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Observational Studies

7.1 INTRODUCTION

The RCT is generally considered the ‘gold-standard’ methodology in evaluating

health-care interventions, but there are circumstances in which randomisation

is either impossible or unethical (e.g. evaluating the health effects of smoking) or

where there is substantial valuable information available in non-randomised or

‘observational’ data (Concato et al., 2000). In many circumstances such obser-

vational data would form part of an evidence synthesis, which is dealt with in

Chapter 8.

It is important to understand that the probability models used in Bayesian

analysis are expressions of personal or group uncertainty and so do not need to

be based on randomisation. Therefore in principle non-randomised studies can

be analysed in exactly the same manner as randomised comparisons. In Section

7.2 we describe how both case–control and cohort designs provide a likelihood

which can be combined with prior information using standard Bayesian

methods, perhaps with extra attention to adjusting for covariates in an attempt

to control for possible baseline differences in the treatment groups with respect

to uncontrolled risk factors or exposures.

Of course, the dangers associated with the use of observational studies in

evaluating health-care interventions have been well described in the medical

literature (Byar et al., 1976). For example, Dunn et al. (2002) compare random-

ised and non-randomised evidence collected according to a common protocol,

and find a potentially misleading treatment comparison based on the observa-

tional data. Essentially, randomised studies should provide an unbiased likeli-

hood for the parameter of interest, while observational studies may have a

degree of systematic bias. In this book we do not argue the case for or against

the use of non-randomised studies, but suggest that if observational studies are

to be used, then their analysis falls naturally into a Bayesian framework.

Specifically, the possibility of bias leads inevitably to a degree of subjective

judgement about the comparability of studies, and this fits well into the
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acknowledged judgement underlying all Bayesian reasoning. Hence, in Section

7.3 we consider the explicit modelling of potential biases, building on the

structure developed in the context of evidence-based priors (Section 5.4) and

using historical controls (Section 6.9), in each of which a range of methods are

possible for ‘downweighting’ studies to allow for doubts about their degree of

relevance.

Finally, in Section 7.4 we consider the specific issue of making institutional

comparisons, also known as ‘profiling’. This fits naturally into a hierarchical

modelling framework, and we also show how a Bayesian approach allows direct

probability statements about the rank of an institution.

7.2 ALTERNATIVE STUDY DESIGNS

Case–control studies involve retrospective investigation of risk factors for a

sample of cases and controls, possibly matched for known risk factors. Inference

is generally on the odds ratio, which is directly estimable from this design.

Bayesian approaches have generally relied on analytic approximations in

order to obtain reasonably simple analyses (Zelen and Parker, 1986; Marshall,

1988; Nurminen and Mutanen, 1989; Zelen, 1990); for example, Ashby et al.

(1993) examine two case–control studies studying leukaemia following chemo-

therapy treatment for Hodgkin’s disease, and consider the consequences of

various prior distributions based on a cohort study. However, all the techniques

for analysing clinical trials can be adopted, with the additional complication in

relation to judgements on the potential for bias and appropriateness of the prior.

Example 7.1 describes the analysis of Lilford and Braunholtz (1996) concerning

potential side-effects of oral contraceptives using a likelihood arising from case–

control studies.

A large cohort study or registry database may provide observational evidence

on the ‘natural history’ of a disease, which might be used to model the conse-

quences of an intervention; for example, Craig et al. (1999) describe an analysis

of a population-based cohort of patients with diabetic retinopathy in order to

evaluate different screening policies. It is, of course, possible to directly estimate

apparent effects of different interventions from registry data, although again

the potential for bias should be acknowledged: Example 9.3 illustrates one

technique for downweighting registry and single cohort data in an evidence

synthesis.

There is also a substantial literature on Bayesian methods for complex epi-

demiological modelling, particularly spatial correlation (Heisterkamp et al.,

1993; Bernardinelli et al., 1995; Richardson et al., 1995; Ashby and Hutton,

1996), measurement error (Richardson and Gilks, 1993) and missing covariate

data (Raghunathan and Siscovick, 1996).
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7.3 EXPLICIT MODELLING OF BIASES

Bayesian techniques for explicitly modelling potential bias, both within studies

and in the attempt to generalise studies outside their target population, were

pioneered by Eddy et al. (1992) under their general title of the ‘confidence profile

method’ (Section 8.1).

Biases to internal validity mean that the effect of interest is not being appropri-

ately estimated within the circumstances of the study. For example, suppose we

suspect that a proportion p of patients in a study did not comply with the

intended treatment, although we do not know who these patients are. If we

are interested in estimating the treatment effect �t in those who actually

received the treatment, then the overall underlying treatment effect in the

trial will be � ¼ (1� p)�t þ p�0, where �0 is the effect in non-compliers. A

likelihood for � can thus be transformed into a likelihood for �t, provided there

is other evidence or prior opinion concerning p and �0. The likelihood therefore

provides information on a function of the parameters of interest, and a fairly

complex example is provided in Example 8.7.

Eddy et al. (1992) identify a range of potential biases that can be modelled in

this manner: these include dilution and contamination due to those who are

offered a treatment not receiving it, errors in measurement of outcomes, errors

in ascertainment of exposure to an intervention, loss to follow-up, and patient

selection and confounding in which the groups differ with respect to measurable

features. These biases may occur singly or in combination.

Biases to external validity concern the ability of a study to generalise to defined

populations or to be combined with studies carried out on different groups, and

may be relevant even if a study has been meticulously carried out and has

obtained an unbiased assessment of the treatment effect within its own study

population. These include ‘population bias’ in which the study and general

population differ with respect to known characteristics, ‘intensity bias’ in

which the ‘dose’ of the intervention is varied when generalised, and differences

in lengths of follow-up.

We have previously discussed the use of historical data as a basis for prior

opinion (Section 5.4) or as historical controls in clinical trials (Section 6.9), and

in each case examined ways of ‘discounting’ the data from their face-value

interpretation. In each of these contexts it has been assumed that the current

observed data, for example in a randomised trial, directly depend on the param-

eter of interest. The potential biases, whether internal or external, in observa-

tional studies can be modelled using similar techniques, but in this context the

current likelihood may be adjusted.

As a simple example, we assume a normal likelihood

ym � N[�Int,�
2=m],
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where �Int represents an ‘internal’ parameter that is being estimated in the

current study. Following the development in Sections 5.4 and 6.9, we might

assume a bias � so that �Int ¼ �þ �, where � is the parameter of real interest.

Options then include the following:

1. Assuming � is known.

2. Assuming � has a known distribution with mean 0, indicating a non-

systematic bias. If we assume � � N[0, �2=n�], from (2.25) we obtain a

likelihood for the parameter of interest �,

ym � N �, �2 1

m
þ 1

n�

� �� �
,

i.e. the sample variance is inflated to allow for the potential bias.

3. If we suspect systematic bias in one direction, we might take � to have a

known distribution with non-zero mean, say � � N[��, �2=n�]. We then

obtain a likelihood

ym � N �þ ��, �2 1

m
þ 1

n�

� �� �
,

or equivalently

ym � �� � N �, �2 1

m
þ 1

n�

� �� �
: (7:1)

Hence, after subtracting the assumed mean bias �� from the observation ym,

(7.1) provides a likelihood for the parameter of interest that can be combined

with an appropriate prior distribution for �.

Each of these approaches is illustrated in Example 7.1.

In practice, analytic solutionswill rarely be possible andMCMC techniques will

be necessary. More serious are the assumptions required concerning the extent of

the biases, since although data may be available on which to base accurate

estimates, there is likely to be considerable judgemental input. Any unknown

quantity can, of course, be given a prior distribution, and Eddy et al. (1992) claim

this obviates the need for sensitivity analysis. They also argue strongly against

simple downweighting using the ‘power prior’ model (Section 5.4) in which the

effective sample size is reduced: they claim this is an arbitrary technique and that

potential biases should be explicitly modelled. In fact, as we showed in Section

5.4, the models are effectively equivalent when handling a single study. We also

note the increasing pace of research concerning the quantitative bias of observa-

tional studies: see, for example, Kunz and Oxman (1998), Britton et al. (1998),

Benson and Hartz (2000), Ioannidis et al. (2001), Reeves et al. (2001) and

Sanderson et al. (2001).
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Example 7.1 OC: interpreting case^control studies in pharmacoepide-
miology

Reference: Lilford and Braunholtz (1996).

Intervention: Third-generation oral contraceptives (OCs).

Aimof study: Suspicions had been raised as to whether ‘third-generation’
OCs increased the risk of venous thromboembolism compared to
second-generation OCs. The aim of Lilford and Braunholtz (1996) was
to assess the evidence from a Bayesian perspective.

Studydesign: Interpretation of a meta-analysis of four case–control studies.

Outcomemeasure:Odds ratio for venous thromboembolism, OR< 1 being
in favour of 3rd-generation OCs.

Plannedsample size: Not applicable.

Statisticalmodel: Normal likelihood for pooled estimate of log(OR) derived
from the meta-analysis of case–control studies, discounted for potential
biases according to the methods described in Section 7.3. Lilford and
Braunholtz (1996) consider a potential bias d in the meta-analysis with a
normal distrtribution: in the notation of Section 7.3, d � N[md, s2=nd].
They examine the effect of both a non-systematic and a systematic
bias, as detailed below under ‘Sensitivity analysis’.

Prospective analysis?: No.

Prior distribution: Prior beliefs were elicited from two gynaecologists with
an interest in family planning. Expert 1 thought that a 20% risk reduction
in venous thromboembolism would be associated with third-generation
compared to second-generation OCs, i.e. OR ¼ 0.8, but that the OR
could be between 0.4 and 1.6. Assuming this corresponds to a 95%
interval of a normal distribution, the true log(odds ratio), y, can be
assumed to have mean m ¼ log (0:8) ¼ �0:22 and standard deviation
(log (1:6)� log (1:4) )=(2� 1:96) ¼ 0:35: Equivalently, if we take s ¼ 2,
we obtain a prior ‘number of events’ n0 ¼ (s=0:35)2 ¼ 31:9.

Expert 2 thought that there was an equal chance of third-generation
OCs reducing the OR of venous thromboembolism or increasing it, i.e.
OR ¼ 1.0, but was suitably uncertain as to think that the true OR was

likely to be between 0.5 and 2.0. Using the same argument as for Expert 1,

we assume an N[0, s2=31:9] prior for Expert 2.

Loss functionordemands: No.

Computation/software: Conjugate normal model.

Evidence fromstudy: The meta-analysis of case–control studies produced
a pooled odds ratio of 2.0 with a 95% CI from 1.4 to 2.7. On a log(OR)
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scale, this provides a likelihood with mean log (2:0) ¼ 0:69 and standard
deviation (log (2:7)� log (1:4))=(2� 1:96) ¼ 0:17: Equivalently, taking
s ¼ 2, we obtain a sample ‘number of events’ m ¼ (s=0:17)2 ¼ 142:5.

Bayesian interpretation: Combining the evidence from the meta-analysis
with each expert’s prior beliefs produced the posterior distributions seen
in Figure 7.1(a). Given that both gynaecologists were a priori quite
uncertain as to the true odds ratio, their corresponding posterior distri-
butions are influenced considerably by the data, so that the posterior
distributions for both experts indicate less than 0.02% probability that
third-generation OCs reduce the OR of venous thromboembolism.

favours 3rd gen.  <- Odds ratio for VTE    -> favours 2nd gen

Expert 1
(a) Bias: none

0.3 0.8 1.3 1.8 2.8 3.8

0.3 0.8 1.3 1.8 2.8 3.8

0.3 0.8 1.3 1.8 2.8 3.8

Likelihood
Prior
Posterior

Expert 1
(b) Bias: 0% � 67%

Expert 1
(c) Bias: +30% � 67%

favours 3rd gen.  <- Odds ratio for VTE    -> favours 2nd gen

0.3 0.8 1.3 1.8 2.8 3.8

0.3 0.8 1.3 1.8 2.8 3.8

0.3 0.8 1.3 1.8 2.8 3.8

Expert 2
(a) Bias: none

Expert 2
(b) Bias: 0% � 67%

Expert 2
(c) Bias: +30% � 67%

Figure 7.1 Likelihood, prior and posterior distributions for the oral contraceptive
meta-analysis, showing the prior distributions for two experts and the results of (a)
taking the meta-analysis at face value, (b) discounting the evidence by assuming the
possibility of a random bias with standard deviation 30% on the HR scale, and (c)
assuming an additional systematic bias of 30% on the HR scale.
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Sensitivityanalysis: It may be appropriate not to consider the evidence from
such a meta-analysis at ‘face value’ since such retrospective epidemi-
ological studies are known to be prone to various biases. Figure 7.1(b)
shows an analysis in which the evidence from the meta-analysis is dis-
counted using the non-systematic bias model described in Section 7.3.

Figure 7.1(b) shows the influence of a non-systematic md ¼ 0ð Þ bias
such that the odds ratio yInt being estimated may be between 60% and
167% of the true odds ratio y, i.e. up to a 67% bias in either direction. This
corresponds, on a log(OR) scale, to a bias with standard deviation
log (1:67)= 1:96 ¼ 0:26, equivalent, if we take s ¼ 2, to nd ¼ (s=0:26)2 ¼
58:7. The resulting posterior distributions for the twoexperts nowgive11%
and 5%probability to the notion that third-generationOCsmay reduce the
relative risk.

Figure 7.1(c) shows a further series of analyses in which the evidence
from the meta-analysis is not only discounted, but also adjusted for the
belief that case–control studies may have a systematic bias in which
odds ratios are overestimated by a median of 30%: this is modelled by
assuming md ¼ log (1:3) ¼ 0:26, so that d � N[0:26, 0:262]. In this case
the resulting posterior distributions show 27% and 15% probability that
third-generation OCs may reduce the relative risk. Thus reasonable
assumptions about the potential bias in the epidemiological studies,
combined with a reasonably sceptical prior distribution, lead to substan-
tial uncertainty as to the true effect of third-generation OCs.

Comments: There was great publicity surrounding the publication of this
meta-analysis in 1995. Notification of family doctors in the UK was
carried out in a ‘panic’ atmosphere, leading to a sudden drop in use of
third-generation OCs, and reports of subsequent excess abortions. This
Bayesian analysis suggests that such consternation may have been
unfounded. A court case against the makers of third-generation OCs
brought by 99 women who suffered strokes, deep vein thromboses and
pulmonary embolisms was settled in July 2002 in the English courts,
when the judge ruled that there was ‘not, as a matter of probability, any
increased relative risk’ associated with the pills. It is notable that both
sides in the case agreed that a doubling of risk had to be shown, in order
that it was ‘as likely as not’ that any side-effect was caused by the third-
generation OC. In view of this demand, it is hardly surprising the case
against the companies failed.

Whilst this, and many other analyses have concentrated on the poten-
tially negative effects of third-generation OCs, there has been evidence
published that their use has been associated with a reduced relative risk
of myocardial infarction compared to second-generation oral contracep-
tives. However, this example serves to illustrate the fact that in many
situations in which there are numerous outcomes, both positive and
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negative, consideration of one in isolation is fraught with danger. It is also
notable that policy decisions should depend on differences in expected
utilities whch in turn depend on risk differences rather than odds ratio
(Section 3.14), and hence this analysis, strictly speaking, is not in a
suitable form for decision-making.

7.4 INSTITUTIONAL COMPARISONS

If we consider an individual clinician, a medical team or a hospital as represent-

ing a class of ‘intervention’, then the use of performance indicators to compare

outcomes could be considered as a form of evaluation. There are many complex

issues surrounding such ‘profiling’ of institutions, including risk adjustment,

choice of indicator, frequency of analysis, public reporting and so on, but these

are beyond the scope of this book. Bayesian approaches to institutional com-

parisons have been suggested by Goldstein and Spiegelhalter (1996), Normand

et al. (1997) and Christiansen and Morris (1997a), while fully Bayesian

methods have also been used in the analysis of panel agreement data on the

appropriateness of coronary angiography (Ayanian et al., 1998).

A popular method when comparing institutions is to plot the observed

performance (possibly risk-adjusted) and 95% confidence interval; see, for

example, the New York cardiac surgery indicators (New York State Department

of Health, 1998). If the interval does not overlap a benchmark then attention

focuses on that centre. However, by chance alone one can expect 2.5% of

centres to be identified as ‘significantly’ below standard, even if they are actually

performing at the benchmark level. This indicates the need for caution in

interpreting ‘statistically significant’ results, as this is essentially testing the

hypothesis that each surgeon has exactly the same underlying patient mortality

rate, which is neither plausible nor particularly interesting. We can deal with

this ‘multiplicity’ problem (Section 3.17) in an analogous way to subset estima-

tion (Section 6.8.1) and meta-analysis (Section 8.2), in using hierarchical

models to make inferences based on estimating a common prior distribution,

leading to ‘shrunken’ estimates for each centre. Furthermore, regression to the

mean describes the tendency for institutions that have been identified as ‘ex-

treme’ to become less extreme when monitored in the future – put simply, part

of the reason for their extremity was a run of good or bad luck. This simple

phenomenon could lead to spurious claims being made about the benefit of

interventions to ‘rescue’ failing institutions. Shrinkage estimation is intended to

counter this difficulty (Christiansen and Morris, 1997a).

An additional benefit of using Markov chain Monte Carlo methods (Section

3.19) is the ability to derive uncertainty intervals around the rank order of each
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institution (Marshall and Spiegelhalter, 1998). Example 7.2 describes an analy-

sis of success rates in in vitro clinics, in which Bayesian methods are used both to

make inferences on the true rank of each clinic and to estimate the true

underlying success rates with and without an exchangeability assumption.

Benefits of the Bayesian approach to institutional comparisons therefore

include:

. methods for reporting probabilities that any specified centre’s true rate

exceeds any particular threshold of interest;

. a natural way of dealing with ‘regression to the mean’;

. explicit allowance for between-centre variability;

. an opportunity to incorporate covariates both at the patient and institutional

level of the model;

. inferences on the true rank of the institution.

Example 7.2 IVF: estimationandrankingof institutionalperformance

Reference: Marshall and Spiegelhalter (1998).

Intervention: In vitro fertilisation (IVF).

Aim of study: The UK Human Fertilisation and Embryology Authority
(HFEA) monitors clinics licensed to carry out donor insemination (DI)
and IVF, and to help people who are considering fertility treatment to
understand the services offered by licensed clinics and to decide which
clinic is best for them (Human Fertilisation and Embryology Authority,
1996). They publish risk-adjusted live birth rates per treatment cycle
started, and we are concerned with whether one can rank the institutions
with any confidence.

Studydesign: Retrospective analysis of prospectively collected data on 52
clinics carrying out IVF treatment in the UK between April 1994 and
March 1995.

Outcome measure: Estimated adjusted live birth rate p̂pk, with 95% inter-
vals, per treatment cycle started, where the case-mix adjustment is
based on a pooled logistic regression of all IVF treatments.

Statisticalmodel: If there are nk treatments in the kth clinic, we calculate
rk ¼ p̂pknk as the effective number of successful live births. The log-odds
on success for each clinic are denoted yk and estimated to be yk ¼
log [(rk þ 0:5)=(nk � rk þ 0:5)],with estimatedvariance s2k ¼ 1=(rk þ 0:5)þ
1=(nk � rk þ 0:5) (Section 2.4.1). Then we assume

yk � N[yk, s2k ],
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where yk is the true log-odds on success in the kth clinic; an exact
likelihood based on the binomial distribution is possible but makes
negligible difference in this example due to the substantial number of
treatments.

Two models for the yks are considered. First, that they are
independent. Second, the clinics are assumed to be fully exchangeable
(Section 3.4), with the true rates (on a logit scale) being drawn from a
common normal distribution: if, after adjusting for case-mix, we can find
no other contextually meaningful way to differentiate between the insti-
tutions, then the assumption of their exchangeability seems justified.
Hence we assume

yk � N[m, t2]:

Priordistributions:

Independencemodel. Originally assume the yk each have an independ-
ent uniform distribution: this is used for the ranking exercise.

Exchangeablemodel. Uniform priors are adopted for m, t.

Computation/software: MCMC techniques in the WINBUGS software are
used to derive posterior distributions for the ranks of the institutions: this
is done by calculating the current rank of each institution at each iteration
of the simulation, and then summarising the distribution of these calcu-
lated ranks after many thousands of iterations.

Evidence fromstudy: The raw data are shown in Figure 7.2.

Bayesianinterpretation: It is clear from Figure 7.2 that there is substantial
shrinkage towards the overall mean performance when assuming ex-
changeability, although there are still a number of clinics that would
be considered ‘significantly’ above or below average. It can be argued
that this adjustment is an appropriate means of dealing with the problem
of multiple comparisons. In addition, this shrinkage should deal with
‘regression to the mean’, in which extreme institutions will tend back
towards the overall average when they recover from their temporary run
of good or bad luck.

Figure 7.3 shows that there is considerable uncertainty in the true
rank of an institution, even when they show substantial differences in
performance.
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Figure 7.2 Estimates and 95% intervals for the adjusted live birth rate in each clinic,
assuming both independent and exchangeable rates. The vertical lines represent the
national average of 14%. The estimated adjusted live birth rate for each clinic is given
in brackets, together with the number of treatment cycles started.

The consequence of assuming exchangeability is to reduce the differ-
ences between clinics and hence to make their ranks even more uncer-
tain. Figure 7.3 shows this is the case to a limited extent, although since
many of the extreme clinics are also fairly large, their rank is not unduly
effected.

Sensitivity analysis: The results are extremely insensitive to the prior on t
and the use of a full binomial likelihood.
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( 16.3 %: 116 )
( 16.4 %: 643 )
( 16.9 %: 496 )
( 17.3 %: 640 )
( 17.9 %: 211 )
( 18.8 %: 262 )
( 19.0 %: 241 )
( 19.6 %: 104 )
( 19.7 %: 946 )
( 20.4 %: 208 )
( 21.2 %: 603 )
( 21.5 %:  82 )
( 22.1 %:1104 )
( 22.2 %: 548 )
( 22.5 %: 537 )
( 22.6 %: 267 )
( 23.7 %: 861 )

Figure 7.3 Median and 95% intervals for the rank of each clinic, assuming both
independent and exchangeable rates. The dashed vertical lines divide the clinics into
quarters according to their rank.

7.5 KEY POINTS

1. Data from observational studies may, in principle, be analysed in exactly the

same framework as for randomised trials.

2. Imperfections in the design and conduct, and generalisation to other popu-

lations, may be approached by adopting a more complex model.

3. There are likely to be increased demands for Bayesian analysis, particularly

in areas such as institutional comparisons and gene–environment inter-

actions.
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4. The explicit modelling of potential biases in observational data may be

widely applicable but needs some evidence base in order to be convincing.

5. Analysis of sensitivity to modelling and prior assumptions is even more

important than in RCTs.

EXERCISES

7.1. Ashby et al. (1993) consider the association between treatment for Hodg-

kin’s disease and the subsequent risk of leukaemia. An international case–

control study reported data on 149 cases who had Hodgkin’s disease

followed by leukaemia and 411 matched controls who had Hodgkin’s

disease but no subsequent leukaemia. Table 7.1 displays cases and controls

stratified according to treatment received.

(a) Estimate the probability that cases with leukaemia had been treated

with chemotherapy, i.e. p(CjL), and compare this with the probability

that controls without leukaemia had been treated with chemotherapy,

i.e. p(CjL).
(b) Prove that from these quantities you can estimate the odds ratio

associating leukaemia with treatment with chemotherapy, i.e.

[p(LjC)=p(LjC)]=[p(LjC)=p(LjC)].
(c) Hence estimate the log(odds ratio) and its variance from the table.

(d) Assuming a sceptical prior that doubts whether odds ratios as large as

10 are reasonable, how does this influence the conclusions?

7.2. Suppose that r ¼ 20 people responded out of n ¼ 50 given a particular

drug. We then hear that p ¼ 20% of individuals did not in fact take the

drug. (a) Express the overall response rate � in the experiment in terms of

the true response rate �t of those who did take the drug, the proportion p of

compliers, and the response rate �0 of those who did not take the drug.

Assuming a uniform prior for �t, what inference would you make on �t,
assuming (b) �0 ¼ 0, (c) a Beta[2,10] prior distribution for �0?

7.3. In Example 7.1, justify the statement that the bias is equivalent to a

‘standard deviation of 30% on the HR scale’. How might you interrogate

an expert concerning the potential size of a bias?

Table 7.1 Results from an international case–control
study of leukaemia following treatment for Hodgkin’s dis-
ease.

Treatment Cases Controls

No chemotherapy 11 160
Chemotherapy 138 251
Total 149 411
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Table 7.2 Odds ratios and 95% CIs for venous thromboembo-
lism in users of third-generation oral contraceptives compared to
second-generation OCs.

Study Odds ratio 95% CI

Farley et al. 2.6 1.4 to 4.8
Jick et al. 2.2 1.1 to 4.4
Bloemenkamp et al. 2.5 1.2 to 5.2
Spitzer et al. 1.5 1.1 to 2.2

7.4. Table 7.2 presents the results of the four case–control studies reported by

Lilford and Braunholtz (1996) in Example 7.1. Estimate the log(odds ratio)

assuming (a) a pooled-effects model and (b) a random-effects model, using

the empirical Bayes methodology of Section 3.17. The analysis in Example

7.1 considers a conjugate normal analysis, using the results of a meta-

analysis of the four studies to produce an approximate normal likelihood.

(c) Examine the sensitivity of the conclusions to the assumptions under-

lying the meta-analysis.

7.5. In Example 7.2, investigate the claim that the findings are robust to the

prior on t and the use of a full binomial likelihood.

7.6. Goldstein and Spiegelhalter (1996) report the teenage conception rates

shown in Table 7.3.

Table 7.3 Teenage conception rates (13–15-year-olds) in 1990–1992 for 15 health
boards in Scotland.

Health Board No. conceptions Relevant population

Western Isles 6 1935
Orkney 5 1220
Highland 76 11515
Borders 36 5294
Lanark 230 31944
Argyle 172 23243
Forth 121 14938
Glasgow 388 45647
Shetland 13 1512
Lothian 303 35233
Dumfries 67 7614
Grampian 267 27526
Ayr 204 20606
Fife 188 18614
Tayside 208 20000
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(a) Calculate the observed conception rates per 10 000 population, and

rank the health boards according to their rates.

(b) Assuming either Poisson or binomial responses, estimate the ranks of

each health board in a ‘league table’, assuming both independent and

exchangeable rates.

(c) What is the probability that Tayside truly has the highest rates?
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