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16 Case control studies

Theoretical basis for “odds ratio” as estimator of Rate Ratio, to-
gether with statistical model for the estimator

The old-fashioned and very loose justification for using the empirical odds
ratio, or1, as an estimator of the theoretical rate ratio goes back to Cornfield
in the 1950s. Unfortunately it still is the one given in many ‘modern’ texts,
despite the much more general justification provided by Miettinen in 1976.

The old justification rested on algebraic arguments using persons, not popu-
lation time. The outcome proportions involved refer to cumulative incidence.

Clayton and Hills also start with proportions (risks), and thus are forced to
use the now-very-old-fashioned “rare disease assumption”. Later they argue
that if we slice time very finely, we do not need this assumption, but it would
be nice if they started with this modern way of viewing it.2

One way to be modern, and emphasize that we are generally in the ‘rate’
(rather than than ‘risk’) business is to use the empirical odds ratio as an
estimate of the rate (i.e., intensity) ratio of interest, and to call it a rate ratio
estimate; in other words, even if we derive the estimate from a crossproduct
that looks like an odds ratio, or from the output of a logistic regression where
the estimate is labelled ‘odds ratio’ (or the coefficient is labelled ‘log odds

1Sometimes I will use the lower case or to denote the observed or empiriacl odds ratio,
and uppewr case OR to denote the true (but unobservable) odds ratio.

2There are a few instances where time per se isn’t involved, e.g., success rates (with
‘rate’ as a proportion) of low versus high shots on ice hockey goalie Patrick Roy, acceptance
rates of males versus females to medical school, etc. In these instances, it is still helpful to
think of the ‘successes’ (or events) as numerators (classified as low/high, or male/female),
and samples of all shots or applications, also classified in same way, as estimates of the
relative sizes of the respective denominators. Note that if we sample from all candidates
(shots or applicants) without excluding those that happen to form the numerator series, we
can directly estimate the ratio of the two proportions without ever involving anything that
looks like an odds ratio. To see this, imagine that candidates in the index and reference
categories of the determinant in question would be expected to produce π1 and π0 ‘success’
proportions respectively respectively, so that the estimand, the ratio of the two proportions,
is π1/π0. Suppose we get to observe the two numerators y1 and y0, but not the full sizes N1

and N0 – the two denominators – of the two candidate pools. We can estimate the relative
sizes by sampling say n from the N1 +N0 and classifying them into n1 and n0 respectively.
If we know the sampling fraction f , then we can estimate the two ‘success’ proportions as
π̂i = yi/[ni × (1/f)] and estimate their difference or their ratio. However, in the ratio, the

sampling fraction cancels out, leaving us with the estimator ̂π1 ÷ π0 = (y1/n1) ÷ (y0/n0)
that does not require knowledge of the sampling fraction. In the statistical model in this
context, y1 and y0 are two binomials with unknown denominators, N1 and N0, while
the n1/n split is a hypergeometric random variable (that could be approximated by a
binomial if the sampling fraction is small. Theoretically, or via simulation, one can show
that (y1/n1) ÷ (y0/n0) is median-unbiased for π1 ÷ π0.

ratio’)

The truly modern way is to think of the cases as arising in population-time,
and to think of the population time involved as an infinite number of person-
moments - think of a person-moment as a person at a particular moment.
Say that a proportion πE of these are “exposed” person moments, and the
remaining proportion π0 are “non-exposed” person-moments. Suppose further
that the (theoretical) event rates in the exposed and unexposed amounts of
population-time are

λE =
E[no.events]

PTE
; λ0 =

E[no.events]

PT0
,

with (theoretical) Rate Ratio θ = λE/λ0.

Denominator Series [overall size d; d0, d1 in ‘exposure’ categories 0, 1]

Suppose we take a finite random sample, of size d, of the infinite number
of person moments in the base that generated the cases, and classify them
into dE “exposed” person moments and d0 = d − dE “non-exposed” person-
moments. We will refer to this sample of d as the denominator series. What
is the statistical model for dE | d? Clearly, it is

dE ∼ Binomial(d, πE).

Numerator (Case) Series [overall size c; c0, c1 in ‘exposure’ categories 0, 1]

Denote by c the observed number of events; we classify them into cE events in
“exposed” population-time and c0 = c− cE in the “non-exposed” population-
time. We will refer to this sample of c as the case series.

What is the statistical model for cE | c? We can think of cE as the realization
of a Poisson r.v. with mean (expectation) µE = (PTE × πE)× λE . Likewise,
think of for c0 as the realization of a Poisson r.v. with mean (expectation)
µ0 = (PT0 × π0)× λ0.

Now, it is a statistical theorem (Casella and Berger, p194, exercise 4.15) that

cE | c ∼ Binomial(c, µE/[µE + µ0]).

Thus we can identify the distribution of the 4 random variables involved in
the OR estimator

ÔR = or = cE/dE ÷ c0/d0 = cE/c0 ÷ dE/d0 = (cE × d0) ÷ (c0 × dE).

The cE : c0 split is governed by one binomial, involving θ and other parame-
ters, while the dE : d0 split is governed by a separate binomial, involving the
same other parameters, but not involving θ.
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If one replaces µE and µ0 by their constituents, one can show that the odds
that an unexposed person-moment in the series of c + d represents a “case”
is c : d, whereas the corresponding odds for an exposed person moment is
(θ × c) : d.

In other words, in the dataset of c+ d,

logit[Prob[case|0] = log(c/d) = β0 ;

logit[Prob[case|E] = log(c/d) + log θ = β0 + βEE,

where E is an indicator variable.

So, one can estimate log θ = logOR by a logistic regression of the Y ’s (c+ d
observations in all, with Y = 1 if in case series; = 0 if in denominator series)
on the corresponding set of c + d indicators of exposure (1 if exposed, 0 if
not).

C & H preamble

“If there is no relationship between exposure and disease incidence the dis-
tribution of exposure among the cases should be the same as the distribution
among the controls.”

We often use this reasoning informally, and supply a ‘denominator series’ from
our own experience, as when we are confronted with the statement that 90%
of all driving accidents occur within 10 Kilometres of home, or that in most
pancreas cancer cases in North America the patient gives a history of coffee-
drinking, or that most goals in ice hockey are on low shots, or that those in
professional sports tended to be born in certain months of the year. We do
not formally call this experience the ‘control series’; rather it is more aptly
referred to as a ‘denominator’ series.

Supplementary Exercise 16.1

Refer to the article “Road Trauma in Teenage Male Youth with Childhood
Disruptive Behavior Disorders: A Population Based Analysis” by Redelmeier
et al. in PLoS Medicine, November 2010, Volume 7, Issue 11, e1000369.

The following is an excerpt from the Abstract:

A history of disruptive behavior disorders was significantly more fre-
quent among trauma patients than controls (767 of 3,421 versus
664 of 3,812), equal to a one-third increase in the relative risk of
road trauma (odds ratio = 1.37, 95% confidence interval 1.22–1.54,
p,0.001). The risk was evident over a range of settings and after ad-
justment for measured confounders (odds ratio 1.38, 95% confidence
interval 1.21–1.56, p¡0.001).

The risk explained about one-in-20 crashes, was apparent years be-
fore the event, extended to those who died, and persisted among
those involved as pedestrians.

In the Methods, the authors state:

We excluded teenage girls from both groups to avoid Simpsons para-
dox (a spurious association created by loading on a null-null position)
since this group has much lower rates of crash involvement.

In the Discussion, the authors state:

A third limitation that causes our study to underestimate the asso-
ciation of disruptive behavior disorders with road trauma is that the
data excluded girls [74]. To address this issue we retrieved the origi-
nal databases, replicated our methods in girls rather than boys, and
conducted a post hoc analysis. As anticipated, the results yielded
a smaller sample (n = 4,156) and about the same estimated risk
(odds ratio 1.31, 95% confidence interval 1.07–1.61, chi- square =
6.8, p = 0.010). Hence, the association of disruptive behavioral dis-
orders with road trauma extended to both teenage boys and girls. Of
course, many issues remain for future research including medication
level at time of injury, amount of driving, extent of brain trauma,
and sequelae among those not hospitalized [75,76].

Questions:

i. Reproduce the (crude) odds ratio and CI reported in the abstract.

ii. Figure out how the authors came up with the statement that “the risk
[factor] explained about one-in-20 crashes”.

Hint: (i) in what fraction of crashes was the factor present? [note that
the factor cannot explain cases among those in in which the factor was
absent].

(ii) Even when it was present, the factor wasn’t responsible for all of these
crashes. Most of them would have happened even in the absence of the
factor. Use the reported rate ratio (take the ’adjusted’ 1.38 rather than
the crude 1.37). Work out, using say 138 accidents in males in whom the
factor was present, what fraction of them would have occurred because of
unrelated background factors and what fraction would be ’excess’ cases
due to the factor itself (or ask yourself: for every crash among those with
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the factor that was because of background (unrelated) causes, how many
would there because of the factor? The (relative) rates in those with and
without the factor are the key here). This latter fraction is called the
‘etiologic fraction among the exposed’.

Then multiply this etiologic fraction (of cases among the exposed that
are due to the exposure) by the fraction in (i) to get the overall fraction
of all cases that is due to the factor.

This overall fraction (a fraction of a fraction) is called the overall or pop-
ulation etiologic fraction (sometimes called the population ‘attributable’
faction). The two formulae for it are not well understood by epidemi-
ologists. See the article ‘A heuristic approach to the formulae for the
population attributable fraction’ under the ‘r e p r i n t s’ tab on JH’s
homepage.

iii. Come up with a reasonably realistic example of a behaviour/trait and
the occurrence of some health event, where, in a ‘case-control’ study, if
one simply added the 4 frequencies in the 2 × 2 table for boys and the
corresponding ones for girls, and used the combined frequencies from this
overall 2 × 2 table to produce one odds ratio, one could produce a very
different odds ratio than the (say) common odds ratio in each of the
gender-specific tables.

Do you think Redelmeier need have been concerned with Simpson’s para-
dox in his context?

iv. The reported odds ratio for girls (1.31) is accompanied by both a confi-
dence interval and a (null) chi-quare statistic and p-value. The CI was
probably arrived at using Woolf’s formula. Compute a test-based confi-
dence interval instead and comment on how close it comes to the reported
interval.

v. From the reported odds ratio of 1.31, and assuming that appendicitis
is just about as common in boys and girls, that the 4,156 is the total
number of trauma and appendicitis admissions in girls, and stating any
other assumptions you are forced to make, try to reconstruct what the
2× 2 table must have looked like for girls. (the reported CI should be of
considerable help!)

vi. We briefly discussed in class how one could merge(combine) the odds
ratios for boys and girls to get a single point estimate and associated CI.
[notice that combining the odds ratios to get 1 new odds ratio can yield
a very different result from combining the raw frequencies into one 2× 2
table, and making one odds ratio from this one table]. Formally merge
the results in 3 ways:

(a) Using the antilog of the weighted average of the logs of the gender-
specific odds ratios (also known as Woolf’s method) As part of this
exercise, prove that the linear combination Woolf uses is the linear
combination with the minimum variance.

(b) Using the Mantel-Haenszel summary odds ratio, and accompanying
your point estimate by a test-based CI. [Whereas the M-H point
estimate and test-statistic formulae date from 1959, we had to wait
much longer for a specialized variance formula to accompany the
point estimate.]

(c) Using a likelihood-based approach to estimation of θ = logOR,
in which you represent each of the two items of data as normal-
based log likelihoods centered on θ̂M and θ̂M ,then add the two log-
likelihoods. Hint: since each log-likelihood is a quadratic form in θ,
and since their sum is again a a quadratic form in θ, this amounts
to working out where the new log-likelihood is centered, and what
its curvature is. Show that its centre has the same form as the one
used by Woolf.

17 Likelihoods for the odds ratio

Supplementary Exercise 17.1

Using the same types of calculations we did in R to replicate the results
obtained by Fisher in his example comparing mono and dizygotic twins, repli-
cated the calculations in section 17.4 of Clayton and Hills.
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