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I distinguish 3 situations

• Life in general

• Single-study data-analysis

• Research-synthesis
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In Life: we use Bayes Theorem to learn/update..............................................................

Bayesian integration in
sensorimotor learning
Konrad P. Körding & Daniel M. Wolpert

Sobell Department of Motor Neuroscience, Institute of Neurology,
University College London, Queen Square, London WC1N 3BG, UK
.............................................................................................................................................................................

When we learn a new motor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. Our
sensors provide imperfect information about the ball’s velocity,
so we can only estimate it. Combining information from multiple
modalities can reduce the error in this estimate1–4. On a longer
time scale, not all velocities are a priori equally probable, and
over the course of a match there will be a probability distribution
of velocities. According to bayesian theory5,6, an optimal estimate
results from combining information about the distribution of
velocities—the prior—with evidence from sensory feedback. As
uncertainty increases, when playing in fog or at dusk, the system
should increasingly rely on prior knowledge. To use a bayesian
strategy, the brain would need to represent the prior distribution
and the level of uncertainty in the sensory feedback. Here we
control the statistical variations of a new sensorimotor task and
manipulate the uncertainty of the sensory feedback. We show
that subjects internally represent both the statistical distribution
of the task and their sensory uncertainty, combining them in a
manner consistent with a performance-optimizing bayesian
process4,5. The central nervous system therefore employs prob-
abilistic models during sensorimotor learning.

Subjects reached to a visual target with their right index finger in a
virtual-reality set-up that allowed us to displace the visual feedback
of their finger laterally relative to its actual location (Fig. 1a; see
Methods for details). On each movement, the lateral shift was
randomly drawn from a prior distribution that was gaussian with
a mean shift of 1 cm to the right and a standard deviation of 0.5 cm
(Fig. 1b). We refer to this distribution as the true prior. During the
movement, visual feedback of the finger position was only provided
briefly, midway through the movement. We manipulated the
reliability of this visual feedback on each trial. This feedback was
either provided clearly (j0 condition, in which the uncertainty comes
from intrinsic processes only), blurred to increase the uncertainty by
a medium (jM) or large (jL) amount, or was withheld altogether
leading to infinite uncertainty (j1). Visual information about the
position of the finger at the end of the movement was provided only
on clear feedback trials (j0) and subjects were instructed to get as
close to the target as possible on all trials.

Subjects were trained for 1,000 trials on the task, to ensure that
they experienced many samples of the lateral shift drawn from the
underlying gaussian distribution. After this period, when feedback
was withheld (j1), subjects pointed 0.97 ^ 0.06 cm (mean ^

s.e.m. across subjects) to the left of the target showing that they
had learned the average shift of 1 cm experienced over the ensemble
of trials (Fig. 1a, example finger and cursor paths shown in green).
Subsequently, we examined the relationship between imposed
lateral shift and the final location that subjects pointed to. On trials
in which feedback was provided, there was compensation during the
second half of the movement (Fig. 1a, example finger and cursor
paths for a trial with lateral shift of 2 cm shown in blue). The visual
feedback midway through the movement provides information
about the current lateral shift. However, we expect some uncertainty
in the visual estimate of this lateral shift. For example, if the lateral
shift is 2 cm, the distribution of sensed shifts over a large number of
trials would be expected to have a gaussian distribution centred on
2 cm with a standard deviation that increases with the blur (Fig. 1c).

There are several possible computational models that subjects
could use to determine the compensation needed to reach the target
on the basis of the sensed location of the finger midway through the
movement. First (model 1), subjects could compensate fully for the
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Figure 1 The experiment and models. a, As the finger moves from the starting circle, the

cursor is extinguished and shifted laterally from the true finger location. The hand is never

visible. Halfway to the target, feedback is briefly provided clearly (j0) or with different

degrees of blur (jM and jL ), or withheld (j1). Subjects are required to place the cursor on

the target, thereby compensating for the lateral shift. The finger paths illustrate typical

trajectories at the end of the experiment when the lateral shift was 2 cm (the colours

correspond to two of the feedback conditions). b, The experimentally imposed prior

distribution of lateral shifts is gaussian with a mean of 1 cm. c, A diagram of the probability

distribution of possible visually experienced shifts under the clear and the two blurred

feedback conditions (colours as in a) for a trial in which the true lateral shift is 2 cm. d, The

estimate of the lateral shift for an optimal observer that combines the prior with the

evidence. e, The average lateral deviation from the target as a function of the true lateral

shift for the models (for jL the green shading shows the variability of the lateral deviation).

Left, the full compensation model; middle, the bayesian probabilistic model; right, the

mapping model (see the text for details).
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“When we learn a new motor skill, such as playing an approaching
tennis ball, both our sensors and the task possess variability. [ ... ]
We show that subjects internally represent both the statistical
distribution of the task and their sensory uncertainty, combining them
in a manner consistent with a performance-optimizing bayesian
process. The central nervous system therefore employs probabilistic
models during sensorimotor learning.” 15/02/10 1:08 PMSubconsciously, Athletes May Play Like Statisticians - The New York Times
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Subconsciously, Athletes May Play Like Statisticians
By DAVID LEONHARDT

When Justine Henin-Hardenne rips a cross-court forehand at the Australian Open or Tom Brady, the New
England Patriots quarterback, dodges an onrushing defender, each looks like the very definition of living in
the moment. Like other great athletes, they often appear to rely on speed, strength and lightning-fast
reactions.

There seems to be little time for highly advanced quantitative analysis that weighs current observations
against past experiences to suggest a plan of attack.

But this kind of analysis is precisely what the human brain does when facing a physical challenge,
according to a study by two European scientists published in the current issue of Nature. The more
uncertainty that people face — be it caused by wind on a tennis court, snow on a football field or darkness
on a country highway — the more they make decisions based on their subconscious memory and the less
they depend on what they see.

Among researchers, the combining of new information with conventional wisdom is known as Bayesian
analysis, and it has become increasingly popular in recent years. Once controversial, because it muddies
supposedly pure scientific data with subjective opinion about which prior research is relevant to a particular
study, it has gained adherents as the explosion of computing power has allowed the method's complex
formulas to be performed on a basic laptop computer.

With the encouragement of the Food and Drug Administration, medical-device makers use the method to
test new devices that are only slightly different from their predecessors. Computer companies use Bayesian
methods to build spam filters for e-mail, said Dr. Michael Lynch, the chief executive of Autonomy, a
British software company, and governments use it to try to prevent terrorism, combining data from security
cameras and X-ray machines with criminal profiles.

"In academia, the Bayesian revolution is on the verge of becoming the majority viewpoint, which would
have been unthinkable 10 years ago," said Bradley P. Carlin, a professor of public health at the University of
Minnesota and a Bayesian specialist.

Stephen M. Stigler, a professor of statistics at the University of Chicago who considers himself to be
roughly in the middle of the spectrum in the Bayesian debate, added: "It's not a controversial subject.
Twenty years ago, it was."

In everyday life, of course, people have been using the ideas underlying Bayesian analysis since well before
it became the vogue in science labs, or even before Thomas Bayes, an 18th-century British minister and
mathematician, formalized the method in a paper that was published two years after he died. When crossing
a street, people rely on both what they see and what they remember about the speed of cars on similar roads.
When deciding whether to take a sick child to a doctor, parents consider the current symptoms as well as
the child's history and their general knowledge of illness.

"The human brain knows about Bayes's rule," said Konrad P. Körding, a postdoctoral researcher at the
Institute of Neurology in London, who conducted the study published in Nature along with Daniel M.
Wolpert, a professor at the institute.

The new research stands out because it offers a detailed window into how the Bayesian thought process
works, showing the point when uncertainty becomes great enough to give past experience an edge over
current observation.
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What age is this person?
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Additional info: He obtained his PhD 32 years earlier
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Table 18 Distribution of 1997 Doctorate Recipients by Age at Doctorate
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Single-study data-analysis

• Likelihood-based parameter-fitting + frequentist-based
interval estimation

• IF intractable ML fitting issues, measurement error,
hierarchical models, ... , use a computer-intensive MCMC
approach using a non-informative prior.

• In simple cases, (Frequentist) confidence intervals ≈
(Bayesian) credible intervals. Since credible intervals
involve Prob(θ | data) rather than Prob(data | θ), they are
more natural, and easier to explain correctly.

• Present evidence just from study in question, preferably in
a form [Likelihood] that can be merged with evidence from
other studies.
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Synthesis of data from several sources

• Simplest case: meta-analysis
• If no unanimity about past evidence, present range of

posteriors based on range of pessimistic↔ optimistic
priors.

• Combining prior + data: is it same as adding (log)
probability densities ?

pphoto+PhD(age) ∝ pphoto(age)× pageAtPhD(age − 32)

∝ pphoto(age)× pageAtPhD+32(age)
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What age is this person?
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