and can be con-

sidered as representing an interval null hypothesis. Figure 6.1 shows the

A = old superior

B = new not superior

C = equivocal

C+ = equivocal

D = old not superior

E = new superior

old treatment
superior

range of
equivalence

new treatment
superior

θS θθI

Figure 6.1 Possible situations at any point in a trial’s progress, derived from super-
imposing an interval estimate (say, 95%) on the range of equivalence.
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possible situations one could be in at any stage of a trial when calculating a 95%

interval for a treatment benefit.

A: We are confident that the old treatment is clinically superior.

B: The new treatment is not superior, but the treatments could be clinically

equivalent.

C: We are substantially uncertain as to the two treatments – this is essentially

a position of ‘equipoise’.

Cþ: We are confident the two treatments are clinically equivalent – as applied

to equivalence studies (Section 6.11).

D: The old treatment is not superior, but the treatments could be clinically

equivalent.

E: We are confident that the new treatment is clinically superior.

It could be argued that if one really wants to convince people of the clinical

superiority of a treatment, then one should aim for conclusion E in design and

monitoring, even though this demands increased sample sizes and requires a

highly significant (in the traditional sense) result.

Example 6.1 CHART (continued): Clinicaldemands fornew therapies

References: Parmar et al. (1994, 2001) and Spiegelhalter et al. (1994).
See Example 5.1 for details of the trials and the elicitation process.

Loss function or demands: No formal loss function was elicited, but a pre-
trial survey was carried out of 11 clinicians participating in the trials. The
clinicians were given the following instructions (Parmar et al., 1994):

Suppose you had been told on good authority the exact absolute improvement [in
2-yearsurvival rates] youwouldobtainby treatingpatientswith theCHARTregimen. If
this was exactly zero improvement you would presumably use your standard radical
radiotherapy in the future. If there was an absolute improvement of 20% you would
presumably use CHART. Somewhere in between these figures there is likely to be a
differencewhere youwould change fromstandard therapy toCHART.Theremaybea
range of differences where the decision would not be clearcut, i.e. a range where you
feel the two regimens are approximately equivalent. Please mark your change-over
point or the range on the scale of treatment differences shown below.

The upper and lower values for the ranges were averaged and the
following results were obtained.

Lung trial. The participants would be willing to use CHART routinely if it
conferred at least 13.5% improvement in 2-year survival (from a baseline
of 15%), and unwilling if less than 11% improvement. Thus the range of
equivalence is from 11% to 13.5%: from (2.33) this is equivalent to
hazard ratios (HR) from 0.66 to 0.71, or log(HR) from �0.41 to �0.34.
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favours CHART <-   Hazard ratio   -> favours control favours CHART <-   Hazard ratio   -> favours control

Lung trial

Clinical prior
CHART clinically superior
Equivalent
Control clinically superior
Sceptical prior
CHART superior survival
Equivalent
Control superior survival

0.28
0.11

0.611

0.015
0.021
0.964

Head-and-neck trial

0.4 0.5 0.6 0.8 1 1.2 1.5

Clinical prior
CHART clinically superior
Equivalent
Control clinically superior
Sceptical prior
CHART superior survival
Equivalent
Control superior survival

0.411
0.143
0.446

0.08
0.064
0.856

0.4 0.5 0.6 0.8 1 1.2 1.5

Figure 6.2 Clinical and sceptical priors superimposed on an assessed average
clinical range of equivalence. Probabilities of lying below, within and above the range
of equivalence are given both for clinical and sceptical priors. The juxtaposition of the
clinical priors and ranges of equivalence suggests a reasonable basis for randomisa-
tion.

Head-and-neck trial. The participants would be willing to use CHART
routinely if it conferred a 13% improvement in 2-year recurrence-free
rate (from a baseline of 45%), and unwilling if less than 10% improvement.
Thus the range of equivalence is from 10% to 13%, equivalent to HR from
0.68 to 0.75, or log(HR) from �0.38 to �0.29. The average ranges of
equivalence are shown in Figure 6.2, with the clinical and sceptical priors
derived previously. The average range of equivalence is reasonably cen-
tral to the clinical prior, suggesting, on average, a reasonable basis for
randomisation.

Oneadvantageof theBayesianapproach is that theposterior distribution canbe

juxtaposed to the clinical demands being made in order to graphically display the

current probabilities concerning the status of treatments. There is also no reason

why the ‘goalposts’ shown in Figure 6.1 should not change as a study progresses

and more is learnt about, for example, the side-effects of treatments. However, in

order to prevent subjective bias, itmaybe better for those responsible for specifying

the ‘range of equivalence’ to be blind to the data. Elicitation of such intervals can

be carried out at the same time as elicitation of prior beliefs (Section 5.2) and uses

very similar techniques: see Example 6.1. The crucial aspect is that those whose

opinions are being elicitedmust be very clear in their distinction between demands,

as expressed in their range of equivalence, and their expectation or beliefs, as
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represented by the prior distribution. Two factors increase the potential for confu-

sion: demands and beliefs are often quantitatively similar (indeed,we argue below

that this is the ethical basis for randomisation), and the loose usage of words such

as ‘the difference hoped for’, which carries connotations both of desire and

expectation. It follows that such terms must be strictly avoided!

6.4 ETHICS AND RANDOMISATION: A BRIEF REVIEW

6.4.1 Is randomisation necessary?

Randomisation has two traditional justifications: it ensures treatment groups are

directly comparable (up to the play of chance), and it provides a fundamental basis

for the probability distributions underlying conventional statistical procedures.

Since Bayesian probability models are derived from subjective judgement, and

hence do not require any underlying physical justification for a randomisation

mechanism, the latter requirement is irrelevant. This has led some to question the

need for randomisation at all, provided alternative methods of balancing groups

can be established. For example, Urbach (1993) argues that a ‘Bayesian analysis

of clinical trials affords a valid, intuitively plausible rationale for selective controls,

and marks out a more limited role for randomisation than it is generally

accorded’. It has even been claimed that ‘Randomised trials are inherently uneth-

ical’ (Berry, 1989a). Papineau (1994) refutes Urbach’s position and claims that,

despite it not being essential for statistical inference, experimental randomisation

forms a vital role in drawing causal conclusions (Rubin, 1978). The relationship

between randomisation and causal inferences is beyond the scope of this book, but

in general the need for sound experimental design appears to dominate philosoph-

ical statistical issues (Hutton, 1996). In fact, Berry and Kadane (1997) suggest

that if there are several parties whomake different decisions and observe different

data, randomisation may be a strictly optimal procedure since it enables each

observer to draw their own appropriate conclusions.

The extent to which careful analysis of high-quality databases can comple-

ment or even replace randomised trials is a delicate issue: for example, Howson

and Urbach (1989) and Hlatky (1991) argue in favour of databases, while Byar

(1980) puts an opposing view. Although a full discussion is outside the scope of

this book, we nevertheless point out that Bayesian methods provide a natural

basis for synthesising data from randomised and non-randomised studies: see

the discussion on the use of historical data (Section 3.16), historical controls

(Section 6.9) and cross-design synthesis (Section 8.4).

6.4.2 When is it ethical to randomise?

If we agree that randomisation is useful, then the issue arises of when it is

ethical to randomise. This is closely associated with the process of deciding
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when to stop a trial (Section 6.6) and is often represented as a balance between

individual and collective ethics (Pocock, 1992; Palmer and Rosenberger, 1999):

individual ethics would suggest that it is inappropriate to randomise a patient to

a treatment near the end of a trial in which one could be reasonably confident

as to another treatment’s superiority, while collective ethics could argue that

such a benefit will only be available for future patients if the current trial runs

long enough for the findings to be convincing to a wide range of clinical

opinion. See Edwards et al. (1998) for a full review of issues concerning the

ethics of randomisation in clinical trials.

Freedman (1987) introduced the idea of professional equipoise, in which

disagreement among the medical profession makes randomisation ethical. The

trial design of Kadane (1996) is an expression of this principle, in that only a

treatment that at least one clinician thought optimal could be given to a patient

(although unfortunately a programming error meant that some patients were

allocated to treatments that all clinicians felt were sub-optimal). Perhaps a more

appealing approach is the ‘uncertainty principle’ which is often argued as a

basis for ethical randomisation (Byar et al., 1990): this may be thought of as

‘personal equipoise’ in which the clinician was uncertain as to the best treat-

ment for the patient in front of them. However, a quantified degree of uncer-

tainty is not specified. Senn (2002) argues that it is reasonable for a society to

restrict new interventions to trials, and in those trials it is ethical to randomise

even when one believes in the superiority of the new treatment.

The Bayesian approach can be seen as formalising the uncertainty principle

by explicitly representing, in theory, the judgement of an individual clinician

that a treatment may be beneficial – this could be provided by superimposing

the clinician’s posterior distribution on the range of equivalence (Section 6.3)

relevant to a particular patient (Spiegelhalter et al., 1994). It has been argued

that a Bayesian model naturally formalises the individual ethical position

(Lilford and Jackson, 1995; Palmer, 1993), in that it explicitly confronts the

personal belief in the clinical superiority of one treatment. Berry (1993), how-

ever, has suggested that if patients were honestly presented with numerical

values for their clinician’s belief in the superiority of a treatment, then few

might agree to be randomised. One option might be to randomise but with a

varying probability that is dynamically weighted towards the currently

favoured treatment (Section 6.10).

Chaloner and Rhame (2001) consider the roles of professional and individual

equipoise, and suggest scenarios which indicate different bases for ethical ran-

domisation. Fifty-eight opinions elicited before a trial showed a wide range of

responses, and the acknowledged variability in clinical opinion suggests that a

suitable aim in conducting a trial is to bring disparate opinions into agreement:

Chaloner and Rhame (2001) quote Byar as saying ‘Wemay reasonably ask, if we

do a study that convinces us but convinces no one else and is then ignored or

requires confirmation by yet another study, whether we have really acted in the

most ethical fashion in the long run’. Pocock and White (1999) consider the
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situation in which one has a ‘significant’ effect in a trial, when further random-

isation is ‘unethical, but only if the statistically significant difference is genuine (in

many cases it is not) and if the new treatment would indeed be given to future

patients (which is by no means inevitable)’. We largely agree with the advice of

Kass and Greenhouse (1989), who claim that ‘the purpose of a trial is to collect

data that bring to conclusive consensus at termination opinions that had been

diverse and indecisive at the outset’ and go on to state that ‘randomisation is

ethically justifiable when a cautious reasonable sceptic would be unwilling to

state a preference in favour of either the treatment or the control’. This approach

leads naturally to the development of sceptical prior distributions (Section 5.5.2)

and their use in monitoring sequential trials (Section 6.6.2).

6.5 SAMPLE SIZE OF NON-SEQUENTIAL TRIALS

In this section we consider the Bayesian contribution to selecting the sample size

of a clinical trial which will not be subject to interim monitoring: there is

particular emphasis on ‘hybrid’ methods in which prior information is formally

used but the final analysis is carried out in a classical framework. In some

contexts this may be quite appropriate, as there may be substantial prior infor-

mation that cannot be included in the final report for, say, regulatory purposes.

This section does contain a number of rather complex expressions for quan-

tities of interest, but the content appears too important for this to be a ‘starred’

section. On a technical note, the formulae we present follow the traditional

formulation in which interest focuses on a parameter � and � > 0 indicates

benefit of the experimental treatment. We recognise that in many of our

examples � < 0 has represented such benefit, and furthermore in other cases

we might be using thresholds other than 0. Care must therefore be taken when

using the formulae in this chapter – it may be best to first transform the

particular problem being analysed into the standard formulation adopted

here. Details of these transformations are given in Section 6.5.4.

It could be argued that elicitation of prior beliefs and demands from a broad

community of stakeholders is necessary not only in order to undertake a

specifically Bayesian approach to design and analysis, but also more generally

as part of good research practice. A potential consequence of ignoring this

source of judgement is that trials may be designed on the basis of over-

enthusiastic beliefs and demands, and hence fail to convince others and modify

health-care policy or practice.

6.5.1 Alternative approaches to sample-size assessment

In Section 4.1 we described a taxonomy of six broad statistical approaches to the

evaluation of health-care interventions. Here we focus on how the four main
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viewpoints (ignoring the Bayesian hypothesis-testing and classical decision-

theory approaches) deal with selecting the sample size of a fixed-size

experiment: the design and monitoring of sequential studies will be covered in

Section 6.6. A hybrid philosophy is also included.

Fisherian. In principle there is no need for preplanned sample sizes, but a choice

may be made by selecting a particular precision of measurement and informally

trading that off against the cost of experimentation.

Neyman–Pearson. The first stage is to set up a null hypothesis (Section 6.3),

and then specify an alternative hypothesis HA: � ¼ �A that the trial is being

designed to detect. A variety of opinions have been expressed about the inter-

pretation of �A (Spiegelhalter et al., 1994), including a ‘minimum clinically

significant difference’, a ‘worthwhile difference’ and a difference ‘thought likely

to occur’. These ideas tend to conflate the demands made of the new treatment

and the expectations of its benefit (Section 6.3), and this combined role of the

alternative is reflected in its common definition as a difference that is ‘both

realistic and important’ (within a Bayesian framework these properties are

clearly separated). The sample size is then selected to have reasonable power

to detect this alternative hypothesis. Power is generally set to 80% or 90%:

formula (2.38) can be used to derive the necessary sample size in simple

circumstances. In practice the choice of alternative may be influenced by

available resources.

Hybrid classical and Bayesian. Considerable attention has been paid to a

hybrid approach in which it is assumed that a traditional analysis will take

place at the end of the trial, and the prior distribution is used solely for the

design.

Itmay be helpful to consider the joint probability distribution of hypotheses and

outcomes displayed in Table 6.1. In a traditional framework these are point

hypotheses and the study is designed around the Type I error � ¼ p(ðD1jH0), and
the power 1� � ¼ p(D1jH1). However, if we are prepared to acknowledge prior

Table 6.1 Joint probability distribution of hypotheses and outcomes of a hypothesis
test.

Truth

H0 H1

Outcome D0 : do not reject H0 p(D0, H0) ¼
P(correct negative)

p(D0, H1) ¼
P(false negative)

p(D0Þ

D1 : reject H0 p(D1, H0) ¼
P(false positive)

p(D1, H1) ¼
P(correct positive)

p(D1)

p(H0) p(H1) 1
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probabilities for the hypotheses, then it would appear reasonable to focus also

on the probability of rejecting H0 and this being the correct decision, i.e. the joint

probability p(D1,H1). Since p(D1,H1) ¼ p(D1jH1) p(H1) ¼ (1� �) p(H1), this

simply means adjusting the power by the initial probability of H1: the problem

with using only the conditional power p(D1jH1) is that no account is taken of the

plausibility of the alternative and hence there is a temptation to delude oneself

into designing trials to detect implausible hypotheses.

The unconditional probability of getting a ‘positive’ conclusion can be ex-

pressed as

p(D1) ¼ p(D1,H0)þ p(D1,H1),

and the first term, which is the probability p(D1, H0) ¼ p(D1jH0) p(H0) of a false

positive result, will generally be very small provided that � ¼ p(D1jH0) is small

and the prior opinion is substantially supportive of H1 (as will often be the case

preceding a trial). Thus

p(D1) � p(D1jH1) p(H1); (6:1)

and so the ‘prior-adjusted power’ (1� �) p(H1) will often also be close to the

unconditional probability of the trial getting a ‘significant’ result.

Things get a little more complicated in the more general case when the

hypotheses are composite, for example H0: � < 0 and HA: � > 0. Here the

classical power is given by a curve p(D1j�), and we wish to make use of a

continuous prior distribution p(�).
A number of means of incorporating the prior are possible.

1. One can plot the conditional power curve and superimpose the prior distri-

bution as an informal guide to the relative plausibility of alternative hypoth-

eses. This might prevent a study being designed around an alternative that

was clearly grossly optimistic.

2. The prior mean �might simply be taken as a point alternative hypothesis �A,
representing a ‘plausible and worthwhile difference’, although this does not

acknowledge the current uncertainty about � expressed by the prior.

3. The whole classical power curve p(D1j�) can be averaged with respect to the

prior distribution to obtain an ‘expected’ or ‘average’ classical power

p(D1) ¼
R
p(D1j�) p(�) d�. This will give the unconditional probability of

rejecting H0. From the discussion above, we might expect this to be a

reasonable approximation to the prior-adjusted power p(D1,H1) if p(�) does
not give substantial probability to values of � < 0.

4. The classical power curve can be averaged with respect to the prior distribu-

tion p(�jH1) ¼ p(�j� > 0), i.e. conditional on H1 being true (since

p(�j� > 0) ¼ p(�, � > 0)=p(� > 0), this can be obtained by restricting the

prior to � > 0 and renormalising it to have total probability 1). Brown et al.
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(1987) recommend this technique as predicting the chance of correctly

detecting a positive improvement, rather than the overall chance p(D1) of
getting a positive result regardless of the truth. But this method suffers from

the same difficulty as the original classical power calculation, in that no

account is taken of the plausibility of H1.

5. The predictive distribution over the possible powers could be displayed as an

aid to deciding appropriate sample sizes.

We shall illustrate these options in the following sections, using normal likeli-

hoods and priors.

Prior distributions might be from any of the sources described in Chapter 5,

for example subjective assessments (Ten Centre Study Group, 1987), a single

previous study (Brown et al., 1987), or a meta-analysis of previous results

(DerSimonian, 1996): Example 6.4 illustrates the use of subjective opinion.

Most of the applications have assumed a conventional analysis, although

Bryant and Day (2000) suggest that a suitable Bayesian perspective is for a

trial to be large enough to enable a sceptic and an enthusiast to be brought into

consensus.

Finally, it is natural to express a cautionary note on projecting from previous

studies (Korn, 1990), and possible techniques for discounting past studies are

very relevant (Section 5.4).

Proper Bayesian. As in the Fisherian approach, there is in principle no need for

preplanned sample sizes (Lilford et al., 1995). Alternatively, it is natural to focus

on the eventual precision of the posterior distribution of the treatment effect: for

normal assumptions this is straightforward to calculate. There is an extensive

literature on non-power-based Bayesian sample-size calculations (Joseph et al.,

1997).

When working within a hypothesis-testing framework, all the above discus-

sion on hybrid classical and Bayesian methods holds, except that the final

conclusion of whether the result is ‘significant’ or not will be based on a

posterior distribution rather than a classical analysis. One is still faced with a

variety of means of incorporating the prior distribution, although since the

conclusions are going to include that prior it seems natural to use its full form

and calculate expected power. The necessary formulae for normal likelihoods

and priors are provided in Section 6.5.3.

Lee and Zelen (2000) propose a method based on obtaining a high posterior

probability of an effective treatment after a ‘significant’ result, using the analysis

described in Section 3.10, i.e. by trying to fix p(H1jD1). This has been criticised

by Simon (2000) and Bryant and Day (2000) as ignoring the actual data

observed and hence violating the likelihood principle.

Decision-theoretic Bayesian. If we are willing to express a utility function for

the cost of experimentation and the potential benefit of the treatment, then
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sample sizes can be chosen to maximise the expected utility. Lindley (1997) and

discussants argue strongly for this position. Detsky (1985) conducted an

early attempt to model the impact of a trial in terms of future lives saved,

which required modelling beliefs about the future number to be treated and

the true benefit of the treatment, while Claxton et al. (2000) and Gittins and

Pezeshk (2000), for example, show how sample sizes could be explicitly deter-

mined by a trade-off between the cost of the trial and the expected future benefit:

for further references, see Section 6.13. This approach also attempts to answer

the question ‘what is the expected net benefit from carrying out the trial?’

(Section 9.10). An intermediate ‘information-theoretic’ position is taken by

Lindley (1997) who does not attempt to model the future benefit of a trial,

and instead trades off the information in the posterior distribution against the

cost of sampling.

6.5.2 ‘Classical power’: hybrid classical–Bayesian methods
assuming normality

We now assume we have a prior distribution to use in our study design, but that

the conclusions of the study will be entirely classical and will not make use of

the prior, perhaps because of submission to a regulatory authority. Suppose we

have a normal prior � � N[�, �2=n0] and our future data Yn have distribution

Yn � N[�, �2=n], and we wish to calculate the predictive probability of

obtaining a classically ‘significant’ result when testing the null hypothesis

� < 0. Under a classical analysis (Section 2.5), H0 will be rejected when the

parameter estimate Yn obeys

Yn > � 1ffiffiffi
n

p z��; (6:2)

this event, denoted SC� , will occur with probability

P(SC� j�) ¼ F
�

ffiffiffi
n

p

�
þ z�

� �
, (6:3)

which is the classical power curve previously given in (2.37).

We can plot (6.3) superimposed on the prior p(�), which can reveal

the relative plausibility of the potential alternative hypotheses and suggest

whether the trial is based on over-optimistic assumptions (see Example 6.2).

If we wish to calculate the overall unconditional probability of a ‘significant’

result SC� we can integrate (6.3) with respect to the prior. However, it

is analytically more straightforward to use the the predictive distribution

(3.23)
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Yn � N �,�2 1

n0
þ 1

n

� �� �

to directly evaluate the chance of the critical event (6.2) occurring, which can

be shown to be

P(SC� ) ¼ F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0

n0 þ n

r
�

ffiffiffi
n

p

�
þ z�

� �� �
: (6:4)

The relationship to the power curve (6.3) is clear. As n0 ! 1, the prior tends to

a lump on � and P(SC� ) tends to the classical power evaluated at the prior mean

�. However, finite n0 will mean that the expected power is less than the classical

power evaluated at the prior mean �, provided the classical power is greater

than 50%. This may be a more realistic assessment of the chance that the trial

will yield a positive conclusion.

We note that Table 6.1 can be extended to allow ‘equivocal’ decisions, and

that the necessary probabilities can be calculated using tail areas of the bivariate

normal distribution (Spiegelhalter and Freedman, 1986).

Example 6.2 Bayesianpower: Choosing the sample size fora trial

We revisit Example 2.6, in which a trial for a new cancer treatment is
designed to have 80% power to detect a log(hazard ratio) yA ¼ 0:56,
requiring 100 events when assuming a two-sided a of 0.05. Consider an
archetypal enthusiastic prior (Section 5.5.3) centred on the alternative hy-
pothesis and with 5% prior probability that y < 0. Hence y � N [m, s2=n0]
where m ¼ 0:56, s ¼ 2 and m� 1:645s=

ffiffiffiffiffi
n0

p ¼ 0, so that n0 ¼ 1:6452s2=m2

¼ 34:5. The classical power curve and the prior are shown on Figure 6.3: the
power at the prior mean is 80% as designed, the expected power (6.4)
averaging over the entire prior distribution is 0.66, showing the decline
from the conditional value of 0.80. If we took the approach recommended
by Brown et al. (1987) we would average the power curve with respect to
the conditional prior p(yjH1) ¼ p(yjy > 0); this is not straightforward
to calculate and is perhaps easiest to evaluate using Monte Carlo
methods (Section 3.19.1), from which we find, using the notation of Table
6.1, that p(D1jH1) ¼ 0:70. Such a value might have been predicted,
since we know that p(H1) ¼ 0:95, p(D1) ¼ 0:66, and from (6.1) that
p(D1) � p(D1jH1)p(H1).

6.5.3 ‘Bayesian power’

Suppose we have the same normal prior and likelihood as in Section 6.5.2 but

now wish to carry out a fully Bayesian analysis in which the prior will be
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(a) Classical (solid) and Bayesian (dashed) power curves

Favours standard            <--  Hazard ratio  -->      Favours new
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(b) Enthusiastic prior

Favours standard            <--  Hazard ratio  -->      Favours new

Figure 6.3 Power curves (a) for testing H1: y > 0, designed to have classical power
of 80% at yA ¼ 0:56 (HR ¼ 1:75). The Bayesian power curve in (a) assumes that the
enthusiastic prior shown in (b) is to be included in the analysis.

incorporated. We wish to calculate the predictive probability of obtaining a

‘significant’ Bayesian result when testing the null hypothesis � < 0 against an

alternative � > 0, and we shall denote such ‘Bayesian significance’ as

SB� � P(� < 0jdata) < �.
Assuming a future parameter estimate Yn, we will obtain the posterior

distribution

�jYn � N
n0�þ nYn

n0 þ n
,

�2

n0 þ n

� �
,

and so SB� will occur when the parameter estimate Yn obeys

Yn >
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 þ n
p

z� �� n0�

n
: (6:5)

For a particular true value of �, Yn � N[�, �2=n], and hence it can be easily

shown that this event will occur with probability
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P(SB� j�) ¼ F
�

ffiffiffi
n

p

�
þ �n0
�

ffiffiffi
n

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ n

n

r
z�

" #
: (6:6)

With vague prior opinion, n0 ! 0 and we are left with the standard classical

power curve given in (2.37).

Just as in Section 6.5.2, we can plot (6.6) superimposed on the prior p(�): To
calculate the overall unconditional probability of a ‘significant’ result SB� it is

again analytically more straightforward to use the the predictive distribution of

Yn to evaluate the chance of the critical event (6.5) occurring:

P(SB� ) ¼ P Yn >
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 þ n
p

z��� n0�

n

� �

¼ F
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ n

p ffiffiffiffiffi
n0

p

�
ffiffiffi
n

p þ
ffiffiffiffiffi
n0

n

r
z�

� �
:

(6:7)

Example 6.3 Bayesian power (continued): Choosing the sample size for
a trial

If we are willing to include the prior distribution in the analysis then we
obtain the Bayesian power curve (6.6) shown as a dashed line in Figure
6.3(a), which is substantially higher than the classical power curve due to
the prior giving a ‘head start’. The power at the alternative hypothesis
yA ¼ 0:56 is 0.93, while the chance of a false rejection of y ¼ 0 has risen
from 0.025 to 0.10 – this inflated chance of a Type I error illustrates the
danger of getting the prior ‘wrong’. The expected Bayesian power (6.7),
averaged with respect to the prior distribution in Figure 6.3(b), is 0.78.

6.5.4 Adjusting formulae for different hypotheses

All the formulae provided so far have assumed that � > 0 indicates superior

performance of the innovative treatment and therefore is the alternative hy-

pothesis of interest – this has simplified the exposition but clearly will not hold in

all situations. One option is to redefine the outcome measures and parameters so

that � has the required properties. Alternatively, one can transform the formu-

lae provided, and we now consider the necessary transformations when differ-

ent hypotheses are being considered.

. Non-zero threshold. Suppose the null hypothesis is H0: � < �0 and the

alternative H1: � > �0. Each of the previous formulae can be transformed by

subtracting �0 from the prior mean �, the observed statistic ym and, in

conditional power calculations, the parameter �. For example, suppose in
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Example 6.2 that the threshold of interest was changed to � ¼ 0:2, i.e. the
posterior interval would need to lie wholly above a log(hazard ratio) of

0:2 (HR ¼ 1:22) before H0 is rejected. The conditional power at the alterna-

tive hypothesis �A ¼ 0:56 is now only 0.56, obtained from transforming

(6.6), while the expected power is found from (6.7) to be 0.53.

. Reversal of hypotheses. As we have seen in most of our examples, it is

common to express benefit from the new intervention as a reduction in risk,

and hence on a logarithmic scale to set H1: � < 0. Thus a ‘significant’ result

will be obtained if a final interval lies wholly below 0. If, for example, we were

adopting a fully Bayesian approach this would be equivalent to the event

P(� > 0jdata) < �, which we shall denote SB�� . Now

SB�� � [P(� > 0jdata) < �] � [P(� < 0jdata) > 1� �]

and hence, for example,

P(SB�� Þ ¼ 1� P(SB1��Þ:

Therefore the formulae provided can be transformed by substituting 1� � for
�, and subtracting the result from 1.

For example, suppose in Example 6.2 that the threshold of interest was

changed to � ¼ 0:69, HR ¼ 2, and furthermore we were interested in the

expected power to reject the null hypothesis H0: � > �0, i.e. we are interested

in values of � with an odds ratio less than 2. Using both transformations on

(6.7) leads to

P(SB�� ) ¼ 1� P(SB1��) ¼ 1�F
(�� �0)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ n

p ffiffiffiffiffi
n0

p

�
ffiffiffi
n

p þ
ffiffiffiffiffi
n0

n

r
z1��

� �
: (6:8)

Then from (6.8) we find the expected power is 0.24: such a low value might be

anticipated from the substantial prior support for H0.

Example 6.4 Gastric: Sample size fora trialof surgery forgastric cancer

Reference: Fayers et al. (2000).

Intervention: Radical (D2) compared to conventional (D1) surgery for
gastric cancer.

Aim of study: Evidence from Japan suggested that more radical surgery
was a possible explanation for the better survival rates of patients with
gastric cancer, and the UK Medical Research Council initiated a ran-
domised trial to compare survival following radical and conventional
surgery.

Sample size of non-sequential trials 197

Chapter 6 Randomised Controlled Trials 17.11.2003 4:53pm page 197



Studydesign: Two-group parallel RCT.

Outcome measure: Hazard ratio of death (HR > 1 favours radical treat-
ment).

Planned sample size: The trial was designed under the assumption that
the minimum clinically significant difference was a 13.5% improvement
in 5-year survival from 20% to 33.5% in patients undergoing conven-
tional surgery – this value for the alternative hypothesis was based on
the opinion of the trial team. This is equivalent to a hazard ratio of
log (0:20)= log (0:335) ¼ 1:47 (Section 2.4.2), or log (HR) ¼ 0:39. For
the trial to be able to detect a 13.5% difference at the 5% significance
level with 90% power, the necessary number of events (i.e. deaths) is
n ¼ s2(1:96þ 1:28)2=0:392 ¼ 276, when taking s ¼ 2 (Section 2.4.2 and
(2.38) ). The trial was designed to have 200 patients per arm which was
predicted to yield this number of events.

Statistical model: For planning purposes, the normal approximation of
Section 2.4.2 was adopted, while for analysis a full Cox regression was
used to obtain a likelihood for log(HR).

Prospective analysis?: Yes.

Prior distribution: In addition to the three surgical members of the trial
steering committee, a further 23 surgeons had their beliefs regarding
the likely benefit/harm of radical compared to conventional surgery
elicited, both at the start of the trial and later when the trial had stopped
but had not yet been published. Fayers etal. (2000) shows each individ-
ual’s prior distribution on a scale representing improvement in 5-year
survival, elicited using a similar questionnaire to that of Parmar et al.
(1994); see Example 5.1. The average distribution had a prior mean of
9.4% improvement over their average assessed control 5-year survival
of 21%, although skewness in the distributions gives rise to a median of
around 4%. Assuming a baseline survival of 21%, the distribution for
an improvement p can be transformed to a log(HR) scale by
log (HR) ¼ log ( log (0:21)=log (0:21þ p) ) as in Example 5.1: fitting a
normal distribution to the transformed histogram yields a prior with
mean m ¼ 0:12 and standard deviation s=

ffiffiffiffiffi
n0

p ¼ 0:19, and so
n0 ¼ 4=0:192 ¼ 111. This corresponds to a hazard ratio of 1.13 (95%
interval from 0.78 to 1.64). This distribution is shown in Figure 6.4(a),
revealing that the probability of exceeding the alternative hypothesis of
HR ¼ 1:47 is 8%. Hence, the overall prior beliefs for the surgeons reveal
the trial has been designed around a rather optimistic target.

Figure 6.4(b) shows the power curve (6.3) for the trial based on an
expected n ¼ 276 events, with 90% power at the alternative hypothesis
of 1.47. Juxtaposing with Figure 6.4(a) shows that the surgeons’ belief is
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concentrated in an area of rather low power. Indeed, (6.4) shows that the
expected power is only 30%, which rises marginally to 31% if a Bayesian
final analysis is undertaken (6.7). Even if the surgeons were consider-
ably more optimistic, and their prior mean was set to the alternative
hypothesis of HR ¼ 1:47, then the expected power would rise to only
45%.

Loss function or demands: No, but as well as eliciting the beliefs of the
surgeons, the authors elicited their demands for radical surgery: around
a 10% improvement was judged to be necessary before wishing to
routinely implement the more radical surgery, which is more extensive
and has extra risk of complications and resource usage.

Computation/software: Conjugate normal model.

Evidence fromstudy: The trial recruited the full 200 patients on each arm,
and eventually 281 events were observed (137 under D1, 144 under
D2), with a result slightly in favour of the conventional surgery. The
observed hazard ratio, based on a Cox regression, was 0.91 (95% CI
from 0.72 to 1.15), equivalent to a log(HR) of �0:09 (standard error 0.11,
equivalent to an effective number of events of m ¼ s2=0:112 ¼ 278,
almost exactly the same as the actual number of events observed).
The 5-year survival rate in those patients undergoing conventional sur-
gery was 30%, considerably higher than the 20% expected before the
trial started. This likelihood is displayed in Figure 6.4(c).

Bayesian interpretation: Figure 6.4(d) displays the predictive distribution
for the observed hazard ratio, derived using the methods described in
Section 3.13. The probability of observing a result as extreme as that
observed is 0.32, twice the shaded area shown in Figure 6.4(d). From
Section 5.8 this is Box’s measure of conflict between prior and likelihood,
and is not particularly extreme even though the prior expectation of a
benefit from D2 conflicted with the observed hazard ratio.

Comments: Fayers et al. (2000) carried out a second elicitation exercise
when the trial was complete but before the results were announced, and
found there was still considerable optimism among the clinical collabor-
ators. They conclude that although opinions change over time, those
involved in a clinical trial tend to be optimistic and if their prior expect-
ations are used as a naive basis for sample-size calculations, the trial
could result in too small a sample size. Nevertheless, in this example the
alternative hypothesis was judged to be optimistic even by the partici-
pants. A more realistic assessment of the trial’s chances of success
might be made by taking into account their full uncertainty.

It is also important to monitor such a trial so that it does not continue
unnecessarily – in this example the trial might have been stopped and
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(a) Clinical prior

Favours standard (D1) <--  Hazard ratio  --> Favours radical (D2)
0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

(b) Classical power curve

Favours standard (D1)    <--  Hazard ratio  -->      Favours radical (D2)
0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2
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(c) Likelihood from trial

Favours standard (D1)    <--  Hazard ratio  -->    Favours radical (D2)
0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

(d) Prediction from prior

Favours standard (D1)   <--  Observed hazard ratio  -->   Favours radical (D2)

0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

Figure 6.4 The prior assessment (a) for D2 trial in gastric cancer surgery shows
some expectation of benefit, but the alternative hypothesis of 1.47 around which the
trial has been designed is clearly very optimistic (b). The eventual trial result (c)
showed no clear evidence for benefit. The predictive distribution derived from the
prior (d) shows that the observed result (HR ¼ 0:91) was not particularly surprising,
given the prior opinion as expressed by (a).
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rejected an ‘important difference’ some time before the eventual conclu-
sion. However, as we shall see in Section 6.6.2, it may be more appro-
priate to monitor using the clinical prior, in order to ensure that the
negative finding is convincing even to enthusiasts.

6.5.5 Predictive distribution of power and necessary sample size

Consider the classical power formula given in (2.37). If we express uncertainty

over the parameters as a prior distribution, then the power can be considered as

an unknown quantity with a distribution induced by this prior. This predictive

distribution over the power can best be obtained by simulation methodology:

essentially the unknown parameters are simulated from their prior distribution,

plugged into the formula for the power, and the result recorded. After many

iterations of this procedure a distribution over possible powers is obtained. This

is essentially a Monte Carlo procedure (Section 3.19.1) and is illustrated in

Example 6.5.

Example 6.5 Uncertainty: Predictive distributionof power

Assume that a randomised trial is planned with n patients in each of two
arms, using a response with standard deviation s ¼ 1; hence, the variance
of a contrast between two patients is 2s2. The trial is aimed to have Type I
error (two-sided a) of 5%, and 80% power to detect a true difference of
y ¼ 0:5 in mean response between the groups.

From (2.38) the necessary sample size per group is

n ¼ 2s2

y2
(z0:8 � z0:025)

2

where z0:8 ¼ 0:84, z0:025 ¼ �1:96; note that this differs slightly from (2.38)
as here s is the standard deviation of a single response.

The necessary sample size is n ¼ 63. Suppose, however, that we wish to
express uncertainty concerning both y and s. For y we assess a prior mean
of 0.5 and prior standard deviation of 0.1, while for sweassume a priormean
of 1 and standard deviation of 0.3. y and s are assumed to be independent
and normally distributed (subject to the constraint of s being positive).

Using Monte Carlo methods we simulate values of y and s from their prior
distributions, substitute them in the sample-size formula above, and so
obtain a predictive distribution over n. This distribution has the properties
shown in Table 6.2 and is plotted in Figure 6.5 – it is clear that there is huge
uncertainty as to the appropriate sample size.
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Table 6.2 Properties of predictive distributions of necessary sample size n for
fixed power of 80%, and power for fixed sample size n ¼ 63.

Median 95% interval

n 62.5 9.3 to 247.2
Power (%) 80 29 to 100

n sample: 10000

0.015

0.01

0.005

0.0

0.0 500.0 1.00E+3

power sample: 10000

6.0

4.0

2.0

0.0

0.0 0.25 0.5 0.75 1.0

Figure 6.5 Predictive distributions from WinBUGS for necessary sample size n to
achieve 80% power, and power for n ¼ 63 patients per group.

For fixed n, the power is

power ¼ F

ffiffiffiffiffiffiffiffi
ny2

2s2

s
þ z0:025

0
@

1
A:

If we decide to use 63 patients per group, we can simulate potential values
for the power using the same methodology. The results are again pre-
sented in Table 6.2 and plotted in Figure 6.5, and show that although the
median power is 80%, a trial of 63 patients per group could be seriously
underpowered. We can calculate other quantities that could give insight
into the planned sample size: for example, that there is a 37% chance that
the power is less than 70%.

6.6 MONITORING OF SEQUENTIAL TRIALS

6.6.1 Introduction

Whether or not to stop a trial early is a complex ethical, financial, organisa-

tional and scientific issue, in which statistical analysis plays a considerable role.

Section 4.3 has already demonstrated that sequential analysis might be con-

sidered the ‘front line’ between Bayesian and frequentist approaches, and the

monitoring of sequential trials has been said to reach ‘to the very foundations of

the two paradigms’ (Etzioni and Kadane, 1995).
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Recommendations concerning early stopping or changes in the conduct of

trials increasingly rest in the hands of independent committees known as data

and safety monitoring boards or data monitoring committees (DMC). We shall

adopt the latter term. In Section 6.6.6 we shall discuss the relevance of the

Bayesian perspective to the deliberations of a DMC, where we shall emphasise

the ability to incorporate external evidence and formally account for the desire

to bring the trial to a conclusive result.

Four main statistical approaches can be identified, again corresponding to the

four main entries in Table 4.1:

. Fisherian. This is perhaps best exemplified in trials influenced by the Clinical

Trial and Services Unit in Oxford, in which protocols generally state (Collins et

al., 1995) that the DMC should only alert the steering committee to stop the

trial on efficacy grounds if there is ‘both (a) ‘‘proof beyond reasonable doubt’’

that for all, or for some, types of patient one particular treatment is clearly

indicated . . . and (b) evidence that might reasonably be expected to influence

the patient management of many clinicians who are already aware of the

results of other main studies’. There is no formal expression of what evidence

is required to establish ‘proof beyond reasonable doubt’ (although 2P < 0:001
is mentioned as a possible criterion). We also note the explicit, though again

informal, appeal to the idea that the results should be convincing to a broad

spectrum of opinion, and its close relation to the quote by Kass and Greenhouse

(1989) on the need for trials to bring ‘conclusive consensus’ (Section 6.4.2).

. Neyman–Pearson. This classical method attempts to retain a fixed Type I

error through prespecified stopping boundaries or guidelines which may be

used at prespecified analysis times (‘group-sequential methods’) or with con-

tinuous monitoring. Group-sequential methods boundaries include those of

O’Brien and Fleming, which are very conservative at early interim analyses,

and Pocock, which have constant nominal ‘significance’, while continuous

methods include alpha-spending functions and triangular boundaries. See

Whitehead (1997a) for a detailed review. DeMets (1984) states that ‘while

they are not stopping rules, such methods can be useful in the decision-

making process’, although regulatory authorities require good reasons for

not adhering to such boundaries (International Conference on Harmonisation

E9 Expert Working Group, 1999).

Objections to this approach from both Fisherian and Bayesian perspectives

have already been covered in Section 4.3. In addition, there is no agreed

method of estimation following a sequential trial (Freedman, 1996), although

frequentist sequential rules are ‘prone to exaggerate magnitude of treatment

effect’ (Pocock and Hughes, 1989) since they would tend to stop when on a

random high; Pocock and White (1999) term the tendency for early extreme

results to become less impressive as ‘regression to the truth’. Armitage

(1991a) agrees that adjusted P-values are ‘too tenuous to be quoted in an
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authoritative analysis of the data’, but still considers frequency properties of

stopping rules may be useful guides for ‘mental adjustment’.

In practice, a DMC will need to take into account multiple sources of

evidence when making its judgement and, if working within the traditional

Neyman–Pearson paradigm, classical sequential analysis may be a useful

warning against over-interpretation of naive P-values. Freidlin et al. (1999)

provide a useful analysis, pointing out that the role of a trial is to change

practice and warning of over-strict adherence to formal stopping procedures.

. Proper Bayesian. Probabilities derived from a posterior distribution may be

used for monitoring, without formally prespecifying a stopping criterion or

even prespecifying a sample size (Berry, 1993). It is natural to use the posterior

probabilities of hypotheses of interest as a basis for monitoring (Section 6.6.2),

although this may be supplemented by making predictions of the possible

consequences of continuing (Section 6.6.3). As for trials with fixed sample

size, a hybrid strategy is possible in which prior distributions may be used at

the design stage but assuming a Neyman–Pearson analysis (McPherson,

1982). However, if external evidence becomes available during a clinical trial

it can be argued that this should be incorporated into a prior distribution.

There is no direct implication of the Bayesian approach on trial size. Mat-

thews (1995) and Edwards et al. (1997) have suggested that small, open trials

fit well into a Bayesian perspective in which all evidence contributes and there

is no demand for high power to reject hypotheses. Alternatively, monitoring

with a sceptical prior may demand larger than standard sample sizes in order to

convince an archetypal sceptic about treatment superiority.

. Decision-theoretic Bayesian. This assumes we are willing to explicitly assess

the losses associated with consequences of stopping or continuing the study,

and therefore the trial requires a full specification of the ‘patient horizon’, the

allocation rule and so on. This approach also quantifies the expected benefit of

the trial and therefore helps decide whether to conduct the trial at all – see

Sections 6.6.4 and 9.10.

6.6.2 Monitoring using the posterior distribution

Following the ‘proper Bayesian’ approach, it is natural to consider terminating a

trial when one is confident that one treatment is better than the other, and this

may be formalised by assessing the posterior probability that the treatment

benefit � lies above or below some boundary, such as the ends of the range of

equivalence described in Figure 6.1. For example, when comparing two treat-

ments in which � represents success rates, we might consider stopping in favour

of the new treatment and concluding � > 0 when the posterior probability that

� < 0 is less than some threshold � (we note we are not using � to denote our

tail area in order to avoid confusion with expressions for Type I error). In
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Section 6.5.3 we denoted this event SB� , and for normal prior and likelihood this

will occur if the parameter estimate ym obeys

ym >
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p
z� �� n0�

m
; (6:9)

this is equivalent to (6.5) but seen as a retrospective assessment of observed data

ym rather than a prospective view of future data Yn. Applications of this

procedure have been reported in a wide variety of trials (Section 6.13).

We have already discussed how a well-designed trial should contain sufficient

evidence to bring both a sceptic and an enthusiast to broadly the same conclu-

sions (Section 6.4.2) as to whether the treatment is effective or not. This idea

may be formalised in the following way, using the concept of sceptical and

enthusiastic priors (Section 5.5).

. First, stopping with a ‘positive’ result (i.e. in favour of the new treatment)

might be considered if a posterior based on a sceptical prior suggested a high

probability of treatment benefit.

. Second, stopping with a ‘negative’ result (i.e. that is equivocal or in favour of

the standard treatment) may be based on whether the results were sufficiently

disappointing to make a posterior based on an enthusiastic prior rule out a

treatment benefit.

In other words, we should stop if we have convinced a reasonable adversary

that they are wrong. Fayers et al. (1997) provide a tutorial on such an approach,

and Example 6.6 describes its application by a DMC for two cancer trials. In

addition, Example 6.7 considers a trial in which the data overwhelmed an

optimistic prior centred on a 40% risk reduction, and hence justified assuming

a negative result and early stopping with a conclusion of no treatment benefit.

It is worth considering in more detail the use of a sceptical prior as a basis for

monitoring, particularly as it encourages an explicit comparison with classical

sequentialmethods. Supposeweassumea sceptical prior for a treatmentdifference

� � N 0,
�2

n0

� �
,

and we would consider stopping the trial when the event SB� occurs, i.e.

P(� < 0jdata) < �, or equivalently when a symmetric 100(1� 2�)% interval

lies wholly above 0. From (6.9) this will occur when

yn >
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 þm
p

z� �

m
: (6:10)

Let zm ¼ ym�=
ffiffiffiffi
m

p
be the standardised classical test statistic. Then (6.10) can be

rearranged as
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zm > �z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n0

m

r
: (6:11)

The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n0=m

p
is a multiplier of the ‘naive’ critical value �z�, and

demonstrates how the sceptical prior opinion introduces conservatism through

increasing the critical value.

Suppose 2� ¼ 0:05 and hence �z� ¼ 1:96, and the maximum intended

sample size of the trial is n. In Section 5.5.2 we argued that a reasonable

‘handicap’ might be n0=n ¼ 0:26, based on a trial with 90% power to detect

an ‘optimistic’ difference. Substituting into (6.11), we stop and reject H0 when

zm > 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:26

n

m

r
: (6:12)

The boundary is a function solely of the proportion m=n of the trial that has

been completed, and is shown in Figure 6.6. Assuming a sceptical prior thus
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Figure 6.6 Monitoring boundaries for a sceptical prior opinion with 2� ¼ 0:05 and
handicap 0.26. This is compared to Pocock and O’Brien–Fleming boundaries assuming
five equally spaced analyses, and the Haybittle–Peto boundary in which a difference of
three standard errors is sought at all interim analyses, and then an unadjusted P-value
adopted at the end of trial.

206 Randomised controlled trials

Chapter 6 Randomised Controlled Trials 17.11.2003 4:53pm page 206



provides a handicap to early stopping: explicit comparison with boundaries

obtained by classical sequential methods is made in Figure 6.6 and the qualita-

tive similarity is clear, while a quantitative investigation is made in Section

6.6.5. Other comparisons with frequentist procedures have been carried out by

Freedman and Spiegelhalter (1989), DerSimonian (1996) and Freedman et al.

(1994).

It is also possible to use ‘robust priors’ (Section 5.6) in which the set of prior

distributions leading to a specific conclusion are identified at each interim

analysis (Greenhouse and Wasserman, 1995; Carlin and Sargent, 1996). In

addition, posterior probabilities of two responses can be monitored jointly and

stopping considered when an event of interest, such as either outcome occur-

ring (Etzioni and Pepe, 1994), exceeds a certain threshold. This monitoring

scheme has also been proposed for single arm studies and for phase I and II trials

(Section 6.12).

Although monitoring using posterior distributions appears intuitive, criti-

cisms of this procedure include its lack of explicit loss function (Section 6.6.4),

its sampling properties, and its dependence on the prior (Section 6.6.5).

Example 6.6 CHART (continued): Monitoring trials using sceptical and
enthusiastic priors

Reference: Parmar etal. (1994, 2001) and Spiegelhalter etal. (1994). This
example has previously been considered in Examples 5.1, 5.3 and 6.1.

Evidence fromstudy: For the lung cancer trial, the data reported at each of
the annual meetings of the independent DMC is shown in Table 6.3: the
final row is that of the published analysis. Recruitment stopped in early
1995 after 563 patients had entered the trial. It is clear that the extremely
beneficial early results were not retained as the data accumulated,
although a clinically important and statistically significant difference
was eventually found. Perhaps notable is that the DMC recommended
continuation of the trial even when the two-sided P-value was 0.001, i.e.
when the data had crossed the Haybittle–Peto boundary.

Table 6.3 Summary data reported at each meeting of the CHART lung trial DMC. Under a proportional
hazards assumption with hazard ratio HR, the 2-year survival improvement, s, over a baseline of 15%,
obeys HR ¼ log (0:15þ s) / log (0.15), which can be rearranged to s ¼ 0:15HR � 0:15.

Date No. patients No. deaths Hazard ratio 2-year % survival improvement Two-sided
P-value

Estimate (95% CI) Estimate (95% CI)

1992 256 78 0.55 (0.35 to 0.86) 20 (5 to 36) 0.007
1993 380 192 0.63 (0.47 to 0.83) 15 (6 to 26) 0.001
1994 460 275 0.70 (0.55 to 0.90) 12 (4 to 20) 0.003
1995 563 379 0.75 (0.61 to 0.93) 9 (3 to 16) 0.004
1996 563 444 0.76 (0.63 to 0.90) 9 (3 to 15) 0.003
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Table 6.4 Summary data reported at each meeting of the CHART head-and-neck trial DMC. Two-year
survival improvements are based on a baseline of 45% disease-free survival.

Date No. patients No. events Hazard ratio 2-year % survival improvement Two-sided
P-value

Estimate (95% CI) Estimate (95% CI)

1992 531 188 0.91 (0.68, 1.21) 3 (�7, 11) 0.50
1993 674 293 0.92 (0.73, 1.16) 3 (�5, 11) 0.16
1994 791 387 0.89 (0.72, 1.09) 4 (�3, 11) 0.20
1995 918 464 0.92 (0.76, 1.11) 3 (�4, 10) 0.33
1996 918 485 0.95 (0.79, 1.14) 2 (�5, 8) 0.52

For the head-and-neck cancer trial, the data reported at each meeting of
the independent DMC are shown in Table 6.4. There was no strong
evidence of benefit shown at any point in the study.

Bayesian interpretation: For the lung trial, the DMC was presented with
survival curves, and posterior distributions and tail areas arising from a
reference prior (uniform on a log(HR) scale). In view of the positive
findings, the posterior distribution resulting from the sceptical prior de-
rived in Example 5.3 was presented, in order to check whether the
evidence was sufficient to persuade a reasonable sceptic.

Figure 6.7 shows the sceptical prior distributions at the start of the lung
cancer trial, and the likelihood (essentially the posterior under the refer-
ence prior) and posterior for the results available in subsequent years.
Under the reference prior there is substantial reduction in the estimated
effect as the extreme early results are attenuated, while the sceptical
results are remarkably stable and the initial estimate in 1992 is essen-
tially unchanged as the trial progresses. The detailed results under the
sceptical prior are shown in Table 6.5. Before the trial the clinicians were
demanding a 13.5% improvement before changing treatment: however,
the inconvenience and toxicity were found to be substantially less than
expected and so probabilities of improvement are shown for 0% and 7%,
around half the initial demands. Such ‘shifting of the goalposts’ is entirely
reasonable provided it is not based on the primary outcome results.

Table 6.5 Estimates presented to CHART DMC in successive years (apart from 1996, which are the
final published data) for lung cancer trial, obtained under a sceptical prior distribution. Posterior
probabilities are presented for ‘no improvement from CHART’ (analogous to one-sided P-values), and for
‘practically significant improvement from CHART’.

Date No deaths Estimated
hazard ratio (HR)

2-year % survival P (imp. < 0%)
i.e. HR > 0

P (imp. > 7%)
i.e. HR < 0.80improvement (95% CI)

1992 78 0.79 7 (�1 to 17) 0.048 0.56
1993 175 0.73 10 (3 to 18) 0.006 0.73
1994 275 0.78 8 (2 to 15) 0.009 0.60
1995 379 0.80 7 (1 to 13) 0.010 0.48
1996 444 0.81 7 (2 to 12) 0.003 0.52

208 Randomised controlled trials

Chapter 6 Randomised Controlled Trials 17.11.2003 4:53pm page 208



Sceptical prior

0.121
0.379

0.5

1992 Likelihood

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

CHART superior
Equivalent
Control superior

CHART superior
Equivalent
Control superior

CHART superior
Equivalent
Control superior

0.949
0.046
0.005

1992 Posterior

0.558
0.394
0.048

1993 Likelihood

CHART superior
Equivalent
Control superior

CHART superior
Equivalent
Control superior

CHART superior
Equivalent
Control superior

CHART superior
Equivalent
Control superior

CHART superior
Equivalent
Control superior

CHART superior
Equivalent
Control superior

0.95
0.049
0.001

1993 Posterior

0.727
0.268
0.006

1994 Likelihood

0.857
0.141
0.002

1994 Posterior

0.597
0.394
0.009

1995 Likelihood

CHART superior
Equivalent
Control superior

0.724
0.272
0.004

1995 Posterior

0.478
0.512

0.01

1996 Likelihood

favours CHART   <-     Hazard ratio     -> favours control

CHART superior
Equivalent
Control superior

0.725
0.274
0.001

1996 Posterior

favours CHART   <-     Hazard ratio     -> favours control

0.515
0.482
0.003

Figure 6.7 Prior, likelihood and posterior distributions for the CHART lung cancer
trial assuming a sceptical prior. The likelihood becomes gradually less extreme,
providing a very stable posterior estimate of the treatment effect when adopting a
sceptical prior centred on a hazard ratio of 1. Demands are based on a 7% improve-
ment from 15% to 22% 2-year survival, representing a hazard ratio of 0.80.

The sceptical posterior distribution is centred around these clinical
demands, showing that these data should persuade even a sceptic that
CHART both improves survival and, on balance, is the pragmatic treatment
of choice.

Since the results for the head-and-neck trial were essentially negative, it is
appropriate to monitor the trial assuming a enthusiastic prior in order to see
if it is sufficiently convincing even to optimists. The results are shown in
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Figure 6.8 Prior, likelihood and posterior distributions for the CHART head-and-
neck cancer trial assuming an enthusiastic prior, and clinical demands of a 7%
improvement from 45% to 52% 2-year survival, equivalent to a hazard ratio of 0.82.

Figure 6.8, using the clinical prior derived in Example 5.1. The initial
clinical demands were a 13% improvement in survival from 45% to 58%,
but in parallel with the lung trial we have reduced this to a 7% improve-
ment. The results remain equivocal, and should be sufficient to convince
a reasonable enthusiast that, on the basis of the trial evidence, CHART
is not of clinical benefit in head-and-neck cancer.

Sensitivityanalysis: The three priors provide the sensitivity analysis.

Comments: There are two important features of the prospective Bayesian
analysis of the CHART trial. First, while classical stopping rules may well
have led the DMC to stop the lung trial earlier, perhaps in 1993 when the
two-sided P-value was 0.001, this would have overestimated the benefit.
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The DMC allowed the trial to continue, and consequently produced a
strong result that should be convincing to a wide range of opinions.
Second, after discovering that the secondary aspects of the new treat-
ment were less unfavourable than expected, the DMC is allowed to ‘shift
the goalposts’ and not remain with unnecessarily strong clinical demands.

6.6.3 Monitoring using predictions: ‘interim power’

Investigators and funders are often concerned with the question – given the

data so far, what is the chance of getting a ‘significant’ result? This is closely

related to the concept of ‘futility’, and the traditional approach to this question is

‘stochastic curtailment’ (Halperin et al., 1982) which calculates the conditional

power of the study, given the data so far, for a range of alternative hypotheses:

this might also be termed ‘interim power’.

The following formulae assume we are interested in predicting whether

future data will result in a posterior probability, or a one-sided P-value, for the

null hypothesis H0: � < 0, being less than �, i.e. either the event SB� or SC� . One

can make the appropriate adjustments for H0: � > 0 and non-zero thresholds

using the methods described in Section 6.5.4.

‘Hybrid’ predictions: using a prior and current data to predict a future classical

analysis. It is straightforward to calculate predictive probabilities of eventual

classical conclusions if we assume a normal likelihood. Suppose we have

observed a parameter estimate ym based on our current sample size m, and

are considering a further n observations which will yield a parameter estimate

Yn. Then, since

mym þ nYn

mþ n
� N �,

�2

mþ n

� �
,

after these observations we shall have a classically ‘significant’ result SC� pro-

vided that

Yn >
�

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

p
z� ��mym

n
: (6:13)

Since Yn � N[�, �2=n], the probability of this occurring, as a function of the

observed data and unknown �, is

P(SC� jym,�) ¼ F

ffiffiffi
n

p
�

�
þm ym

�
ffiffiffi
n

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

n

r
z�

" #
; (6:14)
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we note that this is exactly the form of the pre-trial Bayesian power curve (6.6)

but replacing the ‘imaginary’ prior data with the observed real data. Equation

(6.14) is known as the ‘conditional power curve’ and forms the basis for a

stochastic curtailment procedure, in which this curve may be plotted and its

value examined at the null, alternative and other values of �.
It does not, however, seem reasonable to condition on a hypothesis that is no

longer tenable (Spiegelhalter et al., 1986; Dignam et al., 1998). From a Bayesian

perspective it is natural to average such conditional powers with respect to the

current posterior distribution, just as the pre-trial power was averaged with

respect to the prior to produce the average or expected power (Section 6.5). By

again using the predictive distribution (3.24) of Yn we can calculate the prob-

ability of SC� to be

p(SC� jym, prior) ¼F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0n

(n0 þm)(n0 þmþ n)

r ffiffiffiffiffi
n0

p
�

�

�

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m(n0 þmþ n)

n(n0 þm)

s ffiffiffiffi
m

p
ym

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mþ n)(n0 þm)

n(n0 þmþ n)

s
z�

!
:

(6:15)

We note that if m ¼ 0 there are no current data and (6.15) can be shown to

reduce to the pre-trial average classical power given by (6.4).

Bayesian predictions: using a prior and current data to predict a future Bayesian

analysis. In a fully Bayesian analysis the posterior distribution will eventually be

�jym, Yn � N
n0�þmym þ nYn

n0 þmþ n
,

�2

n0 þmþ n

� �
:

Having observed Yn, we shall assume that we are interested in a ‘significant’

result SB� which we have defined as the event p(� < 0jym, Yn) < �, i.e. the tail

area of the posterior is less than �. This result will occur if

Yn >
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 þmþ n
p

z� �� (n0�þmym)

n
: (6:16)

Since Yn � N[�, �2=n], the probability of this event occurring, as a function of

the observed data and unknown �, is

P(SB� jym, �) ¼ F

ffiffiffi
n

p
�

�
þ mym

�
ffiffiffi
n

p þ n0�
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n
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: (6:17)
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Equation (6.17) can be thought of as a general form of all the other conditional

power curves we have previously derived: if n0 ¼ 0 we have no prior input and

we obtain the classical conditional power curve in (6.14); if m ¼ 0 we obtain

the Bayesian power curve in (6.6); while if n0 ¼ 0, m ¼ 0 we obtain the

standard power curve in (6.3).

Expression (3.24) gives the predictive distribution of Yn, and from this we can

calculate the unconditional probability of SB� to be

p(SB� jym, prior) ¼ F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þmþ n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n0 þm)n

p (n0�þmym)

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

n

r
z�

" #
: (6:18)

Classical predictions: using only current data to predict a future classical analysis.

If we wish to ignore prior opinion both in the prediction and in the reporting

then we can set n0 ¼ 0 in either (6.15) or (6.18) and obtain a predictive

probability of a significant result as

p(SC� jym) ¼ F

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

p ffiffiffi
n

p
ffiffiffiffi
m

p
ym

�
þ

ffiffiffiffi
m

n

r
z�

� �
: (6:19)

This can be expressed solely in terms of the current standardised test statistic

z ¼
ffiffiffiffi
m

p
ym=� and the fraction f ¼ m=(mþ n) of the trial so far completed, to give

the probability that the future tail area below 0 is less than � as

p(SC� jym) ¼ F
zþ

ffiffi
f

p
z�ffiffiffiffiffiffiffiffiffiffiffi

1� f
p

� �
: (6:20)

Values of this quantity are plotted in Figure 6.9, which reveals that predicted

probabilities of success are often surprisingly low.

The technique has been used with results that currently show approximate

equivalence between treatments to justify the ‘futility’ of continuing a trial

(Ware et al., 1985), and may be particularly useful for DMCs and funders

when accrual or event rates are lower than expected (Korn and Simon, 1996;

Abrams, 1998). Example 6.7 provides a practical illustration of its use by a

DMC. The method does not, strictly speaking, require a Bayesian justification,

since the predictions can be based on a ‘pivotal quantity’ that does not depend

on the parameter (Armitage, 1989): the ‘B-value’ of Lan and Wittes (1988)

enables calculation of the predictive probability of significance. Frei et al. (1987)

and Hilsenbeck (1988) provide practical examples of stopping studies due to the

futility of continuing; see Section 6.13 for further references.

In spite of the attraction of making such predictions at interim analyses, we

follow Armitage (1991b) in warning against using this predictive procedure as

any kind of formal stopping rule. It gives an undue weight to ‘significance’, and

makes strong assumptions about the direct comparability of future data with
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Figure 6.9 Predictive probability F[(zþ
ffiffi
f

p
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p
] of obtaining a classically sig-

nificant result (two-sided P ¼ 0:01 or 0.05, i.e. � ¼ 0:005 or 0.025), given a fraction f of
the study completed ( f ¼ 10%, 25%, 50%, 75% and 90%) and current standardised test
statistic z. For example, if one is half-way through a study (f ¼ 50%), and the treatment
effect is currently one standard error away from 0 (z ¼ 1), then based on this information
alone there is only a 29% chance that the trial will eventually show a significant (two-
sided P ¼ 0:05) benefit of treatment.

those data already observed – for example, if future data involve extended

follow-up there may be undue reliance on an assumption of proportional

hazards.

Example 6.7 B-14: Usingpredictions tomonitora trial

Reference: Dignam et al. (1998).

Intervention: Long-term tamoxifen therapy for prevention of recurrence of
breast cancer.

Aimofstudy: To estimate disease-free survival benefit from tamoxifen over
placebo, in patients who already have had 5 years of taking tamoxifen
without a recurrence.
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Study design: Sequential randomised controlled study (National Surgical
Adjuvant Breast and Bowel Project (NSABP) B-14) using O’Brien–
Fleming stopping boundaries. Interim analyses were planned at intervals
of approximately 1–1.5 years beginning in the fourth year of the study.

Outcomemeasure: Disease-free survival.

Plannedsample size: To detect a 40% reduction in annual risk associated
with tamoxifen (hazard ratio ¼ 0.6), with 85% power and a one-sided tail
area of 5%, 115 events were required. It had been planned that 624
patients were to be randomised, but eventually 1172 were recruited due
to a lower than expected event rate.

Statistical model: Proportional hazards regression model, with summary
using the approximate hazard ratio analysis. Following Section 2.4.2, if
there are OT events on treatment, and OC events on control, then
2(OT � OC)=m is an approximate estimate of the log(hazard ratio) y,
with mean y and variance 4=m.

ProspectiveBayesiananalysis?: No, the DMC used conditional power and
current data in order to make decisions.

Prior distribution: An ‘enthusiastic’ (or optimistic) prior was centred on a
40% hazard reduction and a 5% chance of a negative effect, i.e. HR > 1,
equivalent on the log(HR) scale to a normal prior with mean �0:51 and
standard deviation 0.31 (s ¼ 2, n0 ¼ 41:4). Also a sceptical prior
was adopted with the same standard deviation as the enthusiastic
prior but centred on 0, thus displaying a 5% chance of the true
difference exceeding the alternative hypothesis of 40% hazard
reduction.

Lossfunctionordemands: No explicit loss function or range of equivalence.

Computation/software: Conjugate normal analysis.

Evidence fromstudy: The DMC was presented with the data in Table 6.6.
Unexpectedly, the results favoured the control treatment. At the third
analysis in June 1995, there was a nominal two-sided P ¼ 0:01 using the
full survival data; this was not sufficient to cross the O’Brien–Fleming
stopping boundary which demands two-sided P < 0:003 46. Eighty-eight
of the planned 115 events had been observed, and the DMC calculated
that even if all 27 remaining events occurred in the control arm, the final
results would still not ‘significantly’ favour tamoxifen. The DMC also
considered the conditional power if the trial was extended until 229
events were observed – this was less than 50% for HR ¼ 0.5 in favour
of tamoxifen, and 15% for HR ¼ 0.6. Since these hazard ratios were
implausible in the light of the current data, the DMC recommended
stopping the trial since the data favoured the control treatment and there
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Table 6.6 Summary data from B-14 trial, with hazard ratios and P-values estimated using approximate
normal analysis based only on the total number of events.

Date No. events (OC)
on placebo

No. events (OT )
on tamoxifen

Estimated
log(HR) (SD)

Estimated hazard
ratio (95% CI)

Two-sided
P-value

Sept. 1993 18 28 0.435 (0.295) 1.54 (0.87 to 2.75) 0.140
Sept. 1994 24 43 0.567 (0.244) 1.76 (1.09 to 2.85) 0.020
June 1995 32 56 0.545 (0.213) 1.72 (1.14 to 2.62) 0.010

Dec. 1995 36 66 0.588 (0.198) 1.80 (1.22 to 2.65) 0.003
Dec. 1996 50 85 0.519 (0.172) 1.68 (1.20 to 2.35) 0.003

was negligible chance of the conclusions being reversed. Further events
were subsequently observed and are shown in Table 6.6.

Bayesianinterpretation: Figure 6.10 shows the consequences of assuming
the sceptical and enthusiastic (optimistic) priors considered by Dignam

Optimistic prior
Sceptical prior

Prior

1993 Likelihood

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

1993 Posterior

1994 Likelihood 1994 Posterior

June 1995 Likelihood June 1995 Posterior

Dec. 1995 Likelihood Dec. 1995 Posterior

1996 Likelihood

Tamoxifen superior   <-   Hazard ratio   ->  Control superior

1996 Posterior

Tamoxifen superior <-  Hazard ratio  -> Control superior

Figure 6.10 Sceptical and ‘optimistic’ prior distributions, likelihoods and posterior
distributions at meetings of the DMC for the B-14 trial. The strong likelihood brings
sceptics and enthusiasts into agreement.
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etal. (1998). At the first interim analysis the evidence against tamoxifen
is sufficient to bring an ‘optimist’ into a situation of equipoise, with a
posterior mean of almost exactly 0. It is clear that by the end of the trial
the likelihood is sufficiently in favour of control to bring the two extremes
of opinion substantially into agreement.

We may use the results in Section 6.6.3 to calculate the predictive
probability of the consequences of continuing the trial up to 115 events,
based on the data observed at each of the five interim analyses. We first
consider the situation after the first interim analysis in 1993 when 46
events had been observed. Three prior assumptions are examined: a
reference analysis (essentially a classical analysis with no adjustment
for repeated looks at the data), and sceptical and ‘optimistic’ analyses
using the priors derived above. Each column in Figure 6.11 is headed
by the posterior distribution under each assumption, and below are
shown the conditional probability of obtaining different conclusions at
the planned end of the trial, i.e. after a further 115� 46 ¼ 69 events
have occurred. The conclusions are: ‘tamoxifen superior’, defined as a
95% posterior interval for the hazard ratio lying wholly below 1; ‘equivo-
cal’, defined as a 95% posterior interval including 1; and ‘control
superior’, defined as a 95% posterior interval lying wholly above 1.
Conditional on each value of y ¼ log(HR), the probabilities of these
outcomes can be obtained from (6.17) by substituting the appropriate
values for the prior distribution.

Under the reference analyses, the chance of concluding in favour
of control is fairly substantial for true hazard ratios greater than 1.5,
and such values are supported by the current posterior distribution.
The chance of finding in favour of tamoxifen is negligible unless the
true hazard ratio is as low as 0.4, which is essentially ruled out by
the reference posterior. Integrating the power curves with respect to the
reference posterior provides the expected powers shown in the first
column of Table 6.7. These probabilities can be obtained as follows.
The current z statistic in favour of control is 0:435=0:295 ¼ 1:475, the
fraction of the trial completed is f ¼ 46=115 ¼ 0:4, and E ¼ 0:025. From
Figure 6.9 we can read off that the expected power is approximately 0.6,
and substituting in (6.20) gives the exact value of 0.619. For the
expected power to find in favour of tamoxifen, we can take one minus
the expected power for control when E ¼ 0:975, which is 0. The uncondi-
tional probability of finishing with an equivocal result is simply one minus
the other expected powers.

The sceptical analysis has a greater tendency to find an equivocal
result as the sceptical prior will be included in the final analysis, and this
is reflected in both the conditional power curves and the expected
powers
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Table 6.7 Probabilities of eventual conclusions for the B-14 trial after the first
interim analysis in 1993. Three different prior assumptions are considered, first
with the prior to be used in the analysis as well as the predictions, and then with
the prior not being used in the final analysis.

Final conclusion Reference When using
prior in analysis

When not using
prior in analysis

Sceptical ‘Optimistic’ Sceptical ‘Optimistic’

‘Tamoxifen superior’ 0.000 0.000 0.017 0.000 0.003
‘Equivocal’ 0.380 0.724 0.972 0.610 0.846
‘Control superior’ 0.619 0.276 0.011 0.390 0.151

shown in Table 6.7. The optimistic analysis is even more reluctant to
draw a firm conclusion given its current balanced opinion, and firmly (and
wrongly, with hindsight) predicts an equivocal result at the end of the
trial.

In practice it is likely that the final analysis of the trial would be
classical, and therefore it is of interest to carry out a ‘hybrid’ or mixed
prediction in which the prior is used for prediction but not for analysis.
This essentially means that the classical conditional power curves
shown in the first column of Figure 6.11 are averaged with respect to
the sceptical or optimistic posterior distributions. The results are shown
in the last two columns of Table 6.7. The chance of finding a result in
favour of control is strengthened.

The consequences of making mixed predictions at each interim analy-
sis are shown in Figure 6.12; only the chances of obtaining a conclusion
in favour of control are shown, as the chance of finding in favour of
tamoxifen is less than 0.003 in all cases.

Sensitivity analysis: Dignam et al. (1998) considered a range of prior
distributions with means varying between optimistic and sceptical – we
have just illustrated the extremes of this range.

Comments: A predictive calculation suggests that continued follow-up
would almost certainly not lead to evidence of benefit for tamoxifen.
However, when the DMC recommended stopping at the third interim
analysis, Figure 6.10 shows that an optimist could still have 13% belief
in a benefit from tamoxifen, and therefore would not rule out further trials.
Dignam etal. (1998) defend the decision to stop and state that ‘even an
advocate of continued testing of the question might argue that we should
have closed and reported the B-14 study, if for no other reason than to
make way for a confirmatory trial in which participants could be ad-
equately consented’.
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Figure 6.12 Predictive probability of reaching the conclusion ‘control superior’ at
the end of the trial, under different prior assumptions but assuming a classical
analysis. The predictive probability of a ‘significant’ result in favour of tamoxifen is
negligibly small and is not shown. At the third interim analysis (June 1995), even an
enthusiast would admit only a 16% chance of eventually drawing any conclusion
except that control was superior.

6.6.4 Monitoring using a formal loss function

The full Bayesian decision-theoretic approach requires the specification of losses

associated with all combinations of possible true underlying states and all

possible actions. The decision whether to terminate a trial is then, in theory,

based on whether termination has a lower expected loss than continuing, where

the expectation is with respect to the current posterior distribution, and the

consequences of continuing have to consider all possible future actions. This

‘backwards induction’ requires the computationally intensive technique of

‘dynamic programming’ and typically makes practical implementation trouble-

some. There is also an extensive theoretical literature on sequential trials

designed from a non-Bayesian decision-theoretic perspective (Bather, 1985).

However, reasonably straightforward solutions can be found in some some-

what idealised circumstances. For example, Anscombe (1963) considers n pairs

of patients randomised equally to two groups, a total patient horizon of N, a

uniform prior on true treatment benefit, and a loss function proportional to the
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number of patients given the inferior treatment times the size of the inferiority.

He concludes it is approximately optimal to stop and give the ‘best to the rest’

when the standard one-sided P-value is less than n=N – half the proportion of

patients already randomised.

Berry and Pearson (1985) and others have extended such theory to allow for

unequal stages and so on, while Carlin et al. (1998) claim backwards induction

is computationally feasible using Markov chain Monte Carlo methods, in which

forward sampling is used as an approximation to the optimal strategy.

As an illustrative (but retrospective) example, Berry et al. (1994) consider a

trial of influenza vaccine for Navajo children. They construct a theoretical model

consisting of priors for the effectiveness of the vaccine and the placebo treatment,

the probability of obtaining regulatory approval and the time taken to obtain it,

and the probability of a superior vaccine appearing in the next 20 years and the

time taken for it to appear. After each month the expected number of cases of the

strain amongst Navajo children in the next 20 years is calculated in the case of

stopping the trial and of continuing the trial (the latter being calculated by

dynamic programming). The trial is stopped when the former exceeds the latter.

As already discussed in Section 6.2, the level of detail required for such an

analysis has been criticised as being unrealistic (Breslow, 1990), but it has been

argued that trade-offs between benefits for patients within and outside the trial

should be explicitly confronted (Etzioni and Kadane, 1995) and decision theory

used to decide whether a trial is worth embarking on in the first place (Section

9.10).

6.6.5 Frequentist properties of sequential Bayesian methods

Although the long-run sampling behaviour of sequential Bayesian procedures is

irrelevant from the strict Bayesian perspective, a number of investigations have

taken place which generally show good sampling properties (Rosner and Berry,

1995). In particular, Grossman et al. (1994) explore the sampling properties of

the boundaries described in (6.11) arising from assuming a sceptical prior

(Section 5.5) centred on zero and with ‘sample size’ n0, and a planned maximum

experimental sample size n. They estimate by simulation and interpolation the

values for the ‘handicap’ n0=n that would give rise to an overall Type I error of 5%

and 1% for different numbers of equally spaced interim analyses. The results in

Table 6.8 show the required handicap is fairly stable over a range of designs: in

particular, the boundaries displayed in Figure 6.6, based on an ‘imaginary’ prior

trial of around 26% of the planned sample size, will have Type I error around 5%

for five interim analyses. Grossman et al. (1994) also show this boundary has

good power and expected sample size. Thus an ‘off-the-shelf’ Bayesian procedure

assuming a sceptical prior essentially mirrors the conservative behaviour of the

Neyman–Pearson approach. The sampling properties of Bayesian designs has

been particularly investigated in the context of phase II trials (Section 6.12).
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Table 6.8 Handicaps to fix Type I error rate when monitoring using a sceptical
prior for different number of analyses: the handicap is n0=n, the ratio of the prior
‘sample size’ to the maximum intended sample size.

Number of analyses ‘Handicap’ for
two-sided a ¼ 0:05

‘Handicap’ for
two-sided a ¼ 0:01

1 0 0
2 0.16 0.11
3 0.22 0.15
4 0.25 0.17
5 0.27 0.18
6 0.29 0.20
7 0.30 0.21
8 0.32 0.22
9 0.33 0.22
10 0.33 0.23

One contentious issue is ‘sampling to a foregone conclusion’ (Armitage et al.

1969). This mathematical result proves that repeated calculation of posterior

tail areas will, even if the null hypothesis is true, eventually lead a Bayesian

procedure to reject that null hypothesis. This does not, at first, seem an attract-

ive frequentist property of a Bayesian procedure. Nevertheless, Cornfield (1966)

argued that ‘if one is seriously concerned about the probability that a stopping

rule will certainly result in the rejection of a null hypothesis, it must be because

some possibility of the truth of the hypothesis is being entertained’, and if this is

the case then one should be placing a lump of probability on it, as discussed in

Section 5.5, and so fit within the Bayesian hypothesis-testing framework

(Section 3.3). He shows that if such a lump, however small, is assumed then

the problem disappears in the sense that the probability of rejecting a true null

hypothesis does not tend to one. Armitage (1990) is not persuaded, claiming

that even with a continuous prior distribution with no lump at the null

hypothesis, one might still be interested in Type I error rates at the null as

giving a bound to those at non-null values.

A somewhat more subtle objection, well described by Rosenbaum and Rubin

(1984), is that the properties of a Bayesian stopping rule based on posterior tail

areas may be over-dependent on the precise prior distribution (Jennison, 1990).

A possible response is that Bayesian stopping should not be based on a strict rule

derived from a single prior, and instead a variety of reasonable perspectives

investigated and a trial stopped only if there is broad convergence of opinion.

6.6.6 Bayesian methods and data monitoring committees

A DMC is charged with both safeguarding the patients involved in a trial, and

ensuring the quality of a trial’s conduct and conclusions. The principles and
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practice of DMCs are fully discussed in Ellenberg et al. (2002), and here we

restrict ourselves to the possible impact of Bayesian methods on a DMC’s

deliberations. Perhaps the most relevant elements are the ability to use external

evidence as a basis for prior opinion in any analysis, and the formalisation

through sceptical and enthusiastic priors of the wide range of clinical opinion

that it may be necessary to convince before a trial’s results have the appropriate

impact. As outlined in Section 6.6.4, a full decision-theoretic approach would be

attractive but difficult to put into practice in a convincing manner, although

Kadane et al. (1998) report an intention to elicit prior distributions and utilities

from members of the DMC for a large collaborative cancer trials group (NSABP),

and use the forward sampling approach to solve the dynamic programming

problem. Their success in this ambitious venture remains to be seen.

At an interim analysis of trial data, a DMC may be faced with a variety of

possible recommendations that it can make concerning the future conduct of the

trial. Using the structure of Altman et al. (2004), thesemay include the following:

. The study should stop completely. We have already seen in Example 6.6 how

a DMC might use Bayesian methods in order to inform a recommendation

whether to stop in favour of an apparent benefit of the new intervention on a

primary outcomemeasure, possibly throughusing a sceptical prior to assess the

degree to which the results would be convincing to a wide range of opinion.

Similarly, in Example 6.7 we saw how an enthusiastic prior can be used to

temper claims for apparent benefit in the control group. The DMC might also

recommend stopping because of safety concerns on secondary outcomes, al-

though these may not be so amenable to formal stopping procedures. A recom-

mendation to stop could also be influenced by a ‘futility’ argument which

assesses the chance of ever reaching a particular conclusion were the trial to

continue, and this naturally falls into the framework outlined in Section 6.6.3.

Finally, there may be convincing evidence of equivalence or non-inferiority:

while a frequentist framework requires prespecification of this as an objective of

the trial with pre-chosen limits, a Bayesian analysis allows the ‘goalposts’ to

change as the trial progresses and hence a DMC canmake such a recommenda-

tion on the basis of all currently available evidence. In all these deliberations the

DMC is free to incorporate external evidence, such as recently published studies,

into a prior opinion.

. Part of the study should stop. A recommendation could be made for random-

isation to cease for a subgroup of patients or one of many arms in a multi-arm

trial. Hierarchical models may be useful in these contexts: again stopping

might be based on posterior tail areas to assess the extent to which available

evidence would convince a wide body of clinical opinion.

. The study should continue with modifications. Design changes such as

additional interim analysis, extending recruitment or extending follow-up

time can have serious implications for frequentist designs that have pre-set
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criteria for assigning statistical significance based on pre-set design characteris-

tics. A Bayesian analysis is completely unaffected by such decisions and so a

DMC is given considerably more freedom to adapt trial designs.

Of course, a DMC that adopts a Bayesian approach must do so in full recogni-

tion of any regulatory issues, and in such a context it would currently be unwise

not to carry out such an analysis in parallel with a traditional analysis – see

Section 9.12 for future discussion of regulatory acceptance of Bayesian analyses.

6.7 THE ROLE OF ‘SCEPTICISM’ IN CONFIRMATORY

STUDIES

After a clinical trial has given a positive result for a new therapy, there remains

the problem of whether a confirmatory study is needed. Fletcher et al. (1993)

argue that the first trial’s results might be treated with scepticism, and Berry

(1996b) claims that using a sceptical prior is a means of dealing with ‘regression

to the mean’, in which early extreme results tend to return to the average over

time. Example 6.8 illustrates the potential value of this approach.

Example 6.8 CALGB: Assessingwhether to performa confirmatory ran-
domisedclinical trial

Reference: Parmar et al. (1996).

Intervention: Adjunct chemotherapy for non-small-cell lung cancer.

Aimof study: To compare adjunct chemotherapy with radiotherapy alone.

Study design: A RCT conducted by the Cancer and Leukemia Group B
(CALGB) between 1984 and 1987 planned to enrol 240 patients with
locally advanced stage III non-small-cell lung cancer and to observe
approximately n ¼ 190 deaths. From (2.38), this design has 80%
power to detect at the 5% level a log(hazard ratio) of yA ¼ (z0:8 � z0:025)
s=

ffiffiffi
n

p
where s ¼ 2 (Section 2.4.2). Thus yA ¼ 0:405, corresponding to a

hazard ratio (HR) of exp (�0:405) ¼ 0:67, where HR < 1 favours new
over standard therapy.

Outcome measure: Full survival data were available, with results pre-
sented in terms of estimates of HR, the 2-year survival improvement,
and the median improvement in survival in months. From Section 2.4.2,
the relation between these quantities is as follows. Let the 2-year sur-
vival probability under the standard and new therapies be pS and pN,
respectively. Then, assuming proportional hazards, HR ¼ log (pN)=
log (pS): Further, let the median survival time under the standard and
new therapies be sS and sN, respectively. If we assume an exponential
survival distribution (constant hazard rate), then HR ¼ sS=sN.

224 Randomised controlled trials

Chapter 6 Randomised Controlled Trials 17.11.2003 4:53pm page 224



Statistical model: Proportional hazards model, providing an approximate
normal likelihood for y ¼ log (HR) (Section 2.4.2).

Prospective analysis?: The Bayesian analysis was carried out retrospect-
ively.

Prior distribution: A default reference (uniform on the log(HR) scale) prior
was termed ‘enthusiastic’ by Parmar et al. (1996). They also derived a
sceptical prior by the method described in Section 5.5.2, with mean 0
and standard deviation s=

ffiffiffiffiffi
n0

p
. The original alternative hypothesis was

yA ¼ log (0:67) ¼ �0:405, and a prior centred at zero and with 5%
chance of exceeding this value would have standard deviation
0:405=1:645 ¼ 0:246. Using s ¼ 2, this is equivalent to a ‘prior sample’
of size n0 ¼ (2=0:246)2 ¼ 66. Figure 6.13 shows this sceptical prior
distribution with a median HR of 1, which is equivalent to an ‘imaginary’
trial in which 33 patients died on each treatment.

Loss function or demands: Parmar et al. (1996) argue that it might be
reasonable to demand an improvement equal to the alternative hypoth-
esis of a hazard ratio of 0.67, or an additional 5 months’ median survival.
The sceptical prior expresses a probability of 45% that the true benefit
lies in the range of equivalence.

Evidencefromstudy: The trial stopped early after enrolling 156 patients and
observing the data shown in Table 6.9. These results suggested a sub-
stantial improvement – the two-sided P-value adjusted for covariates was
0.0075. The results show an estimated log (hazard ratio) ym ¼ �0:489
with standard error (�0:489þ 0:846)=1:96 ¼ 0:183, which from the likeli-
hood above is equivalent tom ¼ (s=0:183)2 ¼ 120 deaths.

Computation/software: Conjugate normal analysis.

Bayesian interpretation: The likelihood plot shows the inferences to be
made from the reference prior, essentially equivalent to those in Table
6.9. The probability that the new treatment is actually inferior is 0.004
(equivalent to the one-sided P-value 0.0075/2.) The probability of clinical
superiority is 68%, which might be considered sufficient to change
treatment policy. The posterior plot shows the impact of the sceptical
prior, in that the chance of clinical superiority is reduced to 27% – hardly
sufficient to change practice.

Comments: In fact, Parmar et al. (1996) report that the NCI Intergroup
Trial investigators were unconvinced by the CALGB trial due to their
previous negative experience, and so carried out a further confirmatory
study. They found a significant median improvement but of only 2.4
months, from 11.4 to 13.8 months. Under an exponential assumption
this corresponds to a hazard ratio of 0.83, suggesting the sceptical
approach might have given a more reasonable estimate than the likeli-
hood based on the CALGB trial alone.
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(a) Sceptical prior distribution

Adjunct chemo. superior   <-  Hazard ratio  ->  Control superior

(b) Likelihood

Adjunct chemo. superior   <-   Hazard ratio  ->  Control superior

(c) Posterior distribution

Adjunct chemo. superior   <-  Hazard ratio  ->  Control superior

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

New superior
Equivalent
Control superior

0.677
0.319
0.004

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

New superior
Equivalent
Control superior

0.271
0.713
0.016

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

New superior
Equivalent
Control superior

0.05
0.45
0.5

Figure 6.13 Prior, likelihood and posterior distributions arising from CALGB trial
of standard radiotherapy versus additional chemotherapy in advanced lung cancer.
The vertical lines give the boundaries of the range of clinical equivalence. Prob-
abilities of lying below, within and above the range of equivalence are shown.

Table 6.9 Results of CALGB trial comparing adjunct chemotherapy with
radiotherapy alone in advanced non-small-cell lung cancer.

Outcome Estimate of improvement 95% CI

Median survival (mo) 6.3 1.4 to 13.3
2-year survival (%) 16 4 to 29
Hazard Ratio HR 0.61 0.43 to 0.88
y ¼ log (HR) �0.489 �0.846 to �0.131
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6.8 MULTIPLICITY IN RANDOMISED TRIALS

6.8.1 Subset analysis

The discussion on multiplicity in Section 3.17 has already described how

multiple simultaneous inferences may be made by assuming a common prior

distribution with unknown parameters, provided an assumption of exchange-

ability is appropriate, i.e. the prior does not depend on the units’ identities.

Within the context of clinical trials this has immediate relevance to the issue of

estimating treatment effects in subgroups of patients.

A reasonablemodelmight be to assigna reference (uniform) prior for the overall

treatment effect, and then assume the subgroup-specific deviations from that

overall effect have a common prior distribution with zero mean. This prior

expresses scepticism about widely differing subgroup effects, although the vari-

ability allowedby theprior isusually estimated from thedata: this procedure ‘leads

to 1) pooling subgroups if the differences among them appear small, 2) keeping

them separate if differences appear large, and 3) providing intermediate results for

intermediate situations.’ (Cornfield, 1976). This specification avoids the need for

detailed subjective input, which may be seen as an attractive feature. Many

applications consider this an empirical Bayes procedure which gives rise to trad-

itional confidence intervalswhicharenotgivenaBayesian interpretation.Donner

(1982) sets out the basic ideas, and Dixon and Simon (1991), Simon (1994b) and

Simon et al. (1996) have elaborated the techniques in a number of examples.

6.8.2 Multi-centre analysis

Methods for subset analysis (Section 6.8.1) naturally extend to multi-centre

analysis, in which the centre-by-treatment interaction is considered as a

random effect drawn from some common prior distribution with unknown

parameters. Explicit estimation of individual institutional effects may be carried

out, which in turn relates strongly to the methods used for institutional com-

parisons of patient outcomes (Section 7.4).

There have been numerous examples of this procedure (Section 6.13), gener-

ally adoptingMarkov chainMonte Carlo techniques due to the intractability of the

analyses. Recent case studies include Gould (1998) who provides WinBUGS code

(Section 3.19.3), and Jones et al. (1998) who compare estimation methods. Senn

(1997b, p. 199) discusses when a random-effects model for centre-by-treatment

interaction is appropriate, emphasising the possible difficulty of interpreting the

conclusions particularly in view of the somewhat arbitrary definition of ‘centre’.

6.8.3 Cluster randomisation

Rather than randomising individual patients, some trials randomise clusters of

patients, grouped (say) by their general practitioner, both for administrative
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convenience and because some interventions, for example those involving

education or organisation, are applied at the cluster level. A Bayesian approach

to the analysis of such trials has been considered by Spiegelhalter (2001) with

respect to continuous responses, and Turner et al. (2001) for binary responses.

In each situation they assume exchangeable clusters, and discuss the appropri-

ate choice of priors on between-cluster variances. Of particular interest is the

growing body of empirical evidence on the magnitude of intra-class correlation

coefficients observed in different clinical trial contexts, and its value in deriving

appropriate prior distributions.

6.8.4 Multiple endpoints and treatments

Multiple endpoints in trials can often be of interest when dealing with, say,

simultaneous concern with toxicity and efficacy. This tends to occur in early

phase studies, and a Bayesian approach allows one to create a two-dimensional

posterior distribution over toxicity and efficacy (Etzioni and Pepe, 1994;

Dominici, 1998; Thall and Sung, 1998). General random-effects models for

more complex situations can be constructed (Legler and Ryan, 1997). Natur-

ally, a two-dimensional prior is required and particular care must be taken over

the dependence assumptions.

A similar situation arises with many treatments: if one is willing to make

exchangeability assumptions between treatment effects, then a hierarchical

model can be constructed to deal with the multiple-comparison problem. This

was proposed long ago by Waller and Duncan (1969). Brant et al. (1992)

update this procedure by assuming exchangeable treatments and setting the

critical values for the posterior probabilities of treatment effects by using a

decision-theoretic argument based on specifying the relative losses for Type I

to Type II error.

Both multiple endpoints and treatments are also common in meta-analysis of

randomised controlled trials (Chapter 8).

6.9 USING HISTORICAL CONTROLS*

A Bayesian basis for the use of historical controls in clinical trials, generally in

addition to some contemporaneous controls, is based on the idea that it is

wasteful and inefficient to ignore all past information on control groups when

making a new comparison. Pocock (1976) argued that careful use of historical

controls may allow fewer controls in current studies and give more accurate

effect estimates, and methods have since been developed particularly within the

field of carcinogenicity studies (Ryan, 1993).

The crucial issue is the extent to which the historical information can be

considered similar to contemporaneous data: Pocock (1976) suggests somewhat
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stringent criteria for use of historical controls, demanding that, in comparison

to contemporaneous controls, they should have the same treatment, the same

eligibility, the same evaluation, the same baseline characteristics, and the

same organisation and investigators, and that there should be no reason to

suspect systematic differences. These issues are essentially indistinguishable

from those to be taken into account when using any historical evidence, such

as when basing prior opinion on past data. We can therefore place the possible

approaches within the structure laid out in Sections 3.16 and 5.4, keeping in

mind that herewe are concernedwith past evidence concerning a single (control)

arm of a trial, whereas in Section 5.4 we were concerned with past data on a

treatment effect. However from an analytic perspective there is little difference

between these two contexts. Possible approaches include the following:

(a) Ignore the historical control data. This is the standard option in which each

trial uses only its own control group.

(b) Assume the historical control groups are exchangeable with the current control

group, and hence build or assume a hierarchical model for the response

within each group (Tarone, 1982; Dempster et al., 1983). Pocock’s criteria,

described above, seem a natural basis for making a subjective judgement of

exchangeability, and such an assumption leads to a degree of pooling

between the control groups, depending on their observed or assumed het-

erogeneity – a classical random-effects formulation of this approach is also

possible (Thall and Simon, 1990). Gould (1991) suggests using past trials to

augment current control group information, assuming exchangeable con-

trol groups. Rather than directly producing a posterior distribution on the

contrast of interest, he uses this historical information to derive predictive

probabilities of obtaining a significant result were a full trial to have taken

place (Section 6.5); his example is treated in Example 8.4.

(c) Assume the historical controls are a biased sample. With only one group of

historical controls, Pocock (1976) adopts the model in Section 5.4 in which

one assumes an additional bias with prior mean 0 – we shall give details of

this method and illustrate its use in Example 6.9. Let yt, yc and yh be the

observed response in the randomised treated, randomised control and his-

torical control groups respectively, where we assume

yt � N[�t,�
2
t ], (6:21)

yc � N[�c,�
2
c ], (6:22)

yh � N[�c þ �,�2
h ], (6:23)

and the degree of bias � in the historical control evidence is assumed to be

� � N[0, �2
� ]: (6:24)

Using historical controls 229

Chapter 6 Randomised Controlled Trials 17.11.2003 4:53pm page 229



From (6.23) and (6.24) we find the marginal distribution of yh to be

yh � N[�c,�
2
h þ �2

� ]: (6:25)

Both (6.22) and (6.25) provide evidence concerning �c, and a combined

likelihood for �c is obtained by weighting the two estimates of �c inversely by

their variances:

yc þWyh

1þW
� N �c,

1

�2
c

þ 1

�2
h þ �2

�

� ��1
" #

, (6:26)

where W ¼ �2
c =(�

2
h þ �2

� ). (6.26) can also be obtained in a somewhat con-

voluted way by assuming a uniform prior for �c, doing two Bayesian updates

using the likelihoods (6.22) and (6.25), and then seeing what likelihood

would have given rise to the resulting posterior.

The parameter of interest is the treatment effect � ¼ �t � �c, and we can

obtain a likelihood for � from (6.21) and (6.26), giving

yt �
yc þWyh

1þW
� N �,�2

t þ
1

�2
c

þ 1

�2
h þ �2

�

� ��1
" #

: (6:27)

The likelihood (6.27) can then be combined with a prior for � in the

standard manner.

In addition to the assumptions above, values or estimates are also required

for �2
e ,�

2
c and �2

h . Finally, prior opinion regarding �2
� also has to be specified.

(d) Discount the size of the historical control group. This is essentially the ‘power’

prior described in Section 5.4, but applied solely to the control arm.

(e) Functional dependence. This would be relevant if, for example, the historical

controls were considered entirely compatible with current controls, but

needed to be adjusted for imbalance in covariates.

(f) Assume the historical control individuals are exchangeable with those in the

current control group, which leads to a complete pooling of historical with

experimental controls.

Various combinations of these assumptions are possible: Berry and Stangl

(1996a) assume a parameter representing the probability that any past individ-

ual is exchangeable with current individuals, while Racine et al. (1986) assume

a certain prior probability that the entire historical control group exactly

matches the contemporaneous controls and hence can be pooled. It is also

possible to use such models as a basis for designing future studies and deciding

the number of patients to be allocated in each arm.
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Example 6.9 ECMO: incorporatinghistorical controls

Reference: Ware (1989) and the subsequent discussion.

Intervention: Extracorporeal membrane oxygenation (ECMO), an invasive
technique for blood oxygenation in newborn babies.

Aim of study: Until the advent of ECMO, conventional medical therapy
(CMT) for infants with severe persistent pulmonary hypertension of the
newborn (PPHN) achieved less than a 20% survival rate. Early experi-
ences with ECMO were promising, and by 1985 survival rates of over
80% were being reported. Following a review of the evidence of CMT
prior to 1985, an RCT was undertaken at two hospitals at Harvard
between 1986 and 1988, in order to evaluate the use of ECMO com-
pared to CMT in this extremely poor prognosis patient population.

Study design: Adaptive two-phase RCT. Phase I randomised patients to
either ECMO or CMT, while in phase II patients were to be allocated to
whichever was the superior treatment in phase I. We consider here an
evaluation of the effectiveness of ECMO based on the evidence from the
first, randomised, phase of the trial, including information from historical
control patients.

Outcomemeasure: Odds ratio (OR) of death (OR < 1 favours ECMO).

Planned sample size: The study was designed so that when stopped with
at most four deaths in each arm, the study would have approximately
77% power to detect an odds ratio of 1/16 at the 5% significance level
corresponding to mortality rates of 20% and 80% in the ECMO and CMT
groups, respectively.

Statistical model: A normal likelihood based on the observed log(odds
ratio) is adopted: more accurate methods would make use of the full
binomial likelihood and MCMC methods (Section 3.19.2).

Prospective analysis?: No.

Priordistribution: Following the approach of Kass and Greenhouse (1989),
we shall investigate the use of a sceptical prior distribution for the treat-
ment effect, and historical evidence for survival in the control group. As
prior evidence of survival under CMT, we shall follow Ware (1989) in
restricting attention to cases of severe PPHN treated with CMT in the
specific Harvard hospitals immediately preceding the trial: 13 patients
were thus identified as ‘historical controls’, of whom 11 died. Table 6.10
shows the resulting estimated odds of death, log-odds of death and its
variance (Section 2.4). Whilst the use of such historical data may be
discounted totally or simply used at ‘face-value’, it may also be reasonable
to discount it in some manner, such as assuming exchangeability,
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Table 6.10 Historical and observed data for Harvard ECMO study showing
notation for estimates and variances of log-odds of death.

Trial ECMO deaths/
cases

CMT deaths/
cases

Odds log(odds) Variance of
log(odds)

Historical data 11/13 4.60 1.53(yh) 0.49 (s2c )
Harvard phase I 0 / 9 0.05 �2:94(yt) 2.11 (s2t )

4/10 0.69 �0:37(yc) 0.38 (s2c )

Table 6.11 Use of historical controls in assessing odds ratio of death for patients
receiving ECMO compared to conventional treatment: OR < 1 favours ECMO. For
example, a fourfold relative bias corresponds to a 95% chance that the odds ratio
between historical and current control mortality lies between 0.25 and 4.

Potential relative bias
assumed in historical
controls

sd Posterior distribution of odds ratio

Mean 95% interval P(OR<1) P(OR<0.4)

0 0.000 0.033 0.0017 to 0.658 98.7% 94.9%
1.1 0.048 0.033 0.0017 to 0.659 98.7% 94.9%
1.5 0.207 0.035 0.0017 to 0.686 98.6% 94.6%
2 0.354 0.037 0.0018 to 0.741 97.7% 92.1%
4 0.707 0.045 0.0022 to 0.929 97.1% 90.3%
8 1.061 0.053 0.0025 to 1.113 96.8% 89.8%
16 1.415 0.055 0.0026 to 1.166 96.7% 89.4%
Not using historical
controls

0.076 0.0035 to 1.673 94.9% 85.4%

bias or simply discounting its sample size (Section 6.9). For a single
historical source, and assuming normal likelihoods, all these methods
lead to essentially the same model (Section 5.4), and here we shall
illustrate the use of the bias model (Pocock, 1976).

Assuming a model such as (6.27) requires prior opinion concerning
the potential extent of the bias as measured by sd. For example, if it were
thought that in fact the historical controls may over- or underestimate the
odds of death in the randomised controls by a factor of 2, then
exp (1:96sd) ¼ 2, or sd ¼ ( log (2)=1:96) ¼ 0:35: this is similar to the an-
alysis in Section 5.7.3 for interpreting the standard deviation of random
effects. Table 6.11 gives a variety of values for sd corresponding to
beliefs which range from acceptance of the historical evidence at ‘face
value’, i.e. sd ¼ 0, to stating that the potential bias could be such that the
historical controls could over- or underestimate the odds of death in the
randomised controls by a factor of 16.

The choice of a suitable value for sd will depend on the circumstances
and the extent to which Pocock’s criteria are met (Section 6.9). In this
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instance the historical controls seem reasonable in that they came from
the same centre and were treated in a similar way, except they were not
involved in a clinical trial which is known can have an impact on outcomes.

Loss functionordemands: No, but an OR of 0.4 was taken to be of clinical
importance by Kass and Greenhouse (1989).

Computation/software: Conjugate normal model.

Evidence fromstudy: The results of phase I of the ECMO study are shown
in Table 6.10: of the ten patients randomised to conventional therapy
four died, whilst of the nine randomised to ECMO none died. The
estimates and variances of the log-odds of death were obtained using
the adjustments given in Section 2.4. We note the apparent contrast
between the mortality rates under CMT before and during the trial: it is
generally felt that all participants in a randomised trial get superior
treatment. Using the randomised evidence alone, the treatment effect
y would be estimated by �2:94þ 0:37 ¼ �2:57, with variance
2:11þ 0:38 ¼ 2:49. A traditional standardised test statistic, ignoring the
sequential nature of the design, is therefore �2:57=

ffiffiffiffiffiffiffiffiffiffi
2:49

p
¼ 1:63, cor-

responding to a one-sided P-value of 0.052; Fisher’s exact test yields a
one-sided P-value of 0.054 (Ware, 1989).

Bayesian interpretation: We first consider an analysis with a reference
prior on the treatment effect. If the historical evidence is totally dis-
counted (sd ¼ 1) then it can be seen from Table 6.11 that the posterior
mean of the odds ratio is 0.076, and the posterior probablity of ECMO
being inferior is 5.1%; the posterior probability of ECMO not being
clinically superior, i.e. an odds ratio above 0.4, is 14.6%. However,
treating the historical controls as exchangeable with the randomised
controls, i.e. at ‘face value’ (sd ¼ 0), gives a posterior mean for the
odds ratio of 0.033, but now the probability of ECMO being inferior is
only 1.3%, and of it not being clinically superior is 5.1%.

Sensitivity analysis: Table 6.11 displays a range of intermediate results
between theextremesof totally acceptingand totally ignoring thehistorical
controls. A 95% posterior interval for the odds ratio will exclude 1 provided
sd is less than around 8, corresponding to a relative bias of around 5. The
probability of the odds ratio being less than 0.4 is only around 95% pro-
vided that the historical controls are accepted at near face value.

We might also consider a sceptical prior on the treatment effect: the
original alternative hypothesis in the Harvard trial was a reduction of
the mortality rate from 80% to 20%, equivalent to an odds ratio of 1/16
or log (OR) ¼ �2:77. Using the argument in Section 5.5.2, we might
assume a prior centred on 0 and with 5% of its probability below
this alternative of�2:77 – this corresponds to a prior standard deviation of
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(a) Full use of historical controls

favours ECMO <- Odds ratio for mortality -> favours CMT

0.001 0.005 0.1 0.3 0.8 2

Likelihood
Prior
Posterior

(b) Relative bias up to 1.5

favours ECMO <- Odds ratio for mortality -> favours CMT

0.001 0.005 0.1 0.3 0.8 2

(c) Relative bias up to 4

favours ECMO <- Odds ratio for mortality -> favours CMT

0.001 0.005 0.1 0.3 0.8 2

(d) No use of historical controls

favours ECMO <- Odds ratio for mortality  -> favours CMT

0.001 0.005 0.1 0.3 0.8 2

Figure 6.14 Sensitivity analysis of different choices of potential bias in historical
controls in the ECMO trial, assuming a sceptical prior with mean 0 (on the log(OR)
scale), and a 5% chance of an odds ratio less than 0.0625.

�2:77=�1:64 ¼ 1:69. The consequences of using such a sceptical prior
are shown in Figure 6.14 for a range of choices of potential bias in the
historical controls. As Kass and Greenhouse (1989) conclude, a reason-
able sceptic, even taking account of the historical data, is not going to be
completely convinced by the ECMO trial.

Comments: This trial presents a number of interesting challenges which
are fully argued in the discussion of Ware (1989) and in subsequent
publications. For example, there are other historical data available,
including some which show good survival on CMT, and there is a data-
base of outcomes on ECMO. Other statistical models for this trial, includ-
ing and discounting historical data, have been considered by Kass and
Greenhouse (1989), Greenhouse and Wasserman (1995) and Berry and
Stangl (1996a). Berry (1989b) also considers the inclusion of evidence
from an RCT using a play-the-winner design which was also conducted
before 1985. Such information could be included, if assumed to be
exchangeable with the study reported by Ware (1989), using either a
meta-analytic approach (Section 8.2) or by using this historical trial
evidence to derive a prior distribution for the intervention effect (Section
5.4).

The discussants of Ware (1989) also have opposing views concerning
the ethics of randomisation (Section 6.4): Royall and Berry (1989) say
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the trial should never have been started since it was unethical to
randomise given the available evidence, whereas Begg (1989) takes
the completely conflicting view that the Harvard trial was stopped too
early since, as we have seen in the analysis above, the result was not
convincing to a wide range of opinion.

It is notable that the evidence concerning ECMO was not considered
sufficient to prevent a further large trial. After ECMO was introduced in
the UK in 1989, it was agreed to organise a randomised trial involving 55
referral hospitals, in which patients randomised to ECMO were referred
to one of five specialist centres (Field et al., 1996). This pragmatic trial
was designed to randomise 300 babies, but the DMC stopped the trial
after 185 cases when the mortality rate was 30/93 on ECMO and 54/92
on CMT, with an odds ratio of 0.55 (95% interval from 0.39 to 0.77).
Long-term follow-up of the patients over 4 years (Bennett et al., 2001)
revealed only one additional death (in the ECMO arm) but a high rate of
disability and impairment: overall only 16% of survivors were without
abnormal signs or disability, but with no significant excess in the ECMO
group. Treatment was, however, confounded with hospital and the trial
was of a referral service rather than ECMO being carried out in direct
competition to conventional treatment.

6.10 DATA-DEPENDENT ALLOCATION

So far we have only covered standard randomisation designs in which patients

are allocated 50:50 or in some other constant ratio to alternative treatments.

However, a full decision-theoretic approach to trial design would consider data-

dependent allocation so that, for example, in order to minimise the number of

patients getting the inferior treatment, the proportion randomised to the appar-

ently superior treatment could be increased as the trial proceeded. Such ‘adap-

tive’ designs are claimed to satisfy ethical considerations for the patients under

study (Section 6.4). They can be called ‘bandit’ designs, as they are analogous in

theory to a gambler deciding which arm of a two-armed bandit to pull in order

to maximise the expected return: both Bayesian and non-Bayesian approaches

are available. An extreme example is Zelen’s (1969) ‘play-the-winner’ rule

in which the next patient is given the currently superior treatment, and ran-

domisation is dispensed with entirely; Palmer and Rosenberger (1999) review

non-standard trial designs and suggest circumstances where they may be

appropriate. Palmer (2002) claims that many of the current difficulties faced

in carrying out trials could be relieved by using adaptive designs, and Berry

(2001) provides a recent argument for their use.
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Nevertheless, there has been considerable criticism of these ideas as not being

practically rooted in the realities of clinical trials; see, for example, Byar et al.

(1976), Simon (1977), Armitage (1985) and Peto (1985). Objections to adap-

tive allocation include the following:

1. Responses have to be observed without delay.

2. Adaption depends on a one-dimensional response.

3. Sample sizes may have to be bigger.

4. Patients may not be homogeneous throughout the trial.

5. Clinicians may be unhappy with adaptive randomisation.

6. Informed consent may be more difficult to obtain.

7. The trial will be complex and may deter recruitment.

8. Estimation of the treatment contrast will lose efficiency.

9. Potential inflation of Type I error.

10. Treatment assignments may be biased as clinicians may guess which

treatment is ‘in the lead’.

A careful analysis of two-armed trials has been carried out by Berry and Eick

(1995), who conclude that balanced allocation is appropriate if the condition is

reasonably common, but adaptive designs may yield a substantial improvement

in the expected number of successful treatments when a large proportion of

patients with the disease are likely to be in the trial. This is echoed by Senn

(1997b, p. 88), who points out that future patients, who in general will greatly

outnumber those in the trial, would value a more precise treatment estimate and

therefore would prefer large trials with balanced allocation. The ECMO studies

discussed in Example 6.9 provide one of the few examples of adaptive allocation,

and the subsequent controversy did little to encourage the use of such designs;

other examples include an adaptive trial in patients with depressive disorder

(Tamura et al., 1994), while the trial described in Kadane (1996) also adapts

its allocation rules, in a somewhat complex way, to the current evidence.

A recent examplehas proved, however, that it is possible to carryout a large and

complex adaptive trial. Berry et al. (2001a) describe the design of a phase II/III

dose-finding study in acute stroke, in which 15 different doses were to be given at

randomat the start of randomisation,with steady adaptation to the range of doses

around the ED95, i.e. the minimum dose that provides 95% of the maximum

efficacy. This trial has now been completed. Various characteristics may have

contributed to the success of themethodology: only short-term (90-day) outcomes

were considered, modern communication technology was used to ensure rapid

updating of the current posterior distribution of the dose–response curve, a mini-

mum of 15% of patients given placebo dose ensured that the imbalance did not

become too acute, the ability to completely blind clinicians as to the dose provided,

the replacement of the original decision-theoretic stopping criterion with one

based on posterior tail areas being less than a certain value, and classical estima-

tion of the size and power of the study based on pre-trial simulations.
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We may conclude that adaptive designs, which are not a specifically Bayesian

issue, may be better accepted when there are many arms in the trial and not just

an imbalanced randomisation between two arms. In addition, formulation of a

trial as a decision rather than an inference problem leads to many objections

(Section 6.2), and adaptation may be better based on posterior distributions.

6.11 TRIAL DESIGNS OTHER THAN TWO PARALLEL

GROUPS

Equivalence trials. There is a large statistical literature on trials designed to

establish equivalence between therapies. From a Bayesian perspective the solu-

tion is straightforward: define a region of equivalence (Section 6.3) and calcu-

late the posterior probability that the treatment difference lies in this range – a

threshold of 95% or 90% might be chosen to represent strong belief in equiva-

lence. Several examples of this remarkably intuitive approach have been

reported (Section 6.13), which tend to give similar results to traditional analy-

sis. In contrast, Lindley (1998) explores a decision-theoretic formulation that

can give radically different conclusions.

Crossover trials. The Bayesian approach to crossover designs, in which each

patient is given two or more treatments in an order selected at random, is fully

reviewed by Grieve (1994a). More recent references concentrate on Gibbs sam-

pling approaches (Forster, 1994) – see Section 6.13 for other relevant papers.

N-of-1 trials.N-of-1 studies can be thought of as repeatedwithin-person crossover

trials inwhich interest focuses on the response of an individual patient: such trials

may be appropriate in chronic conditions inwhich short-term symptom relief is of

interest. A natural approach to combining such studies is to assume patients are

exchangeable (perhaps conditional on covariates), and adopt a hierarchical

model – an example based on Zucker et al. (1997) is given in Example 6.10. This

can be thought of as an extreme example of the subset procedure described in

Section 6.8.1, in which the subsets have been reduced to individual patients.

Example 6.10 Nof1: poolingindividualresponse studies

Reference: Zucker et al. (1997).

Intervention: Amitriptyline for treatment of fibromyalgia to be compared
with placebo.

Aim of study: To estimate population treatment effects and evaluate indi-
vidual patient responses.
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Study design: Each individual had an N-of-1 study in which they were
treated in a number of periods (3 to 6 per patient), and in each period
both amitriptyline and placebo were administered in random order. All
trials were carried out by a single physician at a single centre.

Outcomemeasure: Each measurement comprised a difference (amitriptyl-
ineminus placebo) in response to a symptomquestionnaire in each paired
crossover period. Higher scores indicated fewer negative symptoms, and
so a positive difference indicated amitriptyline as the superior treatment.

Statistical model: If ykj is the jth measurement on the kth individual, we
assume

ykj � N[yk,s2k ]:

We then assume that both yks and s2ks are exchangeable, as it may not
be reasonable to assume common between-period variability for all
individuals. We make the specific distributional assumption that

yk � N[my,t
2
y ],

log (s2k ) � N[ms,t
2
s]:

A normal distribution for the log-variances is equivalent to a log-normal
distribution for the variances (Section 2.6.8).

Prospective analysis?: No.

Priordistribution:

Independence model. In order to reproduce the classical analysis, we
may assume each yk has a uniform distribution, and each s�2

k has a
Gamma[0.001,0.001] distribution. The latter is essentially equivalent
to log(s2k ) having a uniform distribution and hence leads to the clas-
sical t distribution as a basis for testing for an effect in an individual
(Sections 5.5.1 and 5.7.3).

Exchangeablemodel. We initially adopt uniform priors for my, ty, ms and
ts. Other prior distributions for the between-individual variation ty are
considered as part of a sensitivity analysis.

Loss functionordemands: Zucker etal. (1997) suggest that a difference of
0.5 might be considered as important.

Computation/software: Markov chain Monte Carlo in WinBUGS software.

Evidence from study: The raw data are shown in Figure 6.15, ordered in
terms of the observed sample mean. Seven out of 23 experienced
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Figure 6.15 Raw data from N-of-1 clinical trials on 23 patients, ordered by their
mean response. Each dot represents the difference in responses (amitriptyline minus
placebo) in a single period in which both treatments have been tried in random order.

benefit from the new treatments in all their periods. There appears to be
substantial variability both in the average response and within patients,
justifying the statistical model adopted.

Bayesian interpretation: The independent and exchangeable estimates of
the individual and overall treatment effects are shown in Figure 6.16. The
independent estimates closely follow the raw data, exhibiting substantial
uncertainty. In only six patients do the 95% intervals exclude 0, although
Zucker et al. (1997) report that patients 11–23 were all advised to
continue on the active treatment, while patients 1–10 were advised to
stop active treatment.
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Figure 6.16 Estimates and 95% intervals for the response in each person, assuming
both independent and exchangeable individuals. The vertical lines represent the null
hypothesis of no treatment difference. P(yk > 0), the posterior probability that each
individual’s effect lies above 0, is given on the left.

Table 6.12 Summary of posterior distributions of parameters in exchangeable
analysis.

Parameter Median /
estimate

95%
interval

Overall mean my 0.42 0.13 to 0.73
Prob. overall positive effect P(my > 0) 0.997
Prob. overall important effect P(my > 0:5) 0.29
Between-patient sd ty 0.50 0.20 to 0.92
Between-patient variability in log-variances ts 1.03 0.42 to 1.77
Mean within-patient variance exp (mt þ t2y)=2 0.94 0.49 to 3.05
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The parameter estimates resulting from the exchangeable analysis
are shown in Table 6.12. There is a clear overall positive effect in the
population which is estimated to be 0.42, although the chance that it is
an important effect (i.e. greater than 0.5) is only 29%. There is also
strong evidence of patient heterogeneity in their response, with an
estimated between-patient standard deviation of 0.50, suggesting that
individual patient effects might vary between roughly �0.5 and 1.5.

There is also clear evidence of between-patient heterogeneity in their
variability in responses, as shown by ts being substantially away from 0.
Transforming from a log-variance to a variance scale (Section 2.6.8)
reveals a mean within-patient variance of 0.94.

From the individual estimates shown in Figure 6.16 it is clear that the
exchangeable model brings about substantial shrinkage in the extreme
patients, reflecting the limited information from each individual. For
example, patient 23, with four positive measurements, three of which
are extreme, has a posterior mean of 0.55, less than its minimum obser-
vation! It might be felt that the model is exercising undue influence in this
situation, and some possible alternatives are discussed below. In spite of
the shrinkage, the narrower intervals mean that the number of patients
with 95% intervals excluding 0 rises to nine, compared to six with the
independent analysis. We note one consequence of allowing exchange-
ablewithin-patient variances: patient 9, whose observationswere remark-
ably close together and who hence has a very tight independent interval,
obtains an exchangeable interval that is wider due to their within-patient
variance being pulled towards the population mean of around 0.94.

Sensitivityanalysis: Changing the prior distribution for ty to the alternatives
listed in Section 5.7.3 makes negligible difference to the conclusions,
due to the considerable evidence available concerning ty.

Comments: As pointed out by Zucker et al. (1997), it is straightforward to
include patient-level covariates in such a model, and they illustrate this
by including dose as a predictor. However, this can be shown to have
minimal influence. It might be reasonable to carry out further analysis of
sensitivity to the shape of both the sampling and the random-effects
distribution: assuming t distributions (Section 2.6.9) for either may result,
for example, in substantially less shrinkage for patient 23.

Factorial designs: Factorial trials, in which multiple treatments are given simul-

taneously to patients in a structured design, can be seen as another example of

multiplicity and hence a candidate for hierarchical models. Simon and Freedman

(1997) and Miller and Seaman (1998) suggest suitable prior assumptions that

avoid the need to decide whether interactions do or do not exist.
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6.12 OTHER ASPECTS OF DRUG DEVELOPMENT

Pharmacokinetics. The ‘population’ approach to pharmacokinetics, in which the

parameters underlying each individual’s drug clearance curve are viewed as

being drawn from some population, is well established and is essentially an

empirical Bayes procedure (Sheiner and Wakefield, 1999). Proper Bayesian

analysis of this problem is described in Racine-Poon and Wakefield (1996)

and Wakefield and Bennett (1996), emphasising MCMC methods for estimating

both population and individual parameters, as well as individualising dose

selection (Wakefield and Walker, 1997).

Phase I trials. Phase I trials are conducted to determine that dosage of a new

treatment which produces a level of risk of a toxic response which is deemed to

be acceptable. The primary Bayesian contribution to the development of method-

ology for phase I trials has been the continual reassessment method (CRM)

originally proposed by O’Quigley et al. (1990). In CRM a parameter underlying a

dose–toxicity curve is given a proper prior which is updated sequentially and used

to find the current ‘best’ estimate of the dosage which would produce the accept-

able risk of a toxic event if given to thenext subject, aswell as giving theprobability

of a toxic response at the recommended dose at the end of the trial (O’Quigley,

1992). High sensitivity of the posterior to the prior distribution (Gatsonis and

Greenhouse, 1992) has been reported in a similar procedure. Numerous simula-

tions andmodifications of themethod have been proposed (Section 6.13); Dough-

erty et al. (2000) report a practical application described in Example 6.11.

Example 6.11 CRM: An application of the continual reassessment
method

Dougherty et al. (2000) provide the following application of the continual
reassessment method, in which they wish to establish the maximum toler-
ated dose of the opioid antagonist nalmefene. Lack of tolerability is meas-
ured by reversal of anaesthesia. They are interested in establishing the
maximum dose with probability p of reversal of anaesthesia nearest to
0.20. The available doses are 0.25, 0.50, 0.75 and 1.00, which are given
labels 1 to 4. They adopt a one-parameter logistic response model in
which, for dose i,

logit(pi) ¼ 3þ adi, (6:28)

where a is an unknown parameter with prior set as an exponential distribu-
tion with mean 1 (i.e. Gamma[1,1]), and the di are transformations of the
dose to enable this logistic curve to fit the prior judgements of pi, denoted
p0i . Hence the di are calculated by setting a equal to its prior mean of 1, and
inverting (6.28) to give di ¼ logit(p0i )� 3.
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Table 6.13 Summary of prior and posterior distributions of parameters in CRM
experiment.

Prior Observed data Posterior

Dose p0i : prior guess at pi di No. patients No. not tolerating Mean SD

1 0.10 �5.20 4 0 0.10 0.05
2 0.20 �4.39 18 3 0.19 0.08
3 0.40 �3.41 3 2 0.38 0.09
4 0.80 �1.61 0 0 0.79 0.03

Table 6.13 shows the prior judgements, the observed data and consequent
posterior distributions. The analysis is straightforward to carry out in Win-
BUGS.

We can make a number of observations concerning this analysis. First,
the posterior means for the pi show strong agreement with the prior, perhaps
suggesting undue influence. Second, the actual doses used do not enter
into the model. Third, a tolerability for dose 4 is estimated with considerable
accuracy, even though no one was ever given this dose. Finally, the implied
prior distributions for the pi are actually bimodal. These all suggest that the
basic CRM procedure should be used with great caution.

Etzioni and Pepe (1994) suggest monitoring a phase I trial with two possible

adverse outcomes via the joint posterior distribution of the probabilities of the

two outcomes with frequentist inference at the end of the trial.

Phase II trials. Phase II clinical trials are carried out in order to discover

whether a new treatment is promising enough (in terms of efficacy) to be

submitted to a controlled phase III trial, and often a number of doses may be

compared. Bayesian work has focused on monitoring, sample-size determin-

ation and adaptive design. Monitoring on the basis of posterior probability of

exceeding a desired threshold response rate was first recommended by Mehta

and Cain (1984), while Heitjan (1997), Cronin et al. (1999) and Weiss et al.

(2001) adapt the proposed use of sceptical and enthusiastic priors (Section

6.6.2) in phase III studies.

With regard to design, Herson (1979) used predictive probability calculations

to select among designs with high power in regions of high prior probability.

Thall and co-workers have also developed stopping boundaries for sequential

phase II studies based on posterior probabilities of clinically important events,

but where the designs are selected from the frequentist properties derived from

extensive simulation studies: see Section 6.13 for references. However Stallard
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(1998) has criticised this approach as being demonstrably sub-optimal when

evaluated using a full decision-theoretic model with a monetary loss function.

Finally, John Whitehead and colleagues have taken a full decision-theoretic

approach to allocating subjects between phase II and phase III studies. For

example, Brunier and Whitehead (1994) consider the case where a single treat-

ment with a dichotomous outcome is being evaluated for a possible phase III trial,

and use Bayesian decision theory to determine the number of subjects needed.

They place a prior on the probability of success and calculate the expected cost of

performing or not performing a phase III trial, using a cost function which

includes consideration of the costs to future patients if the inferior treatment is

eventually used, the power of the possible phase III trial (which they assume will

be carried out by frequentist methods), and the costs of experimentation. They

show how to determine, for given parameter values, the expected cost of perform-

ing a phase II trial of any particular size, and thus the optimal size for a trial.

When faced with selecting among a list of treatments and allocating patients,

Pepple and Choi (1997) have considered two-stage designs, Yao et al. (1996)

deal with screening multiple compounds and allocating patients within a pro-

gramme, while Strauss and Simon (1995) use a prior distribution and horizon.

The successful adaptive study of Berry et al. (2001a) discussed in Section 6.10

can also be considered as a phase II dose-finding study monitored using poster-

ior tail areas.

Phase IV – safety monitoring. A considerable literature exists on Bayesian

causality assessment in adverse drug reactions: see, for example, Lanctot and

Naranjo (1995).

6.13 FURTHER READING

There is a huge literature on Bayesian appraches to trials, which is reviewed

in Spiegelhalter et al. (2000). General discussion papers include tutorial intro-

ductions at a non-technical (Lewis and Wears, 1993) and slightly more

technical level (Abrams et al., 1994). Pocock and Hughes (1990) provide a

non-mathematical discussion concentrating on estimation issues, while Armi-

tage (1989) attempts a balanced view of the competing methodologies. A special

issue of Statistics in Medicine has been devoted to ‘Methodological and Ethical

Issues in Clinical Trials’, containing papers both for (Berry, 1993; Urbach, 1993;

Spiegelhalter et al., 1993) and against (Whitehead, 1993) the Bayesian perspec-

tive, and featuring incisive discussion by Armitage, Cox and others. Particular

emphasis has been placed on the ability of Bayesian methods to take full advan-

tage of the accumulating evidence provided by small trials (Lilford et al., 1995;

Matthews, 1995).

Somewhat more technical reviews are given by Spiegelhalter et al. (1993,

1994). Berry (1991, 1995) has long argued for a Bayesian decision-theoretic
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basis for clinical trial design, and has described in detail methods for elicitation,

monitoring, decision-making and using historical controls. Proponents of a

decision-theoretic choice of sample size include Claxton and Posnett (1996),

Hornberger and Eghtesady (1998) and Hornberger (2001).

Pocock (1992), O’Brien (1998) and Whitehead (1997b) provide good reviews

on sequential trials, and applications of monitoring using posterior intervals

include Berger and Berry (1988), Brophy and Joseph (1997), Carlin et al.

(1993), DerSimonian (1996), George et al. (1994) and Rosner and Berry

(1995). Papers investigating monitoring using predictions include Choi and

Pepple (1989), Qian et al. (1996) and Spiegelhalter et al. (1986).

Empirical Bayes analyses of subsets are provided by Louis (1991) and Pocock

and Hughes (1990), which give rise to traditional confidence intervals that are

not given a Bayesian interpretation. Bayesian techniques for subsets are elabor-

ated in Dixon and Simon (1991), Simon (1994b) and Simon et al. (1996).

Hierarchical models for multicentre analysis have been considered by Gray

(1994), Stangl (1996) and Stangl and Greenhouse (1998), while Matsuyama

et al. (1998) allow a random centre effect on both baseline hazard and treat-

ment, and examine the centres for outliers using a Student’s t prior distribution

for the random effects.

Examples of the Bayesian approach to equivalence trials have been reported

by Selwyn et al. (1981), Fluehler et al. (1983), Selwyn and Hall (1984), Breslow

(1990), Grieve (1991) and Baudoin and O’Quigley (1994). Bayesian ap-

proaches to crossover trials include Grieve (1985, 1995), Albert and Chib

(1996) and Grieve and Senn (1998).

The continuous reassessment method for phase I studies has been developed

by Goodman et al. (1995), Whitehead and Brunier (1995), and Gasparini and

Eisele (2000). For phase II studies, Korn et al. (1993) consider a phase II study

which was stopped after three out of four patients exhibited toxicity; Bring

(1995) and Greenhouse and Wasserman (1995) re-examine their problem

from a Bayesian perspective. See also Thall and Estey (1993), Thall et al.

(1996), Thall and Russell (1998) and Whitehead (1986, 1997a).

6.14 KEY POINTS

Table 6.14 briefly summarises some major distinctions between the Bayesian

and the frequentist approach to trial design and analysis.

1. The Bayesian approach provides a framework for considering the ethics of

randomisation.

2. Prior information can be incorporated in power calculations, which should

warn against conditioning on optimistic alternative hypothesis. ‘Average’

power may give a more realistic assessment of the chances of a trial reaching

a positive conclusion.
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Table 6.14 A brief comparison of Bayesian and frequentist methods in clinical trials.

Issue Frequentist Bayesian

Information other than
that in the study being
analysed

Informally used in design Used formally by
specifying a prior
probability distribution

Interpretation of the
parameter of interest

A fixed state of nature An unknown quantity
which can have a
probability distribution

Basic question How likely are the data
given a particular value
of the parameter?

How likely is a particular
value of the parameter,
given the data?

Presentation of results Likelihood functions,
P-values, confidence
intervals

Plots of posterior
distributions of the
parameter, calculation
of specific posterior
probabilities of interest,
and use of the posterior
distribution in formal
decision analysis

Interim analyses P-values and estimates
adjusted for the number
of analyses

Inference not affected by
the number or timing of
interim analyses

Interim predictions Conditional power
analyses

Predictive probability of
getting a firm conclusion

Dealing with subsets
in trials

Adjusted p-values
(e.g. Bonferroni)

Subset effects shrunk
towards zero by a
‘sceptical’ prior

3. Monitoring trials with a sceptical and other priors may provide a unified

approach to assessing whether a trial’s results would be convincing to a wide

range of reasonable opinion, and could provide a formal tool for data

monitoring committees.

4. Predictions of the consequences of continuing a trial provide a useful adjunct

to current posterior distributions, but should not be used as a formal moni-

toring tool.

5. Various sources of multiplicity can be dealt with in a unified and coherent

way using hierarchical models.

6. A variety of models exist for incorporating historical controls, analogous to

those for using historical data as a basis for a prior distribution.

7. Adaptive studies that change the randomisation ratio dependent on out-

comes may be appropriate when a large proportion of available patients are

taking part in the trial, or when many treatment arms are being simultan-

eously investigated.

8. It is generally unrealistic to formulate a phase III trial as a decision

problem, except in circumstances where future treatments can be reasonably

predicted. Earlier phase studies may be more amenable to this approach.
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EXERCISES

6.1. Prove (6.4), (6.6) and (6.7).

6.2. In Example 6.2, calculate the expected power given that the treatment is

effective. [Hint: There are two possible methods. You could generate the

joint distribution of � and the power, and only count those iterations for

which � > 0. Alternatively, generate � from its prior distribution con-

strained to be positive, using the I(0,) construct in WinBUGS.]

6.3. Consider the prior beliefs for the MRC neutron therapy RCT introduced in

Exercise 5.2. The actual trial results at an interim analysis produced a

hazard ratio of 0.66 (95% CI from 0.40 to 1.10) in favour of the control

group. For each of the prior distributions in Exercise 5.2, update these

priors in the light of the observed results.

6.4. Ben-Shlomo et al. (1998) report the results of the UK Parkinson’s Disease

Research Group RCT of the evaluation of levodopa, levodopa and selegi-

line, and bromocriptine in the treatment of early stage Parkinson’s disease;

we focus on the comparison of levodopa against levodopa and selegiline in

terms of mortality. At a second interim analysis 44 deaths were observed

out of 249 patients in the levodopa alone arm and 76 out of 271 patients

in the levodopa and selegiline arm, producing a hazard ratio of 1.57 (95%

CI from 1.09 to 2.03) for levodopa and selegiline vs. levodopa alone. At

this point the trial was terminated, but follow-up continued and a subse-

quent analysis reported 73 and 103 deaths, producing a hazard ratio of

1.32 (95% CI from 0.98 to 1.79).

(a) Use the credibility analysis of Section 3.11 to establish the degree of

scepticism that would be required not to have found the interim results

convincing of benefit.

(b) In a trial in which m ¼ 120 events were to be observed, what alterna-

tive log(hazard ratio) could be detected with 80% power?

(c) What sceptical prior would express 5% belief that the effect would be as

large as this alternative hypothesis?

(d) Discuss whether, on the evidence provided, it was reasonable to stop

the trial early.

6.5. Table 6.15, adapted from Wheatley and Clayton (2003), shows the accu-

mulating data in a trial of five vs. four treament courses in the MRC Acute

Myeloid Leukaemia trial. An unexpectedly large treatment effect in favour

of five courses was observed early in the trial, which disappeared as the

trial progressed.

(a) Plot the likelihoods for the log(hazard ratio) at each timepoint, and

calculate the two-sided P-values.

(b) If the trial were planned to observe 300 events, what might a reason-

able sceptical prior distribution be?

(c) What would have been the effect had this prior been used to monitor

the trial?
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Table 6.15 Mortality in MRC Acute Myeloid Leukaemia RCT.

Timepoint 5 courses 4 courses O� E V[O� E]

deaths total deaths total

1997 7 102 15 100 �4.6 5.5
1998(1) 23 171 42 169 �12.0 15.9
1998(2) 41 240 66 240 �16.0 26.7
1999 51 312 69 309 �11.9 30.0
2000 79 349 91 345 �9.5 42.4
2001 106 431 113 432 �6.2 53.7
2002 157 537 140 541 þ6.7 74.0

6.6. Prove (6.17) and (6.18).

6.7. Consider the situation in which the Parkinson’s disease trial was stopped

in Exercise 6.4, and the predictions that could have been made concern-

ing the status of the trial at its eventual publication when 176 events had

occurred (an additional 56).

(a) What would have been the expected power, given the data so far, of

rejecting the hypothesis that the log(hazard ratio) was 0, i.e. the

probability that the final 95% interval will lie wholly above 0, with

and without the inclusion of the sceptical prior?

(b) Was there evidence of conflict between the data in the first part of the

trial and that collected in the second part, i.e. after the decision was

made to stop? [Hint: One way to do this is to calculate the predictive

distribution for the observed log(hazard ratio) arising in the second

part and use Box’s measure of conflict to compare it to that actually

observed.]

6.8. (a) Derive the results given in the ECMO study in Example 6.9. (b)

Reanalyse the ECMO study assuming the historical data are to be dis-

counted using the ‘power prior’ model explored in Example 5.2, with

prior weights 0, 10%, 50% and 100%.

6.9. Reanalyse the ECMO study in Example 6.9 with full binomial likelihoods

instead of normal approximations and using WinBUGS for the analysis.

You will need to select a prior distribution for the mortality rates in the

control and ECMO groups ignoring both historical and trial data: compare

the use of (a) independent uniform distributions in each group, (b) inde-

pendent Beta[0.5,0.5] distributions, (c) a uniform distribution for the

control group mortality and a sceptical prior for the treatment effect on

the log(odds ratio) scale.

6.10. Consider Exercise 2.1, repeating the study with the other hand. Using a

subjectively chosen sceptical prior distribution for the log(odds ratio) for

the difference between hands, conduct the second 12 tosses, and update

the prior beliefs in the light of the evidence that you have collected.
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Table 6.16 Estimates of log(hazard ratio) and standard errors for disease-free survival
comparing tamoxifen with control for women with breast cancer within subgroups
defined by œstrogen receptor status, nodal status and postmenopausal status.

No. patients

Oestrogen
receptor þve

Node
þ ve

Postmenopausal Total Tamoxifen Control log
(HR)

SE
[log(HR)]

1 0 0 183 72 111 �0.520 0.207
1 1 0 57 27 30 �0.096 0.319
1 0 1 262 101 161 �0.551 0.190
1 1 1 92 44 48 þ0.040 0.278
0 0 0 493 210 283 �0.061 0.152
0 1 0 128 52 76 �0.256 0.242
0 0 1 583 280 303 �0.287 0.131
0 1 1 161 72 89 �0.275 0.205

6.11. Table 6.16 displays estimates of log(hazard ratio) for disease-free survival

comparing tamoxifen with control for women with breast cancer for

eight mutually exclusive subgroups of women defined by three binary

factors: œstrogen receptor status, nodal status and postmenopausal

status. Assuming exchangeable subgroups, obtain the posterior esti-

mates of the hazard ratio for each subgroup, and thus assess the evidence

for specific subgroup–treatment interactions. [Hint: You could use the

empirical Bayes methodology of Example 3.13, or the full Bayes approach

using WinBUGS shown in Example 8.1.]. Do you think the exchangeabil-

ity assumption is reasonable?
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