














BIOS601: Notes, Clayton&Hills. Ch 5: Rates. v. 2013.10.15.

5 Rates

5.1 The probability rate (hazard rate)

JH is not sure why the authors used the term probability rate, when the term
hazard rate

1, or short-term incidence density, or even just rate, or instanta-

neous rate, would have done. The only virtue JH sees for this term is that
– unlike the term hazard rate – it is somewhat explanatory: the term does
indeed convey, and help you remember, the idea that it is the probability per

unit time. JH has seen many people struggle to remember and accurately re-
produce the definition of the hazard rate. The one item that is not conveyed
directly by any of these terms is the conditional nature of the probability: it
has as its denominator those people, or that person time experience lived by
those, who reached the “t” that marks the beginning of the small (infinitesi-
mal) interval.

Another way to think of it is as the limit, as the width of the time band is
shrunk to zero, of the incidence density (ID).

Since every realistic and epidemiologically interesting time interval has a non-
zero width, and since in any case we usually use the hazard rate as a smooth
function of time, the idea of it as an instantaneous rate is merely a mathe-
matical nicety. Indeed, we would immediately multiply this rate into some
amount of person time PT (which we can depict as a rectangle with height P
persons and width T time units) to get an expected number of events, or for
the individual, the conditional probability.2 The point is that if we were to
reverse the process from the expected number of events in a certain PT, the
ratio of no. of events to PT would remain the same as we shrunk the width
of this time slice, and the corresponding number of events. If it did not, it
would imply that the intensity is changing quickly over time, and that a single
average intensity (or the corresponding conditional probability) is misleading.
See Figure in part I of the 2-part teaching article on going from incidence

1The Website jeff560.tripod.com/h.html “Earliest Known Uses of Some of the Words
of Mathematics” tells us: HAZARD RATE came into use in statistics in the 1960s as a
general term for what is called the force of mortality in demography and the intensity
function in extreme value theory. David (2001) finds “hazard rate” in R. E. Barlow; A. W.
Marshall & F. Proschan “Properties of Probability Distributions with Monotone Hazard
Rate,” Annals of Mathematical Statistics, 34, (1963), 375-389. A JSTOR search found
“death-hazard rate” in D. J. Davis “An Analysis of Some Failure Data,” Journal of the
American Statistical Association, 47, (1952), 113-150.

2Freedman, in his nice article, Survival Analysis: A Primer” in the American Statistician
in May 2008 (see resources for survival for course EPI634) puts it nicely: “The intuition
behind the formula is that h(t)dt represents the conditional probability of failing in the
interval (t, t+ dt), given survival until time t.”

function to cumulative incidence (a.k.a. ‘risk’) and back – JH divides the
time on each side of a specific t into slices a year, a month, a week and a day
wide, and yet the incidence density does not change.

In fact, the force of human mortality is – after a certain age – a monotonically
increasing function of attained age (note the conditioning on attained age) but
practically speaking, the values of the hazard function at age 32.564 and at
32.565 (or indeed over the age range 32 to 33) are similar enough that we
can quite closely approximate this monotonically increasing hazard function
(force of mortality) in this age band as a constant, and over a larger age range
as piecewise constant within each 1-year age band. If we were concerned with
the shape of the hazard function after an attained age or 104, we might want
to make the time bands narrower, since the hazard function is ‘moving fast’
at that age. And at age 32, we might want to make them a bit wider than 1
year: see the value of the q function in the 1-year Canadian lifetables, where
q is the conditional failure probability for age bands 1 year wide (h=1 in the
terminology of section 5.3)

“The probability rate refers to an individual subject. This is counterintuitive

to many epidemiologists.”

This is also counterintuitive to JH, who doesn’t understand where these au-
thors are coming from on this. An incidence density is certainly not about
an individual person3. How are we to think of a failure rate of 8 ruptures
per 10000-pipe-kilometer-years of operating pipeline of a water distribution
system?

The authors however do well to ask us to distinguish between the definition of
the parameter, and an estimate (or estimator) of the value of this parameter
in a particular context (e.g. the rupture rate when the temperature is in the
vicinity of -20C.

Mathematically, then, here are a few definitions of what they call the proba-
bility rate, or simply the instantaneous rate, at time t. Since it is a parameter,
we will, as they do, give it the Greek letter lambda, �. With P the number
of persons at risk at t, or more realistically, the average number of persons at
risk over the entire interval (t, t+ �t),

�(t) = lim
�t!0

Expected no. of events

P ⇥ �t

3There is, to some epidemiologists, a di↵erence between the value for the collective,
and the value for the individual. British medical statistician William Farr (1807-1883)
and McGill epidemiologist Olli Miettinen (1936-) both take what we now think of as the
‘cumulative incidence’ proportion to refer to an empirical or theoretical value for a collective,
whereas when an individual uses that value as his/her own probability, it should be called
a risk.
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One can re-write this as

�(t) = lim
�t!0

Expected no. of events

P
÷ �t

so that the Expected no. of events/Person looks somewhat like a probabil-
ity. This probability, when divided by �t becomes the (conditional) failure
probability per unit time that the authors use as their definition.

One will also see in survival analysis textbooks the definition of �(t) or h(t)
as

h(t) = �(t) = f(t)/S(t),

where S(t) is the ‘survival’ function, i.e., 1 � F (t), and f(t) the probability
density function, of the ‘time to event’ random variable. This is no di↵erent
from the definition above, since we can write it as

h(t) = �(t) =
f(t)�t

S(t)
÷ �t.

S(t) is the proportion of persons who are at risk (event-free) at time t, and
f(t)�t is the (unconditional) fraction of events that occur within the interval

(t, t+ �t), so f(t)�t
S(t) is itself a (conditional) fraction of a fraction.

Moreover, we can rewrite the definition as

h(t)dt = �(t)dt =
�dS(t)

S(t)

and integrate both sides over the interval (0, T ) to get

Z
T

o

h(t)dt =

Z
T

o

�(t)dt =

Z
T

o

�dS(t)

S(t)
= � logS(T ).

Then, exponentiating both sides, we get the fundamental relationship be-

tween the incidence density function (alias hazard function (h(t), or
the maybe more familiar term ‘failure rate function’, �(t)) and the

complement of cumulative incidence (CI)

4 , namely

1� CI0!T

= S(T ) = exp

"
�

Z
T

o

h(t)dt

#
= exp

"
�
Z

T

o

�(t)dt

#
.

Notice also the (welcomed) use throughout the book of � as an event rate,
and not – as some books use it – as the expected number of events, i.e. as the
mean parameter of a Poisson distribution. JH has tried to be consistent in
using the Greek letter µ for the expected number of events, since after all it is
the mean or expected value of the random variable, and since it is important
to keep the distinction between the numerator and denominator of an event
rate parameter.

5.2 Estimating the probability rate parameter

Notice the use of the word the, i.e., that the parameter value is assumed
constant in the follow-up period of interest.

5.3 The likelihood for a rate parameter

You might find it strange that the authors don’t go directly to the repre-
sentation of the observed rate as an observed Poisson numerator divided by
a known PT denominator. I think they did this to emphasize the idea of
subdividing the PT into person-clicks.

It is interesting that in 1907 Gosset (of Student-t fame) derived the Poisson
distribution ‘from scratch’ using this same conceptual subdivision of a plate
(or field in a microscope) into a large number of small squares, small enough
that only one yeast cell would fit in it (C&H in section 4.4 write of time bands
so narrow that “each failure occupies a band by itself”).5 If the mean number

4Ways to ‘see’ this relationship in heuristic terms are described in part II of the draft
teaching article. JH has been searching a long time for who might have been the first to
derive this relationship: as JH notes in the article, Chiang says that the equation

has been known to students of the lifetable for more than two hundred years.
Unfortunately, it has not received much attention from investigators in statistics,
although various forms of this equation have appeared in diverse areas of research.

As of now (October 2012), JH believes that Chiang was probably referring to a paper by
Daniel Bernoulli published in 1766, where he calculates the gain in life expectancy after
elimination of this cause of death (smallpox). His solution to that more complex problem
involves the solution of the same di↵erential equation we discuss above. See website for
more details.

5JH has put this very readable 1907 article “On the Error of Counting with a Haema-
cytometer” under the resources for rates in course EPI634
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of cells per plate was µ and the area of the plate was A, or N = A/a small
squares of area a each, then the probability ⇡ that a small square contains a
square is ⇡ = µ/N . The probability that the total area A will contain y yeast
cells is then

Pr(y occupied cells) = NC
y

⇡y(1� ⇡)N�y.

Gosset used Stirling’s approximation, and the definition of ex = exp[x]
as a limit, to go from this binomial probability to the Poisson probability
exp[�µ] µy/y!

If we worked with µ directly, then (ignoring the factorial, which doesn’t involve
this parameter), the likelihood based on an observed count of D is

exp[�µ] µD.

Substituting µ = �Y , where Y is C&H’s notation for amount of person-Years
(what we call the denominator) gives

exp[��Y ] (�Y )D,

or, ignoring items that do not involve �, as

exp[��Y ] (�)D,

so that the log-likelihood is indeed

��Y +D log (�),

It is interesting to go back to the derivation (section 81, pp. 205-206) by
Poisson in his 1837 book Probabilité des jugements en matière criminelle et
en matière civile, précédées des règles générales du calcul des probabilitiés
(Paris, France: Bachelier, 1837). You can read the original via the Wikipedia
link http://en.wikipedia.org/wiki/Poisson distribution. Poisson also
starts with the binomial, and goes to “le cas où l’une des deux chances p et q
est très petite.”

5.3.1 Example: Likelihood for parameter of exponentially dis-

tributed random variable, with interval censoring.

The Uganda and Kenya ‘circumcision in the prevention of HIV’ studies are
examples of interval-censored (as well as the usual right-censored) data, since
one cannot know exactly when a person became HIV+, only that it occurred
in the interval between the last negative test and the first positive one.

Before setting up the likelihood for such data, let us consider a simple sta-
tistical model for the data, and let us focus for now on the placebo group.
We will assume that the sero-conversion rate � is constant over the 2 years,

i.e., that �(t) = � over that interval. Up until now, we treated the number
of events in the ‘aggregated-across-subjects’ person time as a Poisson random
variable. Another way to look at this is to consider the inter-event times, (or

the time-to-event times) and their distribution. We know from BIOS601 that
if the event rate is �, and there is always one unit at risk, then the inter-event
times have an exponential distribution with mean 1/�. Thus, we can say that
the ‘time-to-event’ for each subject is a realization of an exponential random
variable with mean or expected value 1/�. If we call this r.v. ‘T ’, then

T ⇠ exp(µ
T

= 1/�),

S
T

(t) = exp[��t],

F
T

(t) = 1� S
T

(t) = 1� exp[��t],

f
T

(t) = F 0
T

(t) = � exp[��t] = (1/µ
T

) exp[�(1/µ
T

)t].

In the control group in the Uganda trial, 2319 initially HIV- men were tested
at the 6-month, or 0.5year follow-up, and 19 of them were found to be HIV+,
and the remaining 2300 were found to be HIV-.

The likelihood, based just on this first follow-up test is therefore the proba-
bility (as a function of the seroconversion rate �) of observing this pattern of
results. First we write it as a product of 2319 probabilities:

Likelihood =
i=2319Y

i=1

Pr[obs0d outcome for subject i] =
i=19Y

i=1

Pr
i

i=2319Y

i=20

Pr
i

With T denoting the r.v. ‘time to HIV+’, each Pr
i

in the second product is
of the form Pr[T > 0.5 | �] = exp[�0.5�], while each Pr

i

in the first product
is of the form Pr[T < 0.5 | �] = 1� exp[�0.5�]. The likelihood based on this
first test can thus be simplified to

L1st test

= exp[�2300⇥ 0.5�] ⇥ (1� exp[�0.5�])19

Some 2229 of those HIV- at 6-months were tested at the 12-month, or 1year
follow-up, and 14 of them were found to be HIV+, and the remaining 2215
were found to be HIV-. Thus the likelihood based on this second test can thus
be simplified to

L2nd test

= exp[�2215⇥ 0.5�] ⇥ (1� exp[�0.5�])14
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Notice that with this exponential distribution, the fact that these 2229 had
got throught the first interval HIV-free has nothing to do with their (now
conditional) probabilities for the next 6 months. Technically, we call this
the “memoryless” property of the exponential distribution.6 Thus, Pr[T >
t | T > t

given

= Pr[T > t� t
given

], and so, whereas we would normally have
to use the conditional probability {F (1.0)� F (0.6)}/S(0.5), here we can use
the unconditional probability of escaping infection for 6 months. In e↵ect, we
can ‘reset the clock to zero at T=0.5,’ and imagine it was just like back at
T = 0.

Some 980 of those HIV- at 12-months were tested at the 24-month, or 2year
follow-up, and 12 of them were found to be HIV+, and the remaining 968
were found to be HIV-. The likelihood based on this third test can thus be
simplified to

L3rd test

= exp[�968⇥ 1.0�] ⇥ (1� exp[�1.0�])12

Thus the likelihood based on all three tests is

L
all 3 tests

= L1st test

⇥ L2nd test

⇥ L3rd test

ie

L = exp[�(2300⇥ 0.5 + 2215⇥ 0.5 + 968⇥ 1.0)�]

⇥

(1� exp[�0.5�])12 ⇥ (1� exp[�0.5�])14 ⇥ (1� exp[�1.0�])12

Supplementary Exercise 5.1.

1. Maximize L with respect to �.

2. What would happen to L, and to the ease of estimation, if subjects were
tested more frequently, e.g. every month, every week, every day?

6In industrial life-testing, this property is referred to as the ‘used is the same as new’
property. In failure time distributions where the failure is a function of age or duration of
use (e.g. a computer or hard disk), the hazard is — maybe after a certain run-in period – an
increasing function of its age or accumulated hours of work, and so the testers say ‘older is
worse (less ‘reliable’) than newer;’ initially, before those units doomed to early failure have
been weeded out, it may be that ‘newer is worse than older.’ Sadly, most human hazards,
other than being struck by a meteor, are from internal sources to do with our own bodies,
and so while the hazard function or force of mortality decreases until about age 8 – see
Canada lifetables – it is monotonically increasing thereafter.

3. Superimpose the smooth cumulative incidence [also called the ‘risk’]
curve, CI(t), derived from the exponential model for the ‘time to HIV
infection’ (or, equivalently, the constant-over-time infection rate model)
on the step-function curve in the article. If you were a co-author, Which
of the two curves would you would suggest be presented?

Supplementary Exercise 5.2.

Refer to the data, kindly supplied by the author, on the 78 Icelandic trios
studied by Kong et al. These, along with the original Nature article ‘Rate of
de novo mutations and the importance of father’s age to disease risk’ can be
found in the Resources link for C&H Ch05 [Rates: N-A estimate].

1. Assume that the de novo mutation rate (�) is independent of (constant
over) a man’s age (life),

Mutation Rate at Age a = �, 8a,

and that the mutations found in his children are all transmitted from
him, and that none are inherited from the children’s mother.

Use the rate estimator you derived from the ‘2 data-points and a (Poisson)
model’ exercise earlier in the term to estimate the mutation rate from
the data on the 78 trios. This empirical rate involves very simple grade
6 arithmetic, using the ‘su�cient’ statistics. see if you get the same
parameter estimate from a ‘canned’ regression program that uses the
individual-subject data.

2. Derive ML estimators for the two parameters �0 and � in the age-
dependent mutation rate models:

Mutation Rate at Age a = �0 + � ⇥ a, (additive rate model)

and

Mutation Rate at Age a = �0 ⇥ exp[� ⇥ a], (multiplicative model).

For the additive model, check that applying your estimator directly to
the data (i.e., by coding the formulae in R) yields the same parameter
estimates as you would get from a ‘canned’ regression routine.

5.4 Cum. survival probability as fn. of rate parameter

We saw this in BIOS601 as S(T ) = exp[�
R
T

0 h(t)dt], or cumulative incidence

as CI0!T

= 1� S(T ) = 1� exp[�
R
T

0 h(t)dt].
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We also came up with a ‘heuristic’ (“a usually speculative formulation serving
as a guide in the investigation or solution of a problem”) whereby the integralR
T

0 h(t)dt can be seen as the expected number of events, µ, if there was always
one unit (person) at risk for the period 0 to T . Thus if an event (failure)
occurred at any point in this interval, the failed unit is immediately replaced
by another of the same profile: e.g., if h(t) referred to computers, we would
replace a computer that failed at time t1 by another of the same age, and if
this failed before T , at time t2 say, we would in turn replace it by another of
age t2, and so on until we got to T . So by the end, we would have observed
the 1-unit system for a total of T units of time, and we might have observed
0, 1, 2, . . . failures (and had to make this many replacements), in order to have
the system in continuous operation for this duration. The expected number
of failures in that period would be the integral of (the area under) the h(t)
curve. We saw in first term that the Poisson distribution has the ‘closed under
addition’ property; in this application, we can think of the total number of
events in (0, T ) as (the limit of) a sum of more and more Poisson random
variables, representing the numbers of events in smaller and smaller intervals
(t, t + dt), with expected numbers of events h(t)dt. In the limit, this sum
of small expectations is nothing more than the overall expected number of
events,

µ =

Z
T

0
h(t)dt

The observed sum is thus the realization of a single Poisson random variable
with mean µ, and so the probability that the initial unit will ‘survive’ the
entire interval is just the probability that there will be no event in the entire
period, i.e.,

S(T ) = Pr(Poisson.RV [µ] = 0) = exp[�µ] = exp[�integral of h(t)].

The other concept that is reinforced by this heuristic, and the computer ex-
ample, is that the computer-days are interchangeable. Imagine we had a large
bank of computers all of the same vintage: we could imagine having a di↵erent
one of these computers be the one that ran the system (was ‘on duty’) for the
day, and we could even draw lots for which computer is the one on duty at any
time. Assuming that the ‘on duty’ computer didn’t age any faster than the
ones that were ‘o↵ duty’ that day, we can now see that the probability that a
specific computer would fail before time T is the same as the probability that
a sequence of computer-days – or computer-hours, or computer-minutes (each
one contributed by a possibly di↵erent computer) would contain at least one
failure. This interchangeability of (impersonal, indistinguishable, unnamed)
units of the same age, i.e., with the same h(t), is central to the concept of

‘person-clicks’ that C&H use.. it is not the particular person that matters to
the contribution, but the person’s profile – his/her h(t) value.

If the rate is a constant over the period (0, T ), so that the integral is µ =
� ⇥ T = �T, then we get the simple expression for the (cumulative) survival
probability given at the top of page 46, namely S(T ) = exp[��T ].

This section also discusses the simple approximation to exp[�µ] when µ is
small, namely 1 � µ. In this situation, the cumulative risk (in fact, the word
cumulative is redundant!) can thus be approximated by

Risk = Cumulative Incidence ⇡ 1� µ = 1� �T [µ small].

Whether or not the integral µ is small, if � is constant over (0, T ), then –
apart from random variations –

log{S(t)} = log{exp[��t]} = ��t,

so that

the plot of � log{S(t)} versus t should be linear in t, with slope �.

5.5 Rates that vary with time

JH’s comments in section 5.4 discussed both piecewise-linear (and in the limit
a) general smooth form(s) for h(t) or �(t), and so there is little to add for this
section, other than to make one remark about their use of the term “cumu-

lative failure rate.” JH finds this term too close to “cumulative incidence”,
which is a proportion. C%H’s “cumulative failure rate” is in fact the integral
we discussed above, and so has as its dimension or units the expected number
of events in the period (0, T ) if one unit were always operating, i.e., ‘at risk.’
He would prefer that you use the more common term “integrated hazard”
often denoted by an upper case letter,

H(T ) =

Z
T

0
h(t)dt or ⇤(T ) =

Z
T

0
�(t)dt.

C&H tell us that “it follows that the relationship

log[S(t)] = �Cum. failure rate { log[S(t)] = �H(t) in our notation }

still holds when the rate varies from one band to the next... and will be used
to calculate S(t).” We have already used the exponentiated version of this
to calculate S(t). But this relationship in the log scale is also used to check

5



BIOS601: Notes, Clayton&Hills. Ch 5: Rates. v. 2013.10.15.

whether an assumed form or model for h(t) fits with the observed data: it
is more di�cult to judge fit on the S scale, where S(t) is likely to be quite
curvilinear, than on the H scale, where H(t) may have a simpler form, such
as piecewise linear.

Supplementary Exercise 5.3.

1. For the Uganda HIV data, assume a di↵erent � for each of the 3 inter-
vals, and estimate each one separately. Do the data provide evidence
against this assumption? Answer by maximizing L under the larger (3
possibly di↵erent �s) and smaller ( all three �s are the same) models, and
computing the likelihood ratio.

2. Even if you do not find evidence against a constant-over-time-bands �
model, nevertheless calculate and plot the (piecewise-smooth) cumulative
incidence CI(t), derived from the ‘3-�’ model, superimpose it on the CI(t)
curve fitted under the simpler ‘1-�’ model.

5.6 Rates varying continuously in time: Kaplan-Meier

(K-M) and Nelson-Aalen (N-A) estimators

“The assumption that the rate parameter is constant over broad bands of time,

but changes abruptly from one band to the next, is widely used, but an alterna-

tive model, useful when exact times of failure and censoring are known, is to

allow the rate parameter to vary from click to click. In Chapter 4 this

kind of model led to the Kaplan-Meier estimate of the survival curve; when

using rates it leads to the estimate known as the Aalen-Nelson estimate.”

This is a very nice way of putting it. First, it says that the Kaplan-Meier curve
is a limiting case of a probability-based lifetable, with the time bands made
narrower and narrower. In the limit (and the Kaplan-Meier table is sometimes
referred to as the ‘product-limit’ table) one need only be concerned with prod-
ucts of continuation probabilities from the event-containing intervals. It also
explains why the Kaplan-Meier curve is called ‘non-parametric’: by making
the bands narrower and narrower, the curve follows the data exactly.

The Kaplan-Meier estimate can be seen as a product of empirical continu-
ation probabilities, each one governed by the binomial model. We formally

acknowledge this when we use Greenwood’s formula for the SE of dS(t).

The Nelson-Aalen estimate can be seen as a product of model-based continu-
ation probabilities, with each estimated probability calculated from the theo-
retical relation between the (in this case shortterm incidence or) hazard rate

and cumulative incidence, viz. S
t!t+dt

= 1�CI
t!t+dt

= exp[�
R
t+dt

t

h(u)du

If an interval t, t+ dt) involves n persons at risk, and d events (deaths), then
the person time is ndt and so the estimate of the incidence is d

n⇥dt

. each one
governed by the binomial model. If d is zero, then the estimate of the incidence
is zero. Thus, the empirical hazard function is a square-wave function,

dh(t) =
(
0 if (t, t+ dt) contains d = 0 events,

d

n⇥dt

if (t, t+ dt) contains d > 0 events.

Thus,

\h(t)dt =
(
0 if (t, t+ dt) contains d = 0 events,
d

n

if (t, t+ dt) contains d > 0 events.

Thus Z
T

0

dh(t)dt =
X d

n
,

with the summation over those event-containing narrow bands where t < T .
The persons at risk in these event-containing bands are called risksets.

The EPIB634 site has R code that divides the JUPITER follow-up time into
1-year, then 1-month, then 1-week, then 1-day bands. The resulting h(t)
function becomes more and more erratic, but in doing so – just like the K-M
curve – it conforms exactly to the data.

Just as the K-M curve is based on a product of binomial -based probability
estimates, the N-A curve can be seen as an integral (the limit of a sum) of
Poison-based rate (hazard) estimates: provided that each n is large, the ‘d’
that forms the numerator of the empirical elemental area can be seen as a
realization of a Poisson random variable. Its estimated variance can therefore
be estimated as d, and the variance of d

n

as d

n

2 . Thus,

dV ar

 Z
T

0

dh(t)dt
�
=

X d

n2
.

For the numerators in this variance expression, some textbooks use binomial-
based variances of n⇥ d

n

⇥ n�d

n

instead of the Poisson-based variances of d. If
each n�d is large, as it is in the JUPITER study, then the di↵erence between
the two formulations is miniscule.

Most software packages plot the N-A curve as a step-function, just as they
do the K-M curve. The conf. intervals are first calculated for the estimated
integral, and then for dS(t).
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Supplementary Exercise 5.4.

1. Calculate the Nelson-Aalen and Kaplan-Meier curves, and the SE’s, for
the placebo arms of the Uganda and Kenya circumcision trials, and the
JUPITER trial.

5.7 ‘Lifetime’ (and Portion-of-Lifetime) Risks

Supplementary Exercise 5.5.

A recent bios601 seminar addressed the risk of appendicitis in
twins. It drew on the self-reported (in a 1980 survey) experi-
ence of Australian twins. The original paper can be found at
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1683858/ and the data and
documentation at http://genepi.qimr.edu.au/staff/davidD/Appendix/.

1. Using the supplied R code, or otherwise, and using the appendectomy
data from all respondents, calculate the age-specific hazard rates, i.e.,
the incidence density as a function of age. Use all respondents.

2. What is (i) the average age (a) of the respondents at the time of the
survey? (ii) the average (and IQR) age and calendar year at/in which
the appendectomies were performed? Using the age-specific (hazard)
rates to calculate the cumulative incidence of appendectomy to ages 25,
30, 35 and 40, and to age a. Compute the observed overall proportion in
the dataset who have had an appendectomy, and comment on how well
it agrees with the 5 fitted values.

3. Repeat the cumulative incidence estimation in 2., but with a suitably
smoothed hazard function.

4. Repeat the cumulative incidence estimation in 2., but using the Kaplan-
Meier estimator.

5. Refer to the Norwegian article “Incidence of Acute Nonperforated and
Perforated Appendicitis: Age-specific and Sex-specific Analysis” by
Körner et al. in World J. Surg. 21, 313-317, 1997. Use the data in Table
1 to calculate the (sex-specific) cumulative incidence of laparatomy for
suspected appendicitis to ages 25, 30, 35 and 40. State any assumptions
you make. Compare the estimates with the ones based on the Australian
data.

6. Quickly examine the articles, provided under Resources, from other places
and times – and in some instances using slightly di↵erent ‘events’. Make

a few quick back-of-the-envelope calculations of the risks (lifetime, and
to ages 25, 30, 35 and 40) they imply. Then comment on where the
Australian-derived estimates fit in relation to all of the other estimates,
and whether the discrepancy can easily be explained in terms of di↵er-
ences in ‘event-definition’ or di↵erent ‘persons, or places or times’.
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