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ABSTRACT

Over the past decades, case-control studies gave gained wide acceptance and respectability. Two

developments in particular have contributed most to this change.  One is the concept of incidence-density

sampling, put forward by Miettinen in 1976. The second is the concept of risk sets, used by Cox in 1972

primarily to develop likelihoods that allow one estimate hazard ratios without having to estimate the hazard

functions themselves. One might also add a third, the arrival in textbooks and statistical packages of logistic

regression in 1970, and the broader generalized linear model in the mid 1970's.

In this article, which is divided into two parts, I describe how these developments, and the extensions and

insights that flowed from them, have (a) helped resolve confusion about the appropriate choice of controls

in case-control studies, (b) extended the analytic tools available for epidemiologic data, and (c) even if the

unity has not always been evident, allowed for different epidemiologic designs and analyses to be seen in a

unified way. As a by-product, I discuss the proportional hazards model, its flexibility and the price one

must pay for this, and how its parameters are fitted by the method of Maximum Likelihood. Throughout,

the aim is to de-mystify concepts, using pictograms rather than equations whenever possible, and using

upper case for an unknown parameter value, and lower case for an estimate of it. The concepts and

principles will be illustrated by three examples drawn from investigations of the risk of myocardial

infarction following vasectomy and, in part II, the effect of sexual activity on male longevity and the

possible leukemic effects of contaminated drinking water.
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INTRODUCTION

Compared with so-called cohort studies [Doll2001a.b], case-control studies [Paneth2002a,b] have a shorter

and much more turbulent history. Views on their value and credibility have changed dramatically over the

last several decades, from harsh criticism and controversy[Feinstein73,81l Mayes et al.88],  to wide

acceptance and respectability today [Breslow96]. Part of the reason for this dramatic improvement has to

do with the convergence of two, initially parallel methodologic developments, one in epidemiology and one

in biostatistics, in the 1970's. In this article, which is divided into two parts, I describe how these

developments, and the extensions and insights that flowed from them, have (a) helped resolve confusion

about the appropriate choice of controls in case-control studies, (b) extended the analytic tools available for

epidemiologic data, and (c) even if the unity has not always been, or its not yet fully evident

[Miettinen2004], allowed for different epidemiologic designs and analyses to be seen in a unified way. As a

by-product, I discuss the proportional hazards model, its flexibility and the price one must pay for this, and

how its parameters are fitted by the method of Maximum Likelihood. Throughout, the aim is to de-mystify

concepts, using pictograms rather than equations whenever possible, and using upper case for an unknown

parameter value, and lower case for an estimate of it. After a short discussion of incidence density and

hazard functions, and their ratios, the concepts and principles will be illustrated by three examples, one in

this article and two in the next.

Measures

Much of epidemiologic data analysis focuses on the "incidence density" measure, and on comparisons

using incidence density ratios, while "hazards" and their ratios, are used in survival analyses. Incidence

density is different from, and yet similar to, the statistical concept of 'hazard'. An incidence density has as a

denominator a 'volume of experience' measured in person-time, for example the number of "driver-use-

minutes" motor vehicle drivers drove while using cellular telephones. It is shown in two formats in Figure

1a, first in detail, driver by driver, with the turnovers in the pool of drivers using a cellular telephone shown

explicitly, and then collectively, i.e., de-personalized. The number of motor vehicle collisions, divided by the

driver-use-time in which they occurred, yields an incidence density. In another example, from the paper

which introduced the term)Miettinen1976), the denominator consisted of a constant number of men
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(77.4K),   in the age-category 50-54, observed for 1.5 years (77.4 x 1.5 = 116.1K man-years). By the end

of this period, there would have been a turnover of approximately 1.5/5 or 30% in the initial membership of

the age-group. The 35 new cases of bladder cancer in this amount of experience yielded an incidence

density of 30 cases / 100,000 man-years.

In contrast, hazards (plural) usually involve a closed population, and are indexed by (i.e., a function of) the

time elapsed since a specific  'time zero'. This time zero defines the time of entry into a 'state'; the exits from

this state are the events (transitions) of interest. The hazard function is best understood in the context of life

tables or survival functions (where the focus is on remaining in, or exiting from, the state of 'being alive').

Whereas hazard functions can be defined mathematically as "conditional exit probabilities per unit time",

they can also (informally at least) be thought of as follow-up-time-specific incidence densities or rates, but

within a narrow follow-up time-windows. The denominator associated with the hazard at a specific follow-

up time t consists of the thin slice of person time during the short interval (t,t+ t) contributed by those who

have not yet suffered (or -- if it the event is pleasant -- reached) the event of interest. The numerator is the

number of events (exits/transitions) in this interval. Or, in terms of a survival curve that descends from 1 at

time zero, the denominator is the area under the 'survival' curve between t and t+ t. and the numerator is the

absolute amount by which the survival curve decreases in that interval1. Strictly speaking, the hazard at

1  In an internet site [http://planetmath.org/encyclopedia/HazardFunction.html, motto: Math for the people,
by the people] the hazard function is defined in words as

   "the probability of death (non survival) at time t, given survival up to time t",

and in a formula as

   h[t] = limit, as t -> 0,  of Prob[event in (t,t+ t ) given that event had not occurred by time t] / t

The formula, which is correct, shows that the hazard is not a probability, but  a probability per unit time,
and that, depending on the time scale,  (and unlike a probability) it can be bigger than 1. For example, if the
time scale is expressed in centuries since takeoff, the failure rate after take-off is of the orfer of

The (conditional) probability in the numerator can itself be approximated by

 S[t] - S[t+ t ]
S[t]   .

Divided by t , so that it has dimensions probability per unit time, it becomes

 S[t] - S[t+ t ]
S[t] × t   .
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follow-up time t is the limit of the incidence density as the δt defining the time-window is made narrower

and narrower; and it could equally be arrived at by considering windows that are centered on, rather than

that have their left boundary, at t. The degree to which the theoretical incidence density centered at a

specific time t varies as the window around t is made narrower depends on the specific context: e.g., it

would be sensitive to the t if we were studying the rate of failures in the first few several minutes after

takeoff of an aircraft, or adverse events after commencing a new medication, or onset of fever in the days

after receiving a certain vaccination) but maybe quite insensitive at other times. And even at a t where the

theoretical hazard is expected to be quite stable, the sensitivity of the empirical hazard to the choice of t is

also influenced by the numbers of events from which it is derived.

Examples of hazard functions -- over somewhat longer horizons -- are rates of first motor vehicle accidents

in the years after obtaining a driver's licence, or the occurrence of an MI in the years following a vasectomy.

If one ignores the competing risks that accompany longer and longer follow-up, then rates of childhood

leukemia, first experience with tobacco or alcohol, or first marriage, can all be though of as hazard functions

if measured as a function of time since birth (i.e. age). Since only certain persons enter graduate school, or

marriage, and do so at differing ages, rates of exit from these institutions ('states') are expressed as

functions of the person-specific times from entry to these states. In some situations, there may have a

choice of "meters" of elapsed time or of cumulated experience. For example, follow-up of new drivers

might be indexed by the distance driven or the length of time they have been licensed. Just like incidence

densities, hazard functions can be further divided or made specific by using particulars of person, place, and

calendar time.

I: STUDY OF EFFECT OF  VASECTOMY ON LONG-TERM RISK OF A MYOCARDIAL INFARCTION (MI)

Walker et al. (1981, 1982) studied myocardial infarctions in 4,830 pairs of vasectomized and non-

vasectomized men from the membership files of a large group medical plan. The design is shown

schematically in Figure 2(a). Each vasectomized man was matched on year of birth and year of surgery

The numerator of this quotient is ( proportional to ) the number of new events in the window. The
denominator is (the same proportional to) the number of persons at risk, S[t], multiplied by the amount of
time, t. i.e., to the area under the S curve, between t and (t+ t ).  Thus, the quotient has the same
dimensions as an incidence density.
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Figure 2.  Schematic representation of matched follow-up study of myocardial infarction in pairs of
vasectomized and non-vasectomized men, and of proportional hazards assumption.

(a) each vasectomized man (shaded line) was matched on the basis of year of birth, age at surgery and
calendar time of follow-up with a man who underwent another minor surgery (solid line). Follow-up began
when the pair members underwent surgery and ended when the first of the members suffered an MI,
denoted by a circle, (pairs 3, 4) or was lost to follow-up (pair 2), or the analysis was performed (pair 3).

(b) overall results in the 4830 pairs.

(c) the proportional hazards model, shown for two of the pairs:

c(3): excerpts of the hazard function h[t], with follow-up time denoted in this legend by 't', over the 13 years
of follow-up, starting from "t-zero" = (1969, age 35). h[t] is shown in black for non-vasectomized men, and
in gray for the vasectomized counterparts. At each follow-up instant t, the t-specific hazards --  the h[t, v]
for vasectomized and the h[t, non] for non-vasectomized men of this age and era -- are assumed to be in
constant proportion to each other; for illustrative purposes a constant hazard ratio (HR) of 1.5:1 is shown
(this ratio is to be estimated).  Although it may appear to be regular and parametric, the h[t] in the non-
vasectomized has an unspecified form. A numerical scale for h has been deliberately omitted to emphasize
that the two h[t] functions are not estimated. Rather, the object of the estimation is the ratio of the two
functions, i.e. the (singular) hazard ratio.

c(4): excerpts of the h[t]v for vasectomized and h[t]non for the follow up of pairs from t-zero = (1970, age
44). Relative to pairs of type (3), the absolute value of the h[t]non function is higher, reflecting the older
ages at t-zero, but the HR remains at 1.5:1.
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with a man having another minor surgery. For each pair, follow-up began when the pair members

underwent surgery and (effectively) ended when the first of the pair suffered an MI or was lost to follow-

up, or the data were analyzed.

Classical estimator of rate ratio

The "crude" results are shown in the top left of Figure 2(b): in 20 pairs, the vasectomized man had an MI

during the follow-up period, in 16 pairs the non-vasectomized man had an MI, and in the remaining 4794

pairs neither man had the event of concern.

The Mantel-Haenszel estimate of the rate (i.e. incidence density) ratio, this ratio presumed constant over

age/follow-up time and calendar years,  is [Rothman2002]

Sum[(MIv × FT) / (2 × FT)] / Sum[(MInot-v × FT) / (2 × FT)]

where the sum is over all 4830 pairs, MIv and MInot-v  are a (0/1) indicators of an MI in the vasectomized ,

('v') and non-vasectomized ('not' ) men in the pair, FT is the common length of time the pair is followed

until the first event or the end of the common follow-up, and 2 × FT is the sum of these. Some 4810 of the

pairs contribute zero to the numerator of this estimator, while the other 20 pairs contribute 1/2 each, for a

total numerator of 10. Some 4814 pairs contribute zero to the denominator, while the other 16 contribute

1/2 each, for a total denominator of 8. Thus the estimate is rrMH = 10/8, or 20/16, or 1.25. If one subdivides

each follow-up interval into several smaller ones, e.g., using (horizontal) age-categories, or (vertical)

calendar-time slices, or (diagonal) follow-up-time-slices, the estimate is still the same. No matter how finely

one subdivides the follow-up time, only the 36 'last' slices containing the 36 MI's contribute to the

numerator and denominator of the estimate. This key feature of the traditional estimator will come to the

fore again below, where the 36 event-containing time slices,  and the men they involve, will be called

'risksets'.

 There are a number of ways to construct a confidence interval to accompany the point estimate of 1.25.

One particularly instructive way, one that is similar to the conditioning used by Cox(1972) , is by

'conditioning' on the total of 36 events. To do so, one determines the range of  theoretical rate ratio (RR)
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values that are compatible with how the observed events were distributed between 'v' and 'not-v' men. If this

theoretical rate ratio were IDR or RR (I use Rate Ratio and Incidence Density Ratio interchangeably, and

denote theoretical, i.e., unknowable, parameter values by upper case), then, on average, for ever pair in

which the MI would occur to the 'non-v' member, the expected number of pairs where it would occur to the

'v' member of the pair is RR. Thus, given a pair with one MI, the 'after the fact' probability P that it

occurred in a 'v', rather than a 'non-v' member of the pair, is

P = Probability[MI occurred in v, rather than non-v, member of pair] = RR
1+RR

Inverting this leads to the theoretical relationship

RR = P/(1-P)

The observed proportion p = 20/36 in our data leads to the following point estimate, rr,  (lower case, for

empirical, 'estimate of' RR):

rr = p/(1-p) =  (20/36) / (1 - 20/36) = 20/16 = 1.25.

However, p = 0.56 is only a point estimate of the parameter P. Since it is based on an 'n' of 36, it can be

accompanied by a (say 95%) binomial-based confidence interval {Plower, Pupper} of {0.40, 0.72}, leading to

the following 95% lower and upper limits for RR, the comparative parameter of interest,

{ RRlower , RRupper } =  { Plower/(1-Plower),  Pupper/(1-Pupper) }  = 0.7 to 2.6.

The need for adjusted estimates of rate ratio

The data used to match pair members on birth date, age at surgery and follow-up were available in the

computerized membership file; however, other relevant risk factors for MI, such as smoking and obesity

had to be abstracted from the clinical records and thus were not used in the matching. (For simplicity, only

the baseline values of these will be considered here)

As was the case in the matched-pair Mantel-Haenszel calculations for the 4830 pairs, we can again, without

any loss of precision, restrict our adjusted analyses to the 36 "MI-containing" pairs -- these contain

virtually all of the information on the true rate ratio. And again, we can focus only on the 36 last, narrow
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Table 1

Degree of concordance with respect to smoking (S) and obesity (O) in the 36 informative (MI-containing)

pairs.   Entries are the numbers of pairs in which vasectomized man had the covariate pattern shown in a

given row and non-vasectomized man had the pattern shown in a given column.  Shown in parentheses are

the numbers of these pairs in which the MI occurred in the vasectomized/unvasectomized man. Numbers of

pairs which are matched on the variable(s) are shown in bold. Data from Walker[ref].

Non-Vasectomized man

Vasectomized man

S– S+

S– 10
[6/4]

10
[3/7]

S+ 7
[6/1]

9
[5/4]

O– O+

O– 23
[13/10]

2
[0/2]

O+ 9
[6/3]

2
[1/1]

S– O– S– O+ S+ O– S+ O+

S– O– 7
[5/2]

1
[0/1]

6
[1/5]

S– O+ 2
[1/1]

3
[2/1]

1
[0/1]

S+ O– 5
[4/1]

5
[3/2]

1
[0/1]

S+ O+ 2
[2/0]

2
[1/1]

1
[1/0]
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time-slices containing these events. Table 1 shows the composition of these 36 risksets with respect to

smoking and obesity. Only 19 of the 36 pairs were concordant in their smoking history; in 7 of the

remaining pairs, the vasectomized member smoked, but his counterpart did not; the pattern was reversed in

the other 10 pairs. Some 25 pairs were similar with respect to obesity, but only 13 of the 36 pairs were

matched on both factors. The CI associated with the rrfully matched = 9/4 = 2.25 based only on these 13 is

very wide: 95%CI 0.6 to 10.0)

To add to these the information on these 13, the information from the 23 mismatched pairs one requires a

set of assumptions i.e., an explicit 'statistical  model'. For cohort studies such as this, one might posit a

Poisson regression model for the observed numbers of events in the different sub-divisions of person time

indexed by age, calendar year, follow-up time, smoking, obesity, and vasectomy; the variation in absolute

incidence rates or hazards for non-vasectomized men across these "cells" would be taken as a parametric

function, typically multiplicative, of these variables. The model would overlay this 'grid' of rates with  the

corresponding rates in vasectomized men; in the absence of effect modification, these latter rates in the

vasectomized are assumed to be in the same proportion to their non-vasectomized counterparts -- over all

possible covariate patterns. Such assumptions/models were used long before Cox, sometimes explicitly,

and sometimes only implicitly, as, for example, when one calculates a rate ratio using a Mantel-Haenszel

summary estimator.

The substantial number of parameters in such regression models can be a serious constraint, if, as here, the

amount of data available -- 36 events in all -- is small. Many of the model parameters go towards

constructing the absolute age-specific or follow-up-time-specific incidence rates, even though these

parameters are merely a 'nuisance', i.e., of no direct interest. Even if one wished to estimate the absolute

incidence rates as a function of age or calendar-time, one cannot reliably  do so from so few events, even if

one made strong -- and unverifiable -- assumptions.

The proportional hazards model

The first innovation introduced by Cox(1972) was to avoid specifying any explicit form for the absolute

rates in each of the two compared groups, and to instead concentrate directly on the relative rates, i.e., on

rate ratios. We already do this in classical case-control situations, and indeed, as we proceed, Cox's
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analysis will more and more resemble a so called case-control approach. Instead Cox used a form of the

'proportional hazards' or 'common rate ratio' assumption.  His second, and to this author, fundamental

innovation had to do not with the assumed pattern of rates, but with the way the analysis was set up -- i.e.,

with the special use of conditioning to eliminate what were in any case just nuisance parameters.

The proportional hazards model is illustrated schematically in Figure 2(c), using fully matched pairs,

unspecified incidence rates (hazards), and a fictitious HR of 1.5. Technically speaking, because of its

'instantaneous' referent, it is difficult to conceptualize the 'hazard' at a specific time t, for example, that for

non-smoking non-vasectomized men, operated on during their 39th year, for whom the 'follow-up clock'

now shows exactly t = 3 years and 197 days post entry. For practical purposes however, the hazard can be

adequately represented by taking the time window (the t in the definition) to be the next 24 hours. In this

window, the incidence density of MI's might be of the order of x.x per thousand man-years, or y.y per

million man-days (numerical values for the densities at the different times t are deliberately left unspecified

in our exposition, to emphasize that the hazard function h[t] is not estimated directly (it can be estimated, if

even quite unreliably, but seldom is). Theoretically, the average density during a 1 week, or 1 month, or even

a 1 year window centered on, or even immediately following,  t = 3 years and 197 days  would be very

similar. The proportional hazards model, with a hazard ratio of 1.5, posits that if the hazard for non-

smoking non-vasectomized man at time t is h.h events per unit of person-time, that for the vasectomized

counterparts is 1.5 × h.h. At t = 7 years and 233 days, the absolute hazards would both be higher, but still

in the ratio of 1.5:1. This constant hazard ratio over the span of follow-up t is also posited to hold for men

entering the cohort, i.e., beginning follow-up, at different ages and different calendar years.

Risk sets

In order to estimate the postulated constant hazard ratio HR, the analysis, just as above, uses a conditional

approach and considers only those pairs in which there was an 'event' (MI). For these, it considers only the

small time slice that contains the event. For each of these 'risk sets', the data analyst pretends to be situated

immediately after the event, and using the profile of the candidates just before the event, asks "why

would/did the MI happen to the one its happened to (the 'case'), rather than to the other candidate(s) in the

risk set?  Of course, since it is not possible to answer this "why did it happen to the 'case'?" question case
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by case, the epidemiologic question is posed for the collective: why did the events tend to happen to those

they happened to?  Risk sets need not be restricted to just 2 candidates; in traditional survival analyses,

there will be many candidates, while in nested, or other incidence density, case control studies there may be

several. Also, even though the risk set is finalized just before the event, the logic is more in the after-the

event, 'case-control', "why did it happen to the case?" spirit.

Estimating the HR parameter by the method of Maximum Likelihood

The method of Least Squares (LS), developed in the early 1800's for quantitative responses, seeks as the

'best' parameter value(s) that(those) which minimize(s) the discrepancies between the observed values and

those 'predicted' by the model, whereas the method of Minimum Chi-Square, developed in the early 1900's

for data in the form of, or converted into, frequencies, seeks the parameter value(s) which minimize(s) the

discrepancies between the observed and 'predicted' frequencies. The method of Maximum Likelihood,

introduced in 1912, determines the 'best' parameter value(s) by maximizing the 'Likelihood', defined as the

probability of obtaining the observed data, calculated as a function of the parameter(s) in the model. If the

outcomes in the n different units of observation (here pairs) are independent, this probability for the entire

dataset is the product of the probabilities for each separate unit.

In order to avoid having to specify probability models for other -- and as Cox argued,  irrelevant -- aspects

of the data-generation process, such as how long men could potentially be followed,  and hazard ratios at

follow up times t at which there were no events, Cox instead focused only on the product of the conditional,

after-the-event, probabilities associated with the data for each of the 36 pairs. Each probability is couched

as the answer to the question "Given an MI-containing pair, what is the (a-posteriori) probability that the

MI occurred to the man it happened to rather than to the other man?". Figure 4 illustrates the estimation

procedure for a reduced dataset, containing the data from 4 'event-containing' pairs.

Three features are of note: (i) as a product of individual probabilities, the likelihood becomes quite small,

and the 'support' for different HR values  is more easily tracked using the natural log of the likelihood (ii)

here, as with other comparative epidemiologic parameters measured in the ratio scale, the likelihood and log

likelihood are more symmetric when the horizontal scale is linear in the log[HR] scale rather than the HR

scale itself (iii) the Maximum Likelihood Estimate (MLE) of HR is found by locating where the tangent
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Figure 3.  Illustration of Maximum Likelihood estimation of HR, based on data from 4 'event-containing'
pairs shown at top left. In 3 of these 4 "risksets", the MI (the 'event'), indicated by a disk, occurred in the
vasectomized man (shaded), while in 1 pair, it occurred in the non-vasectomized man. The Likelihood
function is the probability of observing this configuration of outcomes, calculated as a function of the
parameter(s) of interest, here the theoretical hazard ratio, HR. Since the results in the 4 risksets are
independent of each other, the Likelihood is the product of the probabilities of the observed results in each
the 4 risksets. In two men with the same risk profile, one of whom had suffered the MI, the probability that
it would occur in the vasectomized rather than the non-vasectomized man is HR/(1+HR), and that it would
be in the opposite configuration is 1/(1+HR). The probabilities of the 4 observed configurations are shown
under the heading "Prob.".  The 4 numerical probabilities in a particular column  are the probabilities of the
4 observed configurations, calculated with the value of HR shown at the top of that column. The product, or
'Likelihood', is the probability of the observed alignment of MI's. Of the 7 HR values shown, the value of
HR=4 produces the highest likelihood. A more refined numerical search, shown in smaller dots, illustrates
that the Maximum of the Likelihood occurs at HR=3.
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Fig 3
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Figure 4.  Illustration of Maximum Likelihood estimation of HR, based on data from all 36 'event-

containing' pairs, 17 of which were not matched with respect to smoking (S). The hazard ratio associated

with smoking is (for illustrative purposes) fixed at 2. Of the 10 "risksets" involving non-smokers, the MI

(the 'event'), indicated by a disk, occurred in the vasectomized man (shaded) in 6, each with an associated

probability of 1/(1+HR) while in 4 such pairs, it occurred in the non-vasectomized man(dark)  with

associated probabilities of 1/(1+HR) each. The 9 MI's in the non-smoking pairs split 5:4, with the same

associated probabilities. Of the 7 pairs where only the vasectomized man smoked, the MI's split 6:1, with

associated probabilities of 2HR/(1+2HR) and 1/(1+2HR) each. Conversely,  of the 10 pairs where only the

non-vasectomized man smoked, the MI's split 7:3, with associated probabilities of HR/(2+HR) and

2/(2+HR). The Likelihood function, namely  the probability of observing the entire configuration of 36

outcomes, is the product of the 36 probabilities, calculated using the HR parameter  shown at the top of

each column. Shown at the head the 4 columns are different 'trial' values of HR, while shown in each row

are the individual probabilities calculated using the trial HR value. To emphasize the multiplicative nature of

the hazard, the components of each conditional probability are also shown – as small rectangles with bases

of 1 and HR, and heights of 1 or 2(the assumed hazard ratio associated with smoking).  The relative

probabilities that the MI occurred in the vasectomized/non-vasectomized man are therefore proportional to

the areas of these little rectangles: for example, if the vasectomized man did not smoke, and the non-

vasectomized man did (last row), and if the HR for vasectomy is 4, then their relative probabilities of an MI

are 1 × 4 = 4 and 2 × 1 = 2. Thus if one was told one of these had an MI, one would say that the

probability that it happened to the vasectomized/nonvasectomized  man is  4/(4 + 2) = 2/3 and  that it

happened to the non-vasectomized man is  2/(4 + 2)  = 1/3. Of the 4 trial HR values shown, the value of

HR=1 produces the highest likelihood. A more refined numerical search, shown in smaller dots, illustrates

that the Maximum of the Likelihood occurs at HR=1.34.
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Fig 4
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[derivatives] of the log likelihood function with respect to its parameter is zero; in this simple example, the

MLE can be found from a closed-form equation derived by calculus. When this is not possible, iterative

methods are used; these are similar to the use of a walking stick by a blind person who, when climbing a

mountain, has to repeatedly decide 'which way is up'.

MLE of HR parameter in a more complex situation

Whereas in this example the ML estimate hrML=3 is no surprise, and other estimate would be, the MLE is

not quite so obvious, and not even closed form, when we are forced to incorporate data from unmatched

pairs. The additional assumptions required to do this can best be understood by examining the assumptions

behind a Mantel-Haenszel summary estimate derived from all of the fully-matched pairs.  The pursuit of a

single ('overall') estimate makes the -- at least implicit -- assumption that the true hazard ratio HR in the

V:NonV contrast is the same, not only at each age, but also in smokers (S) and non-smokers (NonS), i.e.,

Hazard [       V ; S ]
Hazard [NonV ; S ]  =  Hazard [       V ; NonS ]

Hazard [NonV ; NonS ]

It is instructive to rewrite this so as to contrast smokers and non-smokers who are concordant with respect

to vasectomy:

Hazard [       S ; V ]
Hazard [NonS ; V ]  =  Hazard [       S ; NonV ]

Hazard [NonS ; NonV ]

which  states that the S:NonS hazard ratio is homogeneous across vasectomized and non-vasectomized

men. This equivalent formulation will be useful below, as will yet another:

 Hazard [ V ;  S ]  = Hazard [NonV ; NonS ] ×   Hazard [NonV ; NonS ]
Hazard [NonV ; NonS ]    ×    Hazard [NonS ; NonV ]

Hazard [NonS ; NonV ]

which is equivalent to assuming that, relative to a comparison population with neither factor, the hazard ratio

associated with two factors is the (multiplicative) product of the two separate hazard ratios. Clayton and

Hills(1993) call this model the 'corner' model, since it begins with the hazard in the (0,0) or ('unexposed, no

other riskfactor') corner, and works outwards from there.

This assumption, coupled with the conditional approach used earlier, now allows us to use all 36 pairs,

whether fully matched or not. We first illustrate how we adjust just for smoking, and later deal with

smoking and obesity simultaneously. The approach is illustrated in Figure 4. In order to focus on the HR



Contour Plot of the Log Likelihood, as a function of the (logs of) the
hazard ratios for Vasectomy (HR_V) and Smoking (HR_S)

For simplicity, logs of hazard ratios are to base 2, so that
LOG2HR_V = 1 means HR = 21 =2, LOG2HR_V = 3 means HR = 23 =8, etc.

For plotting purposes, Log Likelihoods coded so that they range '0' = -28, to '9' = -22
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         |                        00111111111111100
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         |            1123344556667777777777776665554432210
         |           01223445566777778888887777666554432210
       3 +           11234455667778888888888877766554432210
         |          012334556677788888888888877766554432210
         |          01234455677788889999998888776655443211
         |          12234556677888899999999888776655433210
         |          12334556777888999999999888776655432210
       2 +          1233456677888999999999988877665443210
         |          1233456677888999999999888776655433210
         |          123345667788899999999888877665443210
         |          12334556777888999999888877665443211
         |          01234556677888888888888776655432210
       1 +          0123445667778888888887776655433210
         |           12234556667777888777766655433210
         |           0123345566677777777666554432210
         |            01233445566666666665544332210
         |            0112334445555555555444322110
       0 +             0012233444444444443322110
         |               0112233333333333221100
         |                0011122222222211100
         |                  00001111110010
         |                        000
      -1 +
         |
         ---+---------+---------+---------+---------+---------+--
           -2        -1         0         1         2         3

                                 LOG2HR_V



options ls=80 ps=55;
data a;

do log2HR_V = -4 to 4 by 0.1;
  HR_V = 2**log2HR_V;
  do  log2HR_S = -3 to 6 by 0.1;
   HR_S = 2**log2HR_S;
   logLik = 4*log(1    *  1   / (1    *  1   +   1  * HR_V)) +
            6*log(1    * HR_V / (1    *  1   +   1  * HR_V)) +

            4*log(HR_S *  1   / (HR_S *  1   + HR_S * HR_V )) +
            5*log(HR_S * HR_V / (HR_S *  1   + HR_S * HR_V )) +

            1*log(1    *  1   /( 1    *  1   + HR_S * HR_V )) +
            6*log(HR_S * HR_V /( 1    *  1   + HR_S * HR_V )) +

            7*log(HR_S *  1   /( HR_S *  1   +   1  * HR_V )) +
            3*log(1    * HR_V /( HR_S *  1   +   1  * HR_V )) ;

   ll = round( 1.5*(logLik +28), 1.0);
   if (logLik  > -28) then output;
end;
end;
run;

proc plot;
 plot log2HR_S * log2HR_V = ll;

run;
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parameter associated with vasectomy, and on how we 'adjust' for smoking, we begin by assuming that the

two HR's  associated with smoking i.e. Hazard [S ; V ] / Hazard [NonS ; V ])  and

Hazard [S ; NonV ] / Hazard [NonS ; NonV ]) are both known to be  2 (one could for example, imagine

that these 'external' values are based on other data, e.g.,  from the literature). Later, we will let this parameter

value free to vary and estimate it from the dataset. The proportional hazards model now allows us to

calculate, for different values of the HR for vasectomy, the conditional probabilities of observing what we

did observe in the 36 pairs. The critical use of the assumption is in cases where the pairs are unmatched

with respect to smoking. The calculations are illustrated in Fig 4.  As above, in pairs where both the

vasectomized and non-vasectomized man are non-smokers, the probability that the MI occurs in the

vasectomized man is HR/(1+HR) and that it occurs in the non-vasectomized man is 1/(1+HR). In pairs

where both smoke, the probability that the MI occurs in the vasectomized man is (2 × HR)/(2 + 2 × HR),

which again simplifies to HR/(1+HR), and that it occurs in the non-vasectomized man is, after

simplification, 1/(1+HR). In pairs where the vasectomized man smokes, but the non-vasectomized man

does not, the hazards are now in the ratio of (2 × HR) : 1, so that the probabilities that the MI occurs in the

vasectomized man is (2 × HR)/(1 + 2 × HR), and that it occurs in the non-vasectomized man is 1/(1 + 2 ×

HR). In the opposite configuration, where the vasectomized man does not smoke but the non-vasectomized

man does, so that the hazards are in the ratio HR : 2, the probability that the MI occurs in the vasectomized

man is HR/(2 + HR), and that it occurs in the non-vasectomized man is 2/(2 + HR). In the figure, we

examine several scenarios for the HR and show the Likelihood (the product of the 36 probabilities) for

each one. The maximum log likelihood of -2x.x is achieved at HR value of hrML = 1.34.

The hazard ratio associated with smoking was fixed at 2 simply for illustration, in order to make the search

for the HR one-dimensional, and thus easier to visualize; However, the HR associated with vasectomy, and

the one associated with smoking can be estimated simultaneously from the 36 pairs themselves: The 50:50

distribution of vasectomy:nonvasectomy in each riskset was designed for efficiency in estimating the HR

for v:non-v, but using this dataset one can just as easily, if not as efficiently, concentrate on estimating the

effect of smoking, while thinking of vasectomy as the nuisance or confounding variable. To estimate both

parameters simultaneously,  one again searches, but now simultaneously over two dimensions,  for the

values which mazimize the likelihood. As is seen in Figure 5, the maximum log likelihood of -2xx is
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Table 2

Probability that the vasectomized man was the one to suffer the MI (or equivalently, that the MI occurred in

the vasectomized man), for each possible configuration of the riskset.

Non-Vasectomized man ( Iv = 0 )

S–
( Is = 0 )

S+
( Is = 1 )

S–
( Is = 0 )

HRV × HRS + HRS 
HRV × HRS + H1S 

HRV × HRS + HRS 
HRV × HRS + HRS 

Vasectomized man
( Iv = 1 )

S+
( Is = 1 )

HRV × HRS + HRS 
HRV × HRS + H1S 

HRV × HRS + HRS 
HRV × HRS + HRS 

S– ,  S+: non-smoker,  smoker

HRV : Hazard ratio, vasectomized : non-vasectomized

HRS : Hazard ratio, smokers : non-smokers
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achieved when the HR for vasectomy is 1.xx and that for smoking is 3.xx. And, as one can see from the

greater 'sharpness' of the likelihood function with respect to the HR value for smoking, it turns out that the

data set provides more information about it than about  vasectomy. [Check coeff. of variation]

Regression formulation, 2-person risksets

Each probability in this "2-person risksets" example happens to have a traditional "unconditional logistic

regression" form, but with the pair as the unit of analysis ('observation'). To see this, consider the binary

'outcome', Y,  which is set to 1 for each pair where the vasectomized man was the one to suffer the MI, and

to 0 for each pair where his counterpart was. The probabilities of Y=1 for the four possible pair

configurations are given in Table 2. By expressing HRV and HRS  as exp(βv) and exp(βs) respectively, the

logit of the probability that Y=1 can be written in a single 'master' equation that covers the four possible pair

configurations

logit [ Prob[Y=1 ] ]  = βv  +  βs d

where d is the difference between the indicators of smoking in the vasectomized and non-vasectomized

men, i.e., d = 0 if both smoke, or both do not; 1 if the vasectomized smokes but the non-vasectomized does

not; and -1 if the converse. This regression formulation can be extended to differences in other

confounding variables such as obesity, to obtain, as Walker(1982) did, HR estimates of 1.2, 4.1, and 3.2 for

vasectomy, smoking and obesity, respectively.

Some statistical asides

This clever use of unconditional logistic regression would not work if, unlike V, the 'X' variable of  interest

were a continuous variable, or if a riskset contained more than two men. To accommodate these more

general situations, one would need to reverse the question, from  "were vasectomized men more likely to

have a MI?", to the opposite, conditional, and closer to 'case-control', one: "were men who suffered MI's

more likely to have had a vasectomy?"  i.e.,  "why did the MI happen to the man it occurred to?" By using

this reverse way of asking the question,  the way in which the resulting probabilities are linked to the

explanatory variables forms "what biostatisticians and epidemiologists now call the conditional logistic

regression model for matched case-control groups; (...) economists and other social scientists call (it) a
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fixed-effects logit model for panel data"[ref: introduction to the clogit procedure in Stata].  The model is

identical to McFadden's choice model (Breslow1996). Before software for conditional logistic regression

and Cox's proportional hazards model became widely available, and when risksets were limited to pairs,

some authors, notably Holford(1978), and Breslow and Day[ref], estimated the model parameters of this

conditional logistic regression model by applying the standard unconditional logistic regression software,

with each pair as a single observation. With the data now defined in terms of focus on the case, i.e., the man

who suffered the MI,  the "Y" was set to 1 for each observation;  the "X's" were Iv: whether the case was the

one who had had the vasectomy, and the differences (0,1, or -1) between the 'case' and the 'non-case' with

respect to smoking [and obesity]. The HR for vasectomy is estimated by exponentiating the coefficient of

IV obtained from a 'no-intercept' unconditional logistic regression, fit with software such as GLIM.

Software for unconditional regression available in SAS and Stata check  for variation in Y, and finding none

in this special case, would refuse to fit the parameters, If concern is with a binary V,  one can still use the

"V-based" (rather than case-based") approach described in the previous paragraph.

Larger risksets (but still just 1 case per riskset)

For larger risksets, such as arise in case-control studies with each set containing 1 case and several matched

controls, the data cannot generally be accommodated within the family of the generalized linear models, of

which unconditional logistic regression is a special case. The one exception is when 'exposure' is binary,

and there are no other covariates. A closed form, non-ML solution is possible using the classical Mantel-

Haenszel odds ratio estimator(1959). Miettinen (19xx) obtained a closed-form ML estimator in the special

case where all sets are of size 3 (1 case and 2 controls). Breslow and Day (198x, pages xx-yy) treat the

'variable number of controls per case' situation, using special-purpose ML estimation algorithms.

Nowadays, and for risksets in which members are unmatched with respect to certain measured covariates,

packages such as Stata include a standalone conditional logistic regression module, similar to that described

by Breslow and Day. Others, such as SAS,  do not; instead they  recommend the module for stratified

proportional hazards model used initially in survival analysis. In doing so, they take advantage of the

equivalence between the likelihood (and thus ML parameter estimates) under the conditional logistic

regression model and the 'partial likelihood' used by Cox to fit the parameters of the proportional hazards
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model (see part II for a more detailed exposition on the use of proportional hazards model for classical

'survival' data, and on the link with case-control analyses).

Stratified Cox model

In a larger vasectomy study [Massey et al.,1984],  identified men in four U.S. cities who had undergone

vasectomies and paired each one with a neighbour of the same age and circumstances at the time the

surgery was done. In a follow-up ranging from 1 to 41 years, some 200 of the vasectomized, and 250 non-

vasectomized men suffered MI's. Some of their analyses used the matching, but did not include any

unmatched variables. Other analyses broke the individual matching and either (a) compared incidence rates

(events per person years) or (b) stratified the men by age and city and performed what were termed

"stratified Cox-covariate analyses". These last two types of analyses are not as different as they might

appear. First, in the limit, if one "slices" the Lexis diagram into very small rectangles and ignores rectangles

in which there were no events, the resulting person-years analysis can be seen as a variant on the approach

used here. Second. the stratified Cox-covariate analysis first divided the men into separate 'city'-'age at

surgery' cells or strata. For the men within any one such cell, their time of surgery, or the time when their

neighbour had surgery,  becomes their 'time zero '. The successive risk sets in the same stratum are defined

by the order in which MI's occurred along this time-scale; each riskset contains those men who are still

being followed up, and thus "at risk", at the time of the riskset-defining MI. In this approach, a man who

had an MI a certain number of years after vasectomy is in the risk set for each 'earlier' MI'. The likelihood

for each risk set is calculated much as in the paired case, except that the risk set may now have several

'candidates'; as before, for each riskset, one calculates the probability  of the MI happening to the member

its happened to (the "case") rather than to the others. In this approach, one never contrasts those in one

stratum with those in another stratum. The final step calculates the overall likelihood of the alignment of

events within the each risk set within each stratum as the product of the individual likelihoods over risksets

and strata. The benefit of stratifying on age at surgery, rather than using it as a variable in the regression

model, is that it makes no assumptions about the hazard of an MI as a function of age. One is already

making a large enough assumption that the relevant HR is constant over all times from surgery within each

age-at-surgery stratum without postulating further structure in the data. A computational advantage is the

smaller size of each riskset.
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Risksets with several 'cases' ('ties' in survival analyses)

If the time scale is coarse, two or more (k) persons may suffer an MI at the 'same' time point. A number of

approaches to this situation are available in most software. One way is to simplify the likelihood is to

randomly break the tie, so that the risksets are ordered in time: in this approach, the later 'cases' become

controls in the earlier risksets. Another, the basis for conditional logistic regression,  is to calculate the

probability  of the events happening to the k candidates they happened to, rather than to any other

combination of k candidates. Breslow and Day (1980, volume 1, and section 52. of Volume II) illustrate

these calculations. If k and the size of the riskset are large, the substantial number of combinations of

candidates can lead to considerable computations. Peto and Breslow (in Discussion of Cox1972) gave

approximations for such situations. Subsequently, Gail offered a faster and more elegant, recursive

solution(Gail, 1981; Storer1983).

DISCUSSION

'Time to event' versus its reciprocal (event rate):  the statistical divide

Examples of 'matched' cohorts of the type illustrated here, are few, although the one by Walker was itself

followed up by a much larger cohort study of a similar pair-matched design (Massey, 1984).  So rare are

they that a 2003 follow-up study which, for every 'exposed' person, used 10 randomly selected unexposed

people, matched on 3 variables, a elicited a special commentary (Evans, 2003, commenting on Helms at al.

2003). Sadly, this commentary is a striking example of the wide 'divide' that the present article tries to

bridge.  The chasm is more related to the background of the data analysts than to the differences, which are

fewer, in the statistical methods themselves. On one side are statisticians who grew up in a clinical trials

culture, and who see Cox's model as a survival analysis technique, and who focus on, in Evans' words,  "the

time taken to an event that is the outcome under study, a survival analysis". The present author himself

began as this type of biostatistician in 1973, and only saw the other (epidemiologic) side when he joined his

present department in 1980, and found that his new colleagues Liddell and Thomas were, along with

Breslow, the first to see how the same Cox model software could be used to analyze data from a 'nested'

case-control study (Liddell 1976, Breslow 197x).  ( He will comment further on the epidemiologic analyses
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carried out by his former 'survival analysis' colleagues Lagakos and Zelen when, in Part II, he discusses

their study of leukemia in relation to contaminated well water).

Using SAS procedure PHREG, the authors of the 2003 matched cohort study (which included 48,857

persons with foodborne infections, each one matched with 10 non-infected persons, matched for age, sex,

and county of residence) compared the mortality of the infected and non-infected data "using conditional

proportional hazard regression". They included a comorbidity index as an important, but unmatched,

confounding variable. They reported their comparisons using relative mortality (effectively hazard ratios),

over the entire 12 month follow-up window, and -- because of the sharp decline in this ratio over the follow-

up period --  in several sub-windows. These analyses are similar to those we have illustrated for MI and

vasectomy: "Elevens" (i.e. matched sets) in which there was no event (death) during the time window do not

contribute to the (partial) likelihood, and so can be ignored. If each of the deaths (4707 in all) occurred in a

different matched set (and most probably did!), then 48,857 - 4707 = 44,150 (i.e.,  more than 90%) of the

matched sets were uninformative with respect to mortality ratios. It is not obvious from their report whether

the authors took advantage of this). Given that they were largely obtained from administrative databases, the

marginal cost of obtaining and processing these uninformative 441,500 records may have been minimal;

however, as Walker(1982) emphasizes, if obtaining important exposure or covariate information involves

substantial unit costs, these should be expended on the informative, i.e., event-containing, matched sets.

The commentary does point out that "cohort studies usually have to be very large to obtain a sufficient

number of outcome events".  To this, one might add "Once the large number of events has been generated,

we should use the data in the most cost-efficient and statistically-efficient way".

The other interesting lesson from both these studies is the artificial distinction between 'case-control and

"cohort" studies, one that is unfortunately maintained by the BMJ commentary (Evans 2003)

"Most BMJ readers are familiar with matched case-control studies but fewer will be
familiar with matched cohort studies. Case-control studies are based on selecting
cases of a disease and then finding people who are as similar as possible to the
cases. The study by Helms et al is not a case-control study; people were selected not
on the basis of having, or not having, the outcome of interest (in this instance
mortality) but on the basis of being exposed or not to something that may affect
mortality."
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Helped by those who helped break this 'trinity' (which used to teach that "there are 3 kinds of study --

cross-sectional, cohort case-control")  (Miettinen99), the case-control study is increasingly being seen as

'nested' in a cohort, either a virtual or --as here -- a real one. Moreover, as our examples show, even though

the authors may have begun with a cohort, the analyses begin with the event, which in turns defines the

riskset, which in turn makes this a matched case-control study. Suppose one did not know the community

prevalence of vasectomy (or of persons having had food poisoning in the last year), or their ages, but was

presented with  several 2 × 2 tables, each consisting of 11 (2) persons, with 1 and 10(1) in the 'outcome'

margin, and also 1 and 10(1) in the 'exposure' margin. From these, one would not know whether the data

arose directly from a case-control study, or indirectly from a case-control type analysis based on cases

arising from an actual cohort. The likelihood, and the resulting parameter estimates, are the same whether

one sets up the likelihood based on answers to the question "Were the vasectomized(infected) more likely

to have a MI (die)?" or "Were those who had an MI (died) more likely to have had a vasectomy (infection)?

As we hinted at earlier, the choice of design is guided by efficiency: one fixes the frequencies in the  margin

that achieves, with a fixed overall total, the lowest values for the variance of the log HR.

[aside: As modern teachers emphasize, we are students of rates, not of exposure, and so -- even in 'case

control' studies --conceptually we compare event rates in the exposed vs. rates in the unexposed, and not

'exposure in the cases vs. exposure in the controls' (Miettinen2004). The controls simply serve as

denominators: quasi-denominators in case-control studies, and real denominators in cohort studies,

(Miettinen2004). Second, the immediate effects of transient exposures, such as use of cellular telephones

on motor vehicle accident rates,  can only be studied with a case-control approach. A database may be

helpful in identifying accidents or cell phone use, but a traditional cohort analysis would be very wasteful.

Imagine, for the sake of illustration, that in Figure 1 there were 3 accidents, the first of which happened

while the driver was, and the second and third while the driver was not, using the phone. Suppose that one

carried out 'second by second' Mantel-Haenszel cumulations of the same type used in our first analysis of

the vasectomy dataset to arrive at the rrMH of 20/16 . One might measure, at each instant, the exposed and

unexposed person moments (PMexposed and PMunexposed, total PM). Most of the contributions to the

Mantel-Haenszel numerator and denominator would be 0 × PMunexposed / PM = 0  and

0 × PMexposed / PM = 0 !  The entire information is contained in the PM distributions just at the times of
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the 3 accidents, [1], [2] and [3], . Thus, replacing person moments (PM) by numbers of persons (P) on or

not on the telephone at these 3 instants,  rrMH is simply

 1 × Punexposed[1] / P[1]  +  0 × Punexposed[2] / P[2]   + 0 × Punexposed[3] / P[3]
0 × P  exposed[1] / P[1]  +  1 × P  exposed[2] / P[2]   + 1 × P  exposed[3] / P[3]

Little statistical efficiency is lost if, instead of the exact numbers of P's, one uses estimates of them, based

on the exposed/unexposed distribution in random  samples of the persons at risk (risksets) at the time of

each event.

Case-crossover studies: new name for a very old way of evaluating causal associations

This last example raises the obvious question: why compare accident rates in people who are on the phone

while driving with those in others who are not? why not compare accident rates in the same people when

they are and are not on the phone while driving? In terms of the orientation of the people in Figure 1, this

becomes a 'horizontal' rather than a 'vertical' comparison, and corresponds to the design used by Redelmeier

and Tibshirani in one of the most important investigations of this question(Redelmeier1997). This design

has become known as the case-crossover design, and is generally ascribed to MacClure, although variations

on this design have been used in epidemiology for quite some time (e.g., New York pedestrian

deaths(Friedman1974), and by individuals since time immemorial to investigate the origins of rashes,

headaches, computer crashes, and other untoward personal events. The statistical analyses are just as in the

matched case-control examples discussed above. We wonder why the design was not given the more

informative "self-paired case control" label.
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FIGURE LEGENDS

Figure 1.  Schematic of driver_use_time and   driver_non-use_time that form the denominators of
incidence densities. Shown are when, and for how long 100 different motor vehicle drivers drove while
using or not using cellular telephones, during a specific time-window on a particular morning. The raw data
are depicted in two formats (1) in detail, driver by driver, with the driving time shown as thin horizontal
lines, and the time driving while using a cellular telephone in darker and thicker horizontal lines and (2)
collectively, i.e., de-personalized. The height of the upper curve indicates how many were driving at the
indicated instant, and the lower curve how many of them were at that instant using the phone while driving.
The area under the lower curve represents the total number of driver-moments 'on-the-phone', and that
between the two curves the total driver-moments 'off-the-phone'.
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ABSTRACT

The first of the two articles in this series presented the proportional hazards model to analyze data arising

from matched pairs followed until one of the pair-members had the event of concern. Using worked

calculations and diagrams, I attempted to show what the model is, its flexibility and its assumptions, how its

parameters are fitted, and how it can help us to see different epidemiologic designs and analyses in a more

unified light. These are further illustrated in this second paper via two additional examples. In one, the

longevity of two groups in an experimental study is compared via lifetable regression; in the other -- non-

experimental -- the focus is on the degree of exposure to a contaminated source and its possible role in the

etiology of cancer
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To illustrate data analysis in an easier-to-compute situation, the first of the two articles in this series

presented the proportional hazards model to analyze data arising from a very uncommon design, matched

pairs followed until one of the pair-members had the event of concern. This second article focuses on the

more traditional and more common: a survival analysis, via what Cox calls "lifetable regression" and a case-

control study.

ILLUSTRATION II: DOES SEXUAL ACTIVITY DECREASE THE LONGEVITY OF MALES?

This experimental study investigated whether sexual activity reduces the lifespan of male fruitflies. The

study, and the teaching dataset derived from it, are described in detail elsewhere (Partridge and Farquhar,

1981; Hanley and Shapiro, 1994). In all, in order to control for the possibility that reductions might be the

result of competition for food etc., rather than sexual activity, five groups of 25 males each were formed by

random allocation. In the two "experimental" groups, sexual activity was manipulated by supplying

individually housed males with ("e") a smaller, or ("E") a larger number of, receptive virgin females each

day. In two other "control" groups, individually housed males were supplied with ("c") a smaller or ("C") a

larger number of, sexually inactive (i.e., newly inseminated) females; the third control group consisted of 25

individually housed  males who lived alone. Very large longevity differences were noted between the males

in groups E and C, so here we restrict our analyses to the longevity comparison of "e" vs. "c". In order to

show detailed hand-calculations, we analyze the data for just 10 males, 5 of whom we selected at random

from the 25 in "e" and 5 from the 25 in "c". And, as the original authors did, we consider one important

covariate, thorax size, which is a strong determinant of longevity.

There were no losses to follow-up, and all subjects had died by the time the data were analyzed. Thus the

biologists analyzed the difference in the mean longevity using classical analysis of covariance. Today, we

might accomplish this using thorax size as a covariate in a multiple regression model: if thorax length is

included as a centered variable, then the fitted intercept denotes the mean in the reference group, the

coefficient associated with the indicator variable for the experimental group is the adjusted difference in

mean longevity, and the coefficient associated with the covariate denotes the independent relationship

between it and longevity, This analysis makes the comparison "fairer" by adjusting for (what was a very
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slight) imbalance in the groups with respect to thorax size. More importantly, even if the comparison had

turned out, by a lucky randomization, to be perfectly fair, the inclusion of the covariate would make the

comparison "sharper" (Hanley, 1983; Anderson et al. 1980). It does this by removing the (extraneous)

variation in longevity caused by variation in thorax size: the smaller standard error of the difference in

means leads to a more precise comparison.

Few epidemiologists work in research contexts where a long lifetime is 100 days rather than 100 years,

where informed consent, missing data, confounding factors and multiple time scales are not an issue, and all

subjects reach the endpoint of interest, leaving no censored observations. Nevertheless, we will analyze the

data using survival analysis to see how this analysis is intimately linked with other data analysis approaches

in epidemiology. We will take advantage of the simple structure --  no censored observations, and just two

explanatory variables, both binary -- to see more clearly the essential elements of the Cox model, to

understand how the likelihood is set up and maximized, and to illustrate how the Cox model. with

stratification on nuisance covariates, can be an alternative to modeling them.

Figure 1 shows the longevity data, together with the associated risksets, and Maximum Likelihood

estimation of the hazard ratio (HR) parameter of the proportional hazards model (vertical timelines, rather

than the  more common horizontal left to right ones, were used to allow the primary focus,  the Likelihood

function, to be drawn in the standard orientation). For now, the one covariate is ignored.

Time zero , time scales, and risksets

A time scale, starting at a defined "time-zero", is the point of departure for the 'survival' or other 'time-to-

event' analysis version of the Cox life-table regression analysis(Cox1972). In non-experimental follow-up

studies of humans, there may be several possible time scales. In analyses of the Framingham study, the

most commonly employed time scale has been the time elapsed since "t0" = 1948, even though this is

simply an administrative scale, starting from the funding year zero. Age is often a more relevant time scale,

Farewell and Cox(1979) have given some guidance on this, suggesting that the primary scale should be the

one over which hazard rates vary the most, and are the most difficult to model  accurately with a parametric
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function and that other relevant time scales be included as regressor variables. In their example, dealing with

the occurrence of breast cancer in parous women,  the possible times scales were chronological age, and age

since the birth of the woman's first child. In the fruitfly study, longevity was measured from when fruitflies

emerged as adults (the fourth stage of their life cycle) and were allocated to one of the two conditions being

investigated.

Using the selected time scale, each distinct event-time (death) defines an unambiguous riskset, namely those

subjects alive just before the event in question. Subjects appear in successive risksets until they themselves

suffer a riskset-defining event, or are lost to follow-up or otherwise censored. Thus, in this mortality study,

each riskset contains those fruitflies who were alive just before the death which defines the riskset. And,

unusually, since all subjects were followed until death, and each death occurred at a different age, there are

as many risksets as there are subjects.

The elements of  the (partial) Likelihood function

Using a specific HR value, one can, for each riskset, calculate the (conditional) probability that the death

would occur to the subject who did die then, rather than to one of the other candidates in the riskset, who

were also alive just before. The likelihood is a product of the probabilities associated with the different

risksets. By calculating the likelihood for various values of HR, one is effectively asking why the deaths

occurred in the order they did.  That the first subject to die did so on the xx-th day of life rather than on

some other day, that the second died on the yy-th specifically,  and that there was or was not a large amount

of potential follow-up time over and above what was needed, are not considered in the analysis. The

probabilities used in the likelihood are conditional on the individuals dying when they did.  and this

conditioning leads to what is now referred to as a partial likelihood. The analysis does not ask  why then?

but rather "who then?", i.e.,  given that there was a death then, was it likely to happen to the person to whom

it happened ? Thus, the Likelihood is not affected by the actual times, or by the time spaces between events.

[This is one of the reasons why survival analysis software can be used to analyze case-control studies with

matched sets, even if there is no, or no natural, time  dimension: for the 'case' in the set, one simply
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designates an arbitrary event-time t; for each control in the same set, one creates an event-time that is

censored at or beyond t]

This conditional approach to analysis, i.e.., posing each probability as the answer to an after-the-fact "why

the event in this person?" question, is one of the two reasons why the probabilities shown in Figure 1 have

the simply form they do. The other has to do with the form of the proportional hazards model itself. The

PH form was not new, even in 1972: constant (homogeneous) odds and incidence density ratios are used

implicitly in the Mantel-Haenszel summary ratio measures, and explicitly in Poisson regression models that

use multiplicative rates. In this example, with "t" (= adult age), the model posits that if hinactive[age] is the

age-specific mortality rate (hazard) for sexually inactive subjects (reference category) of that age, then the

corresponding mortality rate at the same age for their sexually active counterparts (the index category) is a

constant times this, viz.

hinactive[age] = HR × hinactive[age]

where HR is shorthand for the hazard ratio, presumed constant over age.

Note: we use the square brackets [ ] in hinactive[age] to denote that hinactive is a function of age, rather than a

single number obtained by multiplying two other single numbers hinactive and age. Also, it is common, but

potentially misleading, to use the term "baseline" hazard here: many authors use a subscript "0" where I

have used the subscript "inactive"; by doing so, they may give the mistaken impression that the zero refers

to time 0, when in fact they are referring to the reference category of persons who have none of the risk

factors or interest, i.e., to persons with zero levels of all covariates. For a single categorical 'determinant',

the notation

hindex-category[t] = HR × hreference-pattern[t]

males it clearer that hreference-pattern[t] is a series of h's, indexed by t, i.e. a time-function. Moreover, if one

takes logs of both sides, then on the right-hand side the log of the time-function hreference-pattern[t] forms

the (nuisance) "intercept' of a regression model, and log[HR] becomes the  regression parameter of primary

interest).
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The implications of this form are best seen by example. Consider  the fourth subject in figure 1 to die.

Some  3 individuals from the active group and 4 from the inactive group were alive at the end of the

previous day. The subject who died was in the sexually inactive group. Imagine for now that we don't know

that and that we are simply given a list of the 7 members of the riskset  at the end of the previous day,

showing which  group each one belonged to, and asked to try to identify the individual who died. What is

the chance that we could identify the 'correct' individual? 1 For concreteness, let us say that the first 4

individuals in the list were the sexually inactive ones, and the last 3 the active ones, and that [although we

don't know this] the event occurred in the 1st subject on the list.

Because the 7 individuals in the riskset are all of the same age, and because the HR is constant at all ages,

the hinactive[age] factor drops out of the calculations: the 7 individuals' relative chances of being the 'case'

are simply1:1:1:1:HR:HR:HR.  If we know that there is one event, but not to whom, then the probability

that it happened to a specific sexually inactive subject is 1/(4  × 1 + 3 × HR), and that it happened to a

sexually  active subject is HR/(4  × 1 + 3 × HR).

But in our data analysis, we know that the event befell the 1st individual, i.e., the one indicated in bold in the

list 1:1:1:1:HR:HR:HR. The probability that it happened to this specific individual is therefore

1/(4  × 1 + 3 × HR). Note that this probability no longer depends on hinactive[age], but only on HR -- the

combination of the assumption that the hazards are proportional , and the specific conditional probability

formulated in reference to the riskset,  leave us with a probability which only involves HR. If we consider a

trial value of  HR=1, then the probability that we could pick out the 'correct' individual, or that nature would

'finger' this specific (1st) individual from among the 7, is 1/(4 × 1 + 3 × 1) = 1/7. If we use a trial value of

1 OSM "a person is not a case" [ OSM ]. The person represents an 'instance' of the phenomenon under
study (this is one of the several OED definitions of case; the first definition the OED gives for 'case' is 'a
thing that befalls or happens; an event, occurrence, ...' ;  the word case comes from the Latin  casus f. cas-,
cadere , words all having to do with fall. The Latin dictionary at http://www.nd.edu/~archives/latgramm.htm
gives casus -us m. [a falling , fall]. Transf.: (1) [what befalls, an accident, event, occurrence]. (2) [occasion,
opportunity]. (3) [destruction, downfall, collapse]; and, in gen., [end]. (4) in grammar, [a case] ]. and cado
cadere cecidi [to fall , sink, drop]; 'vela cadunt', [are furled]; 'iuxta solem cadentem', [in the west]; of living
beings, often [to fall in death, die]; hence [to be destroyed, to subside, sink, flag, fail]; 'cadere animis', [to
lose heart]; with in or sub, [to come under, be subject to]; with in, [to agree with, be consistent with]; of
events, [to fall out, happen]; of payments, [to fall due]. Of note is the fact that the 'case' focuses on the event,
rather than on the person in whom it occurred.
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HR=2, the probability of the event happening to the individual it happened to is 1/(4 × 1 + 3 × 2) = 1/10,

and so on.

The (partial) Likelihood function based on all 10 risksets

We have worked out the probability of observing the data we did observe for one particular riskset. We

now calculate the corresponding probabilities for the other 9 risksets, and multiply together the 10

probabilities derived  from  these 10 different risksets. Each riskset-specific probability represents the

probability of the event happening to the individual it happened to, and is a function of the parameter of

interest, HR. The Likelihood, the product of these, is the probability based on the observed time ordering

of the collection of 10 events. It concentrates on who in each riskset died, but not specifically when.

It now remains to work out this product (or, to avoid small products, the log of the product) for the

continuum of candidate HR values, and to plot the Likelihood (or its log) as a function of HR, to determine

which HR values make the observed data pattern more 'likely' than other values. The use of the log

likelihood, which is a sum of individual log-likelihoods, also emphasizes the independent additive nature of

the information from each riskset, just like the Mantel-Haenszel adds the information from separate strata.

[In his very first paper on Likelihood, Fisher(1912) did not begin with the Likelihood (i.e., the product) per

se but rather went directly to the log Likelihood, as a sum of log-Likelihood contributions from each

observation or 'atom'. ]

Incorporating confounding variables/ other covariates

We now move beyond a crude comparison to one that takes account of thorax size, an important

determinant of survival. To simplify matters for didactic purposes, we dichotomize thorax size into smaller

(s, the index category) or larger (reference category). There are two ways of incorporating a covariate into

the proportional hazards analysis. One of these is to include it as a term in a regression model, the other is

to stratify/match on thorax size.
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The model-based approach is similar in spirit to a classical analysis of covariance which allows

comparisons of means to be adjusted for imbalances in the distribution of important variables. In the crude

model, the hazard function hactive[age] for those in the active group was the simple product of the

hinactive[age] function describing the hazard in the reference group, and the parameter HR, with the same

HR value for all ages. In the simplest multivariable model, the hazard function for a group of individuals is

the product of the hinactive,large[age] function for those larger, inactive individuals (the reference group,

shown in the upper left cell in the table below), the parameter of interest HR (if applicable ), and (again if

applicable) a factor S (also a hazard ratio). The HR value is assumed constant over all ages and both thorax

sizes, and the S factor is assumed constant over all ages and both activity levels ( a model which allows the

combined factor in the lower right cell to be sub- or super-multiplicative, but to remain constant for all ages,

is still considered a proportional hazards model, since the primary proportionality is across the 'time' axis

(age in this example).

Hazard function for groups of individuals, in relation to thorax size, and sexual activity
(reference category: upper left "corner"; models of this type are referred to by Clayton and
Hills(1993) as the "corner model")

Thorax Size
Sexual activity larger smaller

inactive hinactive,larger[age] hinactive,larger[age] × S

active hinactive,larger[age] × HR hinactive,larger[age] × HR × S

Consider again the probability of observing what we did in the previously examined riskset, where 7

individuals were alive at the close of the previous day. As shown in figure 2, of the 4 individuals in the list

who were not sexually active, two were smaller and two were larger; of the 3 sexually active ones, 1 was

smaller and 2 were larger. Given that one of them died on day 't', the easiest way to obtain their relative

probabilities of 'being the one to die' is to list the 7 absolute hazards as in Table 1, then cancel out the

common factor  hinactive,larger[age] and arrive at the expression in the last column.
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The probabilities for this and the other 9 risksets, as a function of HR and the nuisance parameter S, are

shown in Figure 2. Also shown are sections of the  log-likelihood surface for selected values of S, allowing

us to see that, with simultaneous consideration of thorax size, the MLE of the HR is found at  HR=2.4.

Note the symmetry in the estimation process: the fitting of the 2-parameter model also provides a ML

estimate of 3.2 for  S.

The other approach to estimating HR from these data is to use a combination of matching and

regression. This is illustrated in Figure 3, where subjects are first segregated by thorax size, so that each

riskset is matched with respect to this variable.  The likelihood, for any HR value, is again the product of

the probabilities associated with the different risksets, each one now smaller and more homogeneous.

Because we have not included thorax size in the regression,  the likelihood function involves just the 1

parameter (HR) of direct interest. Implicitly however, by the act of pooling the log-likelihoods from the

smaller and larger sub-populations,  the analysis makes the further assumption that the HR's in the  two

sub-populations are 'poolable', i.e., that the two series are estimating a common HR. See the textbook by

Kalbfleisch and Prentice(2002), who were the first to suggest this less restrictive 'model' -- this 'stratified'

proportional hazards model allows the hazard functions in the reference categories (i.e., the  hinactive[age]

function in the smaller individuals and the corresponding  hinactive[age] function in the larger individuals)

to follow different non-proportional shapes over time (age).

Just as with matching in other contexts, one difficulty with this approach is that if strata are narrow, some of

them may only contain individuals of one kind (e.g. all those of thorax size 0.72 mm are in the active

group) and so -- just as in a Mantel-Haenszel summary ratio, do not contribute to the comparison. This

problem would be worse in an observational study (the present study formed groups by randomization)

and where there are important uncontrolled variables. The full multivariate model  circumvents this by

mathematical, rather than actual, matching: the price of this convenience is the uncertainty about the

assumptions made, and the consequences of miss-specifying how the covariate affects the hazards.
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Table 1. Calculation of the probability that the 4th event occurred (on day 't') to the individual (fruitfly) it
occurred to, as a function of the hazard ratio HR associated with sexual activity (relative to the
reference category, 'inactivity') and the hazard ratio (S) associated with being short (relative to
the reference category, 'larger' )

order in list# Active? Smaller?
hazard

(absolute)
hazard

(relative)
probability

(conditional)

1 √ h0[ ] × 1 × S S  S
Sum

2 h0[ ] × 1 × 1 1  1
Sum

3 √ h0[ ] × 1 × S S  S
Sum

4 h0[ ] × 1 × 1 1  1
Sum

5 √ √ h0[ ] × HR × S HR × S  S
Sum

6 √ h0[ ] × HR × 1 HR  HR × S
Sum

7 √ h0[ ] × HR × 1 HR  HR
Sum

Total: Sum*  1

# from left to right [ 4th 'earliest' riskset in Figure 1 ]

hinactive,larger[ t ], the hazard function for the reference category, is abbreviated to h0[ ] .

* 2 + 2 × S + 2 × HR + HR × S abbreviated to 'Sum'

In this example, the event occurred to the 1st (leftmost) member on list.
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FIGURES AND LEGENDS

Figure 1 Longevity of n = 5 sexually active male fruitflies (gray vertical lines) and  n = 5 sexually
inactive male fruitflies ((black vertical lines, reference group), together with the associated
risksets, and Maximum Likelihood estimation of hazard ratio (HR) parameter in the (1-
parameter) proportional hazards model which ignores thorax size. Circles denote age at death
(longevity, survival time). In order to show all calculations clearly, the survival time axis is not
perfectly to scale; the distortion is of no consequence, since the likelihood depends only on the
ordering of the deaths. Risksets, one for each distinct event-time, are enclosed by dashed lines.
The entries in the corresponding rows are the probabilities, calculated using the HR value in the
column, that the death would occur to the subject who did die then, rather than in one of the
other candidates in the riskset.  As an example, consider  the fourth subject to die, when the
riskset consisted of 4 individuals from the inactive group and 4 from the active group. The
subject who died, the leftmost of the 7, was in the sexually inactive group. If only told showing
which  group each of the 7 members of the riskset belonged to, and an HR value of say 2, the
probably of replicating the results of this 'lottery', is 1/(1+1+1+1+2+2+2) =  1/10. The entire
likelihood, for this HR value, is the product of the full (column of) probabilities associated with
the different risksets. The Maximum (log-)Likelihood occurs at HR  = 2.4.
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Figure 2 Maximum Likelihood estimation of 2-parameter proportional hazards model. Vertical lines
represent the longevity of n = 5 sexually active fruitflies (gray) and  n = 5 sexually inactive male
fruitflies ((black, reference group). Three of the latter, and two of the former have shorter than
average thorax lengths and are identified by the lowercase letter s and represented by thinner
lines, while the remainder , with above average thorax lengths, are represented by thicker lines.
Circles denote age at death and dashed lines enclose the risksets. The entries in the
corresponding rows are the probabilities, calculated using the HR value in the column, and the
hazard ratio S associated with a short thorax, that the death would occur to the subject who did
die, rather than in one of the other candidates in the riskset. The likelihood, for a fixed value of
S, and a specific HR value, is the product of the (column of) probabilities associated with the
different risksets.  Sections of the 2-D log-likelihood surface are shown for selected values of
S: S=1 (same function as in Figure 1), 1.5, 3.2 and 8. The Maximum (log-)Likelihood occurs at
HR  = 3.5, S= 3.2.
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Figure 3 Maximum Likelihood estimation of a 1-parameter proportional hazards model using
stratification/matching to eliminate confounding/variation produced by an extraneous variable.
Vertical lines represent the longevity of n = 5 sexually active fruitflies (shaded line) and  n = 5
sexually inactive male fruitflies (black, reference group). Three of the latter, and two of the
former have shorter than average thorax lengths and are identified by the lowercase letter s and
represented by thinner lines, while the remainder, with above average thorax lengths, are
represented by thicker lines. Circles denote age at death. Subjects are first segregated (stratified)
by thorax size, so that each riskset (enclosed by dashed lines ) is homogeneous with respect to
this variable. The entries in the corresponding rows are the probabilities, calculated using the
HR value in the column, that the death would occur to the subject who did die, rather than in one
of the other candidates in the riskset. The likelihood, for any HR value, is the product of the
(column of) probabilities associated with the different risksets.  The Maximum Likelihood
occurs at HR = 2.3. The different log-likelihood scale, compared with Figure 2, stems from the
fact that each riskset is smaller, so that the associated probability is larger, and the log-
probability is less negative. For this reason, the log-likelihood based on these stratified series
cannot be compared with the log-likelihood from the 2-parameter model.
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ILLUSTRATION III:
ACCESS TO CONTAMINATED DRINKING WATER: LINK WITH INCIDENCE OF CHILDHOOD LEUKEMIA?

The study by Lagakos et al (1986) compared rates of miscarriages, birth-defects and childhood leukemia in

Woburn, Massachusetts residents whose households received different amounts of their drinking water

from two municipal wells found to have been heavily contaminated by several chlorinated organics. The

investigations were planned and supervised by university investigators (both biostatisticians, well known for

their contributions to the statistical analysis of survival data from clinical trials of cancer, and now HIV,

therapies). Personal data were collected by telephone interviews conducted by community volunteers. The

pumping records for each of the town's 8 wells, combined with a detailed model of the water distribution

system, provided estimates, some of which are shown in the top of Figure 4, of the fraction of each

household's annual water supply that originated from the contaminated wells.  The results of the study,

which used were widely reported in the lay press and the portion on leukemia was the subject of the book

and subsequent film A Civil Action. The scientific report used a modern approach to statistical analysis, and

is an early example of the singular [Miettinen2004] basis for "cohort" and "case-control" studies -- entities

that, even today, are widely perceived as two conceptually distinct  entities. The report appeared in a

technical statistical journal, and so it has taken longer for its holistic approach to epidemiologic data-

analysis to be appreciated by epidemiologists.

Data

Even though childhood leukemia was the most "statistically fragile" of the outcomes studied, the data on

this outcome are used here because they were reported in some detail, and were compact enough to allow

the arithmetic of the parameter estimation to be carried out with a calculator or simple software. In all, some

20 cases of childhood leukemia were documented during the period studied. The bottom of Figure 4 shows

the residential histories of the 17 informative ones, born before the wells were closed, and identifies, by a

lighter color, the 9 cases in which the child resided for some years in zones where some of the water supply

in those years originated in the contaminated wells. The estimated amounts of exposure (obtained by

cumulating the yearly fractions into a "well-years of exposure") for each of the 17 are shown in Table 2.
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Shown in Figure 5  are the corresponding "ever/never exposed" data for the children in the 17 risksets. The

riskset for a particular instance (case) of leukemia consists of the child diagnosed with leukemia, together

with that child's cohort/peers.  Contrary to some mis-apprehensions, the risk set includes the person who

represents the 'case'. In several 'birth-cohorts'. there were 2 cases of leukemia. For children born in 1964

for example, the investigators were able to obtain 1964-1969 residential histories for 265 children who were

'at risk' -- when case number 3 occurred in 1969. The 1964-1975 residential histories were available for

239 'candidate' children from this same 'cohort' when another case (number 9) occurred in 1975

(technically, the in- and out-migration made this a dynamic population, rather than a fully-followed closed

birth-cohort, so the 239 are not a pure subset of the 264). However, the child representing the 'case' in 1975

was also in the 1969 riskset, but with a shorter history at that earlier time.

Ever exposed vs. never exposed : Simple and Maximum Likelihood estimators of IDR

The data in the first 3 columns of Table 2 allow us to use a Mantel-Haenszel type estimator of the incidence

density ratio, based on the "ever/never" exposure scale. In each of the 9 instances where the child diagnosed

with leukemia had been exposed, the data on the n children in the case-associated 2 × 2 table contribute

zero to the denominator, and 1 × [n × (1−p)] / n = (1-p) to the numerator. Conversely, in each of the other 8

cases, where there was no history of exposure, the 2 × 2 table contributes zero to the numerator, and

1 × [n × p] / n = p to the denominator. Thus, the IDR estimate is simply

IDRM-H =  0.67 + 0.75 + 0.64 + 0.68 + 0.81 + 0.60 + 0.60 + 0.69 + 0.77
0.26 + 0.29 + 0.38 + 0.25 + 0.18 + 0.39 + 0.35 + 0.23   =  6.21

2.33 =  2.66

As shown in Table 5, the Likelihood can be constructed using the same scheme shown in the two previous

applications. Consider the first riskset, comprising 218 children born in 1959, one of whom was diagnosed

with leukemia at age seven. By that age, some 72 of the 218 had lived for some time in a part of Woburn

supplied by contaminated water, and the remaining 146 had not. The probability that the leukemia would

occur in the specific (exposed) child in whom it did is thus  IDR/(72 × IDR  + 146 × 1). For the second
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riskset, the probability that the leukemia would occur in the specific (unexposed) child in whom it did is

1/(75 × IDR + 215 × 1), and so on to the last probability of 1/(19 × IDR + 65 × 1). The product of these

17 conditional i.e. evaluated-after-the-fact, probabilities is the Likelihood. Because it is a function of just

one parameter, it -- or more readily, its log,  a sum-- is easily maximized with nothing more than a

spreadsheet: for any 'what-if' value of IDR, the logs of the 17 probabilities can be calculated using a

spreadsheet formula,  then summed to form the logLikelihood. The Maximum Likelihood Estimate of IDR

can be found by trial and error, i.e., by varying the 'what-if' value of the IDR, until the largest sum is found.

The maximum occurs at IDRMLE=2.68. Once the formula is set up, it is a simple matter to obtain enough

values to sketch the logLikelihood function,  the curvature of which is used to measure the precision of the

MLE.

Taking advantage of calculations used in the log-rank test of IDR=1, which yields an expected number of

exposed 'cases' of 5.12,  Lagakos et al. used the approximation to the MLE

MLEapprox.  = exp[(9- 5.12)/{0.33 × 0.67 + ... + 0.23 × 0.77}] = 3.03.

They acknowledge -- and the exact calculation in this example shows --  that the approximation can

inaccurate when the IDR is far from the null. Interestingly, in this example, the Mantel-Haenszel estimator

gives an estimate very close to  the MLE.

Cumulative exposure : Simple and Maximum Likelihood estimators

For each child, the amount of exposure was obtained by cumulating the yearly exposure fractions into a

"well-years" (W-Y) of exposure". Just as the authors did, we will use this in a statistical model in which

children, born in a certain year, and now age t, who had accumulated x well-years of exposure by this age,

were  IDRx = exp[x × b] times more likely to be diagnosed with leukemia in the next little while than

12



children born the same year, who had accumulated x=0 units exposure by this same age t. The proportional

hazards model does not force one to assume this exposure 'metric' x, or this particular exponential function;

for example, one might ignore the exposure in the previous year, or in the first year of life, etc., or use the

logarithm of the exposure, or use IDRx as some other function of x.

The cumulative exposures for the children diagnosed with leukemia were reported,  but we did not have

access to the separate x's for each child in each riskset,. Therefore, for illustrative purposes, for four

selected leukemia cases (numbers 15,  13, 12 and 7) we used the reported mean and variance of each of the

four distributions to construct four rough histograms that matched the reported mean and variance for the

risksets. These four histograms are shown twice each in Figure 6,: on the left when calculating the

LogLikelihood under the null value b=0, and on the right under the value b=0.25. The non-null value 0.25

was deliberately chosen to make the arithmetic easier, so that  the exponents, exp[x × b],  would be of

integers, for example, IDR4:0 = exp[4 × b]=exp[1] =2.7, and IDR8:0 = exp[8 × b]=exp[2] =7.4,  in relation

to the reference value ID0  = exp[0 × b]=exp[0] =1.

The calculations in each riskset can be likened to after-the fact calculations for a lottery with an undesirable

prize. For example, consider the children in riskset  13,  consisting of 131, 13, 13 and 7 children with 0,  2,

4 and 6 W-Y units of exposure respectively. Under the non-null value b=0.25, these children hold 1, 1.6,

2.7 and 4.5 'shares' each (total: 164 children, holding a total of 218.4 shares). If, as did happen, the

undesirable prize was drawn by a child with 2 W-Y units of exposure, worth exp[2 × b]=1.6 shares, one

could calculate that this specific child, rather than any of the others, had a 1.6/218.4 or 1 in 137 chance

(Log: -4.9) of being the unlucky one. This contrasts with the 1 in 164 chance (Log: -5.1) of it happening to

him if the cumulated exposures did not confer additional risk.

In the upper panel of Figure 7,  the LogLikelihood is evaluated for each riskset, for a range of b values. In

the lower panel,  these LogLikelihoods is combined over all four risksets. The 'convenient for computation'

value b=0.25 happens to be close to the bML = 0.29 found by the full search. [Lagakos et al., using all 17

risksets, but the same approximate Ml method referred to previously, obtained an estimate of b=0.33].
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The ML estimation process has often been explained "algebraically" using estimating equations. The data

display in Figure 6 allows one to "see" the ML estimation process more graphically. In the usual

expositions of the MLE process, including the 1972 one by Cox himself, the LogLikelihood is first written

as a sum of the riskset-specific LogLikelihoods; the derivatives, with respect to b, of these summands are

then obtained. Setting the sum of these derivatives to zero results in the "estimating equation", with the sum

taken over risksets,

Sum[ exposure of the 'case' ] = Sum[ weighted average of exposures of all persons in riskset].

In our example, the sum on the left is of the four x's denoted by asterisks in Figure 6. Cox(972) noted that

the four weighted averages on the right were constructed using an 'exponential weighting' of the exposures

in the riskset. In fact, the weights are the IDR's, -- the exp[x × b]'s themselves: a person with an exposure

of zero receives a weight of 1,  a person with an exposure of 3 a weight of  exp[3 × b], etc., i.e., persons

with larger exposures count for more. We have tried to illustrate this in the Figure using dots of increasing

magnitudes. The weighted averages are shown in Figure 6 as vertical arrows. In effect then, the search for

bML involves turning the 'b knob' up (so that the dots get larger, and averages move to the right) or down

(so they move to the left) until the  sum of the four resulting "fitted" weighted averages matches (i.e., is

counter-balanced by) the sum of the four "observed" exposures. This idea of translating persons in the

riskset into 'IDR-equivalents' is also a helpful way to understand how, in survival analysis applications, one

can estimate the survival (and hazard) curve for persons in the reference (unexposed) category: one uses the

fitted b, to convert each other ('exposed') person into a number of unexposed-equivalents, and then applying

the standard Kaplan-Meier estimator to these.

 Sampling from Risksets

A "primitive' form of this design was used in a study reported in 1972 (Doll, 2001). This technique of

carrying out a 'case-control-within-a-cohort-study', was formally proposed by Mantel in 1973, and

extended to time-based sampling by Liddell et al. in 1977. Breslow and Day(Chapter 5, 1987) use two

worked examples, one involving an ever-never and one a measured exposure, to illustrate the computational
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savings that can be achieved by restricting analyses to subsamples of the risksets. Extensive computations

are far less of an obstacle nowadays, but the costs of obtaining the exposure and/or confounder data

continue to be important considerations. Naturally, these savings come at a cost of poorer precision.

Sometimes, e.g., when all of the data come from cohorts or administrative databases, with all of the data

already in electronic form, cost considerations are less of an issue. In such situations, the worked examples

in their textbook show that the common belief that '4 controls per case' is sufficient is not generally

justified, particularly if the exposure distribution is considerable skewed, and the associated IDR's are large.

In such instances, there can be considerable reductions in standard errors by taking 10 or 20 'controls' from

each riskset. Even in the analysis of the 17 leukemia cases in the Woburn study, where the proportion of

the riskset 'exposed' ranged from 0.18 to 0.39, simulations carried out by this author confirm that IDR

estimates based on say 16 or 32 'controls' per case were often quite far from the estimate of 2.7 obtained

using the full risksets.
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DISCUSSION

The data in the three examples arise from seemingly very different 'study designs', yet the analyses follow a

common approach. The unifying factor is the riskset, and the partial likelihood -- which focuses on the

parameter(s) of interest, and eliminates -- by conditional arguments -- those felt to be of no direct interest.

The three examples emphasize that whereas modern-day epidemiologists continue to separate study

designs into 'cohort' and 'case-control' studies, there is only one modern approach to their analysis. No

matter whether "case-control" or "cohort 'study, the risksets used to construct the likelihoods in all three of

our examples use as their point of departure the 'case series'. Epidemiologists who analyze 'case-control'

studies are comfortable starting with the numerators of the to-be-compared rates. Then, rather than

establishing the total sizes of the denominators for these -- denominators that would allow them to calculate

ID's -- they resort to samples of the denominators, and from the computed quasi-rates, they can estimate

the ID ratios. But the risksets, and the associated likelihoods, in the fruitfly study -- a classic 'cohort'

study, traditionally defined by its denominators -- also begin with the numerators. Risksets in a traditional

matched case control study have no overlap one with the next, whereas each riskset in a survival analysis is

included within the one to its 'left' along the time axis. Indeed, Miettinen (2004) argues that

Even before Cox proposed the concept of risksets to more readily estimate the hazard ratio, the log rank

test (Mantel 1966, Peto and Peto 1972) had been used to test the equivalence of two survival curves, by

constructing a  2 × 2 table (effectively a riskset) at each distinct event-time. However, this is the same test

proposed by Mantel on 1959 --  for case-control studies that use stratification to control for confounding.

In the first part, I argued that "case-crossover' studies(McLure 1991, exemplified by Redelmeier 1997) did

not need this special name; they are self-matched case-control studies. Again, the purpose of the  'control'

(more appropriately called the 'denominator') series is to obtain estimates of the person-specific

denominators (amounts of person-time, exposed and unexposed) underlying each 'exposed' and

'unexposed' numerator in the 'case' series. Even though at first the design appears to be very different, the

likelihood used in the analysis of "self-controlled case-series studies" (Farrington1995, Andrews2002) has
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the same form as that used throughout examples I-II above. And, although "case-cohort" studies have some

statistical complexities, they too are examples of the fact that all epidemiologic contrasts, whether in "case-

control" or "cohort" studies, involves  contrasts between the "exposed" and unexposed"; the comparison

never is between a "case group" and a "control group"(Miettinen2004). Rather, what distinguished the

case-control from the cohort study is the completeness of the denominators -- complete in the latter,

estimated in the former. This modern way of thinking of the two designs as one was nicely illustrated in a

report (Hernan2002) of a meta-analysis of 48 studies (44 case-control and 4 cohort) examining the link

between cigarette smoking and the risk of Parkinson's disease. The table listed the sizes of the 48

investigations using the numbers of cases (numerators) and the "number of controls or the cohort size"

(i.e., the sizes of the partial, or entire denominators).

In the first article, I make limited use of the diagram on cell phone use. I use it again here  to emphasize that

when etiologic research involves transient -- or accumulating -- exposures, and necessarily dynamic

denominators,  -- the 'case-control' approach is only one viable, and even conceptually valid, option.

Suppose one sought denominators by which to compare the rate of accidents in on-the-phone driver time

with that in off-the -phone  driver-time (whether in the same or different drivers). Imagine that person-

specific records were readily available for say an entire year for each of the 1 million persons who drove at

some time in a city that year. Imagine further that a person's record was divided up into 60x60x24x265 =

31 million time units, of 1 second each, each one indicating whether the person was driving at that instant,

and if so whether (s)he was using the cell-phone. Even with this utopian database, few investigators would

go through the laborious exercise of creating two dynamic registers with which to record the levels of on-

the-phone and off-the-phone driving at each of these instants (they might, for a crude comparison -- one

that ignores driver, time of day, weather, season etc. -- calculate the total numbers of on-the-phone and off-

the-phone driver-moments). Instead, most would use the accidents within this base as a more efficient and

informative point of departure. And, in the real world, they would estimate -- via sampling -- the levels of

on-the-phone and off-the-phone driving in the relevant time windows preceding these events.
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Epidemiologists have been slow to change terminology or to appreciate that, conceptually, there is only

one  approach to -- what Miettinen(2004) aptly calls --  the etiologic study. Even in a 'cohort' study, and

even in one with full documentation already available, the point of departure is the case series, and that

for both the  'case' and the 'base' series, ['denominator' series in a 'case-control' study] "the etiologic

histories are defined as of the time of the outcome (case occurring or not occurring)" (Miettinen,2004).

Indeed, by the very way we pursue causes, we dare forced to pursue in the historical direction. The way

in which Cox set up his partial Likelihood reinforces the direction of this pursuit.

Despite the slow evolution in (study design) methods and concepts, the data analyses presented here do

show that over the period of time covered in the review by Zhang et al (2004), considerably considerable

convergence in the statistical analyses of data from the etiologic study. And, it is hoped that -- as a

byproduct of this exposition -- the extensive arithmetic used throughout these two articles will make the

inner-workings of Maximum Likelihood- estimation a little more understandable.
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Figure 4 Top: Zone-and-year-specific exposure data used in the analysis, adapted from table 1 in original
article. Shown are estimates, for each year indicated, of the fraction of each household's water
supply that arose from the two contaminated wells. For estimates for the years 1960-1969, the
town was partitioned into 5 zones (1-5) of graduated exposure to wells G&H. Because of a
substantial change in industrial demand in 1970,  different residential zones (A-E) were used for
the estimates for the period from 1970 until the 2 wells were closed in 1979. The study
estimated, on a monthly basis, which zones received none, some or all of their water from wells
G&H. These data were used to estimate, for each year and each residential zone, the fraction of
each household's water supply that arose from the two wells
Bottom: Residential histories, shown by Lexis diagram,  in 17 informative cases of leukemia.
Duration of the child's residence in Woburn, up until the date of diagnosis, is indicated by a
line. Lighter color lines indicate children who resided for some years in zones where some of
the household water supply in those years was estimated to have originated in the 2
contaminated wells. Darker lines indicate a child whose residential history suggested that during
that time none of the household water supply originated in these 2 wells. Circles denote when
leukemia was diagnosed. Adapted, with some simplifications, from Lagakos et al (1986).
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Figure 5 Obtaining the Maximum Likelihood estimate of the IDR comparing those ever-exposed with
those. never-exposed. Cases are numbered as in Figure 4, with "E" denoting that the child had
lived in a zone exposed to water from the contaminated wells. The numbers of exposed and
unexposed in the riskset are shown in plain and bold text respectively. The 17 likelihood
contributions, one per riskset. calculated under the assumption that the IDR is 1. are shown in
the first column, and the log of the product of these, i.e. the log Likelihood of -88.5, is shown at
the foot of the column. The entries in the three remaining columns are calculated under the
assumption that the IDR is 2, 4 and 8 respectively. The log Likelihoods are also shown in the
graph for intermediate values of the IDR, allowing us to see that the Maximum Likelihood
Estimate of the IDR is approximately 2.7.
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Figure 6 Log Likelihood calculations of the IDR comparing those with (x+1)  vs. those with x "well-
years" (W-Y) of cumulative exposure, illustrated using 4 selected leukemia cases [15, 13,12,7),
and for just 2 values of the regression coefficient b. Cumulative exposure is depicted on the x
axis. The cumulative exposure for the actual child diagnosed with leukemia is indicated with an
asterisk. The distribution of cumulative exposure in all the children in the riskset is shown as a
histogram, with 1 dot representing 2 children [For each riskset, only the mean and variance of
the distribution were reported. For didactic and presentation purposes, the possible values are
limited to a few values, all integers -- but the distributions shown were constructed to match the
reported means and variances].
Left: Log Likelihood calculation under the null value, IDR=1, regardless of W-Y. Thus, the
probability that the leukemia would be diagnosed in the child in whom it was actually diagnosed
is simply 1/(number of children in risk set). The log of this "likelihood" is shown for each
riskset (risksets differ slightly in size, and so the LogLikelihoods do too). The LogLikelihood
based on all 4 risksets is the sum of the 4 individual LogLikelihoods. The vertical arrows
denote the average of the exposures in the riskset.
Right: Log Likelihood calculation under the assumption that, relative to children with x well-
years of cumulative exposure, those with (x+1) well-years is exp[b] = exp[0.25]. Thus, relative
to the reference category where W-Y=0, the IDR's for those with 1,2, ,4, , , ,8 W-Y's are
exp[0.25]=1.3, exp[2 × 0.25] =1.6, , exp[4 × 0.25] =2.7, , , ,exp[8 × 0.25] =7.4. The IDR's for
the children with different amounts of exposure are shown using dots whose diameters are
proportional to the IDR's. The probability that the leukemia would be diagnosed in the child
who was actually diagnosed -- who had W-Y units of exposure -- is IDR[W-Y]/(Sum of IDR's
for each child in riskset).  Again, the LogLikelihood based on all 4 risksets is the sum of the 4
individual LogLikelihoods. The Maximum Likelihood estimate is found by varying b until the
LogLikelihood, based on all 4, is the largest (i.e., least negative) possible. The vertical arrow
denotes the weighted average of the exposures in the riskset, with weights given by the
corresponding IDRs.
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Figure 7 Individual and collective LogLikelihood contributions of 4 risksets shown in Figure 6.
Top: LogLikelihood functions for the parameter b = log[IDR(x+1):x], evaluated from b = -0.5 to
b = 0.9, for each of the 4 risksets shown in Figure 6. In case 12,  the calculated exposure for the
child in question was 8 W-Y, well beyond the mean of 1.4 W-Y in the entire riskset, and so this
case is better explained by positive values of b. In contrast, in case 15, the calculated exposure
was 0, whereas the mean in the riskset was 1.1, and so the data are better explained by negative
values of b. In cases 14 and 6, the observed W-Y values are just about as probable  under a wide
range of positive and negative values. (The slopes of the LogLikelihoods at b = 0 are called
'scores', and their sum is called the score statistic.)
Bottom: The summation of the 4 separate LogLikelihoods: the observed W-Y pattern in the 4
cases is 'most likely' for b values closer to 0.25, but -- with just 4 cases in this example-- the
data could have been produced with any of a broad range of values of b. In practice, parameter
values that produce LogLikelihoods that are within 2 units of the Maximum LogLikelihood (so
that 2 times the difference is approximately 4  i.e. chi-squared critical value 3.84) are considered
as 'plausible', i.e. the observed data-pattern is only exp[2] or approximately  7 times more likely
under the MLE value than under the values at the edge of this range.
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