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Estimating the number of unseen species: How many 
words did Shakespeare know? 

BY BRADLEY EFRON AND RONALD THISTED 

Department of Statistics, Stanford University, California 

SUMMARY 

Shakespeare wrote 31 534 different words, of which 14376 appear only once, 4343 twice, 
etc. The question considered is how many words he knew but did not use. A parametric 
empirical Bayes model due to Fisher and a nonparametric model due to Good & Toulmin 
are examined. The latter theory is augmented using linear programming methods. We 
conclude that the models are equivalent to supposing that Shakespeare knew at least 
35 000 more words. 

Some key words: Empirical Bayes; Euler transformation; Linear programming; Negative binomial; 
Vocabulary. 

1. INTRODUCTION 

Estimating the number of unseen species is a familiar problem in ecological studies. In 
this paper the unseen species are words Shakespeare knew but did not use. Shakespeare's 
known works comprise 884647 total words, of which 14376 are types appearing just one 
time, 4343 are types appearing twice, etc. These counts are based on Spevack's (1968) 
concordance and on the summary appearing in an unpublished report by J. Gani & 
I. Saunders. Table 1 summarizes Shakespeare's word type counts, where nx is the number 
of word types appearing exactly x times (x = 1, ..., 100). Including the 846 word types 
which appear more than 100 times, a total of 

E nx = 31534 
x=1 

different word types appear. Note that 'type' or 'word type' will be used to indicate a 
distinct item in Shakespeare's vocabulary. 'Total words' will indicate a total word count 
including repetitions. The definition of type is any distinguishable arrangement of letters. 
Thus, 'girl' is a different type from 'girls' and 'throneroom' is a different type from both 
'throne' and 'room'. 

How many word types did Shakespeare actually know? To put the question more opera- 
tionally, suppose another large quantity of work by Shakespeare were discovered, say 
884 647t total words. How many new word types in addition to the original 31 534 would we 
expect to find? For the case t = 1, corresponding to a volume of new Shakespeare equal to 
the old, there is a surprisingly explicit answer. We will show that a parametric model due 
to Fisher, Corbet & Williams (1943) and a nonparametric model due to Good & Toulmin 
(1956) both estimate about 11460 expected new word types, with an expected error of less 
than 150. 

The case t = oo corresponds to the question as originally posed: how many word types 
did Shakespeare know? The mathematical model at the beginning of ?2 makes explicit 
the sense of the question. No upper bound is possible, but we will demonstrate a lower bound 
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of approximately 35000 more word types in addition to the 31534 already observed. Our 
bound involves the theory of empirical Bayes estimation (Robbins, 1956; Good, 1953). It 
also involves linear programming in both a computational and a theoretical sense. This 
approach is similar to that taken by Harris (1959). More details are given in an unpublished 
report of the same title, available from the authors on request. 

Table 1. Shakespeare's word type frequencies 

Row 
x 1 2 3 4 5 6 7 8 9 10 total 

0+ 14376 4343 2292 1463 1043 837 638 519 430 364 26305 
10+ 305 259 242 223 187 181 179 130 127 128 1961 
20+ 104 105 99 112 93 74 83 76 72 63 881 
30+ 73 47 56 59 53 45 34 49 45 52 513 
40+ 49 41 30 35 37 21 41 30 28 19 331 
50+ 25 19 28 27 31 19 19 22 23 14 227 
60+ 30 19 21 18 15 10 15 14 11 16 169 
70+ 13 12 10 16 18 11 8 15 12 7 122 
80+ 13 12 11 8 10 11 7 12 9 8 101 
90+ 4 7 6 7 10 10 15 7 7 5 78 

Entry x is n8, the number of word types used exactly x times. There are 846 word types which appear 
more than 100 times, for a total of 31534 word types. 

2. THE BASIC MODEL 

We use the species trapping terminology of Fisher's paper. Suppose that there exist S 
species and that after trapping for one unit of time we have captured x8 members of species s. 
Of course we only observe those values x8 which are greater than zero. The basic distribu- 
tional assumption is that members of each species s enter the trap according to a Poisson 
process, the process for species s having expectation As per unit time, so that x8 has a Poisson 
distribution of mean A, (s = 1, ..., S). Most of the calculations in this paper do not require 
the S individual Poisson processes to be independent of one another. Whenever indepen- 
dence is required it will be specifically meitioned, and referred to as the 'independence 
assumption'. 

Figure 1 gives a schematic representation of the situation. It is convenient to imagine 
the observation, or trapping, period as running from time -1 to time 0. We wish to extra- 
polate from the counts in [-1, 0] to a time t in the future. Let x.(t) be the number of times 
species s appears in the whole period [-1, t]. The Poisson process assumption implies (i) that 
x8(t) has a Poisson distribution of mean A.(1 + t) and (ii) that, given x.(t), x conditionally 
is binomial {x.(t), 1/(1 + t)}. For the situation described in the introduction, t equals the 
total word count of newly discovered Shakespearean literature divided by 884 647. 

Assumption (i) is dispensable, but assumption (ii) is crucial. It says essentially that the 
time period [-1, 0] is typical of the whole period [-1, t]. If the hypothetical newly discovered 
works of ? 1 were to consist entirely of business letters, we would not expect our results to 
be valid. 

Let G(A) be the empirical cumulative distribution function of the numbers A1, ..., As. 
Also, if nr is the number of species observed exactly x times in [-1, 0], let 

= =E(n) = S (eAX/x!)dG(A), (2c1) 
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and let A(t) be the expected number of species observed in (0, t] but not in [-1, 0], so that 

A(t) = s e-A(l-eAt)dG(A). (2.2) 

We wish to estimate A(t), the expected number of new species to be found in the next t 
time units. By substituting the expansion 

1-e-At - At- 2 !2+ A -3t3 =A-2! + 

into (2.2), and comparing the result with (2.1), we obtain the formal equality 

A\(t) = lt-y2t2 +3t3-... . (2.3) 

This intriguing result, which appears as formula (24) of Good & Toulmin (1956), is empirical 
Bayes in the sense Robbins (1956, 1968) originally attached to this term. It is related to 
an earlier result of Goodman (1949). 

33 333 33 3333 3 3 333 3 33 3 3333 3 333 3 3 3 43 333 33 3 3 
1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 

-1 0 t 

Fig. 1. The Poisson process model; xl = 3, x2 = 1, X3 =13, x4 = 0. 

The right-hand side of (2 3) need not converge, but, if we assume that it does, expression 
(2.3) suggests the unbiased estimator for A(t) 

A(t) = nlt-n2t2+n3t3-... . (2.4) 

For the Shakespeare data with t = 1 this estimate is 

A(1) = 11430. (2.5) 

Under the independence assumption a reasonable approximation, erring on the conser- 
vative side, is to take the nx themselves to be independent Poisson variates, with means 
yq, in which case 

00 00 

var{A(1)}= E nx= 31534. 
x=1 x=1 

This gives A(1) a standard deviation of 178. 
The estimator A(t) is a function of the data only through the statistics nl, n2, ...; the 

quantity no is unobservable, being in fact almost the same as A(oo). We are disregarding the 
labels connected with the observations x8. All the estimates considered in this paper are 
of this form, but other authors have attempted more refined models; see McNeil (1973) 
and an unpublished paper by J. Gani and I. Saunders. 

Unfortunately (2.4) is useless for values of t larger than one. The geometrically increasing 
magnitude of tx produces wild oscillations as the number of terms increases. Good & Toulmin 
suggest the use of Euler's transformation to force convergence of the series. This idea is 
discussed in detail in ?4. First though, we will examine Fisher's parametric empirical 
Bayes model in ? 3. 
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3. FisiER's NEGATIVE BIOMIAL MODEL 

Fisher et al. (1943) added the following assumptions to those at the beginning of ?2. 
Fisher's assumption 1. The cumulative distribution function G(A) is approximated by a 

gamma distribution with density function, for c.,8 = {fpr(a)}-l, 

qafl(A) = cl Ala-e-A/fl. (3.1) 

Fisher's assumption 2. The parameters A1, ..., As are independent and identically distri- 
buted with density gq,8(A). 

Fisher's assumption 1 by itself gives most of the useful conclusions from this model. We 
shall note explicitly whenever Fisher's assumption 2 is invoked. Assumptions 1 and 2 to- 
gether constitute a parametric empirical Bayes model in the sense of Efron & Morris (1973). 

From (2.1) we obtain, for y = ,6/(1 +,/), 

P=8l! + P(x +c) (3.2) 
ix!r1(1 +z), 

Expression (3.2) is proportional to the negative binomial distribution with parameters oc 
and y, written to take advantage of the fact that for the unseen species problem the case 
x = 0 need not be considered. This allows the parameter a to take values less than zero, 
any value greater than -1 giving finite values to '1112 . The density g,f8(A) is improper 
at the origin for a < 0, and the expression (3-1) for c,a is meaningless. Fisher particularly 
liked the choice a = 0, which gives (3.2) the form known as the logarithmic distribution; 
see also Engen (1974) and Holgate (1969) for extended discussion. 

We can write (2.2) in the form J e-A( - e-At) dG(A) 
A(t) = fl? (3.3) 

f Ae-AdG(A) 

to avoid ambiguities in the case where G is improper. By substituting (3-1) for dG(A) we 
obtain, in the obvious notation, A4,(t) = - 11{(1 + yt)-a - l}/(yc) unless a = O, in which 
case Ao0(t) = (I1/y) log (1+yt). 

If Y > 0, Aa ,(t) approaches its limiting value ta/1 as t goes to infinity. The improper cases 
a 0 0 have AL7(t) increasing without bound as t increases. The infinite spike of g.,8(A) near 
A = 0 produces an unbounded number of new species as longer and longer time periods are 
examined. 

There is no reason to suppose that Fisher's parametric model will fit the Shakespeare data. 
It has only mathematical convenience and a limited amount of previous empirical successes 
to recommend it. In fact, the fit is extremely good. -Substituting the values ?1 = 14376, 

= -0 3954,'? = 0 9905, which are explained below, into (3.2) gives estimates . remark- 
ably close to the observed n. To assess the accuracy of a fit such as Table 2 exhibits we need 
a theory of errors, and for that we need both the independence assumption mentioned at 
the beginning of ?2 and also Fisher's assumption 2. Consider only the first xo values of 
nx; nl, ..., nao. Denote their sum by No. Given No, the vector (nl, ..., n.,O) will have a multi- 
nomial distribution with No trials and with vector of probabilities proportional to (3.2). 

Table 3 shows the maximum likelihood fits, obtained by iterative search for various 
choices of xo. The last column is Wilks's likelihood ratio statistic (Wilks, 1962, Chapter 13) 
for testing the adequacy of the two-parameter model based on (3.2). The sample sizes are 
enormous, the smnallest being 23517, so that under the null hypothesis this statistic should 
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be distributed as a x2 variate with xo -3 degrees of freedom. We see that the fit is very good, 
even too good for xo < 15. With sample sizes of this magnitude, deviations of just a few 
percent from (3.2) would cause rejection. 

All further calculations involving Fisher's model use the fitted parameter values for 
xo= 40, 

5 = 0 3954, A = 0*9905. (3.4) 

We will use = n, = 14376 rather than the fitted value tI = 14399, which makes i+ 
+ 140 equal the observed sum 29660. However, in most of the calculations 1l enters as a 
multiplicative constant,sothatmultiplication by 14399/14376 = 1 0016converts the result. 
Note that the notation ' will continue to mean any reasonable estimate of yq. It will be 
mentioned when these are taken to be the maximum likelihood values from (3X2) and (3.4). 

Table 2. Maximum likelihood estimates for yx from Fisher's negative binomial model, 
and observed frequencies 

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 

vxA 14376 4305 2281 1471 1050 798 633 518 433 369 
nX 14376 4343 2292 1463 1043 837 638 519 430 364 

Table 3. Maximum likelihood fits of the negative binomial model to the first xo values of 
n;,= Al(l _ A) 

w0 z nx a y 4n % y y 
xOnoyXx- 

x=1 

5 23517 -0-3834 0-9795 47-82 0.027 
10 26305 -0-3906 0.9884 85-44 2-024 
15 27521 - 0-3889 0-9861 70-78 3-815 
20 28266 -0-3901 0.9875 78-77 8-832 
30 29 147 - 0-3944 0.9899 97-92 16-874 
40 29660 -0.3954 0.9905 104-26 30-437 

Unfortunately & = 0-03954 puts us in the case where Aa7(t) goes to infinity as t gets large. 
The data agree very well with a model we know must ultimately fail! However, we can 
still use (3.3) to estimate A(t) for finite values of t. For t = 1 we get 

A(1) = 'A0.3954,0.9905(1) = 11483. 

This agrees with (2.5) to within 0*5 %. 
For t = 10, A-0.3954,0.9905(10) = 57704, which is almost twice as large as Shakespeare's 

observed vocabulary. How accurate is this estimate? The hypothetical standard error from 
the negative binomial maximum likelihood estimation model, which we have not computed, 
is uninformative, since we know that that model must fail for large t. Sections 4 to 7 are 
devoted to finding nonparametric estimates of A(t) for large t, and assessing their accuracy. 

4. EULER'S TRANSFORMATION 

Euler's transformation (Bromwich, 1955, p. 62) is a method of forcing oscillating series 
like (2.3) to converge rapidly. The substitution t = u/(2 - u) gives the formal relationship 

00 co 

x3=1 V=1 
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where 
y y - I (_ 1)11+1 I~ ~ ~ ~ ~~4.1 

0=1 k-1) 2 ?lx = 2"( 

Here the backward difference operator is defined by 

8?(s = f' &1(l11) = l1-2' 42(f1) = l1-2f12+ s .3) 

Let 
Ao(t) = E (-1)+1s 7x , xo(u) = 6 Yu (4.2) 

x=l1 " 

A(t) = lim Axo(t), A(u) = lim Axo(u). 
xw-*w o'~~~X-*oco 

By definition A(t) = A(u) if both limits exist. For vx positive, as here, the partial sums 
Axo(u) will usually converge more quickly to the common limit than the sums Axo(t). For 
A,V(t) as given in (3.3), Axo(t) does not even converge, while the series EVy C u converges in 
the nicest possible way, having in fact all nonnegative terms if a < 1. 

LEMMA. For -1 < a < 1, Aa y(u) = z2C,y uy has Cy > Ofor all y. 

The proof will be omitted. 
Good & Toulmin (1956) suggest estimating {v by substituting 1. for . in (4.1), and then 

using the Euler transformed series to estimate A(t), 

AXo(u) = E y u 2t (4.3) 

We have computed the first 20 values of Cy from (4.1) using ax = n. and also by using the 
maximum likelihood values (3.4). The latter are all positive, in accordance with the Lemma. 
The former are positive for y = 1, .. ., 9, and negative for y = 10, ...,20. However, all the 
negative values are within one-half a standard deviation of zero. 

This suggests not taking xo greater than 9 if we intend to compute Axo(u) from n=, 
The estimates Cy for y > 9 are within noise distance of zero, and we have, admittedly weak, 
theoretical reasons for believing the gy to be positive. The calculations of ?5 will show 
xo = 9 to be a reasonable choice. The corresponding estimate of A(1) is A9(1) = 11 441 + 147 
the standard error 147 being computed from (5.2). Calculation of A9(1) from the maximum 
likelihood estimates of ax, (3.4), gives A9(1) = 11460 as the estimate. The question of 
assigning a standard deviation to the second of these estimates is a difficult one, but it is 
reasonable to say that the estimate is at least as accurate as the first one, and perhaps con- 
siderably more so. 

In the present notation, (2.5) can be written as A0(1) = 11 430 + 178. Comparison of this 
with A9(1) above shows that we have reduced the standard deviation considerably by re- 
ducing xo from o to 9. The price we pay, as Good & Toulmin noted, is in terms of bias. Thus 
Axo(t) is not an unbiased estimate of A(t) for xo < o because of the truncated terms in the 
series. The calculations of ? 5 will show that A9(1) can have a bias as large as + 8 and as small 
as - 62. This is with no assumptions on the form of G(A). Under the negative binomial model, 
the Lemma shows that A9(1) must have a negative bias, since all the terms we are ignoring 
are positive. 

Taking both variance and bias into account, A9(1) is not noticeably superior to A1(1), 
except in computational effort. The choice of xo becomes far more crucial for values of 
t>1, as ?5will show. 
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5. GENERAL LINEAR ESTIMATORS 

There is another expression of the Euler transformation which makes obvious its effect 
on oscillating series. Substitution of (4.1) into the right-hand side of (4.2) shows, after some 
rearrangement, that Axo(u) is just the average of the oscillating series Ax(t) over values of x 
distributed binomially {xO, 1/(1 + t)}. This averaging process is what smooths out the 
oscillations. 

The estimator (4.3), with x = nx, is now seen to be of the form 

co 
A = hx (5.1) 

X=1 

where, if Z denotes a binomially distributed random variable with index xo and parameter 
1/(1 + t), 

h_(-)X+-Itx Pr (Z x) (x= 1, ..., 
hx p (x > xo). 

Notice that the naive estimator 
9 

AXoMt = E (- 1)x+l nx tx 
x=1 

has hx = ( 1)xl lox in this case, so that hg = 109, compared with hg = 0-424 in Table 4! 
The Euler transformation drastically reduces hx for large x. 

Table 4. Euler coefficients in the general linear estimator (5 1) for xo = 9 and t = 10 

x 1 2 3 4 5 6 7 8 9 

hz 5.759 -19X421 41-539 -59*152 57 155 -37 190 15-653 -3 859 0 424 

We call estimators of the form (5.1) general linear estimators. We will calculate the 
variance of such an estimator from the independent Poisson assumption as 

00 
var (A) = hz^Igx, (5-2) 

x=1 

and note that this value may be somewhat large, as the calculations in an unpublished report 
by the authors demonstrate. 

For each estimator (5.1) define the function 

H(A) = hxAV/x! (0 < A < co). (5.3) 
x=1 

By (241) we have 
00 00 o 

E(A)= E h9X = s E (hx e-AX/x!)dG(A) = e-AH(A) dG(A), 
x=1 X=JO 

assuming, as will always be the case for the hx used below, that summation and integration 
can be interchanged. The bias of a for estimating l(t) is, by (2.2), 

E{A -i (t)} = S e-A{H(A) - (1 - e-t)} dG(A). (5.4) 

It is convenient to rewrite (5.4) in a form which depends on nn + - 2 + ..., rather 
than S, since we always have an easy estimate for n? available, namely n+ = Xnx. Define 
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p = (1- eA) dG(A), d(A) = P-1(1 - e-A) dG(A). 

Notice thatn+ = SP, by summation of q$ in (2.1). That is, P is just the expected proportion 
of the A8 having x8 > 0. Also a can be thought of as the empirical cumulative distribution 
function of those A8 having x8 > 0, although strictly speaking this interpretation is only 
justified in the limiting case S -+ oo. 

By multiplying and dividing (5.4) by (1- e-A)/P we obtain 

E{A-A(t)} = j=+| 1 A{H(A) -(1 e-eAt)} d(A). (5.5) 
The integrand 

e,-; 
Bt(A) = 1 __ {H(A) - (1 - e-8t)} (5.6) 

determines the bias of A for any G(A) or O(A). 

04 - 

0-3- 

02 - 

01 - 

I 
~0 

-02 

-03 4 
1I Bt(O) =-1-64 
I| -Bt(O) = - 424 

-04 

Fig. 2. The bias function Bt(A), equation (5.6), for ALo(t), at t = 10; solid line, x0 9, 
and dashed line, x0 = 19. 

For example, with t = 1, xo = 9 we compute Bt(A) to oscillate about zero, having its 
smallest value at A = 0 and largest value at A = 06, Bt(O) =-0tO0196, Bt(0*6) = 0*00024. 
From (5.5) we see that the greatest negative bias occurs if 0 puts all its mass at A = 0, in 
which case the bias equals - 0.00196Eq+ - - 0-00l96 x 31534 =-62. The greatest positive 
bias occurs if a puts all mass at A = 0-6, in which case it equals 0*00024 x 31534 = 8. Of 
course, the data in Table 1 tell us that a follows neither extreme for the Shakespeare word 
counts. In ?? 6 and 7 we employ such information to get better bounds in a systematic way. 

Figure 2 shows Bt(A) at t = 10, for xo = 9 and for xo = 19. The bias situation is now 
much more serious. For xo = 9 the possible bias ranges from - 4.24q+ to 0.31q+. For x0 = 19 
the range is from - 1.64q+ to 0-15y+. This does not mean that xo = 19 is better than xo = 9. 
The respective estimators from equation (4 3) and their standard deviations from (5-2) are 
A9(1o) =45188 +3994 and A19(1o) =53867 +702566. Its huge variance makes A19(1o) 
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useless. The choice of xo must take into account both bias and variance. For this case 
xo= 9 seemed to be as good or better than any other choice, though admittedly the 
criterion of goodness is vague. 

We need not restrict attention to linear estimators of the form (4.3). An attempt to 
choose a best linear estimator A(10) = h.n1 + ... +hxonxo is described in unpublished work 
by the authors. This search yielded no estimator noticeably superior to A9(10). 

6. LOWER BOUNDS FOR A(t) 

As t gets large it becomes more and more difficult to estimate a reasonable upper bound 
for A(t). Suppose that Shakespeare actually had 106 word types with A8,= 10-6. These 
types would have almost no effect on our data set. The expected number of them occurring 
in our sample is only 1. However, for t = 106 an expected fraction 1-ec1 = 0-632 of them 
would be observed. This type of counterexample can be pushed arbitrarily far. Unfortu- 
nately, the trouble begins for t values much smaller than 106. We see this in Fig. 2, where 
the possible negative bias is already very large for t = 10. 

Table 5. Lower bound estimates for A(t) based on linear transformations of Axo(u), xo = 9 
Lower bound 

estimate St. dev. Estimate 
t a b (6.2) (5.2) -st. dev. 

1 0.999 0 0001 11454 147 11307 
3 0 979 0-002 25143 986 24157 
5 0 939 0 007 31974 1 966 30008 
8 0-879 0 010 36554 2965 33588 

10 0-850 0.012 38015 3397 34618 
12 0*827 0.014 38 927 3 713 35214 
15 0*801 0.016 39784 4048 35736 
20 0*772 0.017 40580 4408 36172 
30 0*742 0.019 41331 4793 36538 
60 0*710 0.022 42061 5212 36848 

120 0*694 0*023 42411 5433 36977 

The situation is better for lower bounds. Equation (5.3) shows that A = Yhxnx satisfies 
E(A) < A(t)if,forallA > 0, 

H(A) < 1-e-At. (6.1) 

In other words, the linear estimator A will be a lower bound for A(t) in expectation, no 
matter what G happens to be, if H(A) is everywhere less than 1 - e-t. 

As we saw in ?5, the estimators based on Euler's transformation do not satisfy (6.1). 
However, given A = 2hxnx we can always make a linear transformation h? = ahx-b 
(x = 1, 2, ...) which gives, through (5 3), HO(A) -aH(A)-b(eA - 1). The corresponding new 
estimator is 

AO= h nx a ,a-bn,, (6.2) 
x-1 

where n+ = Y2nx as before. 
Table 5 shows the lower bounds obtained in this way from the Euler estimators (5.1), 

with xo = 9, for various choices of t. The constants a and b were chosen so that HO satisfied 
(6.1). Subject to this constraint, a and b were selected to maximize (6 2) with X , in place of 
nx f the maximum likelihood estimates obtained from (3.2) and (3.4). The resulting value 

I5 BIM 63 
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of AO is tabulated as the 'lower bound estimate'. The standard deviation from (5 2) appears 
in the next column, followed by the estimate minus one standard deviation. 

Table 5 shows that this reasonably conservative lower bound for A(t) fails to get much 
larger as t grows from 10 to 120. As we shall see in ? 7, it is impossible to get a substantially 
larger lower bound for t approaching infinity, even using more general linear estimators. 
This seems to say that the Shakespeare data, unaided by parametric assumptions like 
Fisher's assumption 1, runs out of predictive power for t greater than 10. 

A potential flaw in Table 5 is that the estimates and standard deviations are derived 
ignoring the fact that a and b depend on the data, since they are chosen so that (6.2) is 
maximized for the data set at hand. This point is considered more carefully in ? 7, and is 
shown not to make much difference. 

7. LiNEAR PROGRAMMING BOUNDS 

The method employed in ?6 to find a satisfying E(A) < A(t) can be approached more 
generally as a linear programming problem. 

Program 1. Choose h1, ..., h.,, h.,+, to maximize 

X=1 x-.x0+1 

subject to the constraints, for A > 0, 

H(A) = Z ha Ax/x!+x1 0+1 Z Ax/x! < 1-e-At. (7.2) 
x-1 x"B$,+1 

Condition (7.2) guarantees, by (6.1), that E(A) <l A(t) for any G. Subject to this con- 
straint, (7.1) requires maximization of the estimated value at a likely value of the true 
parameters '11, 821 .... In this section we take X to be the maximum Hkelihood values from 
(3.2) and (3.4) for x = 1, ..., x0 and set 

Z I.,= Z n,e 
x=x0+1 X=X.+1 

Other reasonable choices of x give almost identical answers. 
Program 1 was solved on the iBM 360/67 computer at Stanford using the IBM program 

MPs/360. The infinite number of constraints in (7.2) was replaced by the discrete set 

H(AI) K 1 - e-Azt, Al = 2-i0-10 (I = 0, ..., 272) (7.3) 

(AO = 2-10, A272 = 128). As before, x0 = 9 was used for most of the calculations. These 
choices were based on a small amount of numerical experimentation. 

For the case t = a) the resulting optimum coefficients h,, were substituted into (7.1) to 
obtain the lower bound estimate A(cx) = 59568 for Shakespeare's total unobserved voca- 
bulary. Unfortunately, the standard error for A(oo), calculated from (5.2) on the assumption 
that the ha are fixed constants, is the enormous value, 204784. This might seem to 
render A(Oo) useless, but we shall see that this is not actually so. 

The linear programming problem dual to program 1 (Hillier & Lieberman, 1974, p. 90) 
or, rather, the dual to the discretized version (7.1) and (7.3), is as follows. 

Program 2. Choose S > 0 and a discrete distribution function G(A) with support on the 
set {Al, A2, AP, ..., AL} to minimize 

= 00 
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subject to the constraints 
rO o00 ~ ~ ~ ~~~~~~~~00 00 

SJ (e-~A`/x!)dG(A) = ax (x = 1, ...,x0), SJ e-A E (Ax/x!)dG(A)= E Ix. SJ(Axx)GA=i JO x-=Xo+i x-Xo+i 
(7.5) 

The dual Program 2 finds the 'least favourable situation' in that it selects S and G to 
minimize A(t) subject to the constraint that the expected word counts Yil . . , and the 
sum of their successors equal certain specified values. Program 2 is nearly identical to the 
problem considered by Harris (1959). With the ' chosen as before we see that, by the duality 

Table 6. Points of support of minimizing distribution G in Program 2 at t = 0o 

l= 120-121 1 = 167-168 1 = 191-192 1 = 208-209 1 = 226-227 

A 041806 1P384 3914 8*175 17830 
dG 0*7444 0 1220 0 0507 0 0294 0 0535 

Table 7. Lower and upper bounds on A(t) calculated by solving the linear programming 
problem (7.4) and (7.6); xo= 9, c = 1 

Lower bound Upper bound 
t on A(t) on A(t) 
1 11205 11 732 
3 23 828 29411 
5 29898 45865 

10 34640 86600 
20 35530 167454 
00 35554 oo 

theorem, Program 2 has the same solution as Program 1. For t = oo solving Program 2 
gives (oo) = 59568, as before. The minimizing distribution C has its support at 10 of the Al 
values, occurring in five adjacent pairs, given in Table 6. Of course we do not believe that 
x= Ix exactly, but we can loosen the constraints to take into account our uncertainty, 

say by taking 
-C - Cc sf (e-AA/x!) dG(A) < ?x + cVlx (x = 1, .x..), (7.6) 

and similarly for the last constraint in (7.5). Here c measures approximately how many 
standard deviations we allow the fitted values of yx to vary from ax. 

Solution of (7.4) and (7.6) for t = oo, xo = 9 and c = 1 gives a minimum value of 
A = 35 554, which is quite consistent with the last column of Table 4. 

We now have a believable lower bound on A(oo). The choice c = 1 may seem optimistic, 
but we have reason to believe the true yx to be nearer ' than (2.6) indicates. The issue of 
concern to us in ? 6, namely, that of choosing the estimator from the data and then ignoring 
that selection process in setting confidence intervals, has disappeared. The linear program- 
ming method yields a lower bound directly as a function of the unknown parameters 77, 
Confidence bounds on y7 of the type (7.6) then yield a bound on A in the usual way. For 
those preferring a still more conservative bound, c = 2 gives A(oo) = 30845 with xo = 9. 

Table 7 gives lower and upper bounds on A(t) obtained from (7.4) and (7.6) with xo = 9, 
c = 1. For the upper bound the 'minimize' in (7.5) is simply changed to 'maximize'. The 
agreement of the lower bounds with the last column of Table 5 is remarkable. This is im- 
portant since Table 5 is much easier to calculate than Table 7. 

15-2 
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8. CoNCLusIoNs 
Figure 3 displays the different estimates of A(t). Our experience with the Shakespeare 

data can be summarized as follows. 
(i) Estimate A(oo) = 35000 is a reasonably conservative lower bound for the amount of 

vocabulary Shakespeare knew but did not use. 
(ii) An estimate of A(t) can be made very accurately for t < 1, but the uncertainties 

magnify quickly as t grows larger. Without a parametric model the data give very little 
additional information for t larger than 10. 

100 000- (a) 

90 000 _ 

80000 _ 

70 000 - 

60 000 I (b) 

50000 - 

40 000 / 

/S 
/ ..-(d) 

30 000 1/ 

20000 - 

10 000 _ 

0 
0125 025 05 10 25 5 1020 CO 

t 

Fig. 3. Different estimates of A(t) for the Shakespeare data: (a) Fisher's negative binomial 
model with parameters (3.4); (b) Euler transformation (4.4), xo = 9, tv from , = n,; (c) as 
(b), but with Ev from maximum likelihood values (3.2) and (3.4); (d) lower bound estimates 
from linear program (7.4) and (7 6), ? = 1; (e) upper bound, as (d). 

(iii) Fisher's negative binomial model fits the data extraordinarily well. However the 
linear programming approach produces other empirical Bayes solutions which also fit the 
observed data, and give smaller estimates of A(t) for t > 1. 

(iv) All the methods give very similar answers for t < 1. 
(v) Euler's transformation performs well compared to more elaborate techniques. 

This paper was inspired by a lecture by J. Gani; P. Diaconis contributed many useful 
ideas and references. 
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