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1 Probability models

1.1 Observation, experiments and models

Stochastic Models1

Normal vs Bernoulli and Poisson: We need to distinguish between individual
observations, governed by Bernoulli and Poisson (or if quantitative rather
than all-or-none or a count, Normal) and statistics formed by aggregation of
individual observations. If a large enough number of individual observations
are used to form a statistic, its (sampling) distribution can be described by a
Gaussian (Normal) probability model. So, ultimately, this probability model
is just as relevant.

1.1.1 Epidemiologic [subject-matter] models [JH]

We need to also make a distinction between the quantity(quantities) that
is(are) of substantive interest or concern, the data from which this(these)
is(are) estimated, the statistical models used to get to the the quan-
tity(quantities) and the relationships of interest.

For example, of medical, public health or personal interest/concern might be
the

• level of use of cell phones while driving

• average and range [across people] of reductions in cholesterol with regular
use of a cholesterol-lowering medication

• amount of time taken by health care personnel to decipher the handwrit-
ing of other health care personnel

• (average) number of times people have to phone to reach a ‘live’ person

• reduction in one’s risk of dying of a specific cancer if one is regularly
screened for it.

1‘Stochastic’ http://www.allwords.com/word-stochastic.html French: stochas-
tique(fr) German: stochastisch(de) Spanish: estocstico(es) Etymology: From Ancient
Greek (polytonic, ), from (polytonic, ) “aim at a target, guess”, from (polytonic, ) “an
aim, a guess”. Parzen, in his text on Stochastic Processes .. page 7 says: <<The word is of
Greek origin; see Hagstroem (1940) for a study of the history of the word. In seventeenth
century English, the word “stochastic” had the meaning “to conjecture, to aim at a
mark.” It is not clear how it acquired the meaning it has today of “pertaining to chance.”
Many writers use the expression “chance process” or “random process” as synonyms for
“stochastic process.”>>

• appropriate-size tracheostomy tube for an obese patient, based on easily
easily obtained anthropometric measurements

• length of central venous catheter that can be safely inserted into a child
as a function of the child’s height etc.

• rate of automobile accidents as a function of drivers’ blood levels of alco-
hol and other drugs, numbers of persons in the car, cell-phone and other
activities, weather, road conditions, etc.

• Psychological Stress, Negative Life Events, Perceived Stress, Negative
Affect Smoking, Alcohol Consumption and Susceptibility to the Common
Cold

• The force of mortality s a function of age, sex and calendar time.

• Genetic variation in alcohol dehydrogenase and the beneficial effect of
moderate alcohol consumption on myocardial infarction

• Are seat belt restraints as effective in school age children as in adults?

• Levels of folic acid to add to flour, so that most people have sufficiently
high blood levels.

• Early diet in children born preterm and their IQ at age eight.

• Prevalence of Down’s syndrome in relation to parity and maternal age.

Of broader interest/concern might be

• the wind chill factor as a function of temperature and wind speed

• how many fewer Florida votes Al Gore got in 2000 because of a badly
laid-out ballot

• a formula for deriving one’s ”ideal” weight from one’s height

• yearly costs under different cell-phone plans

• yearly maintenance costs for different makes and models of cars

• car or life insurance premiums as a function of ...

• cost per foot2 of commercial or business rental space as a function of ...

• Rapid Changes in Flowering Time in British Plants

• How much money the City of New York should revover from Brink’s
for the losses the City incurred by the criminal activities of two Brink’s
employees (they collected the money form the parking meters, but kept
some of it!).
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1.1.2 From behaviour of statistical ‘atoms’ to statistical
‘molecules’

1 condition’ or 1 circumstance’ or ‘setting’ [also known as “1-sample
problems”]

The smallest statistical element or unit (?atom): its quantity of interest might
have a Y distribution that under sampling, could be represented by a discrete
random variable with ‘2-point’ support (Bernoulli), 3-point support, k−point
support, etc. or interval support (Normal, gamma, beta, log-normal, ... )

The aggregate or summary of the values associated with these elements is
often a sum or a count: with e.g., a Binomial, Negative Binomial, gamma
distribution. Or teh summary might be more complex – it could be some re-
arrangement of the data on the individuals (e.g., the way the tumbler longevity
data were summarized). This brings in the notion of “sufficient statistics”.

More complex: t, F , ...

2 or conditions’ or 1 circumstances’ or ‘settings’, indexed by possible
values of ‘X’ variable(s). Think of the ‘X’ variable(s) as ‘covariate patterns’
or ‘profiles.’

unknown conditions or circumstances Sometimes we don’t have any mea-
surable (or measured) ‘X’ variable(s) to explain the differences in Y from say
family to family or person to person.There instead of the usual multiple re-
gression approach, we use the concept of a hierarchical or random-effects or
latent class or mixture model.

1.2 Binary data

It is worth recalling from the first semester, the concepts of states and events
(transitions from one state to another).

Cohort studies with fixed follow-up time

Recall: cohort is another name for a closed population, with membership (en-
try) defined by some event, such as birth, losing one’s virginity, obtaining one’s
first driver’s permit, attaining age 21, graduating from university, entering the
‘ever-married’ state, undergoing a certain medical intervention, enrolling in a
follow-up study, etc. Then the event of interest is the exit (transition) from
a/the state that prevailed at entry. So death is the transition from the living
state to the dead state, receiving a diagnosis of cancer changes one’s state
from ‘no history of cancer since entry’ to ‘have a history of cancer’, being
convicted of a traffic offense changes one’s state from ‘clean record’ to ‘have

a history of traffic offenses.’ We can also envision more complex situations,
with a transition from ‘never had a stroke,’ to ‘have had 1 stroke,’ to ‘have
had 2 strokes,’ ... or ‘haven’t yet had a cold this winter,’ to ‘have had 1 cold,’
to ‘have had 2 colds,’ etc.

Censoring : to be distinguished from truncation. Truncation implies some
observations are missed by the data-gathering process, i.e., that the observed
distribution is a systematic distortion of the true distribution. Note that we
can have censoring of any quantitative variable, not just one that measures
the duration until the event of interest. For example, the limits on say a
thermometer or a weight scale or a chemical assay may mean that it cannot
record/detect values below or above these limits. Also, the example in C&H
implicitly refers to right censoring: one can have left censoring, as with lower
limits of detection in a chemical assay, or interval censoring, as – in repeated
cross-sectional examinations – with the date of sero-conversion to HIV.

Incidence studies: the word new means a change of state since entry.

“Failure”: It is a pity that C&H didn’t go one step more and use the even more
generic term “event”. That way, they would not have to think of graduating
with a PhD (i.e., getting out of – exiting from – here) as “failure” and still
being here” as ”survival.” This simpler and more general terminology would
mean that we would not have to struggle to find a suitable label of the ‘y’
axis of the 1 − F (t), usually called S(t), function. One could simply say
“proportion still in initial state,” and substitute the term for the initial state,
i.e., proportion still in PhD program, proportion event-free, etc.

N or n? D or d? JH would have preferred lower case, at least for the
denominator. In sampling textbooks, N usually denotes the population size,
and n the sample size. In the style manual used in social sciences, n is the
sample size in each stratum, whereas N is the overall sample size. Thus, for
example, a study might report on a sample of N = 76 subjects, composed of
n = 40 females and n = 36 males.

Cohort studies with variable follow-up time: If every subject entered a study
at least 5 years ago, then, in principle, one should be able to determine D
and N −D, and the 5-year survival proportion. However, losses to follow-up
before 5 years, and before the event of interest, lead to observations that are
typically regarded as censored at the time of the loss. Another phenomenon
that leads to censored observations is staggered entry, as in the JUPITER
trial. Unfortunately, some losses to follow-up may be examples of informative’
censoring.

Cross-sectional prevalence data

Recall again that prevalence refers to a state. Examples would include the
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proportion (of a certain age group, say) who wear glasses for reading, or have
undetected high blood pressure, or have high-speed internet at home, or have
a family history of a certain disease, or a certain ‘gene’ or blood-type.

From a purely statistical perspective, the analysis of prevalence proportions
of the form D/N and incidence proportions of the form D/N takes the same
form: the underlying statistical ‘atoms’ are N Bernoulli random variables.

1.3 The binary probability model

JH presumes they use this heading as a shorthand for ‘the probability model
for binary responses’ (or ‘binary outcomes’ or binary random variables)

... to “predict the outcome” : JH takes this word predict in its broader mean-
ing. If we are giving a patient the probability that he will have a certain
future event say within the next 5 years, we can talk about predicting the
outcome: we are speaking of prognosis; but what if we are giving a woman
the probability that the suspicious finding on a mammogram does in fact rep-
resent an existing breast cancer, we are speaking of the present, of whether
a phenomenon already exists, and we use a prevalence proportion as an esti-
mate of the diagnostic probability. Note that prevalence and incidence refer
to aggregates.

The risk parameter

Risk typically refers to the future, and can be used when speaking to or about
one person; we don’t have a comparable specialized term for the probability
that a state exists when speaking to or about one person, and would therefore
just use the generic term probability.

The odds parameter

The sex-ratio is often expressed as an odds, i.e., as a ratio of males to fe-
males. If the proportion of males is 0.51, then the male:female ratio is 51:49
or (51/49):1, i.e., approximately 1.04:1. This example is a good reason why
C&H should have used a more generic pair of terms than failure and survival
(or success and failure).

In betting on horse races (at least where JH comes from), odds of 3:1 are the
odds against the horse winning; i.e., the probability of winning is 1/4. When
a horse is a heavy favourite so that the probability of winning was 75%, the
“bookies” would give the odds as “3:1 on.”

Rare events

One of the tricks to make events rare will be to slice the time period into

small slices or windows.

Death, the first of the two only sure events (taxes is the other) is also rare -
in the short term!

Also, it would be more correct to speak of a rare events, since disease is often
used to describe a process, rather than a transition. And since most transitions
are rapid, the probability of a transition (an event) occurring within a given
short sub-interval will usually be small.

If the state of interest being addressed with cross-sectional data is uncommon
(or rare), then yes, the prevalence odds and the prevalence proportion will be
very close to each other.

Supplementary Exercise 1.1. If one rounds probabilities or risks or preva-
lences (π’s), or their corresponding odds, Ω = π/(1− π), to 1 decimal place,
at what value of π will the rounded values of π and Ω be differerent? Also,
why use lowercase π for proportion, and uppercase Ω for odds?

1.4 Parameter Estimation

Should you be surprised if the estimate were π were other than D/N? Consult
Google or Wikipedia on “the rule of succession,” and on Laplace’s estimate of
the probability that the sun will rise tomorrow, given that it has unfailingly
risen (D = 0) for the past 6000 years, i.e., N ≈ 365× 6000.

Supplementary Exercise 1.2. One has 2 independent observations from
the model

E[y|x] = β × x.

The y’s might represent the total numbers of typographical errors on x ran-
domly sample pages of a large document, and the data might be y = 2 errors
in total in a sample of x = 1 page, and y = 8 errors in total in a separate
sample of x = 2 pages. The β in the model represents the mean number of
errors per page of the document. Or the y’s might represent the total weight
of x randomly sample pages of a document, and the data might be y = 2
units of weight in total for a sample of x = 1 page, and y = 8 units for a
separate sample of x = 2 pages. The β in the model represents the mean
weight per page of the document. We gave this ‘estimation of β’ problem to
several statisticians and epidemiologists, and to several grade 6 students, and
they gave us a variety of estimates, such as β̂ = 3.6/page, 3.33/page, and
3.45!

How can this be?
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1.5 Is the model true?

I wonder if they were aware of the quote, attributed to the statistician George
Box that goes something like this

“all models are wrong; but some are more useful than others”

http://en.wikiquote.org/wiki/George_E._P._Box

2 Conditional probability models

2.1 Conditional probability

JH is suprised at how few textbooks used trees to explain conditional prob-
abilities. Probability trees make it easy to see the direction in which one is
preceeding, or looking, where simply algebraic symbols can not, and make it
easier to distinguish ‘forward’ from ‘reverse’ probabilities.

M&M Ch 4.1, 4.2, 4.5  Probability

How to calculate probabilities

Probability Calculations

"I figure there's a 40% chance of showers, and a
10% chance we know what we're talking about"

Wall Street Journal

Basic Rules

A
B

A
B

A and B

Probabilities add to 1

Prob(event) =
 1 - Prob(complement)

   

ADDITION  FOR "EITHER A OR B"

If mutually exclusive
"PARALLEL"   P(A or B) = P(A) + P(B)

If overlapping
  P(A or B) = P(A) + P(B) - P(A and B)

A

Not A
Not B

B

B
Not B

   MULTIPLICATION  FOR "A  AND B" OR "A THEN B"

If independent
"SERIAL" P(A and B) = P(A) • P(B)

If dependent
P(A and B) = P(A) • P(B | A)

Conditional Probability P(B | A) = Probability of B "given A" or "conditional on A"

More Complex:
• Break up into elements
• Look for already worked-out calculations
• Beware of intuition, especially with "after the fact" calculations for non-

standard situations

page 2

Figure 1: From JH’s notes for EPIB607, introductory biostatistics for epidemiology

Trees show that the probability of a particular sequence is always a fraction
of a fraction of a fraction .. , and that if we start with the full probability of 1
at the single entry point on the extreme left, then we need at the right hand
side to account for all of this (i.e., the ‘total’) probability.

Statistical dependence and independence

JH likes to say that with independence, one doesn’t have to look over one’s
shoulder to the previous event to know which probability to multiple by.. The
illustrated example on the gender composition of 2 independent births, and of
a sample of 2 persons sampled (without replacement) from a pool of 5 males
and 5 females, show this distinction: in the first example, when one comes to
the second component in the probability product, Pr(y2 = male) is the same
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whether one has got to there via the ‘upper’ path, or the ‘lower’ one. know
M&M Ch 4.1, 4.2, 4.5  Probability

Examples of Conditional Probabilities...
PERSONS 

Smoke?
Develop 
Lung Ca.?

YES

NO

YES

YES

NO

NO

YES

YES

NO
NO

NO

YES

PERSONS 

Smoke?
Develop 
Lung Ca.?

GENDER: 2 BIRTHS
1st 2nd

M

M

F

0.5

0 .5

0 .5

0 .5

F
M

0.5

0 .5

F

0 .25

0 .25

0 .25

0 .25

GENDER: 2  from  5 M & 5 F

5 /10

20/90
4 /9

5 /10

5 /9
25/90

4 /9

5 /9
25/90

20/90

1st 2nd

M

M

F

F
M

F
Testing Dx Tests.. .

Disease Test

+

+

–

–
+

–

Dx Tests In Practice. . .

+

+

–

-
+

–

DiseaseTestSMOKERS: 1 M & 1 F 
M F

YES

NO

SMOKERS: Husband & Wife

H W
YES

YES

NO

NO

YES

YES

NO
NO

NO

YES

O. J.  SIMPSON 

Murdered 
wife?

YES

NO

YES

YES

NO

NO

YES

YES

NO

NO

NO

YES

DNA 
Match?

O. J.  SIMPSON 
Murdered 
wife?

DNA 
Match?

page 3Figure 2: JH examples of independence/dependence, and ‘forward’/‘reverse’ probabilities

2.2 Changing the conditioning: Bayes’ rule

The right hand half of JH Figure 2 shows 3 examples of ‘forward’ (on left)
and ‘reverse’ probabilities.

These same distinctions between ‘forward’ and ‘reverse’ probabilities is at
the heart of the frequentist p-values (probabilities) versus Bayesian posterior
probabilities. To state it simply,

Probability[data|Hypothesis] 6= Probability[Hypothesis|data]

or, if you prefer something that rhymes,

Probability[data|theta] 6= Probability[theta|data].

Two striking – and frightening – examples of misunderstandings about them
are given on the next page.

U.S. National Academy of Sciences under fire over plans for new
study of DNA statistics: Confusion leads to retrial in UK.2

[...] He also argued that one of the prosecution’s expert witnesses, as well as
the judge, had confused two different sorts of probability.

One is the probability that DNA from an individual selected at random from
the population would match that of the semen taken from the rape victim, a
calculation generally based solely on the frequency of different alleles in the
population. The other is the separate probability that a match between a
suspect’s DNA and that taken from the scene of a crime could have arisen
simply by chance – in other words that the suspect is innocent despite
the apparent match.3 This probability depends on the other factors that
led to the suspect being identified as such in the first place.

During the trial, a forensic scientist gave the first probability in reply to a
question about the second. Mansfield convinced the appeals court that the
error was repeated by the judge in his summing up, and that this slip – widely
recognized as a danger in any trial requiring the explanation of statistical
arguments to a lay jury – justified a retrial. In their judgement, the three
appeal judges, headed by the Lord Chief Justice, Lord Farquharson, explicitly
stated that their decision “should not be taken to indicate that DNA profiling
is an unsafe source of evidence.”

Nevertheless, with DNA techniques being increasingly used in court cases,
some forensic scientists are worried that flaws in the presentation of their
statistical significance could, as in the Deen case, undermine what might oth-
erwise be a convincing demonstration of a suspect’s guilt.

Some now argue, for example, that quantified statistical probabilities should
be replaced, wherever possible, by a more descriptive presentation of the con-
clusions of their analysis. “The whole issue of statistics and DNA profiling has
got rather out of hand,” says one. Others, however, say that the Deen case
has been important in revealing the dangers inherent in the ‘prosecutor’s
fallacy’. They argue that this suggests the need for more sophisticated cal-
culation and careful presentation of statistical probabilities. “The way that
the prosecution’s case has been presented in trials involving DNA-based iden-
tification has often been very unsatisfactory,” says David Balding, lecturer in
probability and statistics at Queen Mary and Westfield College in London.
“Warnings about the prosecutor’s fallacy should be made much more explicit.
After this decision, people are going to have to be more careful.”

2NATURE p 101-102 Jan 13, 1994.
3italics by JH. The wording of the italicized phrase is imprecise; the text in bold wording

is much better .. if you read “despite” as “given that” or “conditional on the fact of”t
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“The prosecutor’s fallacy”: Who’s the DNA fingerprinting
pointing at? 4

Pringle describes the successful appeal of a rape case where the primary ev-
idence was DNA fingerprinting. In this case the statistician Peter Donnelly
opened a new area of debate. He remarked that

forensic evidence answers the question “What is the probability that
the defendant’s DNA profile matches that of the crime sample, as-
suming that the defendant is innocent?”

while the jury must try to answer the question “What is the proba-
bility that the defendant is innocent, assuming that the DNA profiles
of the defendant and the crime sample match?” 5

Apparently, Donnelly suggested to the Lord Chief Justice and his fellow judges
that they imagine themselves playing a game of poker with the Archbishop of
Canterbury. If the Archbishop were to deal himself a royal flush on the first
hand, one might suspect him of cheating. Assuming that he is an honest card
player (and shuffled eleven times) the chance of this happening is about 1 in
70,000.

But if the judges were asked whether the Archbishop were honest, given that
he had just dealt a royal flush, they would be likely to place the chance a bit
higher than 1 in 70,000 *.

The error in mixing up these two probabilities is called the “the prosecutor’s
fallacy,” and it is suggested that newspapers regularly make this error.

Apparently, Donnelly’s testimony convinced the three judges that the case
before them involved an example of this and they ordered a retrial

[* Comment by JH: This is a very nice example of the advantages of Bayesian
over Frequentist inference .. it lets one take one’s prior knowledge (the fact
that he is the Archbishop) into account.

The book ‘Statistical Inference” by Michael W. Oakes is an excellent intro-
duction to this topic and the limitations of frequentist inference.]

4New Scientist item by David Pringle, 1994.01.29, 51-52; cited in Vol 3.02 Chance News
5(JH) Donnelly’s words make the contrast of the two types of probability much “crisper.”

The fuzziness of the wording on the previous story is sadly typical of the way statistical
concepts often become muddied as they are passed on.

2.3 Examples

2.3.1 Example from genetics
M&M Ch 6  Introduction to Inference ... OVERVIEW

Introduction to Inference* Bayes Theorem : Haemophilia
Brother has haemophilia => Probability (WOMAN is Carrier) = 0.5
New Data:  Her Son is Normal (NL) .
Update: Prob[Woman is Carrier, given her son is NL] = ??

Inference is about Parameters (Populations) or general
mechanisms -- or future observations. It is not about
data (samples) per se, although it uses data from
samples. Might think of inference as statements about a
universe most of which one did not observe.

0.5 0.5

CARRIERNOT CARRIER

WOMAN

Son

0.0
0.5

NL H

Son

Products  of PRIOR  and LIKELIHOOD

PRIOR   [ prior to knowing status of her son ]

LIKELIHOOD

0.25

0.67
0.33

WOMAN

CARRIERNOT CARRIER

WOMAN

POSTERIOR   Given that Son is NL

0.5

observed data
NL H

1.0
0.5

1.

2.

3.

 [  Prob son is NL | ]PRIOR

Probs. 
Scaled to 
add to 1

0.5 x 1.0 
0.5 x 0.5 

Two main schools or approaches:

Bayesian [ not even mentioned by M&M ]

• Makes direct statements about parameters
and   future observations

• Uses  previous impressions plus new data to update impressions
about parameter(s)

e.g.
Everyday life
Medical tests:  Pre- and post-test impressions

Frequentist

• Makes statements about observed data (or statistics from data)
(used indirectly [but often incorrectly] to assess evidence against
certain values of parameter)

• Does not use  previous impressions or data outside of current
study (meta-analysis is changing this)

e.g.

• Statistical Quality Control procedures [for Decisions]
• Sample survey organizations:  Confidence intervals
• Statistical Tests of Hypotheses

Unlike Bayesian inference, there is no quantified pre-test or pre-
data  "impression"; the ultimate statements are about data,
conditional on an assumed null or other hypothesis.

Thus, an explanation of a  p-value must start with the conditional
"IF the parameter is ... the probability that the data would ..."

Book "Statistical Inference" by Michael W. Oakes is an excellent
introduction to this topic and the limitations of frequentist inference.

page 1Figure 3: a simpler (but now outdated) example – nowadays there are direct tests for

being a carrier: so one doesn’t have to wait to have a son to alter the probabilities
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2.3.2 Twins: Excerpt from an article by Bradley Efron

Modern science and the Bayesian-Frequentist controversy

Heres a real-life example I used to illustrate Bayesian virtues to the
physicists. A physicist friend of mine and her husband found out,
thanks to the miracle of sonograms, that they were going to have
twin boys. One day at breakfast in the student union she suddenly
asked me what was the probability that the twins would be identical
rather than fraternal. This seemed like a tough question, especially
at breakfast. Stalling for time, I asked if the doctor had given her any
more information. “Yes”, she said, “he told me that the proportion
of identical twins was one third”. This is the population proportion
of course, and my friend wanted to know the probability that her
twins would be identical.

Bayes would have lived in vain if I didn’t answer my friend using
Bayes’ rule. According to the doctor the prior odds ratio of identi-
cal to nonidentical is one-third to two-thirds, or one half. Because
identical twins are always the same sex but fraternal twins are ran-
dom, the likelihood ratio for seeing “both boys” in the sonogram is
a factor of two in favor of Identical. Bayes’ rule says to multiply the
prior odds by the likelihood ratio to get the current odds: in this
case 1/2 times 2 equals 1; in other words, equal odds on identical or
nonidentical given the sonogram results. So I told my friend that her
odds were 50-50 (wishing the answer had come out something else,
like 63-37, to make me seem more clever.) Incidentally, the twins
are a couple of years old now, and “couldnt be more non-identical”
according to their mom.

Supplementary Exercise 2.1. Depict Efron’s calculations using a proba-
bility tree.

Supplementary Exercise 2.2 Use a probability tree to determine the best
strategy in the Monty Hall problem

( http://en.wikipedia.org/wiki/Monty_Hall_problem )

Supplementary Exercise 2.3 A man has exactly two children: you meet
the older one and see that it’s a boy. A woman has exactly two children;
you meet one of them [don’t know if its the younger/older] and see is a boy.
What is the probability of the man’s younger child being a boy, and what is
the probability of the woman’s “other” child being a boy?

3 Likelihood

“We need a way of choosing a value of the parameter(s) of the model” (1st
paragraph): It is clear from the later text that they do not mean to give the
impression that one is only interest in a single value or point-estimate. For
any method to be worthwhile, it needs to be able to provides some measure
of uncertainty, i.e. an interval or range of parameter values.

“In simple statistical analyses, these stages of model building and estimation
may seem to be absent, the analysis just being an intuitively sensible way of
summarizing the data.” Part of the reason is that (as an example) a sample
mean may simply seem like a natural quantity to calculate, and it does not
seem to require an explicit statistical model. The mean can also be seen as the
least squares estimate, in the sense that the sum of the squared deviations of
the sample values from any other value than the sample mean would be larger
than the sum of the squared deviations about the mean itself, i.e., the sample
mean is a least squares estimate. But that purely arithmetic procedure still
does not require any assumptions about the true value of the parameter value
µ, or about the shape of the distribution of the possible values on both sides
of µ. For the grade 6 exercise about the mean number of errors per page, it
seemed to make sense to divide the total number of errors by the total number
of pages; but what if the task was to estimate the mean weight of the pages?
We discussed in class at least two different statistical models – that would
lead to different estimates.

“In modern statistics the concept which is central to the process of parameter
estimation is likelihood.” Older and less sophisticated methods include the
method of moments, and the method of minimum chi-square for count data.
These estimators are not always efficient, and their sampling distributions
are often mathematically intractable. For some types of data, the method
of weighted least squares is a reasonable approach, and we will also see that
iteratively-reweighed least squares is a way to obtain ML estimates without
formally calculating likelihoods.

Likelihood is central not just to obtain frequentist-type estimators per se,
but also to allow Bayesian analyses to combine prior beliefs about parameter
values to be updated with the data at hand, and arrive at what one’s post-data
beliefs should be.

Likelihood provides a very flexible approach to combining data, provided one
has a probability model for them. As a simple example, consider the chal-
lenge of estimating the mean µ from several independent observations for a
N(µ, σ) process, but where each observation is recorded to a different degree
of numerical ‘rounding’ or ‘binning.’ For example, imagine that because of

7
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the differences with which the data were recorded, the n = 4 observations are
y1 ∈ [4, 6), y2 ∈ [3, 4), y3 ∈ [5,∞), y4 ∈ [−∞, 3.6). Even if we were told the
true value of σ, the least squares method cannot handle this uni-parameter
estimation task.

“The main idea is simply that parameter values which make the data more
probable are better supported than values which make the data less probable.”
Before going on to their first example, with a parameter than in principle
could take any values in the unit interval, consider a simpler example where
there are just two vlaues of π. We have sample of candies from one of two
sources: American, where the expected distribution of colours is 30%:70%
and the other Canadian where it is 50%:50%. In our sample of n = 5, the
observed distribution is 2:3. Do the data provide more support for the one
source than the other?

3.1 Likelihood in the binary model

Notice the level of detail at which the observed data are reported in Figure 3.1:
not just the numbers of each (4 and 6) but the actual sequence in which they
were observed. The Likelihood function uses the probability of the observed
data. Even if we did not know the sequence, the probability of observing 4
and 6 would be 10C4 = 210 times larger; however since we assume there is no
order effect, i.e., that π is constant over trials, the actual sequence does not
contain any information about π, and we would not include this multiplier
in the Likelihood. In any case, we think of the likelihood as a function of π
rather than of the observed numbers of each of the two types.: these data
are considered fixed, and π is varied.. contrast this with the tail area in a
frequentist p-values, which includes other non-observed values more extreme
than that observed. Likelihood and Bayesian methods do not do this.

“π = 0.5 is more likely than π = 0.1” Please realize that this statement by
itself could be taken to mean that we should put more money on the 0.5 than
the 0.1. It does not mean this. in the candy source example, knowing where
the candies were purchased, or what they tasked like, would be additional
information that might in and of itself make one source more likely than the
other. The point here is not to use terms that imply a prior or posterior
probability distribution on π. The likelihood function is based just on the
data, and in real life any extra prior information about π would be combined
with the information provided by the data. It would have been better if the
authors had simply said ”the data provide more support for “π = 0.5 than
π = 0.1.” Indeed, I don’t think “π = 0.5 is more likely than π = 0.1”
is standard terminology. The terminology “0.4 is the ML estimate of π” is

simpler and less ambiguous.

History: there is some dispute as to who first used the principle of ML for the
choice of parameter value. The name of Gauss is often mentioned. The seldom
mentioned 1912 paper by Fisher, while still a student, is a nice clean example,
and shows how Likelihood (he did not use the word likelihood in the paper) is
flexible and allows for the different bins sizes with which observations might
be recorded, etc. It is worth reading that original paper, but don’t spend
too much time on section 5, where he deals with the ML estimation of the
parameters µ and σ of a Normal distribution: the ML estimate of σ2 involves
a divisor of n rather than n−1, and embarrassment for Fisher, who was from
early on, insisted on the correct degrees of freedom when assessing variation.
His 1912 paper can be found in the digital archives in Adelaide, Australia (he
spent his last years there) but JH has put a copy in the Resources folder.

The usual reference is to papers by Fisher in the early 1920’s, where he worked
of many of the properties of ML estimators.

One interesting feature of the 1912 paper is that Fisher never defined the
likelihood as a product of probabilities; instead he defined the log-likelihood
as a sum of log-probabilities. This is very much in keeping with his summa-
tion of information over observations. Indeed, there is a lot in his writings
about choosing the most informative configurations at which to observe the
experimental or study units.

3.2 Supported range

The choice of critical value is much less standardized or conventional than
say the one for a significance test, or confidence level, or a highest posterior
density.

Fig 3.4 (based on 20/50) vs. Fig 3.3 (based on 4/10): the authors don’t say
it explicitly, but the sharpness of the likelihood function is measured formally
by the second derivative at the point where it is a maximum.

3.3 The log likelihood

The (log-)likelihood is invariant to alternative monotonic transformations of
the parameter, so one often chooses a parameter scale on which the function
is more symmetric.

8
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3.4 Censoring in follow-up studies

See applications below. These will be more relevant after we consider all of
the fitting options, and the benefits/felxibility of a Likelihood approach.

3.5 Other fitting methods

We mentioned earlier that the method of least squares does not make an
explicit assumption about the distribution of the deviations from or even
that the observed data are a sample from a larger universe. Another older
method, that does not make explicit assumptions about the variations about
the postulated means, is the method of minimum chi-square. It was used
for fitting simpler models for dose response data involving count data. This
minimum chi-square criterion does not lead to simple methods of estimation,
or to estimators with easily derived sampling distributions. Nevertheless, it is
one of the thee methods (the others are ML – which requires a fully specified
model for the variations, and LS, that does not) used in the java applet
http://www.biostat.mcgill.ca/hanley/MaxLik3D.swf. The applet allows
you to fit a linear model to the above-described 2-point data, and to monitor
how the log-likelihood, the sum of squared deviations, and the chi-square
goodness of fit statistics vary as a function of the entertained values of β.

The applet shows that the LS method which measures lack of fit on the same
scale that the y’s are measured on (cf the two red lines). The min-X2 method –
applied to y’s that represent counts or frequencies, is similar, in that the “loss
function” is

∑
(y− ŷ)/ŷ2. The criterion for the ML fitting of a Poisson model

is very different, in that it is measured on the probability or log-probability
scale, a scale that is shown in blue, and projecting out from the x− y plane.

Under some Normal models with homoscedastic variation, the LS and ML
methods give the same estimates for the parameter(s) that make up the mean.
If y|x ∼ Normal(µx, σ2), then Lik =

∏
(1/σ) exp[−{(yi−βxi)2/2σ2}]. This is

maximized when the exponentiated quantity is minimized. The minimization
is the same one involved in the LS estimation.

Supplementary Exercise 3.1. Grouped Normal data (from Fisher’s pa-
per6).Three hundred observed measurement errors (ε’s) from a N(0, σ) dis-
tribution are grouped (binned) in nine classes, positive and negative values
being thrown together as shown in the following table:-

6On the Mathematical Foundations of Theoretical Statistics, Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, Vol. 222 (1922), pp. 309-368

Bin 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 All
Frequency (f) 114 84 53 24 14 6 3 1 1 300

Estimate σ2 ...

1. as (1/300)
∑
f×ε2mid. Note that we estimate it using a divisor of n rather

than n− 1, since we do not have to estimate µ : the errors are deviations
from known values, so µ = 0 (structurally).

2. Using Sheppard’s correction for the grouping, i.e, by subtracting w2/12,
where w is the width of each bin, in this case 1. Incidentally, can you
figure out why Sheppard subtracts this amount? Shouldn’t grouping add
rather than subtract noise?

3. Using the method of Minimum χ2.

4. Using the method of Maximum Likelihood.

Supplementary Exercise 3.2 [2012 only]. Frequency data, the subject
of Galton’s 1894 correspondence with the Homing News and Pigeon Fanciers’
Journal.7

Significance magazine (http://www.significancemagazine.org/) has spe-
cial Galton coverage in 2011, the 100th anniversary of his death – Galton
was born in 1822, the same year, he noted himself, as the geneticist Gregor
Mendel. In the article “Sir Francis Galton and the homing pigeon”, Fanshawe
writes...

”The results for the 3,207 “old birds” are shown in the table. The
table shows the proportion of birds in each category. Galton suggests
summarising the figures by their mean and “variability”, which he
estimates as 976 and 124 yards per minute respectively. It is not clear
which quantity Galton calls the “variability” – his figure appears too
small to be a standard deviation.

The second row of figures are Galton’s, and arise from the propor-
tions that would be expected by approximating the original data by
a Normal distribution. The fit appears extremely good.”

Using these frequencies and bin-boundaries8 from the journal article, and the
Normal distribution assumed by the journal and by Galton,

Bin -5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14+ All
Freq 22 43 164 284 598 645 683 396 132 120 120 3207

7Material (3p of journal, Fanshawe’s article, and R code) avialable under Resources.
85-6 means 500-600 yards per minute, etc.

9
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estimate µ and σ, and, where possible, using SE(µ̂) and SE(σ̂), 9 form sym-
metric (frequentist) confidence intervals for µ and σ,

1. by concentrating the frequencies at the midpoints, and at suitably chosen
values for the two open-ended categories

2. via the method of Minimum χ2, and

3. via the method of Maximum Likelihood. Then

4. determine whether Fanshawe is correct: i.e., is the “124 yards” measure
of “variability” indeed too small to be a standard deviation (SD)?

5. Galton rarely used the SD.10 Instead he – as Gosset often did – used the
Probable Error (PE), i.e., 1/2 the IQR.11

In a Gaussian distribution, how much smaller/larger is the PE than the
SD?

Does this factor explain how Galton arrived at the 124 yards per minute?

The sample size is so large here that the symmetric (z-based) CI for σ is
quite accurate. By what if the sample size were quite small? In this case you
could use the tails of the (non-symmetric) distribution of the distribution of
s2 to derive an asymmetric first-principles frequentist confidence interval for
σ2, and by transformation, for σ.12

Suppose that for each dart thrown, one calculates the squared distance
from the center, ie d2i = e21,i + e22,i. Show that (1/n)

∑
i d

2
i is an unbiased

estimator of 2σ2. What sampling statistical distribution does each d2i follow?
What is a common name for the distribution of the square root of this
random variable?

9Since s2 ∼ (1/ν) × σ2 × ChiSq(d.f. = ν), then Var[s2] = (1/ν2) × σ4 × 2ν. By Delta
method,

Var[s] ≈ Var[s2]×
{

ds
ds2

}2
= (1/ν2)× σ4 × 2ν︸ ︷︷ ︸× (1/4)× {1/σ2}−1︸ ︷︷ ︸ = (1/ν2)× σ2,

so SE[s] ≈ (1/ν2)−1/2 × σ.

10Karl Pearson was the one who promoted the SD.
11Thus, it is equally probable (50:50) for an observation to be more/less than this amount

from the middle (truth).
12Hint: (taking some semantic liberties) a first-principles 100(1-α)% frequentist CI, (L,U)

for θ is the pair of statistics (L,U), such that Prob(θ̂ ≥ θ̂observed | θ = L) = α/2 and

Prob(θ̂ ≤ θ̂observed | θ = U) = α/2.

3.6 Other Applications: exercises

3.6.1 2 datapoints and a model

One has 2 independent observations from the (no-intercept) model

E[y|x] = µy|x = β × x.

The y’s might represent the total numbers of typographical errors on x ran-
domly sampled pages of a large document, and the data might be y = 2 errors
in total in a sample of x = 1 page, and y = 8 errors in total in a separate
sample of x = 2 pages. The β in the model represents the mean number of
errors per page of the document. Or the y’s might represent the total weight
of x randomly sample pages of a document, and the data might be y = 2 units
of weight in total for a sample of x = 1 page, and y = 8 units for a separate
sample of x = 2 pages. The β in the model represents the mean weight per
page of the document.

We gave this ‘estimation of β’ problem { (x, y) = (1, 2) & (2, 8)} to several
statisticians and epidemiologists, and to several grade 6 students, and they
gave us a variety of estimates, such as β̂ = 3.6/page, 3.33/page, and 3.45!

Supplementary Exercise 3.3

How can this be? The differences have to do with (i) what model they (im-
plicitly or explicitly) used for the variation of each y | x around the mean µy|x
and (ii) the method of fitting.

1. From 1st principles derive both the LS and (if possible the) ML estimators
of β when

(a) y | x ∼ ???(µy|x)

(b) y | x ∼ Poisson(µy|x)

(c) y | x ∼ N(µy|x, σ) [assume σ is known]

(d) y | x ∼ N(µy|x, σ
2 = x× σ2

0) [assume σ2
0 is known]

2. Where possible, match the estimators with the various numerical esti-
mates above.

3. One of the numerical estimates came from another fitting method, namely
the (now seldom-used) method of Minimum Chi-square, which seeks the

value of β that minimizes
∑ (O−E)2

E =
∑ (y−βx)2

βx in this example. Verify
that the one remaining estimate of unknown origin is in fact obtained
using this estimator.
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See the (Flash) applet on http://www.biostat.mcgill.ca/hanley/software/

One of the messages of this exercise is that for one to use a likelihood approach,
one must have a fully-specified probability model so that one can write the
probability of each observed observation.

And, with different distributions of the y’s around the mean µy|x = E(y|x) =
β × x, the probabilities (and thus the overall likelihood, and its maximum,
would be different.

3.6.2 Application: Estimation of parameters of gamma distribu-
tion fitted to tumbler mortality data [interval-censored and
right-censored data].

The important but seldom-visited article “Tumbler Mortality” by Brown and
Flood in JASA in 1947 shows the “survival” of tumblers (Free Online Dic-
tionary: a. A drinking glass, originally with a rounded bottom. b. A flat-
bottomed glass having no handle, foot, or stem.) in a cafeteria. The article is
available under Resources for Epidemiology and for Statistical Models. Note
that whereas the authors used the word truncation for the observations on
tumblers that were still in service at the end of the test, we would use the
word ‘right-censored ’ today. Since inspections were only once a week, the
lengths of service of the items that did fail are also censored, but within [in
most instances] a 1-week interval. This type of censoring is called ‘interval-
censoring ’.

Supplementary Exercise 3.4

Using the data in Table 1 for the article [contained in the various versions
of the R code in the same link] , determine the MLEs of the two parameters
of the gamma distribution, and compare them with those obtained by the
original authors [they use a slightly approx. ML method]. Do so in two ways
(they should give the same likelihood function, and thus the same MLEs):

1. using an unconditional approach, based on 549 contributions – one per
tumbler, with each tumbler considered in isolation from the other 548
– so that each failure (unconditional) contributes one term and each
(ULTIMATELY) censored observation (also unconditional) contributes
another. [of course, there are ‘multiplicities’; thus, instead of a sum of
549 log-likelihhods, you can use the multiplicities (and multiplication of
a 1-item log-likelihood by the multiplicity) to reduce the computation].

2. using the binomial structure created by the authors: a row that has n
exposed tumblers that week (and that only considers whether the tumbler

that began that week survived that week) makes n Bernoulli-based log-
likelihoods, (or 1 Binomial-based log-likelihood) for that week.

This exercise shows that there is more than 1 way to set up the likelihood.

3.6.3 Application: Estimation of parameters of a parametric dis-
tribution fitted to avalanche mortality data [all observations
are censored – either left-censored or right-censored. Such
data are often referred to as “current-status” data].

One example of status-quo data is data from a cross-sectional survey of menar-
che status in girls, or the prevalence of decayed-missing-or-filled (DMF) teeth
(or say permanent dentition) in dental public health, or HIV prevalence in the
general population or in specific sub-populations, such as partners of persons
who contracted HIV though blood donations.

Another is the data from the Avalanche Survival Chances by Falk et al. in
the journal Nature in 1994. The article and the data are available under
Resources.

The authors fitted a non-parametric model. We will discuss in class which
parametric models (or mixtures of different parametric models) might make
sense. But, just to get some practice with this type of data, we will start with
a very simply one, even if we know a priori it is too simplistic.

Supplementary Exercise 3.5

Using the raw data, and (for now) the simplistic parametric model we agreed
on in class, determine the MLEs of the two parameters of this gamma distri-
bution, and compare the fit with the fit of the smooth and non-parametric
curves shown in the authors’ article.

3.6.4 Application: Distribution of Observations in a Dilution Se-
ries.

(Again, Text from Fisher’s 1922 paper). An important type of discontinuous
distribution occurs in the application of the dilution method to the estimation
of the number of micro-organisms in a sample of water or of soil. The method
here presented was originally developed in connection with Mr. Cutler’s ex-
tensive counts of soil protozoa carried out in the protozoological laboratory at
Rothamsted, and although the method is of very wide application, this par-
ticular investigation affords an admirable example of the statistical principles
involved.
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In principle the method consists in making a series of dilutions of the soil
sample, and determining the presence or absence of each type of protozoa in a
cubic centimetre of the dilution, after incubation in a nutrient medium. The
series in use proceeds by powers of 2, so that the frequency of protozoa in
each dilution is one-half that in the last. The frequency at any stage of the
process may then be represented by

m =
n

2x
,

when x indicates the number of dilutions. Under conditions of random sam-
pling, the chance of any plate receiving 0, 1, 2, 3 protozoa of a given species
is given by the Poisson series

e−m
(

1,m,
m2

2!
,
m3

3!
, . . .

)
,

and in consequence the proportion of sterile plates is

p = e−m,

and of fertile plates

q = 1− e−m.

In general we may consider a dilution series with dilution factor a so that

log p = − n

ax
,

and assume that s plates are poured from each dilution. The object of the
method being to estimate the number n from a record of the sterile and fertile
plates, we have

L = S1(log p) + S2(log q),

when S1 stands for summation over the sterile plates, and S2 for summation
over those which are fertile.

Supplementary Exercise 3.6 Estimate n from the following dilution series
data:

Dilution: 0.25 0.5 1 2 4 8 16 32 64 128
Number of plates: 5 5 5 5 5 5 5 5 5 5

Number of fertile plates: 5 5 5 5 4 3 2 2 0 0

3.6.5 Application: Pooled testing:- old and new uses

The following excerpts are from a 1976 article “Group testing with a new
goal, estimation”, in Biometrika, 62, 1, p. 181 by authors Sobel and Elashoff.
They begin by referring to the Dorfman, whose article, in the Annals of Math-
ematical Statistics, 1943, first used the ideas of group testing, with a binomial
model, to reduce the number of medical tests necessary to find all members
of a group of size N that have the syphilis antigen. They continued...

Another aspect of the group-testing problem arises when one is in-
terested not in the classification of all the individuals but in the
estimation of the frequency of a disease, or of some property, when
group-testing methods can be used. Given a random sample of size
N, say, from a binomial population, the best estimate of the preva-
lence rate p, in the sense of minimizing the mean square error, will be
obtained by testing each unit separately. However, if N is large and
the tests are costly, then a different criterion, that includes testing
costs, may indicate that group-testing designs should be used. We
might expect benefits from group testing to increase as p decreases.

[....] Example: Rodents are collected from the harbour of a large
city, and, after being killed, dissected, etc., their liver is to be care-
fully examined under a microscope for the presence or absence of a
specific type of bacterium. The goal of the study is to estimate the
proportion p of rodents that carry this bacterium using an economi-
cal experimental design. In this application the cost of obtaining the
animals is negligible compared to the cost of testing, i.e. the micro-
scopic search. It was proposed that an economical design to estimate
p should be possible by combining in a single sample a small por-
tion of the liver from each of several test animals and then carrying
out a microscopic search on a homogeneous mixture of these liver
portions. The problem is to find the best number, say A, of liver
portions to combine and how to estimate the prevalence rate p from
such a design. In addition, if this bacterial type is present in some
particular tests, then the pathologists want to know whether they
should carry out another test on a subset of these same animals or
go on to test a new group of A animals.

[...] Thompson (1962) estimated the proportion of insect vectors
capable of transmitting asteryellows virus in a natural population of
the six-spotted leafhopper, an aphid. Instead of putting one insect
with a previously unexposed aster test plant, he puts several insects
with one test plant, for eoonomic reasons, and waits to see if the
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plant develops the symptoms of this virus. If it does, then at least
one of these insects carried the virus; otherwise it is assumed that
none carried it. The statistical problem is to choose an optimal
number A of insects to be put with one test plant.

Contemporary uses: (can also Google Minipool testing)

The following text is an excerpt form Canadian Blood Services : Customer
Letter #2005-18, 2005-05-17, entitled “Planned Measures to Protect the
Blood Supply from West Nile Virus (WNV) - 2005 Season.”

Dear Colleague:

West Nile season is approaching once again and this letter is to in-
form you about enhanced measures Canadian Blood Services has put
in place to further protect the safety of the blood supply during the
2005 season.

For the summer of 2005, Canadian Blood Services will again use
single-unit testing (SUT) to enhance the sensitivity of the West Nile
Virus nucleic acid test. Minipool testing (6 samples/pool) is used
throughout the year.

• In the summer of 2005, a ‘trigger’ will be used to initiate SUT.
SUT will be initiated in a health region when a presumptive
positive blood donor is detected using minipool testing, OR the
prevalence of recent confirmed human cases in the preceding two
weeks exceeds 1/1,000 population in rural areas, or 1/2,500 in
urban areas.

• SUT will cease in a health region when there have been no
positive donors for two weeks or the occurrence of WNV cases
in the population falls below the aforementioned population
triggers.

Supplementary Exercise 3.7 Suppose that in order to estimate the preva-
lence (π)of a characteristic in a population, one tests N randomly sampled
objects by pooling them into nb batches of size k (so that N = nb × k) and
determining, for each batch, i.e. collectively, if at least one of its members is
positive. Suppose that nb+ batches are found to be positive. Develop estima-
tors of π using the method of moments, and using minimum χ2 and Maximum
Likelihood criteria.

3.6.6 Application: Measuring one’s accuracy at darts

In 2011, Tibshirani (junior!) et al.13 published a very instructive essay. In
addition to its innovative use of a personalized heatmap to show the optimal
strategy for throwing darts, it provides an engaging example for teaching
several statistical concepts and techniques, such as fast Fourier transforms,
the EM algorithm, Monte Carlo integration, importance sampling, and the
Metropolis Hastings algorithm. It is a delightful blend of the applied and the
theoretical, the algebraic and the graphical.

It also continues the tradition of statisticians’ fascination with the imagery
of marksmen (Turner, 2010). In her chapter on metaphor and reality of
target practice, Klein (1997) writes of ‘men reasoning on the likes of target
practice’ and describes how this imagery has pervaded the thinking and
work of natural philosophers and statisticians. Klein shows a frequency
curve, by Yule, for 1,000 shots from an artillery gun in American target
practice. Pearson used it in his 1894 lectures on evolution; he decomposed
the frequency curve into two chance distributions centered slightly to
the right and left of the target, gave reasons why this might occur, and
used it to illustrate the interplay between random variation and natural
selection. He also used it in his 1900 paper in one of the illustrations of his
test of goodness of fit. Incidentally, Klein also reminds us of the origin of
the term ‘stochastic.’ In Liddell and Scott (1920) we find the following entries:

στoχoς an aim, shot. a guess, conjecture.
στoχaσµα a missile aimed at a mark; an arrow, javelin.
στoχaστικoς able to hit: able to guess, shrewd, sagacious.

Since the optimal aiming spot in darts – and thus the heatmap provided by
the online applet – depends strongly on one’s accuracy, much of the Tibshi-
rani et al. article is devoted to the challenge of estimating the (co)variance
parameter(s) that describes this accuracy. All of the estimators rely on the
data generated by throwing n darts, aiming each time at the centre of the
board, i.e., the double-bulls-eye, and recording the result for each throw.

13Tibshirani, R.J., Price, A, and Taylor, J. A statistician plays darts. J. R. Statist. Soc.
A (2011) 174, Part 1, 213-226. [See also the follow-up letter from S. Sadhukhan, Z Liu,
and J Hanley, along with the references • Klein, J.L. (1997). Statistical Visions in Time: A
History of Time Series Analysis 1662- 1938. pp. 3-11. Cambridge. Cambridge University
Press. • Liddell, H.G. and Scott R. (1920). A Lexicon, abridged from Liddell and Scott’s
Greek-English Lexicon. p. 653. London. Oxford at the Clarendon Press. • Tibshirani,
R.J., Price, A, and Taylor, J. A statistician plays darts. J. R. Statist. Soc. A (2011) 174,
Part 1, 213-226. • Turner, E.L. and Hanley, J.A. (2010) Cultural imagery and statistical
models of the force of mortality: Addison, Gompertz and Pearson. J. R. Statist. Soc. A,
173, Part 3, 483-499.
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The authors noted that they would lose considerable information by not mea-
suring the actual locations where the darts land but considered this to be too
time-consuming and error-prone. Instead, they chose the individual scores
produced by the throws (the 44 possible scores are 0:22, 24:28, 30, 32:34, 36,
38:40, 42, 45, 48, 50, 51, 54, 57, 60). Based on n = 100 throws by authors
1 and 2, assuming the simplest variance model (equal, uncorrelated vertical
and horizontal Gaussian errors), their standard deviations were estimated to
be σ̂ = 64.6 and 26.9 respectively (the applet gives σ̂ to 2 decimal places)

Our follow-up letter provides a measure of the statistical precision of these ac-
curacy estimates (for example, we calculate that the 95% limits to accompany
the reported point estimate 64.6 derived from 100 scores are approximately
56 and 75). More importantly, we show that more precise estimates of σ can
often be achieved with the same number of throws (or the same precision with
fewer throws) if one uses a simpler yet more informative version of the result
from each throw.

Here, as in the letter, we focus on the simplest variance model, where horizon-
tal and vertical errors, ex and ey, are Gaussian, centered on (0,0), independent
of each other and of the same amplitude, i.e., σex = σey = σ; ρex,ey = 0.

We first consider the most mathematically tractable, but least practical,
method of estimating σ, namely to measure the exact (x, y) locations where
the n darts land. We then consider the almost as mathematically tractable,
but much more practical – and almost as statistically efficient – method of
estimating σ, namely to merely record in which ‘ring’ each dart lands. We
leave to later the the authors’ more complex – but sometimes less efficient –
method based on actual 0-60 scoring system used in darts games.

Denote by ec,i the error in the c-th co-ordinate (1=‘x’, 2=‘y’) of the i-th dart.

Supplementary Exercise 3.8

1. Show that (1/2n)
∑
c{
∑
i e

2
c,i} is an unbiased estimator of σ2 and that

it is the method-of-moments, the LS, and the ML estimator.

What sampling statistical distribution does this estimator follow?

Use the two separate α/2 tails of this (slightly non-symmetric)
distribution to derive an asymmetric first-principles frequentist confi-
dence interval for σ2.14

14Hint: (taking some semantic liberties) a first-principles 100(1-α)% frequentist CI, (L,U)

for θ is the pair of statistics (L,U), such that Prob(θ̂ ≥ θ̂observed | θ = L) = α/2 and

Prob(θ̂ ≤ θ̂observed | θ = U) = α/2.

Suppose that for each dart thrown, one calculates the squared
distance from the center, ie d2i = e21,i + e22,i. Show that (1/n)

∑
i d

2
i is

an unbiased estimator of 2σ2. What sampling statistical distribution
does each d2i follow? What is a common name for the distribution of the
square root of this random variable?

2. Suppose we simply divide the dartboard into 7 ‘rings’ 15 and record which
one the dart lands in: 1. the double-bulls-eye; 2. the single-bulls-eye; the
ones formed by the: 3. single-bulls-eye and inner triple; 4. inner and
outer triple; 5. outer triple and inner double; and 6. inner and outer
double, wires respectively; and 7. beyond the outer double wire (i.e., the
throw misses the board). In other words, we divide the dartboard into
just 7 regions. Suppose that the distribution of the results of n = 100
throws is as follows:

ring: 1 2 3 4 5 6 7 all
frequency: 0 6 77 5 12 0 0 100

Calculate (and plot) the logLik(σ2) function and find the MLE of σ2.

3.7 Bayesian approach to parameter estimation

Given that the Bayesian approach is a very important and conceptually dif-
ferent way of making inference about the parameters of a model, and even
though they mentioned Bayes rule in Chapter 2, it is surprising that Clayton
and Hills do not make a statement about the Bayesian approach until Chapter
10; and even then, they do not give it much space. Maybe it’s because they
wanted the reader to become quite comfortable with Likelihood (which pro-
vides the Bridge between the prior and posterior distributions) before doing
so.

15In fact, the innermost region is a circle, the next 5 are rings, and the outermost one is
all of the remaining area.
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. 4 Consecutive follow-up intervals

4.1 A sequence of binary models

The lifetable as a sequence of Bernoulli models: Efron (1977) was one of the
early authors to point out that the likelihood contribution of a subject, fol-
lowed for t units of time, is equivalent to the likelihood for a sequence of a
large number, n = t/∆, of Bernoulli trials, with time-dependent probabilities
of failure. For a trial that corresponds to the small interval (t, t+ ∆), the fail-
ure probability can be well approximated by p = h(t)∆, where h(t) is called
the hazard function (see later). The sequence ends with the nth trial, at the
time of the event of interest or when follow-up was otherwise terminated. In a
subsequent article Efron (1988) focused on discretizations of the t-axis and on
using logistic regression to fit various smooth-in-t hazard and survival func-
tions in the one-sample situation, where the usual non-parametric alternative
is the Kaplan-Meier estimator of survival rate.

The probabilities of surviving one, two, and three years without failing are
called the cumulative survival probabilities for the cohort: JH continues to
argue that the word cumulative is misleading. The complement of the (uncon-
ditional) survival probability is the cumulative incidence. It is an increasing
function. Would we call a declining fraction, obtained as a product of more
and more fractions, a cumulative fraction?

4.2 Estimating the conditional probabilities of failure

The subjects who contribute to the estimation of the conditional
probabilities do not have to have been followed from the beginning.
One can splice together estimates based on separate samples. This
is what is done to create current lifetables. And in any case, when (a
subset of) those who “survive” a specific time band are used again in the next
band, the estimates are treated as independent of each other – just as if they
were from different persons. In current lifetables, they are different persons!

Table 17.1 in p. 570 of the Survival Analysis chapter (17) of the 4th edition
of Statistical Methods in Medical Research by Armitage, Berry & Matthews,
illustrates the difference between ‘current’ (aka ‘period’) and ‘cohort’ lifeta-
bles.

The entire ‘current’ lifetable is calculated, as a product of conditional proba-
bilities, using the observed age-specific mortality rates in England and Wales
in 1930-1932. In this sense it is fictitious, since those who computed the table
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in the 1930’s didn’t know for sure that the world would even exist in 2010,
when those remaining from the fictional 1000 who started out at age 0 would
reach their 80th birthday. And even if they did, they could not have antici-
pated exactly what force of mortality these 80-year olds would face in 2010,
even though they might have foreseen that mortality rates would improve over
time. The force of mortality these 80-year olds would face in 2010 is a good
deal lower than the force of mortality the 80-year olds actually faces in 1930-
32. For example, the death rate in the male 75-79 age category in Denmark
was 9.4/100MY in 1930-34 and 4.2/100MY in 2000-04.

“The cohort life-table describes the actual survival experience of a
group, a ’cohort’ of individuals born at about the same time. Those
born in 1900, for instance, are subject during their first year to the
mortality under 1 year of age prevailing in 1900-1; if they survive
to 10 years of age they are subject to the mortality at that age in
1910-11; and so on. Cohort life-tables summarize the mortality at
different ages at the times when the cohort would have been at these
ages. The right-hand side of Table 17.1 summarizes the lx column
from the cohort life-table for men in England and Wales born in the
5 years centred around 1931. As would be expected. the values of
l1 in the two life-tables are very similar, being dependent on infant

mortality in about the same calendar years At higher ages the values
of l are greater for the cohort table because this is based on mortality
rates at the higher ages whIch were experienced since 1932.”

4.3 A cohort life table

These [survival] plots are useful for studying whether the probability of failure
is changing with follow-up time, and for calculating survival probabilities for
different periods of time. In fact, it is not that easy to check if the probability
of failure is changing from survival curves. The probability of failure the
authors write of is a conditional, i.e. time-specific, probability, and so the
hazard function, which uses as a denominator the numbers of persons at risk
at that time, makes it easier to monitor this probability.

4.4 The use of exact times of failure and censoring

“[...] choosing the bands so short that each failure occupies a band by itself.”
This is the same assumption that allows us to derive the Poisson distribution
as a limiting case of the Binomial distribution, and the link between the
Poisson distribution and the exponential distribution of inter-event times.

“This method of estimating the cumulative survival probabilities is called the
Kaplan-Meier method” It is also called the product-limit method, since it is
derived by slicing time into smaller and smaller bands, and not having to be
materially concerned about where within the band an observation becomes
censored. In the JUPITER trial example JH is using in the EPIB-634 course,
the follow-up ranges from just over a year to almost 5 years, or approximately
400 to 1600 days. The 200+ events in the placebo arm, and the 100+ in the
treatment arm, are distributed over these 1600 days. If we use one day as the
width of each band, and estimate S(1000), the 1000-day “event-free survival”
then this estimate is a product of 1000 estimated conditional probabilities,
many of them estimated at unity. So the changes in the product take place
only at the days in which there were events. See also the COMPARE trial.

The persons at risk just before the event on a particular day (including the
person(s) who did suffer the event that day) are called the riskset. They are
the candidates for the event.
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4.4.1 Ŝ(t)KM is a Maximum-Likelihood estimator of S(t)

As is rigorously justified in their 1958 paper, the Kaplan-Meier estimator is a
non-parametric ML estimator within the class of all possible S(t) functions.

Supplementary Exercise 4.1 Take a small survival dataset with just 3 ob-
servations, 1 censored and 2 not, such as the 3 values 5, 7+ and 10. Show that

Ŝ(t)KM Interval Point (t) Prob. Mass at Point

1 t < 5
t = 5 1/3

2/3 5 ≤ t < 10
t = 10 2/3

0 t ≥ 10.

maximizes the Likelihood, ie the probability of the observed data as a function

of S(t), i.e., that no other Ŝ(t) can yiled a larger likelihood.

4.4.2 Ŝ(t)KM as a ‘self-consistent’ and as a Distribute mass to the
right’ estimator of S(t)

The K-M estimator, based on n observations T1, . . . , Tn, some censored, some
not, can also be seen as obeying the self-consistent estimating equation:

S(t) =
1

n

{∑
all

I[Ti > t] +
∑

censored < t

S(t)

S(Ti)

}
Observations known to exceed t [even if censored after t]are counted as sur-
vivors (1’s) while observations for which we don’t know if they will exceed
t are counted as fractions or probabilities: those which are already close to
reaching t are given higher chances of eventually exceeding it, those which
are further to the left of t are given lower chances of doing so: the chance of
eventually exceeding t, given that one has already reached a value T < t, is
S(t)/S(T ).

The K-M estimator can also be seen as a distribute to the right procedure:
Initially, each of the n observations is given a mass of 1/n. Then, the mass
given to the leftmost censored observation is redistributed (equally) to all
observations to the right of it, and that leftmost observation is removed. The
process is repeated until all censored observations are removed, and all of their

mass has been redistributed.16. The procedure will remind some of the EM
algorithm.

Supplementary Exercise 4.2 Take a simple survival dataset with just 5
observations, 2 censored and 3 not, such as the 5 values 2, 5+, 6, 7+ and 9.
Derive the K-M estimate of S(t). Illustrate the ‘self-consistency’ of the KM
estimator, and that the ‘distribution to the right’ procedure produces the KM
estimate.

4.4.3 The Nelson-Aalen estimator of S(t)

Just as with K-M, divide the entire interval [0, t] into J narrow event-
containing sub-intervals; ignore the ‘non-event-containing’ sub-intervals. Sub-
interval j is defined by distinct event-time tj , with nj at risk just before the
event(s) [death(s)] in that interval. (there can be more than 1 event at the
same tj , particularly if time is measured coarsely). The (step-)function n(t) is
the number at risk at each time point in (0, t). ‘Riskset’j = the nj ‘candidates’
for the event(s) at tj . Suppose sj survive event-containing sub-interval j, and
that the remaining dj = nj − sj do not [the letter d is used here because in
many applications, the ‘transition’ (‘event’) is from the initial state of ‘alive’
to the destination state of ‘dead’, but transitions may be desirable or under-
irable.]

The Nelson-Aalen Estimator uses the same general formula that links the S(t)
and ID(t) or λ(t) functions:

ŜNA(t) = exp

{
−
∫ t

0

ID(u)du

}
= exp

{
−
∫ t

0

λ(u)du

}
= exp

{
−
∑ dj

nj

}

Think of a fitted ID function ID(t) with ÎD(t) = 0 in the non-event-

containing sub-intervals of (0, t) and ÎD(t) = d/PT = d/(n × δt) in each

event-containing interval of width δt; thus ÎD(t) = dj/(nj × δt) in event-
containing interval j.

Supplementary Exercise 4.3 (a) Using the ÎD(t) function just described,

evaluate the integral of
∫ t
0
ÎD(u)du and use it to obtain the Nelson-Aalen

estimator of S(t). (b) Derive the conditions under which the K-M estimator∏ sj
nj

=
∏
{1 − dj

nj
} gives a result that is very close to that of the Nelson-

Aalen estimator. (c) Assuming dj ∼ Poisson(nj × δt), derive an expression

for V ar[Ŝ(t)NA].

16Google “Efron distribute to the right Kaplan Meier”
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4.5 Examples of the Kaplan-Meier method

Example 1 Cf. JUPITER data on the website for course EPI634.

The R code calls the “canned” routines, but also derives the K-M-based cu-
mulative incidence curves ‘from scratch.’

Example 2 Figure 2 below is from the article: “Male circumcision for HIV
prevention in young men in Kisumu, Kenya: a randomised controlled trial”
(Lancet 2007; 369: 643-656). If interested, and if you don’t have direct access
to the Lancet site, the full article is also available under “resources for rates”
in course EPI634. There you will also find a companion article for a similar
randomized trial, with similar estimates of benefit, carried out in Uganda,
and published back to back with the one from Kenya.

Articles

www.thelancet.com   Vol 369   February 24, 2007 651

there were two HIV seroconversions in the circumcision 
group in the fi rst month after randomisation and another 
two between months 1 and 3.  Subsequent PCR testing 
indicated that all four were actually HIV positive at 
month 1; no individuals in the control group were 
seropositive by PCR at month 1. There were three 
confi rmed seroconversions in the control group between 
month 1 and month 3, and none in the circumcision 
group. Thus, there were seven early seroconverters 
(month 1 or month 3): four in the circumcision group 
and three in the control group. Three of the four in the 
circumcision group reported no sexual activity in the 
month after circumcision. We cannot exclude the 
possibility that any of these individuals were actually HIV 
positive at baseline, and that their infection was not 
detected. Two of the three early seroconverters in the 
control group also denied sexual activity in the period 
before seroconversion. An analysis excluding the four 
individuals confi rmed as being seropositive at baseline 
and the four additional early seroconverters positive at 
month 1 estimated 2-year HIV incidences to be 
1·6% (95% CI 0·8–2·4) for the circumcision group and 
4·1% (2·9–5·3) for the control group (p=0·0007). The RR 
was 0·32 (0·18–0·58), which corresponds to a 68% (42–82) 
protective eff ect of circumcision against HIV infection.

The as-treated analysis—which adjusted for individuals 
who did not adhere to the randomisation assign-
ment—estimated the RR of circumcision to be 0·45 (95% 
CI 0·27–0·76). Excluding the four participants who were 
confi rmed as being HIV positive at baseline, the RR of 
circumcision was 0·40 (0·23–0·68), which is equivalent to 
a 60% (32–77) protective eff ect of circumcision against 
HIV acquisition.

Treatment results within age strata (ages 18–20 
and 21–24 years) were consistent with the overall results 
and there were no signifi cant diff erences between the 
age-groups in the 2-year HIV incidence (p=0·51). For the 
participants who enrolled when they were 18–20 years of 
age, the 2-year HIV incidences were 2·5% (95% CI 
1·0–3·9) in the circumcision group and 4·3% (2·6–6·1) 
in the control group (p=0·12). For the 21–24-year-old 
group, the rates were 1·7% (0·6–2·8) in the circumcision 
group and 4·0% (2·4–5·7) in the control groups (p=0·02). 
The study was not powered to detect treatment diff erences 
within the two age-groups.

After adjustment for baseline variables for which there 
seemed to be diff erences between the two study groups at 
baseline, only infection with herpes simplex virus 2 at 
baseline was found to be associated with HIV incidence 
(RR 1·91, 95% CI 1·18–3·08). The treatment eff ect re-
mained strong with all adjustments that were considered, 
and the adjusted RR varied between 0·44 and 0·47.

Not all circumcised men adhered to the 30-day period of 
post-circumcision abstinence. 60 participants (4·5%) in 
the circumcision group reported having had sexual 
intercourse before 30 days post-circumcision, including 
one of the early seroconverters (month 1) noted above, and 

another whose HIV infection was detected at the month 6 
visit. Both of these participants had adhered to treatment.

All but one of the 1334 men who were circumcised 
returned for their 3-day postsurgical visit, and all but six 
returned after 8 days. All those employed had resumed 
working by the 3-day visit. Among all men circumcised, 
1287 (96%) reported having returned to normal activities 
by the 3-day visit, and all but one person had returned to 
normal activities by the 8-day visit. At the 3-day visit, 
643 (48%) reported no pain, 690 (52%) reported very 
mild pain, and none reported mild to severe pain. By the 
8-day visit, 1179 (89%) reported no pain, and 
148 (11%) reported very mild pain. Of the 1334 men 
circumcised, 1281 (96%) had a 30-day postsurgical 
wound examination. The wound was judged to be 
completely healed in all but 16 (1%) individuals. All had 
returned to normal general activities. All wounds were 
completely healed by the month 3 visit. 1274 (99·5%) 
individuals were “very satisfi ed” and six (0·5%) were 
“somewhat satisfi ed” with their circumcision; one 
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Estimated 2-year incidence (SE; 95% CI)
Circumcision: 2·1% (0·46; 1·2–3·0)
Control: 4·2% (0·61; 3·0–5·4)
Difference: Z=-2·720, p=0·0065

24

Follow-up visit (months)

Figure 2: Cumulative HIV seroincidence across follow-up visits by treatment
Time to HIV-positive status is taken as the fi rst visit when a positive HIV test result is noted. Time is credited as the 
follow-up visit month. Participants without HIV-positive status are censored at the last regular follow-up visit 
completed where HIV testing was done, credited specifi cally as months 1, 3, 6, 12, 18, and 24. 

Circumcision group Control group Total

0–6 months* 0·8% (0·3–1·3) 1·0% (0·4–1·5) 0·9% (0·5–1·2)

6–12 months† 0·2% (0·1–0·7) 1·4% (0·8–2·2) 0·8% (0·5–1·3)

12–18 months† 0·0% (0·0–0·5) 0·7% (0·3–1·5) 0·3% (0·1–0·7)

18–24 months† 1·0% (0·5–2·1) 1·2% (0·6–2·4) 1·1% (0·7–1·8)

0–24 months* 2·1% (1·2–3·0) 4·2% (3·0–5·4) 3·1% (2·4–3·9)

Data are % (95% CI). *Based on Kaplan-Meier methods. †Based on the number of 
new incidents of HIV infection detected for the interval divided by the number of 
participants at risk during the interval. 

Table 2:  Incidence rates for intervals of follow-up

Supplementary Exercise 4.4 Replicate the statistics reported in the insert
beginning with the text “Estimated 2-year incidence” in the top right portion
of the above Figure 2.

Example 3 The items below are from “Male circumcision for HIV prevention
in men in Rakai, Uganda: a randomised trial,” Lancet 2007; 369: 657-666.

Articles

www.thelancet.com   Vol 369   February 24, 2007 661

To assess possible behavioural disinhibition, risk 
behaviours were tabulated by follow-up visit, and 
diff erences between study groups were assessed by χ² 
and Fisher exact tests. Symptoms of sexually transmitted 
diseases reported at each visit were cumulated over the 
24 months of follow-up to estimate the prevalence of 
symptoms per 100 visits in intervention and control 
participants. Prevalence risk ratios (PRR) were estimated 
with log-binomial regression with a robust variance 
adjustment to account for within-person correlation. We 
also examined possible associations between reported 
symptoms of sexually transmitted diseases and incident 
HIV infection, by use of subgroup-specifi c models to 
determine whether any eff ects of circumcision on HIV 
incidence might be mediated by symptomatic sexually 
transmitted disease cofactors.

The frequencies of adverse events both related and 
unrelated to study participation were assessed in both 
study groups. Multiple adverse events diagnosed at a 
single visit were counted as separate events despite the 
fact that they could have been causally related (eg, wound 
dehiscence and infection), to provide an estimate of the 
maximum frequency of adverse events without making 
assumptions about causality.

The study had 80% power to detect a rate ratio of 0·5 for 
incident HIV in the intervention group relative to the 
control group, with a projected total person-time of 
8993 person-years, assuming a 15% annual loss to 
follow-up and 10% crossover over 24 months. Formal 
statistical monitoring used the Lan-DeMets group 
sequential approach9 with an O’Brien-Fleming type α 
spending function10 to minimise the chance of in-
appropriate premature trial termination. Two interim 
analyses were done, the fi rst with a data cutoff  date of 
April 30, 2006, when about 43% of projected person-time 
had been accrued, and the second interim analysis with a 
data cutoff  date of Oct 31, 2006, when about 72% of 
projected person-time had been accrued. The second 
interim analysis showed a signifi cant diff erence 
in HIV inci dence between the two study groups 
(nominal α=0·0215); as a result, NIAID terminated the 
trial for effi  cacy on Dec 12, 2006. The analyses presented 
here are based on all data accrued up to the time of trial 
closure in December, 2006, and encompass about 73% of 
total anticipated person-time. Results were deemed to be 
statistically signifi cant at the α=0·05 level. All data were 
double entered. East was used for spending function 
calculations and Stata version 8 was used for analysis.

This trial is registered with ClinicalTrials.gov, with the 
number NCT00425984.

Role of the funding source
This trial was funded through a cooperative agreement 
with the Division of AIDS, NIAID/NIH. The study was 
done by the Rakai Health Sciences Program, a research 
collaboration between the Uganda Virus Research 
Institute, and researchers at Makerere University and 

Johns Hopkins University and Columbia University. 
FM, LHM, and MAC had full access to all the data until 
the trial closed. Thereafter, the principal investigator 
and co-investigators (RHG, GK, DS, MJW, FN, NKS, 
FWM, AND SJR) had access to all the data. Staff  at the 
Division of AIDS maintained oversight of progress and 
reporting, and participated in study conduct and data 
interpretation as members of the study executive 
committee. Data analyses was done by the research 
teams at John Hopkins University and the Rakai Health 
Sciences Program. The corresponding author had fi nal 
responsibility for preparing and submitting results for 
publication.

Intervention 
group

Control 
group

Incidence rate 
ratio (95% CI)

p value

0–6 months follow-up interval

Number of participants 2263 2319

Incident events 14 19

Person-years 1172·1 1206·7

Incidence per 100 person-years 1·19 1·58 0·76 (0·35–1·60) 0·439

6–12 months follow-up interval

Number of participants 2235 2229

Incident events 5 14

Person-years 1190·7 1176·3

Incidence per 100 person-years 0·42 1·19 0·35 (0·10–1·04) 0·0389

12–24 months follow-up interval

Number of participants 964 980

Incident events 3 12

Person-years 989·7 1008·7

Incidence per 100 person-years 0·30 1·19 0·25 (0·05–0·94) 0·0233

Total 0–24 months follow-up

Cumulative number of participants 2387 2430

Cumulative incident events 22 45

Cumulative person-years 3352·4 3391·8

Cumulative incidence per 100 person-years 0·66 1·33 0·49 (0·28–0·84) 0·0057

Table 3: HIV incidence by study group and follow-up interval, and cumulative HIV incidence over 2 years
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Figure 2: Kaplan-Meier cumulative probabilities of HIV detection by study 
group
Actual visits grouped by the three scheduled visits at 6 months, 12 months, and 
24 months after enrolment. The cumulative probabilities of HIV infection were 
1·1% in the intervention group and 2·6% in the control group over 24 months.

Supplementary Exercise 4.5 Comment on the appropriateness of (i) the
term “Cumulative incidence per 100 person-years” in the last row of Table 3
(ii) using a single incidence (hazard) rate ratio of 0.49 for the full 2 years, and
in the abstract, reporting that the estimated efficacy of intervention was 51%.
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5 Rates

5.1 The probability rate (hazard rate)

JH is not sure why the authors used the term probability rate, when the term
hazard rate17, or short-term incidence density, or even just rate, or instanta-
neous rate, would have done. The only virtue JH sees for this term is that
– unlike the term hazard rate – it is somewhat explanatory: the term does
indeed convey, and help you remember, the idea that it is the probability per
unit time. JH has seen many people struggle to remember and accurately re-
produce the definition of the hazard rate. The one item that is not conveyed
directly by any of these terms is the conditional nature of the probability: it
has as its denominator those people, or that person time experience lived by
those, who reached the “t” that marks the beginning of the small (infinitesi-
mal) interval.

Another way to think of it is as the limit, as the width of the time band is
shrunk to zero, of the incidence density (ID).

Since every realistic and epidemiologically interesting time interval has a non-
zero width, and since in any case we usually use the hazard rate as a smooth
function of time, the idea of it as an instantaneous rate is merely a mathe-
matical nicety. Indeed, we would immediately multiply this rate into some
amount of person time PT (which we can depict as a rectangle with height P
persons and width T time units) to get an expected number of events, or for
the individual, the conditional probability.18 The point is that if we were to
reverse the process from the expected number of events in a certain PT, the
ratio of no. of events to PT would remain the same as we shrunk the width
of this time slice, and the corresponding number of events. If it did not, it
would imply that the intensity is changing quickly over time, and that a single
average intensity (or the corresponding conditional probability) is misleading.

In fact, the force of human mortality is – after a certain age – a monotonically

17The Website jeff560.tripod.com/h.html “Earliest Known Uses of Some of the Words
of Mathematics” tells us: HAZARD RATE came into use in statistics in the 1960s as a
general term for what is called the force of mortality in demography and the intensity
function in extreme value theory. David (2001) finds “hazard rate” in R. E. Barlow; A. W.
Marshall & F. Proschan “Properties of Probability Distributions with Monotone Hazard
Rate,” Annals of Mathematical Statistics, 34, (1963), 375-389. A JSTOR search found
“death-hazard rate” in D. J. Davis “An Analysis of Some Failure Data,” Journal of the
American Statistical Association, 47, (1952), 113-150.

18Freedman, in his nice article, Survival Analysis: A Primer” in the American Statistician
in May 2008 (see resources for survival for course EPI634) puts it nicely: “The intuition
behind the formula is that h(t)dt represents the conditional probability of failing in the
interval (t, t+ dt), given survival until time t.”

increasing function of attained age (note the conditioning on attained age) but
practically speaking, the values of the hazard function at age 32.564 and at
32.565 (or indeed over the age range 32 to 33) are similar enough that we
can quite closely approximate this monotonically increasing hazard function
(force of mortality) in this age band as a constant, and over a larger age range
as piecewise constant within each 1-year age band. If we were concerned with
the shape of the hazard function after an attained age or 104, we might want
to make the time bands narrower. And at age 32, we might want to make
them a bit wider than 1 year: see the value of the q function in the 1-year
Canadian lifetables, where qis the conditional failure probability for age bands
1 year wide (h=1 in the terminology of section 5.3)

“The probability rate refers to an individual subject. This is counterintuitive
to many epidemiologists.”

This is also counterintuitive to JH, who doesn’t understand where these au-
thors are coming from on this. An incidence density is certainly not about
an individual person. How are we to think of a failure rate of 8 ruptures
per 10000-pipe-kilometer-years of operating pipeline of a water distribution
system?

The authors however do well to ask us to distinguish between the definition of
the parameter, and an estimate (or estimator) of the value of this parameter
in a particular context (e.g. the rupture rate when the temperature is in the
vicinity of -20C.

Mathematically, then, here are a few definitions of what they call the proba-
bility rate, or simply the instantaneous rate, at time t. Since it is a parameter,
we will, as they do, give it the Greek letter lambda, λ. With P the number
of persons at risk at t, or more realistically, the average number of persons at
risk over the entire interval (t, t+ δt),

λ(t) = lim
δt→0

Expected no. of events

P × δt

One can re-write this as

λ(t) = lim
δt→0

Expected no. of events

P
÷ δt

so that the Expected no. of events/Person is a probability. This probability,
when divided by δt becomes the (conditional) failure probability per unit time
that the authors use as their definition.

One will also see in survival analysis textbooks the definition of λ(t) or h(t)
as

h(t) = λ(t) = f(t)/S(t),
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where S(t) is the ‘survival’ function, i.e., 1 − F (t), and f(t) the probability
density function, of the ‘time to event’ random variable. This is no different
from the definition above, since we can write it as

h(t) = λ(t) =
f(t)δt

S(t)
÷ δt.

S(t) is the proportion of persons who are at risk (event-free) at time t, and
f(t)δt is the (unconditional) fraction of events that occur within the interval

(t, t+ δt), so f(t)δt
S(t) is itself a (conditional) fraction of a fraction.

Moreover, we can rewrite the definition as

h(t)dt = λ(t)dt =
−dS(t)

S(t)

and integrate both sides over the interval (0, T ) to get∫ T

o

h(t)dt =

∫ T

o

λ(t)dt =

∫ T

o

−dS(t)

S(t)
= − logS(T ).

Then, exponentiating both sides, we get the fundamental relationship between
the incidence density function (alias hazard function (h(t), or the maybe more
familiar term ‘failure rate function’, λ(t)) and the complement of cumulative
incidence (CI), namely

1− CI0→T = S(T ) = exp

[
−
∫ T

o

h(t)dt

]
= exp

[
−
∫ T

o

λ(t)dt

]
.

Notice also the (welcomed) use throughout the book of λ as an event rate,
and not – as some books use it – as the expected number of events, i.e. as the
mean parameter of a Poisson distribution. JH has tried to be consistent in
using the Greek letter µ for the expected number of events, since after all it is
the mean or expected value of the random variable, and since it is important
to keep the distinction between the numerator and denominator of an event
rate parameter.

5.2 Estimating the probability rate parameter

Notice the use of the word the, i.e., that the parameter value is assumed
constant in the follow-up period of interest.

5.3 The likelihood for a rate parameter

You might find it strange that the authors don’t go directly to the repre-
sentation of the observed rate as an observed Poisson numerator divided by
a known PT denominator. I think they did this to emphasize the idea of
subdividing the PT into person-clicks.

It is interesting that in 1907 Gosset (of Student-t fame) derived the Poisson
distribution ‘from scratch’ using this same conceptual subdivision of a plate
(or field in a microscope) into a large number of small squares, small enough
that only one yeast cell would fit in it (C&H in section 4.4 write of time bands
so narrow that “each failure occupies a band by itself”).19 If the mean number
of cells per plate was µ and the area of the plate was A, or N = A/a small
squares of area a each, then the probability π that a small square contains a
square is π = µ/N . The probability that the total area A will contain y yeast
cells is then

Pr(y occupied cells) = NCy π
y(1− π)N−y.

Gosset used Stirling’s approximation, and the definition of ex = exp[x]
as a limit, to go from this binomial probability to the Poisson probability
exp[−µ] µy/y!

If we worked with µ directly, then (ignoring the factorial, which doesn’t involve
this parameter), the likelihood based on an observed count of D is

exp[−µ] µD.

Substituting µ = λY , where Y is C&H’s notation for amount of person-Years
(what we call the denominator) gives

exp[−λY ] (λY )D,

or, ignoring items that do not involve λ, as

exp[−λY ] (λ)D,

so that the log-likelihood is indeed

−λY +D log (λ),

19JH has put this very readable 1907 article “On the Error of Counting with a Haema-
cytometer” under the resources for rates in course EPI634
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5.3.1 Example: Likelihood for parameter of exponentially dis-
tributed random variable, with interval censoring.

The Uganda and Kenya ‘circumcision in the prevention of HIV’ studies are
examples of interval-censored (as well as the usual right-censored) data, since
one cannot know exactly when a person became HIV+, only that it occurred
in the interval between the last negative test and the first positive one.

Before setting up the likelihood for such data, let us consider a simple sta-
tistical model for the data, and let us focus for now on the placebo group.
We will assume that the sero-conversion rate λ is constant over the 2 years,
i.e., that λ(t) = λ over that interval. Up until now, we treated the number
of events in the ‘aggregated-across-subjects’ person time as a Poisson random
variable. Another way to look at this is to consider the inter-event times, (or
the time-to-event times) and their distribution. We know from BIOS601 that
if the event rate is λ, and there is always one unit at risk, then the inter-event
times have an exponential distribution with mean 1/λ. Thus, we can say that
the ‘time-to-event’ for each subject is a realization of an exponential random
variable with mean or expected value 1/λ. If we call this r.v. ‘T ’, then

T ∼ exp(µT = 1/λ),

ST (t) = exp[−λt],

FT (t) = 1− ST (t) = 1− exp[−λt],

fT (t) = F ′T (t) = λ exp[−λt] = (1/µT ) exp[−(1/µT )t].

In the control group in the Uganda trial, 2319 initially HIV- men were tested
at the 6-month, or 0.5year follow-up, and 19 of them were found to be HIV+,
and the remaining 2300 were found to be HIV-.

The likelihood, based just on this first follow-up test is therefore the proba-
bility (as a function of the seroconversion rate λ) of observing this pattern of
results. First we write it as a product of 2319 probabilities:

Likelihood =

i=2319∏
i=1

Pr[obs′d outcome for subject i] =

i=19∏
i=1

Pri

i=2319∏
i=20

Pri

With T denoting the r.v. ‘time to HIV+’, each Pri in the second product is
of the form Pr[T > 0.5 | λ] = exp[−0.5λ], while each Pri in the first product
is of the form Pr[T < 0.5 | λ] = 1− exp[−0.5λ]. The likelihood based on this
first test can thus be simplified to

L1st test = exp[−2300× 0.5λ] × (1− exp[−0.5λ])19

Some 2229 of those HIV- at 6-months were tested at the 12-month, or 1year
follow-up, and 14 of them were found to be HIV+, and the remaining 2215
were found to be HIV-. Thus the likelihood based on this second test can thus
be simplified to

L2nd test = exp[−2215× 0.5λ] × (1− exp[−0.5λ])14

Notice that with this exponential distribution, the fact that these 2229 had
got throught the first interval HIV-free has nothing to do with their (now
conditional) probabilities for the next 6 months. Technically, we call this
the “memoryless” property of the exponential distribution.20 Thus, Pr[T >
t | T > tgiven = Pr[T > t− tgiven], and so, whereas we would normally have
to use the conditional probability {F (1.0)− F (0.6)}/S(0.5), here we can use
the unconditional probability of escaping infection for 6 months. In effect, we
can ‘reset the clock to zero at T=0.5,’ and imagine it was just like back at
T = 0.

Some 980 of those HIV- at 12-months were tested at the 24-month, or 2year
follow-up, and 12 of them were found to be HIV+, and the remaining 968
were found to be HIV-. The likelihood based on this third test can thus be
simplified to

L3rd test = exp[−968× 1.0λ] × (1− exp[−1.0λ])12

Thus the likelihood based on all three tests is

Lall 3 tests = L1st test × L2nd test × L3rd test

ie

L = exp[−(2300× 0.5 + 2215× 0.5 + 968× 1.0)λ]

×
(1− exp[−0.5λ])12 × (1− exp[−0.5λ])14 × (1− exp[−1.0λ])12

Supplementary Exercise 5.1. (i) Maximize L with respect to λ. (ii) What
would happen to L, and to the ease of estimation, if subjects were tested more
frequently, e.g. every month, every week, every day?

20In industrial life-testing, this property is referred to as the ‘used is the same as new’
property. In failure time distributions where the failure is a function of age or duration of
use (e.g. a computer or hard disk), the hazard is — maybe after a certain run-in period – an
increasing function of its age or accumulated hours of work, and so the testers say ‘older is
worse (less ‘reliable’) than newer;’ initially, before those units doomed to early failure have
been weeded out, it may be that ‘newer is worse than older.’ Sadly, most human hazards,
other than being struck by a meteor, are from internal sources to do with our own bodies,
and so while the hazard function or force of mortality decreases until about age 8 – see
Canada lifetables – it is monotonically increasing thereafter.
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5.4 Cum. survival probability as fn. of rate parameter

We saw this in BIOS601 as S(T ) = exp[−
∫ T
0
h(t)dt], or cumulative incidence

as CI0→T = 1− S(T ) = 1− exp[−
∫ T
0
h(t)dt].

We also came up with a ‘heuristic’ (“a usually speculative formulation serving
as a guide in the investigation or solution of a problem”) whereby the integral∫ T
0
h(t)dt can be seen as the expected number of events, µ, if there was always

one unit (person) at risk for the period 0 to T . Thus if an event (failure)
occurred at any point in this interval, the failed unit is immediately replaced
by another of the same profile: e.g., if h(t) referred to computers, we would
replace a computer that failed at time t1 by another of the same age, and if
this failed before T , at time t2 say, we would in turn replace it by another of
age t2, and so on until we got to T . So by the end, we would have observed
the 1-unit system for a total of T units of time, and we might have observed
0, 1, 2, . . . failures (and had to make this many replacements), in order to have
the system in continuous operation for this duration. The expected number
of failures in that period would be the integral of (the area under) the h(t)
curve. We saw in first term that the Poisson distribution has the ‘closed under
addition’ property; in this application, we can think of the total number of
events in (0, T ) as (the limit of) a sum of more and more Poisson random
variables, representing the numbers of events in smaller and smaller intervals
(t, t + dt), with expected numbers of events h(t)dt. In the limit, this sum
of small expectations is nothing more than the overall expected number of
events,

µ =

∫ T

0

h(t)dt

The observed sum is thus the realization of a single Poisson random variable
with mean µ, and so the probability that the initial unit will ‘survive’ the
entire interval is just the probability that there will be no event in the entire
period, i.e.,

S(T ) = Pr(Poisson.RV [µ] = 0) = exp[−µ] = exp[−integral of h(t)].

The other concept that is reinforced by this heuristic, and the computer ex-
ample, is that the computer-days are interchangeable. Imagine we had a large
bank of computers all of the same vintage: we could imagine having a different
one of these computers be the one that ran the system (was ‘on duty’) for the
day, and we could even draw lots for which computer is the one on duty at any
time. Assuming that the ‘on duty’ computer didn’t age any faster than the
ones that were ‘off duty’ that day, we can now see that the probability that a

specific computer would fail before time T is the same as the probability that
a sequence of computer-days – or computer-hours, or computer-minutes (each
one contributed by a possibly different computer) would contain at least one
failure. This interchangeability of (impersonal, indistinguishable, unnamed)
units of the same age, i.e., with the same h(t), is central to the concept of
‘person-clicks’ that C&H use.. it is not the particular person that matters to
the contribution, but the person’s profile – his/her h(t) value.

If the rate is a constant over the period (0, T ), so that the integral is µ =
λ × T = λT, then we get the simple expression for the (cumulative) survival
probability given at the top of page 46, namely S(T ) = exp[−λT ].

This section also discusses the simple approximation to exp[−µ] when µ is
small, namely 1 − µ. In this situation, the cumulative risk (in fact, the word
cumulative is redundant!) can thus be approximated by

Risk = Cumulative Incidence ≈ 1− µ = 1− λT [µ small].

Whether or not the integral µ is small, if λ is constant over (0, T ), then –
apart from random variations –

log{S(t)} = log{exp[−λt]} = −λt,

so that

the plot of − log{S(t)} versus t should be linear in t, with slope λ.

5.5 Rates that vary with time

JH’s comments in section 5.4 discussed both piecewise-linear (and in the limit
a) general smooth form(s) for h(t) or λ(t), and so there is little to add for this
section, other than to make one remark about their use of the term “cumu-
lative failure rate.” JH finds this term too close to “cumulative incidence”,
which is a proportion. C%H’s “cumulative failure rate” is in fact the integral
we discussed above, and so has as its dimension or units the expected number
of events in the period (0, T ) if one unit were always operating, i.e., ‘at risk.’
He would prefer that you use the more common term “integrated hazard”
often denoted by an upper case letter,

H(T ) =

∫ T

0

h(t)dt or Λ(T ) =

∫ T

0

λ(t)dt.

C&H tell us that “it follows that the relationship

log[S(t)] = −Cum. failure rate { log[S(t)] = −H(t) in our notation }
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still holds when the rate varies from one band to the next... and will be used
to calculate S(t).” We have already used the exponentiated version of this
to calculate S(t). But this relationship in the log scale is also used to check
whether an assumed form or model for h(t) fits with the observed data: it
is more difficult to judge fit on the S scale, where S(t) is likely to be quite
curvilinear, than on the H scale, where H(t) may have a simpler form, such
as piecewise linear.

Supplementary Exercise 5.2. For the Uganda HIV data, assume a different
λ for each of the 3 intervals, and estimate each one separately. Do the data
provide evidence against this assumption? Answer by maximizing L under
the larger (3 possibly different λs) and smaller ( all three λs are the same)
models, and computing the likelihood ratio.

5.6 Rates varying continuously in time: Kaplan-Meier
(K-M) and Nelson-Aalen (N-A) estimators

“The assumption that the rate parameter is constant over broad bands of time,
but changes abruptly from one band to the next, is widely used, but an alterna-
tive model, useful when exact times of failure and censoring are known, is to
allow the rate parameter to vary from click to click. In Chapter 4 this
kind of model led to the Kaplan-Meier estimate of the survival curve; when
using rates it leads to the estimate known as the Aalen-Nelson estimate.”

This is a very nice way of putting it. First, it says that the Kaplan-Meier curve
is a limiting case of a probability-based lifetable, with the time bands made
narrower and narrower. In the limit (and the Kaplan-Meier table is sometimes
referred to as the ‘product-limit’ table) one need only be concerned with prod-
ucts of continuation probabilities from the event-containing intervals. It also
explains why the Kaplan-Meier curve is called ‘non-parametric’: by making
the bands narrower and narrower, the curve follows the data exactly.

The Kaplan-Meier estimate can be seen as a product of empirical continu-
ation probabilities, each one governed by the binomial model. We formally

acknowledge this when we use Greenwood’s formula for the SE of Ŝ(t).

The Nelson-Aalen estimate can be seen as a product of model-based continu-
ation probabilities, with each estimated probability calculated from the theo-
retical relation between the (in this case shortterm incidence or) hazard rate

and cumulative incidence, viz. St→t+dt = 1−CIt→t+dt = exp[−
∫ t+dt
t

h(u)du

If an interval t, t+ dt) involves n persons at risk, and d events (deaths), then
the person time is ndt and so the estimate of the incidence is d

n×dt . each one
governed by the binomial model. If d is zero, then the estimate of the incidence

is zero. Thus, the empirical hazard function is a square-wave function,

ĥ(t) =

{
0 if (t, t+ dt) contains d = 0 events,
d

n×dt if (t, t+ dt) contains d > 0 events.

Thus,

ĥ(t)dt =

{
0 if (t, t+ dt) contains d = 0 events,
d
n if (t, t+ dt) contains d > 0 events.

Thus ∫ T

0

ĥ(t)dt =
∑ d

n
,

with the summation over those event-containing narrow bands where t < T .
The persons at risk in these event-containing bands are called risksets.

The EPIB634 site has R code that divides the JUPITER follow-up time into
1-year, then 1-month, then 1-week, then 1-day bands. The resulting h(t)
function becomes more and more erratic, but in doing so – just like the K-M
curve – it conforms exactly to the data.

Just as the K-M curve is based on a product of binomial -based probability
estimates, the N-A curve can be seen as an integral (the limit of a sum) of
Poison-based rate (hazard) estimates: provided that each n is large, the ‘d’
that forms the numerator of the empirical elemental area can be seen as a
realization of a Poisson random variable. Its estimated variance can therefore
be estimated as d, and the variance of d

n as d
n2 . Thus,

V̂ ar

[ ∫ T

0

ĥ(t)dt

]
=
∑ d

n2
.

For the numerators in this variance expression, some textbooks use binomial-
based variances of n× d

n ×
n−d
n instead of the Poisson-based variances of d. If

each n−d is large, as it is in the JUPITER study, then the difference between
the two formulations is miniscule.

Most software packages plot the N-A curve as a step-function, just as they
do the K-M curve. The conf. intervals are first calculated for the estimated
integral, and then for Ŝ(t).

Supplementary Exercise 5.3. Calculate the Nelson-Aalen and Kaplan-
Meier curves, and the SE’s, for the placebo arms of the Uganda and Kenya
circumcision trials, and the JUPITER trial.
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6 Time

6.1 When do we start the clock?

Examples JH has dealt with include the analysis of longevity of

• The Titanic survivors, where the two time scales are (i) age (years elapsed
since birth) and (ii) ‘survivor-time’, the years elapsed since the April 15,
1912 sinking;

• Oscar nominees, where the two time scales are (i) age and (ii) nominee-
time’, the years elapsed since first being nominated for an Oscar;

• Nobel Prize nominees, where the two time scales are (i) age and (ii)
‘nominee-time’, the years elapsed since first being nominated for a Nobel
Prize;

• Jazz musicians, where the two time scales are (i) age and (ii) performer-
time’, the years elapsed since first becoming a jazz musician;

• Popes versus artists;

• Baseball Hall of Famers versus players who were nominated by not in-
ducted;

• Rock Stars who become famous early versus later (or not at all).

For more details on these examples, see bios601/Epidemiology2/

For more on the choice of time scale, Google “Multiple time scales in survival
analysis.” or find the articles that cite the 1979 Applied Statistics article by
Farewell and Cox “A note on multiple time scales in life testing.”

There is also the interesting article The two-way proportional hazards model
by Efron in J. R. Statist. Soc. B (2002) 64, Part 4, pp. 899-909, applied
to “patient histories in a study of heart transplant recipients treated at the
Stanford Medical Center between 1980 and 1996; some 110 of the patients
suffered a serious bacterial infection, their infection times ranging from a few
days after transplantation to nearly 9 years, these being the observed lifetimes
that would usually be featured in a proportional hazards analysis of the infec-
tion process. In this case, however, the investigators’ main interest centred on
calendar date: was the incidence rate of bacterial infections declining over the
course of the study? Incidence is itself a hazard rate, in the simplest situation
the number of new cases per eligible subject per unit time, and it is natural
to answer the question with a hazard rate analysis.”

6.2 Age-specific rates

“To ignore this variation [of incidence and mortality rates with age] runs the
risk that comparisons between groups will be seriously distorted, or confounded,
by differences in age structure.”

It’s good to have a few handy real examples of age-confounding that
are easily understood by non-statisticians. Two immediately come to
mind (i) the overall death rate is higher in Canada than Ethiopia
(ii) the higher death rate among non-smokers in a 20-year follow-up
study of smokers and non-smokers [ Does Smoking Improve Survival?
www.whfreeman.com/statistics/ips/eesee4/eesees4.htm; this is also de-
scribed in chapter 1 of Rothman 2002, with finer age-categories]

“For longer studies it will be necessary to take account of changing age during
the study, and to treat age properly - as a time scale. This scale is then divided
into bands and a separate estimate of the rate is made within each age band
as described in Chapter 5. In this latter analysis, a subject can pass through
several age bands during the course of the study.”

Not only can a subject pass through several age bands but she can also change
from one ‘exposure’ category to another – as in the Oscars exercise.

6.3 The expected number of failures

“One reason for subdividing the total follow-up experience of a cohort into
age bands is to determine whether the observed number of failures is more or
less than we might have expected. Since mortality and incidence rates usually
increase quite sharply with age, the distribution of person years observation
between age bands is an extremely important determinant of the number of
events we would expect to observe.”

It is not clear what is the basis for the “expectation” i.e., whether it is a ‘what
if’ comparison against external rates, or an internal one against the rates in
a comparison group constructed and followed by the investigators. One can
think of the ‘expected number’ of 16.77 cases in exercise 6.3 as the number one
would expect in a scaled-down version of England and Wales (E&W), scaled
down to the same sample size (974 women) followed for the same cell-specific
numbers of person years as those shown in Table 6.4. In other words, it as as
thought one had

974 treated by HRT 974 from E&W, same age & follow-up, untreated
15 cases 16.7 cases

Of course, the fact that the 16.7 is based on observed rates in the whole of
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E&W means that it is not subject to the same degree of random variation as
is the number of cases in the actual cohort. With this solid a basis for it, the
expected number is usually taken to be a constant, so only one standard error
(SE) is involved in the 15 vs. 16.7 comparison – the one associated with the
15.

“The expected number of cases, as calculated above, is not quite the same as
the expected number in the usual statistical sense. The latter cannot depend
upon the outcome of the study, but the former does.”

C&H are saying that the numbers of Woman-years in the second column of
Table 6.4 are random variables: they would not have been known ahead of
time. For some 15 women – the 15 being a random variable – the follow-up
was terminated by the event of interest. Likewise, any terminations for other
reasons might also be unpredictable ahead of time. However, if these are not
related to the person’s probability of a future event, they don’t have a great
influence on the sampling behaviour of the estimators of interest.

6.4 Lexis diagrams

en.wikipedia.org/wiki/ Wilhelm Lexis (1837-1914) was an eminent Ger-
man statistician, economist, and social scientist and a founder of the interdis-
ciplinary study of insurance.

The “Lexis diagram”, in which lifelines are displayed as 45-degree lines on a
grid with age on the vertical axis and calendar year on the horizontal axis, is
very helpful in epidemiology, and in survival analysis with 2 time scales.

The Epi package for R has several functions that make it easy to convert the
data of the type shown in Table 6.2 into the person-year segments shown
Figure 6.3. Previously, this was a very laborious computing process.

Once we have the tabulated person years and cases in each Lexis rectangle
(the cells don’t have to be square), we can calculate the expected number of
cases if a specified set of external rates applied, or make internal rectangle-
by-rectangle comparisons, and thus a summary of these comparisons. We can
also use them to fit (Poisson) regression models for rates.

Here is the R code, and some of its output, for the data in C&H Table 6.2.

library(Epi)

id = c(1,2,3,4);
yr.birth = c(1904,1924,1914,1920);
yr.entry = c(1943,1948,1945,1948);
yr.exit = c(1952,1955,1961,1956);
fail = c(0, 1, 0, 0) );

ds=data.frame(id, yr.birth, yr.entry, yr.exit, fail); ds

id yr.birth yr.entry yr.exit fail
1 1 1904 1943 1952 0
2 2 1924 1948 1955 1
3 3 1914 1945 1961 0
4 4 1920 1948 1956 0

# Define as Lexis object with timescales calendar time and age

Lexis <- Lexis( entry = list( calendar.year = yr.entry ),
exit = list( calendar.year = yr.exit, age = yr.exit - yr.birth ),

exit.status = fail,
data = ds )

Lexis

calendar.year age lex.dur lex.Cst lex.Xst lex.id id yr.birth yr.entry yr.exit fail

1 1943 39 9 0 0 1 1 1904 1943 1952 0
2 1948 24 7 0 1 2 2 1924 1948 1955 1
3 1945 31 16 0 0 3 3 1914 1945 1961 0
4 1948 28 8 0 0 4 4 1920 1948 1956 0

# Default plot of follow-up

plot(Lexis)

# With a grid and deaths as endpoints

plot(Lexis, grid=0:5*5, col="black" )
points(Lexis, pch=c(NA,16)[Lexis$lex.Xst+1] )

# With a lot of bells and whistles: [ *** SEE PLOT NEXT PAGE *** ]

plot(Lexis, grid=0:20*5, col="black", xaxs="i", yaxs="i",
xlim=c(1940,1965), ylim=c(20,50), lwd=3, las=1 )

points(Lexis, pch=c(NA,16)[Lexis$lex.Xst+1], col="red", cex=1.5 )

# Split time along two time-axes

L2 = splitLexis(Lexis,breaks=seq(1940,1965,5),
time.scale="calendar.year")

L2 = splitLexis(L2, breaks=seq(20,50,5), time.scale="age" )
str( L2 )
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L2

lex.id calendar.year age lex.dur lex.Cst lex.Xst id yr.birth yr.entry yr.exit fail
1 1 1943 39 1 0 0 1 1904 1943 1952 0
2 1 1944 40 1 0 0 1 1904 1943 1952 0
3 1 1945 41 4 0 0 1 1904 1943 1952 0
4 1 1949 45 1 0 0 1 1904 1943 1952 0
5 1 1950 46 2 0 0 1 1904 1943 1952 0
6 2 1948 24 1 0 0 2 1924 1948 1955 1
7 2 1949 25 1 0 0 2 1924 1948 1955 1
8 2 1950 26 4 0 0 2 1924 1948 1955 1
9 2 1954 30 1 0 1 2 1924 1948 1955 1
10 3 1945 31 4 0 0 3 1914 1945 1961 0
11 3 1949 35 1 0 0 3 1914 1945 1961 0
12 3 1950 36 4 0 0 3 1914 1945 1961 0
13 3 1954 40 1 0 0 3 1914 1945 1961 0
14 3 1955 41 4 0 0 3 1914 1945 1961 0
15 3 1959 45 1 0 0 3 1914 1945 1961 0
16 3 1960 46 1 0 0 3 1914 1945 1961 0
17 4 1948 28 2 0 0 4 1920 1948 1956 0
18 4 1950 30 5 0 0 4 1920 1948 1956 0
19 4 1955 35 1 0 0 4 1920 1948 1956 0

# Tabulate the cases and the person-years

summary( L2 )

tapply( status(L2,"exit")==1, list( timeBand(L2,"age","left"),

timeBand(L2,"calendar.year","left") ), sum )

1940 1945 1950 1955 1960

20 NA 0 NA NA NA

25 NA 0 0 NA NA

30 NA 0 1 NA NA

35 0 0 0 0 NA

40 0 0 0 0 NA

45 NA 0 0 0 0

tapply( dur(L2), list( timeBand(L2,"age","left"),

timeBand(L2,"calendar.year","left") ), sum )

1940 1945 1950 1955 1960

20 NA 1 NA NA NA

25 NA 3 4 NA NA

30 NA 4 6 NA NA

35 1 1 4 1 NA

40 1 4 1 4 NA

45 NA 1 2 1 1

> summary( L2 )

Transitions:

To

From 0 1 Records: Events: Risk time:

0 18 1 19 1 40

Rates:

To

From 0 1 Total

0 0 0.02 0.02

1940 1945 1950 1955 1960 1965

20

25

30

35

40

45

50

calendar.year

ag
e

Figure 4: Lexis Diagram, from Epi package in R
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Supplementary Exercise 6.1. Death rates in those who survived the
sinking of the Titanic vs. in the sex-and age-matched US general
population, together with some other investigations

Under ‘For Person-Years Analyses’ in Resources for ‘Fitting Models to
Grouped Data [B & D vol II, ch4]’ in the BIOS602 website you will find
(a) the Titanic longevity data set (b) USA death rates (within 5 x 5 rectan-
gles, called ‘quinquinquennia’) from the Berkeley Mortality Database.21 You
will also find some R code that uses the Epi package to create – for each pas-
senger – the durations in and exit status from each quinquinquennium, then
aggregates these over all the persons traversing each quinquinquennium, etc.

1. Convert each survivor’s record into the experience in the (age, period)
quinquinquennia traversed, i.e the number of years spent in the rectangle,
and the status (e.g., d = 0 if alive, 1 if dead) at the end of these years.
Rather than program the calculations from scratch, two possibilities are
http://epi.klinikum.uni-muenster.de/pamcomp/pamcomp.html

– which some people used last year – and the R ‘Epi’ package
http://staff.pubhealth.ku.dk/∼bxc/Epi/ The key functions in the
latter are Lexis (and associated plotting functions) and splitLexis,
which, when applied twice, calculates the time spent, and exit status
from each quinquinquennium. The ‘bogus example’ in the documen-
tation of the splitLexis function illustrates these, while the example
on the notes for C&H chapter 6 shows the application to the 4-person
cohort used in that chapter.

2. How much higher/lower is the set of age-specific death rates for male
Titanic survivors than that for the general US population? for fe-
male survivors? Answer in two ways: first, calculate sex-specific ob-
served/expected ratios, where the numerator is the total number of deaths
observed in the sex-specific cohort, and the denominator is the sum of the
expected numbers of deaths in these cells, using the USA age-sex-period
death rates; second, calculate sex-specific Mantel-Haenszel summary in-
cidence ratios (Rothman terminology) or incidence density ratios (Mietti-
nen terminology) or mortality rate ratios (everyone’s terminology), using
age and period as ‘strata.’22 Assume that each of the USA death rates is

21.] This site, http://www.demog.berkeley.edu/∼bmd/index.html, contains historical
lifetable and death rate data for the USA and other countries.

22As is illustrated in equation 8-5 in Rothman 2002, the formula is∑
strata(no. of cases, index category)× (py, ref. category)/(py in stratum)∑
strata(no. of cases, ref. category)× (py, index category)/(py in stratum)

based on a denominator of one million person years.23 Assume that the
death rates after 1995 are the same as those in 1990-95.

3. ‘On average,’ 24, for the age-span 40-90 in the period 1990-1995, how
much higher are the USA age-specific male death rates in males than
females? Answer by plotting the log of the male:female death rate ratio
vs age, (or the two separate sets of log-death-rates on the same graph),
and taking some ‘typical’ value for the ratio. Are you comfortable giving
a single ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant
over that age-span?

4. The previous question refers to cross-sectional rates, i.e., those in a spec-
ified period.25 On average, over the age-span 40-90 in the 1900 birth-
cohort, how much higher are the USA age-specific death rates in males
than females? Answer by plotting the log of the male:female death rate
ratio vs age, (or the two separate sets of log-death-rates on the same
graph), and taking some ‘typical’ value for the ratio. Are you comfort-
able giving a single ratio? i.e., is the mortality-rate-ratio (M:F) reasonably
constant over that age-span?

5. For the age-span 40-90, in a single number describe how much age-and
specific death rates have fallen over the 20th century (the changes may be
more subtle that this, so your answer will necessarily be a simplification).

6. For the Titanic survivors, was there a gradient in mortality rates across
the 3 passenger classes?

Supplementary Exercise 6.2. Mortality of performers while in the
‘still hoping to win’ vs in the ‘already a winner’ state

1. Divide the performer-years into those spent as Oscar nominees and as
Oscar winners and then subdivide these into quinquinquennia.

2. Compare the death rates in the performer-years spent as nominees versus
those spent as winners. Do so using both ‘adjusted’ expected numbers
and purely-internal comparisons.

23If the ratio of the amount of experience in the ref. category to that in the index category
goes to infinity, the M-H summary ratio converges to

∑
strataO/

∑
strata E = O/E.

24Even if the average is not representative.
25Cross-sectional rates are what are used to make ‘current’ or ‘period’ lifetables, by far

the more common type of lifetable.
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