
Note on section 8 (Estimation of Distribution of Failure-Time) of Cox’s 1972 paper, and on 1973 Kalbfleisch & Prentice estimator ... jh 2008.03.18

It is easier, and more useful, to use S rather than F for the survival function.

The estimator is the product (over i, the index of the distinct failure times
occurring before t) of estimated conditional survival probabilities. It is given
in Equation 38.

Think of it as
∏
{1 − λ̂0i

}, where λ̂0i
is treated as a probability of failure,

since we are now viewing getting to t without failing as getting over a (finite)
series of hurdles, one hurdle at each distinct observed failure time ti. Thus,
λ̂0i is the estimated conditional probability of failure at hurdle i for persons
with covariate vector z = 0 attempting hurdle i. [We ignore the fact that –
artificially, because of the conditioning – this probability cannot be estimated
as 0, since we observed at least one failure at the hurdle.]

Unfortunately the data for estimation of λ̂0i
consist of a sample of

heterogeneous-risk individuals, i.e., they have different values of z. Some may
have z = 0 but most or all (if z is, say, age and cholesterol) will have values
a long way from zero (unless the single z is temperature, and we are dealing
with measurements taken near the 0 value for the temperature scale!). So,
we may not have any observations with z = 0, and so we must synthetically
convert the observations to “z = 0 - equivalent” observations.

For now, let’s deal with hurdle i, but drop the i for convenience, and drop
the hat from β̂. What Cox did was to write the link between λz, the failure
probability for persons with value Z = z and the failure probability λ0 for
persons with value Z = 0 using the same logistic regression formulation he
used for discrete time in section 6. Thus, if we take persons with a ‘typical’ or
central value, say z̃, we can write their failure probabilty λz̃ in terms of ‘two
odds and an an odds ratio’ (sounds like a movie title !), as

λz̃

1− λz̃
= exp{βz̃} × λ0

1− λ0
.

Cox uses π instead of λz̃, so his model is

π

1− π
= exp{βz̃} × λ0

1− λ0
.

Written in terms of λ0 itself, it is

λ0 =
odds0

1 + odds0
=

π exp{−βz̃}
(1− π) + π exp{−βz̃}

.

Now let us consider the (ML) estimation of π. We have as data a series of

r individuals with covariate vectors z1, . . . , zj , . . . , zr. The odds of failure for
person j are

exp{βzj} ×
λ0

1− λ0
.

These odds can be rewitten, in reference to the odds involving the typical
person, as

exp{β(zj − z̃)} × π

1− π
.

Now exp{β(zj − z̃)} is the hazard-ratio for zj relative to z̃. If we shorten it
to ej , the odds of failure for covariate zj become

ej ×
π

1− π
,

and so the probability of failure becomes

πj =
oddsj

oddsj + 1
=

πej

(1− π) + πej
.

As data, we have a series of r independent but not identically distributed
Bernoulli observations, governed by r probabilities, π1 to πr. But the set of
r probabilities is held together by a single parameter π, and r observation-
specific offsets involving the e’s.

Denote the realizations of the r Bernoulli’s as y1 to yr. If we now go through
the ML estimation, we will find, as usual, that the single estimating equation
is simply ∑

yj =
∑

E[yj |π] =
∑

π̂j ,

where π̂j is as defined above.

Since
∑

yj = m, we therefore have

m =
∑ πej

(1− π) + πej
; r −m =

∑ 1− π

(1− π) + πej
.

Dividing the left identity by π and the right one by 1 − π, and subtracting
the right from the left, we obtain

m

π
− r −m

1− π
=

m− rπ

π(1− π)
=

∑ ej − 1
(1− π) + πej

,

which leads directly to equation 37 in Cox’s paper:

π̂ =
m

r
− π̂(1− π̂)

r

∑ ej − 1
(1− π̂) + π̂ej

.

1

Note on section 8 (Estimation of Distribution of Failure-Time) of Cox’s 1972 paper, and on 1973 Kalbfleisch & Prentice estimator ... jh 2008.03.18

Comment:

The recasting of the (odds and thus) probability of failure for covariate zj in
terms of the odds (and thus) probability for an arbitrarily chosen value z̃ seems
like an unnecessary step today, what with the computing power available. One
reason to do so is to avoid large powers, especially if z has values far from
zero, such as calendar year, cholesterol, etc.

The key step was to express the link between the probability λ0 at each z
value and the probability at z = 0 in terms of a baseline odds λ0

1−λ0
, and an

odds ratio exp{βz}. Had he treated exp{βz} as a multiplier of λ0, he could
have created probabilities that exceeded 1. With the natural (canonical) link,
he kept the probabilities within their permitted range.

If we took z̃ to be 0, the expression for π̂ would still have been

π̂ =
m

r
− π̂(1− π̂)

r

∑ ej − 1
(1− π̂) + π̂ej

,

but now ej = exp{βzj} might be quite large. If the z’s were already centered,
the ej ’s would fluctuate around 1.

Mathematica, numerical e.g.: r = 3; m = 2; z = {2, 4, 6}, eβ̂ = 2.

zTilde=Apply[Plus,z]/Length[z] ; zTilde
b=Log[2.0]; eCentered = Exp[b (z-zTilde)];
Apply[Plus,eCentered]
y=Join[Table[1,{m}],Table[0,{r-m}]];
s = Apply[Plus, (eCentered-1)/((1-p)+ p eCentered)]

zTilde= {2, 4, 6}; Sum[eCentered]= 4; s= 5.25
Apply[Plus, (eCentered-1)/((1-p)+ p eCentered)]=
-0.75 3.

---------- + --------
1 - 0.75 p 1 + 3. p

phat=(p/.NSolve[p == m/r - (p(1-p)/r) * s, p])[[2]]
lambda0hat = (phat * Exp[-b zTilde]) /

(phat * Exp[-b zTilde] + (1-phat))
U=(1/phat)Apply[Plus,1/((1-phat)+ phat*Take[eCentered,m])] -
(1/(1-phat))Apply[Plus,Drop[eCentered,m] /

((1-phat)+ phat*Drop[eCentered,m])]

phat=0.711164 lambda0hat =0.133363 U = -8.88178 10−16

Mathematica with symbolic example

eCentered = Table[e[j],{j,1,r}];
odds = eCentered * p/(1-p)
L = odds^y / (odds+1)
logL = Apply[Plus,D[Log[L],p]]
Simplify[logL]

Out[36]=
1 1 e[3]

---------------- + ---------------- + -------------------------
2 2 2 2 (-1 + p) (1 - p + p e[3])

p - p + p e[1] p - p + p e[2]

This suggests that the estimating equation can also be written as

1
π̂

m∑
1

1
(1− π̂) + π̂ej

=
1

1− π̂

r∑
m+1

ej

(1− π̂) + π̂ej
.

With time and patience, this could be re-written in the same form as the
estimating equation given above. I did check however that it is correct in
some numerical examples – see the one (opposite) with m = 2 events in a
riskset of size r = 3 and covariate values z1 = 2, z2 = 4, z3 = 6, mean 4.
Whereas 2/3 in the riskset failed, they have values of the covariate that far
exceed zero. The estimated probability λ̂z̃ for persons with z = z̃ = z̄ = 4 is
0.71. The estimated probability λ̂0 for persons with z = 0 is thus only 0.133
or 1/6.

Cox’s method: equivalent to logistic regression [i.e.. binomial re-
gression, logit link] with an offset !

y=c(1,1,0); z=c(2,4,6); beta.hat=log(2); o = log(exp(beta.hat*z))
logit.lambda0.hat = coef(glm(y~1,family=binomial,offset=o))
exp(logit.lambda0.hat)/(1+exp(logit.lambda0.hat))
(Intercept)
0.1333631 ---- doesn’t change if use y=c(0,1,1) or y=c(1,0,1)

2

Note on section 8 (Estimation of Distribution of Failure-Time) of Cox’s 1972 paper, and on 1973 Kalbfleisch & Prentice estimator ... jh 2008.03.18

Kalbfleisch & Prentice estimator, 1973 – verbatim from Biometrika

4. THE ESTIMATION OF THE SURVIVOR FUNCTION

Cox (1972) suggested an iterative procedure for estimating the survivor func-
tion at z = z̃ given a set of data from the model (1) and an estimate of β. In
obtaining the estimate, it was assumed that λ0(t) was identically zero aside
from mass points at the observed failure times. The data were taken as having
arisen from his assumed logistic discrete analogue of the model (1) and a sep-
arate maximum likelihood estimation of the hazard at each failure point was
then proposed. One difficulty with this approach is that the logistic model
cannot be obtained by grouping the continuous model (1), as was pointed out
in section 3. As a result of this, the estimates of the survivor function ob-
tained for different values of z relate to one another through the logistic model
only; continuous survivor functions cannot be constructed which are arbitrar-
ily close to these estimates and relate to one another through the model (1).
The result, therefore, is not a legitimate supremum of the likelihood defined
on the model (1).

A procedure more compatible with the continuous model is obtained by con-
sidering the discrete model (6) instead of the logistic case. Following Cox’s
approach, the estimate β̂ of β from the marginal likelihood is used. If the
model (6) is adopted, the maximum likelihood estimate of the contribution
λ̂0(t(i))dt(i) = 1− α̂i to the hazard at t = t(i) is given by∑

kεFi

exp(β̂zk)

1− α̂
exp(β̂zk)
i

=
∑

leR(t(i))

exp(β̂zl), (7)

where Fi is the set of individuals failing at t(i). If only a single failure occurs
at t(i) (mi = 1), or all individuals in Fi have the same covariate value, this
equation can be solved analytically for α̂i. Otherwise, an iterative solution is
required. A suitable starting value for the iteration is

α̂i0 = exp{−mi/
∑

leR(t(i)

exp(β̂zl)} (8)

In fact, since expression (8) is obtained by substituting

1 + exp(β̂zk) log α̂i ≈ exp{exp(β̂zk) log α̂i}

in (7), we expect α̂i0 will approximate α̂i very closely if there are many distinct
failure times, that is the α̂i’s are near 1. It now easily follows from (6) that
the estimated survivor function for a covariate value z = z̃ is

F̂z̃(t) =
∏

{i|t(i)<t}

α̂
exp(β̂z̃)
i . (9)

Expression (9) is a legitimate supremum of the likelihood function for the
continuous case while, as noted above, the logistic result is not. A sequence
of continuous survivor functions can be constructed statisfying the model (1)
which converge to (9) for all values of 2. As could be expected, when the
covariate z is the same for all individuals sampled, (9) reduces to the Kaplan-
Meier product limit estimate. The estimate (9) of the survivor function will
typically require an iterative solution when ties are present in the data, al-
though the computations are fairly simple. Further, (9) is a step function
estimate of the survivor function and in many instances a continuous estimate
would be preferable, especially for suggesting a parametric form for λ0(t) or
for communicating information to non-statisticians. In the remainder of this
section, a continuous estimate ofthe survivor function is derived which has
the further advantage ofbeing computationally simpler than (9).

We begin by approximating the ...

Comment:

Notice how Kalbfleisch and Prentice focused on the probability of survival,
α0 = 1− λ0, rather than on that of failure, λ0.

Their maximum likelihood estimate of α can be arrived at by writing the
likelihood as a product of r Bernoulli likelihoods,∏

kεF

(1− αzk
)

∏
jεR−F

αzj

Now, because of the (short-term) proportional hazards, αzj
= α

exp(β̂zj)
0 . Thus

we can write the likelihood as∏
kεF

(1− α
exp(β̂zk)
0)

∏
jεR−F

α
exp(β̂zj)
0

Taking the derivative with respect to α0 of d log L and setting it to zero, will,
after some re-arrangement, lead to estimating equation (7).

3

Note on section 8 (Estimation of Distribution of Failure-Time) of Cox’s 1972 paper, and on 1973 Kalbfleisch & Prentice estimator ... jh 2008.03.18

Kalbfleisch and Prentice’s method: equivalent to binomial regres-
sion with cloglog link, and offset !

> require(survival)
>
> r=3; m=2; fail=c(rep(1,m),rep(0,r-m));
> t=rep(1,r) ; survive=1-fail ; z=2*(1:r)
>
> summary(coxph(Surv(t,fail)~z,data=ds))

coef exp(coef) se(coef) z p
z -0.49 0.613 0.496 -0.988 0.32

> # use beta-hats’s to create offsets = log(exp[beta.hat * z])
>
> beta.hat = coef(coxph(Surv(t,fail)~z),data=ds) ;
> o = z * beta.hat ; o
[1] -0.9798727 -1.9597453 -2.9396180
>
> ds=data.frame(fail,t,z,e,o); ds
fail t z e o

1 1 1 2 0.37535890 -0.9798727
2 1 1 4 0.14089430 -1.9597453
3 0 1 6 0.05288593 -2.9396180

> ds.zero=data.frame(z=rep(0,r)) ; ds.zero
z

1 0
2 0
3 0
>
> fit <- coxph(Surv(t,fail)~z,data=ds)
> sfit=survfit(fit,newdata=ds.zero,type="kaplan-meier") #actually K-P
> sfit$surv[1]

[1] 3.929164e-05

> # kalbfleisch and prentice -- binomial with cloglog link
>
> b0.hat=coef(glm(fail~1,

family=binomial(link=cloglog),offset=o),data=ds) ; b0.hat

(Intercept) 2.316923 s0.hat = exp(-exp(b0.hat)) ; s0.hat

(Intercept) 3.929506e-05

LARGER EXAMPLE... β̂ = 1.143.

> died=c(1,0,1,1,0,1,1);t=c(2,4,6,8,10,12,14);
> z = c(1,1,0,1,0,1,0); o = 1.143*z ;
> dta = data.frame(died,t,z,o) ; dta
died t z o

1 1 2 1 1.143
2 0 4 1 1.143
3 1 6 0 0.000
4 1 8 1 1.143
5 0 10 0 0.000
6 1 12 1 1.143
7 1 14 0 0.000
> z=rep(0,7); d.zero=data.frame(z);
> fit = coxph(Surv(t,died)~z,data=dta)
> srv = survfit(fit, newdata=d.zero, type="kaplan-meier")
> srv$surv[,1] #type is actually kalbfleisch-prentice

[1] 0.931 0.830 0.713 0.454 0.000

n=length(died) ; s = 1; s0.hat=c(s) ; time=c(0)
for (i in 1:n){
if (died[i]==1)
{ fail = (t[i] == t[i:n]);
time=c(time,t[i])

b.0=coef(glm(fail~1,family=binomial(link=cloglog),offset=o[i:n]));
S = exp(-exp(b.0)); s = s * S; s0.hat=c(s0.hat,s) } }
s0.hat = round(s0.hat ,3) ; s0.hat

1.000 0.931 0.830 0.713 0.454 0.000

This was put together hastily and may contain errors; corrections welcome.

4

