
American Journal of Epidemiology
Copyright  © 2001 by The Johns Hopkins University School of Hygiene and Public Health
All rights reserved

1222

Vol. 153, No. 12
Printed in U.S.A.

Practical Advantages of Bayesian Analysis Dunson
PRACTICE OF EPIDEMIOLOGY

Commentary: Practical Advantages of Bayesian Analysis of Epidemiologic
Data
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In the past decade, there have been enormous advances in the use of Bayesian methodology for analysis of
epidemiologic data, and there are now many practical advantages to the Bayesian approach. Bayesian models
can easily accommodate unobserved variables such as an individual’s true disease status in the presence of
diagnostic error. The use of prior probability distributions represents a powerful mechanism for incorporating
information from previous studies and for controlling confounding. Posterior probabilities can be used as easily
interpretable alternatives to p values. Recent developments in Markov chain Monte Carlo methodology facilitate
the implementation of Bayesian analyses of complex data sets containing missing observations and
multidimensional outcomes.Tools are now available that allow epidemiologists to take advantage of this powerful
approach to assessment of exposure-disease relations. Am J Epidemiol 2001;153:1222–6.
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Several years ago my wife noticed a lump in her breast.
Although she was very young to have developed breast can-
cer (in her early 20’s), she has a family history of the disease
and believed that the lump might be malignant. She esti-
mated the risk at 5–10 percent. Her physician had a much
lower expectation of her risk, having a knowledge of the
medical literature and having seen numerous young women
with benign breast tumors. However, he did not report a
negative diagnosis until receiving confirmation of the
lump’s benign status from a biopsy.

The process of updating a patient’s and physician’s prior
beliefs about whether the individual has a disease (in this
case, breast cancer) by using a diagnostic test (e.g., a
biopsy) is inherently Bayesian (1). In fact, in making the
final diagnosis, my wife’s physician was essentially apply-
ing Bayes’ theorem, which in this case can be expressed as

where D indicates true disease status (D � 1 if disease, D �
0 if no disease), T indicates the result of the diagnostic test (T �

5P1T � 0 0D � 12P1D � 12 � P1T � 0 0D � 02P1D � 02 6,
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1 if positive, T � 0 if negative), P(D � d) is the prior prob-
ability that an individual has disease status d, P(T � �
d) is the likelihood of the test result conditional on disease
status, and the quantity of interest is the posterior probability
of disease conditional on the test result P(D � � t).
From the physician’s perspective, my wife’s prior probabil-
ity of breast cancer P(D � 1) was low. The biopsy, which has
sensitivity P(T � � 1) and specificity P(T � � 0),
was used to update his prior. The resulting posterior proba-
bility P(D � � 0) formed the basis for the physician’s
diagnosis. Typically, physicians will order more tests (i.e.,
collect more data) until their posterior probability P(D �

) is close to 0 or 1, where X denotes all of the data col-
lected for an individual.

The application of Bayesian ideas to diagnostic testing is
familiar to physicians and epidemiologists. What is much
less familiar is the extension of the Bayesian framework to
the analysis of data from epidemiologic studies. To illustrate
such an extension, let us consider the breast cancer applica-
tion further. It is well known that carriers of mutations in the
BRCA1 and BRCA2 genes are at increased risk of breast
cancer. In fact, using Bayesian methodology, one can esti-
mate the posterior probability that a woman carries one of
these genes conditional on her family history and on prior
information about mutation frequencies in the general pop-
ulation and the age-specific incidence rates of breast and
ovarian cancer in carriers and noncarriers of the mutations
(2, 3). Such posterior probabilities are very useful to physi-
cians, who may otherwise have had to rely on a subjective
assimilation of the evidence in making recommendations for
genetic testing. In addition, in the absence of genotyping
data, the posterior probabilities of a mutation can be used in
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Bayesian analyses of epidemiologic data to assess genetic
main effects and gene × environment interactions. Iversen et
al. (4) used such an approach to assess the difference in sur-
vival after breast cancer onset between carriers and noncar-
riers of BRCA1 and BRCA2 mutations, even though geno-
typing data were not available.

In such analyses, the presence of the mutation for a given
woman is a latent variable; that is, it is not observed
directly. Other examples of latent variables include an indi-
vidual’s true ferritin value in the presence of measurement
error (5), an individual’s true disease status in the presence
of diagnostic error (6), and the true day of ovulation within
a menstrual cycle in fertility studies that use error-prone
markers (7). Latent variables can also be more abstract
quantities, such as the amount by which an individual’s log
odds of disease varies from the population mean. Although
latent variables can sometimes be incorporated into frequen-
tist (i.e., non-Bayesian) models, Bayesian approaches tend
to be a more natural statistical formalization of the normal
scientific process of evaluating evidence. In addition, it is
often the case that a more complex and biologically realistic
model can be fitted using Bayesian methods than would
have been possible following a frequentist approach.

The goal of this article is to highlight some of the advan-
tages and distinct features of Bayesian analysis of epidemi-
ologic data to encourage epidemiologists to take advantage
of this powerful approach to assessing exposure-disease
relations. Other recent articles on Bayesian statistics can be
found in the epidemiologic and medical literature (8–15).

Bayesian analytical framework

There are no fundamental conceptual differences between
the use of Bayes’ theorem to obtain a posterior probability
of disease for a patient and the general application of
Bayesian methods to the analysis of epidemiologic data. In
the diagnostic setting one wishes to predict the unknown
disease status of an individual, while in analyzing data one
wishes to perform inferences on a set of unknowns, which
may consist of both latent variables and population parame-
ters (e.g., the regression coefficients in a logistic model). In
the diagnostic case, the physician first chooses a prior prob-
ability of disease based on the evidence available for the
patient. He or she then updates this prior (by ordering appro-
priate diagnostic tests) to obtain a posterior probability, by
plugging the prior and the likelihood of the diagnostic test
result (conditional on the latent disease status) into Bayes’
theorem. In the general case, the investigator first chooses a
prior probability distribution for the unknowns in the model
(i.e., parameters and latent variables) and then updates this
prior distribution to obtain a posterior distribution for the
unknowns by plugging the prior and the likelihood of the
data (conditional on the unknowns) into Bayes’ theorem.

According to Bayes’ theorem, the posterior distribution is
proportional to the product of the prior and the likelihood
function, with the likelihood receiving more and more
weight as the sample size increases. The posterior distribu-
tion summarizes the state of knowledge about an unknown
(e.g., the odds ratio for an exposed group) conditional on the

prior and current data in the same manner that the posterior
probability of disease summarizes the information about an
individual’s disease status conditional on physician expecta-
tion and diagnostic test results. Bayesians base inferences
about exposure-disease relations and other hypotheses of
interest on the posterior distribution and not on the maxi-
mized likelihood or a p value. However, both Bayesian and
frequentist statistics incorporate the likelihood of the data
from a current study. The Bayesian approach is distinct with
respect to both the flexibility with which prior information
can be incorporated and the use of posterior probability.

Prior probability distributions

Although most researchers would agree that it is appeal-
ing to consider data and information from previous studies
in interpreting data from a current study, there is consider-
able disagreement about whether this prior evidence should
be incorporated formally through a Bayesian prior distribu-
tion or informally through an investigator’s assimilation of
the prior and current evidence. Subjective Bayesians advo-
cate choosing informative priors that quantify one’s prior
beliefs about the likely values for the unknowns indepen-
dently of the data from the current study. The use of subjec-
tive priors has been the most controversial aspect of
Bayesian statistics. Many researchers believe that such pri-
ors can compromise the integrity of the study results and can
even lead to conclusions that are driven not by the data but
by a prior representing the unconfirmed beliefs of a possibly
overenthusiastic or overskeptical investigator. This criticism
is not entirely unfounded, since the choice of the prior cer-
tainly contributes to the posterior and therefore to inference.
However, responsible subjectivists will conduct sensitivity
analyses to evaluate the robustness of their results to the
prior choice. Furthermore, priors can often be chosen objec-
tively on the basis of previous data, and investigators who
wish to avoid incorporating prior information about an
exposure-disease relation can certainly choose a vague prior
(i.e., one that assigns equal or close to equal probability to a
wide range of plausible values) for the regression coeffi-
cients of interest. For simple models, Bayesian analyses
using vague priors often (but not always) yield results that
are quite similar to maximum likelihood-based inferences,
at least in large samples.

Prior distributions represent a powerful mechanism for
the control of confounding that may even alter how epi-
demiologists view study design. Consider, for example, epi-
demiologic studies of infant mortality. It is common knowl-
edge that cigarette smoking during pregnancy conveys a
slightly increased risk of infant mortality (the odds ratio
associated with smoking is approximately 1.3). In studying
other risk factors for infant mortality, a standard analytical
approach would be to fit a logistic regression model with
exposure metrics for the risk factors of interest included in
the model along with potential confounders such as smok-
ing, body mass index, age, and race. Unless the study is
large, some of the factors known to be associated with infant
mortality (e.g., smoking) may not even be significant
according to a likelihood ratio test and may have estimated
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odds ratios inconsistent with prior knowledge (e.g., a non-
significant odds ratio less than 1 associated with smoking).
Certainly, many epidemiologists have encountered this
common scenario, and some may have considered dropping
known confounders from the model if the coefficient of con-
founding is unreasonable, or even fixing the coefficient
(e.g., at the mean of the estimates from previous studies).
Some investigators may even avoid conducting studies of
small to moderate size if there is insufficient power to obtain
good estimates of the coefficients of confounding.

Within a Bayesian analysis, information from previous
studies (e.g., estimates of the regression coefficients) can
easily be incorporated through an informative prior distri-
bution. This can be done by simply placing prior restrictions
on the possible values of the unknowns (e.g., smoking does
not have a beneficial effect on infant mortality) or by assign-
ing a prior probability distribution based on data or sum-
mary statistics from previous studies. For example, one
could choose a prior distribution for the odds ratio associ-
ated with smoking that is centered on 1.3 (the approximate
mean of the values estimated in previous infant mortality
studies) and assigns zero prior probability for values less
than 1. Such an approach can improve efficiency and limit
bias in estimating the odds ratio for the exposure of interest
compared with a frequentist multiple logistic regression
analysis, which may produce unreasonable or overly noisy
estimates of the coefficients of confounders in small to 
moderate-sized studies. As the sample size increases, the
estimated Bayesian point and interval estimates for the odds
ratio will be driven more and more by the observed data and
less by the prior. The use of informative priors for the coef-
ficients of confounding is appealing, since epidemiologists
typically know something about the influence of commonly
measured confounders and want to do the best job possible
in controlling their influence.

Perhaps the best way to begin gaining intuition about the
Bayesian approach is to choose a prior and to estimate the
posterior for a simple application with help from a Bayesian
statistician. My expectation is that most investigators will
find it appealing to use a prior, particularly for the con-
founding coefficients, once they become familiar with the
process. Note that one can place a vague prior on the pa-
rameters of interest to maintain objectivity even when
choosing informative priors for the confounding coeffi-
cients. In addition, software is available for fitting of a wide
variety of Bayesian models (16–18), including multiple
logistic regression and even complex hierarchical models
with random effects. Although most Bayesian analyses can-
not be implemented in SAS, the software package
WinBUGS (18) is freely available through the Internet.
WinBUGS is easy to use and extremely flexible, and I
encourage researchers interested in Bayesian statistics to
work through some of the examples provided at the
WinBUGS website (www.mrc-bsu.cam.ac.uk/bugs).

Computational advantages in complex models

In fact, although the ease and flexibility with which prior
information can be incorporated are a major advantage of the

Bayesian approach, the primary factors responsible for the
increased use and visibility of Bayesian methods in recent
years are the development of Markov chain Monte Carlo
(MCMC) algorithms for Bayesian computation (17, 19–21)
and the rapid improvements in computing speed that have
facilitated implementation of these algorithms. Briefly,
MCMC algorithms iteratively generate samples of the param-
eters in a statistical model. After convergence, these samples
represent serially correlated draws from the joint posterior dis-
tribution of the model parameters. Based on a large number of
iteratively generated samples, one can easily obtain estimates
of the posterior distribution of any parameter or function of
parameters in a model. Summaries of these posterior distribu-
tions may include, for example, posterior means and 95 per-
cent credible intervals, which can be used as Bayesian alterna-
tives to the maximum likelihood estimates and 95 percent
confidence intervals, respectively. Unlike confidence inter-
vals, which are typically calculated by assuming large sample
approximations, Bayesian interval estimates obtained from
MCMC procedures are appropriate in small samples. Bayesian
interval estimates also have an intuitively appealing interpre-
tation as the interval containing the true parameter with some
probability (e.g., 95 percent). Most researchers prefer this
interpretation to that of the 100(1 – α) percent confidence
interval, which is the range of values containing the true pa-
rameter 100(1 – α) percent of the time in repeated sampling.

A major advantage of the Bayesian MCMC approach is its
extreme flexibility. Using MCMC techniques, it is straight-
forward to fit realistic models to complex data sets with mea-
surement error, censored or missing observations, multilevel
or serial correlation structures, and multiple endpoints. It is
typically much more difficult to develop and justify the theo-
retical properties of frequentist procedures for fitting such
models. Consider, for example, studies of neurobehavioral
conditions such as attention deficient hyperactivity disorder
(ADHD). For such conditions, it is notoriously difficult to
identify cases accurately and reliably in an epidemiologic
study. Therefore, it is appealing to quantify the occurrence of
ADHD using several test items that represent error-prone
manifestations of a latent variable measuring the true ADHD
status for an individual. Additional latent variables measuring
sociologic factors, such as richness of educational environ-
ment or level of poverty, can be included in the model to
adjust for confounding. Because of the high dimensional inte-
gration involved in fitting such models, maximum likelihood
approaches are difficult to implement except under normality
and linearity assumptions. However, using a Bayesian
MCMC approach, a much broader variety of models can be
fitted, including those with multilevel correlation structures,
different measurement scales for the different test items (e.g.,
ordered categorical and continuous), and nonlinear regression
frameworks (22, 23).

Bayesian hierarchical and latent variable models have been
usefully applied in a broad variety of epidemiologic applica-
tions, including analyses of the natural history of disease
based on interval-censored data (24), spatially correlated dis-
ease rates (25–27), measurement error (28), dietary exposures
(29), high-dimensional gene expression arrays (30), human
fertility (31, 32), and breast cancer susceptibility (2–4).
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Posterior probability

In addition to the incorporation of prior information and
the ease in computation of complex models, one of the pri-
mary advantages of the Bayesian approach is the use of pos-
terior probability. For example, based on fitting of a logistic
regression model using an MCMC algorithm, one can obtain
estimates of the posterior distributions of not only the
regression coefficients (β) but also any function of the
regression coefficients (e.g., the odds ratio exp(β)).
Posterior means and 95 percent credible intervals can be
used to summarize these posteriors. One can also estimate
the posterior probability that a regression coefficient is pos-
itive (or negative) or equivalently that the odds ratio is
greater (or less) than 1. For example, consider a hypotheti-
cal study of the effect of lead intake on infant mortality.
Suppose that β represents the regression coefficient for indi-
viduals with a high lead intake relative to those with a low
intake and that 1.8 is the estimated posterior mean, [1.2, 2.3]
is the 95 percent credible interval, and 0.02 is the posterior
probability of a value less than 1 for the odds exp(β). The
posterior probability of an odds ratio less than 1 (0.02) can
be used in place of the p value. This posterior probability is
more intuitive than the p value, which is the chance of
observing a value as extreme as the observed value given
repeated sampling under the null hypothesis. Numerous arti-
cles have been published discussing the limitations of p val-
ues and the advantages of Bayesian approaches to hypothe-
sis testing (33–36). For a brief review of the debate, the
reader can refer to a recent paper by Marden (37).

Conclusions

Philosophical issues aside, Bayesian approaches to the
analysis of epidemiologic data represent a powerful tool
for interpretation of study results and evaluation of
hypotheses about exposure-disease relations. This tool
allows one to consider a much broader class of conceptual
and mathematical models than would have been possible
using non-Bayesian approaches. For example, if one
wishes to incorporate prior information, this can be done
in a flexible manner and inferences can be compared
under different priors for the parameters, the latent vari-
ables, and even the statistical model itself (e.g., using
Bayesian model averaging (38)). In addition, even if
vague priors are specified, Bayesian MCMC methods can
be used to fit highly realistic models that account for com-
plicating features of an epidemiologic study such as 
measurement error, multiple endpoints, highly multi-
dimensional data, and spatial correlation. In many cases,
these models can be easily fitted using Bayesian software,
such as WinBUGS (18). However, unlike routine analyses
(e.g., logistic regression in SAS), the subtleties involved
in implementing and interpreting Bayesian analyses in
current software require some degree of sophistication or
collaboration with a statistician. Interested epidemiolo-
gists should refer to the book Bayesian Biostatistics (39)
for a more detailed overview of Bayesian approaches to
epidemiology.
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