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8 The Gaussian probability model

The above photograph is of the front of the 10 (zehn) Deutsche Mark ban-
knote, before Germany and the other EC countries adopted the Euro.

You can find other images by Googling ‘Gauss 10dm image.’

For biographies of and historical notes on Gauss, see specialized sites such
as http://www.mathunion.org/general/prizes/gauss/details/ or gen-
eral ones such as http://en.wikipedia.org/wiki/Carl Gauss. The story of
the discovery of Ceres http://www.keplersdiscovery.com/Asteroid.html
is interesting as it mentions the Method of Least Squares. There is a debate
as to who first used the principle of Least Squares. It seems from this website
that Gauss did, but it also seems he did not publish the method, so we cannot
tell if he did in fact used it in the re-discovery of Ceres.

Legendre1 published his method in 1806, and described the procedure very
much the way it is taught today. Gauss seems to get the credit in this website
http://en.wikipedia.org/wiki/Least squares.

There is a chapter on ‘Least Squares and the Combination of Observations’ in
Stephen Stigler’s most readable and interesting book “The History of Statis-
tics: The Measurement of Uncertainty before 1900.”

Even though we generally credit Fisher with the development of Maximum
Likelihood methods, it seems that Gauss used the principle.

1
http://en.wikipedia.org/wiki/Adrien-Marie Legendre

http://www.nndb.com/people/891/000093612/

http://www.nndb.com/people/891/000093612/

http://www.britannica.com/EBchecked/topic/334063/least-squares-approximation

Note that although C&H say “in the Gaussian model, the total probability
of 1 is shared among many values,” this statement applies to any model for a
‘continuous’ random variable.

‘Probability density per unit value’: this is a good description. This is how we
should label the vertical axis of a pdf graph.

It is also why we can write likelihood contribution of an ‘observed’ y value,
e.g., blood pressure of 90, as pdf(y

mid

, ✓) h, where y
mid

is the midpoint of the
interval (of width h) that is reported as a ‘90’. Technically, we should use as
CDF (y

upper

, ✓)�CDF (y
lower

, ✓) but usually h is su�ciently narrow that the
rectangular area pdf(y

mid

, ✓)⇥ h is a good approximation. Of course, since h

is a constant, and does not involve ✓, it is usually omitted from the likelihood
contribution.

8.1 Standard Gaussian distribution

Because the pdf tends to be written with 1/
p
2⇡ in front, then, unless we

evaluate this expression, we don’t get to see that it is indeed very close to 0.4.

Another point that gets overlooked is where (i.e., how far up the vertical axis)
the ‘point of inflection’ is to be found: i.e., imagine one were to rub one’s
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finger upwards along the curve: where does it change from concave upwards
to convex upwards?

Supplementary Exercise 8.1. Determine, analytically/numerically, where
on the z scale the point of inflexion is located, and at what height (express
its vertical location as a fraction of the max. height of 1/

p
2⇡ = 0.3989). The

point of inflection helps one to draw a reasonably accurate pdf curve ‘freehand.’

The diagram on the next page shows how one could use a ‘spinner’ or ‘roulette
wheel’ to generate random numbers that follow a Gaussian distribu-

tion, while the one on the page thereafter shows how to do so using the reverse
CDF. In fact, both use the same idea. Francis Galton2 proposed a method
that used 6 dice.

Supplementary Exercise 8.2.
(i) Derive the 24 ordinate values used by Galton for his Die I.3 Do so in R
(or Excel), by dividing up the (0,1) scale into 24 bins each containing equal
1/48ths of the total probability mass, and finding (as Galton did) the ordinate
at the mid point of (the base of) each bin.
(ii) Out of curiosity, how many would change if he were to use the centres of
gravity (mass) rather than the midpoints? Would the ‘�’ be closer to 1?
(iii) Then, use R (or Excel) to simulate 12 throws of Die I, and the req-
uisite number of throws of Dies II and III, to produce 12 values from a
N(µ = 100, � = 15) distribution.
(iv) In the study carried out at the University of Canterbury [cf Resources],
the investigators say that “To determine the success of this experiment, we
formulate the following question as a statistical hypothesis test: Are our sam-
pled values taken independently and identically from an appropriate discrete
distribution which approximates Galton’s normal distribution?” To answer
it, they used the data reported in their Appendix A.
If they had approached you about how to address their question, how would
you have answered them? Would you have advised them to collect results of
actual throws of the dice? Would you have calculate the optimal number of
trials needed for the test in the same way that they did?

2Dice for Statistical Experiments. Nature(1890) 42 13-14 – in Resources, with related material.

3Note that whereas today we use the Standard Deviation (SD) as a measure of the
spread of a Normal distribution [and use the ‘68-95-99.7 rule’ for 1, 2 and 3 SD’s – see
http://en.wikipedia.org/wiki/68-95-99.7 rule] – Galton used the smaller ‘Probable Er-

ror ’ or ‘PE’. The PE is approximately 2/3rds (0.6745) times the SD. The Probable Error

gets its name from the fact that a deviate from the mean is just as likely (50%, ‘as prob-
able as not’), to be bigger than as smaller than the Probable Error: the interval µ ⌥ 1PE
contains the middle 50% of the N(µ, PE) distribution, whereas the the interval µ ⌥ 1SD
contains the middle 68%. Notice also that by a using a smaller measure of spread, Galton’s
grades or ‘degrees’ of ‘extremeness’ ran from -5� to +5�, where we might speak or write of
Z values or Z scores from say -3 to +3.

8.2 General Gaussian Model

Shouldn’t textbooks use y rather than x when dealing with random variables?

This notation is important when we come to regression: most applied work in-
volves y’s, each of which is the realization from a conditional-on-x distribution
whose parameters are governed by a linear combination of a (possibly-vector-
valued) ✓ and a (possibly-vector-valued) x, with x treated as fixed-by-design.
JH notes that the designers of the German 10DM banknote to honour Gauss
also used x rather than y.

The square of sigma is called the variance: In the very interesting website on
Earliest Known Uses of Some of the Words of Mathematics4 we find: MOD-
ULUS (in the Theory of Errors). In his first theory of least squares based
on the normal distribution and presented in Gausss Theoria Motus Corpo-
rum Coelestium in Sectionibus Conicis Solem Ambientum (1809) Gauss used
a measure of precision (“mensura praecisionis observationum” (p. 245) which
he denoted by h: the reciprocal of h is

p
(2)�, where � is the standard devia-

tion. Both h and its reciprocal have been called the modulus: the reciprocal
in G. B Airy’s On the Algebraical and Numerical Theory of Errors of Ob-
servation and the Combination of Observations (1861, p. 15) and h in E. T.
Whittaker & G. Robinson’s Calculus of Observations (1924, p. 175).

This website could keep one occupied for many hours, as on the same
page of ‘M’ alone, there are entries for MARGIN OF ERROR, MARKOV
CHAIN, MONTE CARLO, MARKOV CHAIN MONTE CARLO, MARTIN-
GALE, MAXIMUM LIKELIHOOD, MEAN, MEDIAN, META-ANALYSIS,
MINIMUM CHI-SQUARED, MODE, MOMENT, Moment generating func-
tion, MONTY HALL PROBLEM, MORAL EXPECTATION, MOVING AV-
ERAGE, MULTICOLLINEARITY, MULTINOMIAL DISTRIBUTION, and
MULTIVARIATE.

In the ‘S’ page (also full of other interesting terms) we can read that ‘The
term STANDARD DEVIATION was introduced by Karl Pearson (1857-1936)
in 1893, “although the idea was by then nearly a century old” (Abbott; Stigler,
page 328). According to the DSB: The term “standard deviation” was intro-
duced in a lecture of 31 January 1893, as a convenient substitute for the
cumbersome “root mean square error” and the older expressions “error of
mean square” and “mean error.”

8.3 The Gaussian Likelihood

C&H finally explain why they adopted a cuto↵ on 1.353 back in chapter 3.

4http://je↵560.tripod.com/m.html
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Generating random numbers from a Gaussian Distribution / Connections with the Normal (Gaussian) Tables
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Imagine a disk or "Spinner" with 2 concentric
circles, and a spindle through the centre.
Suppose that when spun it is equally likely to
come to rest at any point on the outer
circumference. This is reflected in markings
of 0 to 1 (or, if you prefer, % to 100%)
uniformly on the circumference of the outer
circle.

Q: How should we mark the circumference of
the inner circle so that  repeated spins produce
values with a Gaussian N(0,1) distribution?
[see "spinner" in  fig 4.9 page 317 of M&M]

A:  Use the z values corresponding to the
percentiles of the Gaussian Distribution!

Then, the spinner shown will produce Z
values from minus to plus infinity..

IMPLICATIONS FOR MONTE CARLO
(SIMULATION) WORK

1 Generate numbers with a Uniform
Distribution on (0,1)

e.g. in Excel use the RAND() function

 i.e.   generate P = RAND()

2 Calculate percentile corresponding to P

i.e. z = Z value such that Prob(Z < z) = P

in Excel, use NORMINV function,

i.e.
calculate z = NORMINV(P,µ=0,σ=1)

page 1

.
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Generating random numbers from a Gaussian Distribution / Connections with the Normal (Gaussian) Tables
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T
The above nomograms illustrate the same idea: the function links the shaded area under
the Gaussian curve with the corresponding z value. I t is shown , first with area or Percent
or Pr(Z<z) as a function of z, and then vice-versa (as is done in Table A of M&M).  Table A
tabulates Prob[Z<z] as a function of z, but one can travel in either direction.

A! -3 -2 -1 1 2

z

0

%

Another way of visualizing the Table  is given below. To generate
a random Z, enter randomly at the vertical axis and find
corresponding Z value!

Cumulative Distribution Function of Gaussian
Distribution

z

P[
Z<

z]

0
0.2
0.4
0.6
0.8
1

- 3 - 2 - 1 0 1 2 3

page 2

.
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8.4 The Likelihood with N observations

JH prefers n over N . To him, N refers to the size of some universe of
units, not to the size of a sample of units from it. In the social sciences,
and particularly in the Publication Manual of the American Psychological
Association5, its JH’s understanding that if the overall sample is N = 20
people, 9 men and 11 women, the sub-sample sizes of 9 and 11 would be
referred to as n = 9 and n = 11. I understand from a reliable source that
Clayton pursued a PhD in psychology, so that might explain his notation.

Likewise, JH is unsure why C&H use the letter M where we would normally
write x̄ [ or ȳ ! ]

Supplementary Exercise 8.3. C&H say it requires only elementary algebra
to rearrange the log likelihood. Do the algebra, and verify that that is indeed
true.

5http://www.apastyle.org/manual/index.aspx

.
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9 Approximate Likelihoods

This is a central chapter; you will use the Normal Approx-

imation to the (sampling) distribution of ML parameter esti-

mates throughout your career. The key is to work in the

most appropriate parameter scale, the one where the sampling dis-

tribution is ‘closest to Gaussian.’

Even though the title says approximate likelihoods, in fact the chapter is
entirely about approximate log likelihoods. Indeed, just as R. A. Fisher did in
his very first paper on this topic, exactly 100 years ago, we should always focus
on the log likelihood. In that 1912 paper, Fisher never defined the likelihood,
only its log. (In fact he did not call it the log likelihood ... that term came
later. He just called it an absolute ‘criterion’).

C&H write of there being no simple algebraic expression (or closed form) for
the supported range for the parameters of the Binomial and Poisson models.
In fact, the same is true much more broadly : this was also the case in just
about all of the ML estimation problems we have dealt with so far (e.g. � in
Fisher’s binned errors data, and in Tibshirani et al’s ‘accuracy of dart throws’
data; µ and � in Galton’s data on the speeds of homing pigeons; the shape
and rate/scale parameters of the gamma model for tumbler longevity; the HIV
infection rate parameter � in the circumcision studies; the proportion (⇡) of
persons infected by West Nile virus; the parameters in the mutation rate
function behind the genetic data from Iceland, etc. etc.. And this absence
of a closed form will also be the norm for the parameters in many many
regression models. Indeed, in most parameter-fitting applications, we do not

even have a closed form algebraic expression for the point estimates, let alone
their standard errors. So, it is important that we learn how to use a more

general approach.

“The quadratic approximation becomes closer to the true log likelihood as the

amount of data increases”: The authors are referring to the role of the Central
Limit Theorem, and to the near-Gaussian sampling distribution of ✓̂

MLE

.

9.1 Approximating the log likelihood

“Consider a general likelihood for the parameter, ✓, of a probability model and

let M be the most likely value of ✓. Since the quadratic expression

�1

2

✓
M � ✓

S

◆2

has a maximum value of zero when ✓ = M, it can be used to approximate the

true log likelihood ratio.”

If JH were writing this, he would have said

“Consider a general likelihood for the parameter, ✓, of a probability

model and let ✓̂

ML

be the most likely value of ✓. Since the quadratic

expression

�1

2

✓
✓̂

ML

� ✓

S

◆2

has a maximum value of zero when ✓ = ✓̂

ML

, it can be used to

approximate the true log likelihood ratio.”

“We shall refer to S as the standard deviation of the estimate of ✓. Alterna-

tively, it is sometimes called the standard error of the estimate”

Again, JH would have written:

“We shall refer to SE[✓̂
ML

] as the standard deviation of the estimate

of ✓. Alternatively, it is sometimes called the standard error of the

estimate”

and (dropping the awkward ML subscript in the SE ) that

“Since the quadratic expression

�1

2

✓
✓̂

ML

� ✓

SE[✓̂]

◆2

has a maximum value of zero when ✓ = ✓̂

ML

, it can be used to

approximate the true log likelihood ratio.”

6
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Formulae for S [for now, without justification].

THE RISK [i.e., the PROPORTION, ⇡ ] PARAMETER

As C&H illustrate in the next section, it is better to work in the logit[⇡] scale,
unless the Normal approximation to the binomial itself is adequately accurate.
Had the data been 40+ and 60�, rather than 4+ and 6�, the log-likelihood
in the original, untransformed, (i.e., ⇡) scale would have looked a lot closer
to quadratic, i.e., the sampling distribution of a sample proportion would be
close-enough-to-Normal for much more of the ⇡ range.

A common problem with using the Normal approximation in the case of
limited-range parameters is that it works well enough at the less extreme
limit (in this case, for values near the middle of the range) but poorly for
parameter values near the more extreme limit (in this case, for values near
the bottom of the 0-1 range). JH likes to say that there isn’t enough room
for a Gaussian distribution if we are at the lower end (0/10, 1/10, 2/10, ...)
of the Binomial(10,⇡) distribution, particularly if we entertain ⇡ values <

0.5 (which case we would ‘expect’ to have n ⇥ ⇡ < 5 in the sample with the
characteristic/event of interest.

THE RATE [i.e., the INTENSITY, � ] PARAMETER6

“The value of S (i.e., the value of SE[�̂]) which gives the best approximation

to the log likelihood ratio is S =
p
D/PT ”

The reason for this form is because �̂

ML

has the form �̂

ML

= D/PT, where
D is the realization of a Poisson r.v., and PT is a known constant.

The lower limit of 5.3/1000 is the result of using the Normal approximation
to a Poisson distribution. But a rate of 5.3/1000 means that with PT=500
person-time units, we would expect µ = (5.3/1000) ⇥ 500 = 2.65 ‘events’,
and we know that the Poisson[µ = 2.65] distribution is quite skewed, with
a lot of probability mass on its lower tail values of 0, 1 and 2, so it is not
possible to approximate it by a Normal distribution – the lower tail of a
N [µ = 2.65,� =

p
2.65] distribution has an embarrassingly large amount its

mass below 0!

Imagine what the lower limit would be if the observed count was D = 2: then
the lower limit for the rate, based on the Normal approximation, would be
(2�1.645⇥

p
2)/500, a negative rate! Using the form (D⌥1.645⇥

p
D)/500 (i.e.

dealing first with the statistical uncertainty in the numerator, then dividing

6JH has changed the possibly confusing Y (for the Years of observation denominator)
to PT (for amount of Population-Timd in which the events occurred). He left the ‘morbid’
term D (for Deaths’) as is, even though he prefers to use C for ‘number of Cases (instances)
of’, a neutral term that covers both ‘bad’ and ‘good’ types of events/characteristics.

by the ‘constant’, 500) makes it much clearer where the ‘weak link’ is –it’s the
numerator !

Again, a parameter-transformation would help (although, with a µ this low, it
is di�cult to come up with any parameter scale on which the Normal distribu-
tion would be a good approximation – there just isn’t enough ‘granularity ’).

9.2 Transforming the parameter

As was emphasized at the beginning, this is the key to more accurate approx-
imations.

“The solution to this problem is to find some function (or transformation) of

the parameter which is unrestricted and to first find an approximate supported

range for the transformed parameter.”

Indeed! And it is often possible to use the range of the parameter to determine
which transformation is likely to lead to a scale on which the log-likelihood
is more Gaussian. For a parameter ✓, such as a proportion, that takes values
in the (0,1) range, the ‘canonical’ transformation is the logit , i.e., log

⇥
✓

1�✓

⇤
,

which takes on values all the way from �1 to +1.

For a parameter ✓, such as a rate, that takes values in the (0,1) range,
the canonical transformation is the log, i.e., log[✓]. Indeed, for many of the
examples to be considered from now on, JH may well use ✓ for the parameter
measured on the full (�1, +1) scale.

THE LOG RATE PARAMETER [with some editing by JH]

“The rate parameter � can take only positive values, but its logarithm is
unrestricted. To calculate an approximate supported range for �, it is better,
therefore, to first calculate a range for log[�], and then to convert this back
to a range for �. (...) To find the approximate range for log[�], we need a
new value of S that which gives the best Gaussian approximation to the log
likelihood ratio curve when plotted against log[�]. When a rate � is estimated
from D failures over PY person-years, i.e., as

�̂ = D/PY ,

this value of S = SE[�̂] = { V ar[�̂] }1/2 is given by

S = SE = SE[�̂] =

r
1

D

.

(By ignoring the possibility of a Poisson count of zero, and using a Taylor series
approximation often referred to as “the Delta Method” ), at the beginning

7
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of the course, when dealing with Poisson variation, we derived the square

root of the variance of the log of a Poisson r.v., Y , finding it to be
(approximately) r

1

µ

Y

,

where µ
Y

is the expected value, E[Y ]. And by using the observed value (D in
C&H notation, y or c in JH’s) as an estimate of its expectation, and plugging
it into the square root of the expression for the variance, we have a good
example of a standard error – the estimated standard deviation of a statistic

or parameter-estimate.

“A more convenient way of carrying out this calculation – using a

(multiplicative) ‘error factor.’ ”

JH encourages this Multiplicative Margin of Error (MME) i.e., using ✓̂ ⇥
÷MME, rather than exp[log[✓̂ ± Z

↵/2SE[log[✓̂]] approach; think of it as
expressing the uncertainty as X-fold (or, en français, ‘X-fois’): the upper
limit is X times larger than the point estimate; and the lower limit is X times

smaller than the point estimate.

THE LOG ODDS PARAMETER [editing and notation-changes by JH]

Here we use the logit, or the log-odds, i.e., ✓ = log[⌦] = log
⇥

⇡

1�⇡

⇤
, so that

✓̂ = log
⇥

⇡̂

1�⇡̂

⇤
.

“When an odds, ⌦, is estimated from y+ ‘positives’ and y� ’negatives’, i.e.,
as

⌦̂ =
y+

y� , or ✓̂ = \log[⌦] = log


y+

y�

�
,

the value of S = SE[✓̂] = {V ar[✓̂]}1/2 is given by

S = SE = SE[✓̂] =

r
1

y+
+

1

y� .

(By ignoring the possibility of a Binomial count of 0 or n, and using a Taylor
series approximation often referred to as “the Delta Method”), at the be-
ginning of the course, when dealing with Binomial variation, we derived the
square root of the variance of the log of the ratio of Binomial r.v.,

Y+, to its complement Y�, finding it to be (approximately)
s

1

µ

Y+
+

1

µ

Y�
,

where µ
Y

is the expected value. And by using the observed value (D in C&H
notation, y+ in JH’s) as an estimate of the one expectation, and the observed

value of its complement (N �D in C&H notation, y� in JH’s) and plugging
it into the square root of the expression for the variance, we have a good
example of a standard error – the estimated standard deviation of a statistic

or parameter-estimate.

Epidemiologists are (overly) fond of 2 ⇥ 2 tables, with E (‘Exposed’) and Ē

(not) and with D (‘Diseased’) and D̄ (not) as the rows / columns and with
a, b, c, d as frequencies

E Ē

D a b n

D

D̄ c d n

D̄

n

E

n

Ē

n

JH prefers this more neutral and more general notation (with X on x-axis,
and going from 0 to 1):

X = 0 X = 1
Y = 1 y+ y+

Y = 0 y� y�
n

X=0 n

X=1

and looking ahead to regression, with traditional X and Y axes, where the
values need not be restricted to 0’s and 1’s, he would argue for this layout:

1 y+ y+

Y

0 y� y�
0 1

X

In any event, at this stage, where all subjects have the same X (say X=0),
our only interest is in the left (X=0) column of the table, and in the y+ to y�
ratio. So, for the logit, when we substitute observed for expected values, we
have the biostatistician’s expression

SE[ ˆlogit[⇡] ] = SE[ [log[⌦] ] = SE[✓̂] =

s
1

y+
+

1

y�
.

or the epidemiologist’s expression, with a and c as the focus for now (or a and
b if they happened to – or were taught to – exchange the row and columns
labels) :

SE[ logit ] = SE[ log[a/b] ] =
p
1/a+ 1/b.

8
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Supplementary Exercise 9.1. Suppose we measured the sex ratio in a
sample of n = 20, obtaining the ratio ⇢ : ⇡ = 14:6. Calculate a 90% CI for
the true ⇢ : ⇡ ratio, ⌦, by first calculating a CI for log[⌦].

9.3 Finding the best quadratic approximation

“To do this we need some elementary ideas of calculus summarized in Ap-

pendix B. In particular, we need to be able to find the gradient (or slope) of

the log-likelihood curve together with its curvature, which is defined as the rate

of change of the gradient. The mathematical terms for these quantities are

the first and second derivatives of the log likelihood function.”

JH would add that “the statistical terms for these quantities are the Score

and (with the sign changed to have a positive value) the Information.”

“The value of ✓̂ can be found by a direct search for that value of ✓ which

maximizes the log likelihood, but it is often easier to find the value of ✓ for

which the gradient of the log likelihood is zero; this occurs when ✓ = ✓̂. The

value of S is chosen to make the curvature of the quadratic approximation

equal to that of the true log likelihood curve at M, thus ensuring that the true

and approximate log likelihoods are very close to each other near ✓ = ✓̂.

We therefore choose the value of S to make �1/(S)2 equal to the

curvature of the true log likelihood curve at its peak.

THE RATE [i.e., �] PARAMETER (estimated as ‘event count0/PT = y/PT )

Lik[�] = exp[�µ] µy

, where µ = �⇥ PT

LogLik[�] = �µ+ y log[µ] = ��⇥ PT + y log[�]� y log[PT ]

Score[�] =
d LogLik[�]

d�

=
y

�

� PT

I[�] = �E

"
d

2 LogLik[�]

d�

2

#
= E

"
y

�

2

#
=

�⇥ PT

�

2
=

PT

�

Substituting �̂ = y/PT for � yields

I[�]|�̂ =
PT

2

y

and using {I[�]}�1 = y

PT

2

as SE[�̂]2 yields

SE[�̂] =

p
y

PT

,

just as we had established (directly!) at the beginning of the course, treating

�̂ = y

PT

⇠ Poisson(µ)
PT

.

The point of this long exercise is that we can check in simple cases that the
two approaches lead to the same SE[�̂], but that there are many instances
where there is no closed form, and where the ‘curvature’ approach is the only
way to calculate a SE.

THE RISK (⇡) PARAMETER

C&H go through the same curvature exercise for this parameter, and arrive

at the familiar ‘binomial’ SE of
q

⇡̂⇥(1�⇡̂)
n

.

9.4 Approximate likelihoods for transformed parameters

First, JH applauds C&H for ‘transforming’ the parameter before transforming
the random variable. See the American Statistician article “The PDF of
a Function of a Random Variable: Teaching its Structure by Transforming
Formalism into Intuition” by JH and D Teltsch – it is under Reprints/Talks
on JH’s website. Its more about a change of scale than the ‘change of variable’
that is usually taught. After all, the entity called ‘Montreal temperatures’ is
the same (and temperatures in January are equally cold), whether we choose
to measure them in �

F or �
C !

Supplementary Exercise 9.2. C&H repeat the above SE calculations, but
for the parameter � = log[�] rather than �. Fill in the steps they don’t show.
[And note their wise choice of the letter � – they are thinking ahead to linear

predictors in multiple regression. In this simple 1-sample example, think of it

as a �0 ! ]

“In general, derivations such as that above can be simplified considerably by

using some further elementary calculus which provides a general rule for the

relationship between the values of S (the SE) on the two scales. In the case

of the log transformation, this rule states that multiplying the value of S on

the scale of � by the gradient of log(�) at � = M gives the value of S on the

scale of log(�). The rules of calculus tell us that, at � = M, the gradient of

the graph of log(�) against � is 1/M. ( ... )”

Supplementary Exercise 9.3 Show that the ‘simplification’ that C&H de-
scribe is none other than the Delta Method, with its use of Jacobians to go

9
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from one scale to another. The answer you obtained by applying the ‘Delta
Method’ to the transformed r.v. log[y/PT ] is a check on their algebra.

“This agrees with the expression obtained by the longer method.”

By the longer method, they mean the use of the curvature/information (and
its reciprocal) at ✓ = ✓̂. And the ‘this ’ refers to the Delta Method. To JH,
the di↵erence is that the curvature/information approach emphasizes the pa-

rameter scale, while the Delta Method emphasizes the random variable scale.
The ‘change-the-parameter-scale’ is more general, and avoids having to worry
about realizations of random variables (e.g., a count of zero) that do not map
nicely to another (e.g., the log[count] or log[y]) scale.

9.5 Déjà vu: supp. exercises in Ch. 3 (Likelihood)

There was no simple algebraic expression (or closed form) for the supported
range for the parameters of the models involving � in Fisher’s binned errors
data, and in Tibshirani et al’s ‘accuracy of dart throws’ data; µ and � in
Galton’s data on the speeds of homing pigeons; the shape and rate/scale
parameters of the gamma model for tumbler longevity; the HIV infection rate
parameter � in the circumcision studies; the proportion (⇡) of persons infected
by (the sero-prevalence of) West Nile virus; the parameters in the mutation
rate function behind the genetic data from Iceland, etc. etc.. So, ...

Supplementary Exercise 9.4 Revisit each these examples, and decide
which, if any, parameter transformation might lead to a ‘closer-to-Gaussian’
i.e., ‘closer-to-quadratic’ log-likelihood. Then re-run the graphs on these new
scales7, and see if your intuition was borne out. Can you come up with any
‘rule-of-thumb’ to decide whether the extra work involved will be worth it?

7Once you have set up the LogLik function on one scale, it is usually easy to plot it on
another. Or you can change the argument and insert the transformation at the beginning
of the old function.

10


	Text3: 


