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Abstract In the type of survival analysis that now is

routine, only the points of follow-up at which deaths from

the cause at issue occurred make contributions to the

Greenwood standard error (SE) of the survival rate’s

Kaplan–Meier (KM) point estimate. An equivalent of this

‘KMG’ analysis draws from defined subintervals of the

survival period being addressed. The data on each subin-

terval consist of the number of deaths from the cause at

issue and the amount of population–time of follow-up, dj

and Tj, together with the duration of the interval, tj. The

KM point estimate is replicated by exp½�
P

jðdj=TjÞtj�; and

the KMG interval estimate is replicated by treating the {dj}

as a set of point estimates of Poisson parameters {kj}, thus

taking the SE of
P

jðdjTjÞtj to be ½
P

j djðtj=TjÞ2�1=2: In both

the KMG analysis and this equivalent of it, the SE used to

derive the survival rate’s lower confidence limit needs to be

augmented by a factor that accounts for the loss of infor-

mation due to censorings subsequent to the last ‘failure’ in

the survival period at issue. But, SE-based interval esti-

mation of survival rate actually needs to be replaced by a

first-principles counterpart of it. A suitable point of

departure in this is first-principles asymptotic interval

estimation of the Poisson parameter k ¼
P

j kj; if not the

exact counterpart of this. A confidence limit for the sur-

vival rate can then be based on suitable augmentation or

contraction of the {dj} set to fd�j g consistent with a given

limit for k, the corresponding survival-rate limit being

exp½�
P

jðd�j =TjÞtj�: Suitable augmentation is constituted by

an identical addition to each d
1=2
j ; suitable contraction by

an identical subtraction from each d
1=2
j � 1:
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Introduction: examples give rise to concern

A recent, major study addressed survival following diag-

nosis of lung cancer in the framework of annual CT

(computed tomography) screening for the disease [1]. The

interest was in stage-specific (Stage I) and overall rates of

surviving lung cancer itself, conditional on not succumbing

to some other cause of death; and more specifically, the

interest was in the asymptotes of these ‘cause-specific’

rates of survival, viewed as functions of time since diag-

nosis. For, the aim in screening for a cancer is to provide

for curative treatment of the disease in the context of its

early, latent-stage diagnosis, and the asymptotic cause-

specific survival rates served as measures of the respective

rates of curability of the cancer, given its diagnosis in the

context of the annual CT screening for it (regardless of

whether the diagnosis actually resulted from the screening).

The interest in these two rates was not comparative but

complementary, as the overall rate of curability attainable

by means of screening approximately equals the rate of

curability of Stage I cases multiplied by the proportion of

diagnoses that are achieved in Stage I. For the latter the

point estimate was reported [1] to be 85%.
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Thus, as a matter of prevailing routines, Kaplan–Meier

(KM) rates of long-term survival were derived, and the

confidence intervals supplementing these were based on

the Greenwood formulation of the standard error (SE) of

the KM survival rate. These ‘KMG’ statistics were derived

‘‘with the use of SAS statistical software (version 8).’’

A graph in the report showed the KM survival patterns,

separately, for ‘‘302 participants with Stage I cancer

resected within 1 month after diagnosis’’ and ‘‘484 par-

ticipants with lung cancer [regardless of stage at diagnosis

and treatment].’’ The respective 10-year KMG results were

‘‘92% (95% CI, 88–95)’’ and ‘‘80% (95% CI, 74–85),’’ as

given in that Fig. 2.

Those are very impressive results on the curability of

lung cancer—if correct. But are they correct? Specifically

here, are they statistically correct?

Relevant to answering that question are the other num-

bers that were associated with those results and also were

given in that Fig. 2. They specified the respective numbers

of study subjects that were under follow-up, whether after

Stage I diagnosis or any diagnosis of lung cancer, at the

beginning of each successive 1-year period after diagnosis.

These numbers are shown in Table 1 here. At 9 years they

were 7 and 9, respectively, and at 10 years, 1 and 2,

respectively. The last deaths from lung cancer occurred in

the 5th and 7th years of follow-up, respectively (Table 1).

The principal point of note about these examples sta-

tistically is that, as the KM point estimates of the survival

rates were constant after the last deaths from lung cancer,

so inherently also were their Greenwood SEs, even though

ever fewer subjects were under follow-up, very few in the

10th year in particular. To wit, if only one of the study

subjects had been under follow-up after the last death from

lung cancer, not only the 10-year survival rate’s point

estimate but its SE also would have been the same as

immediately after that death—as though the survival of a

single study subject, in the absence of others, could make it

certain that no one dies of lung cancer in this interval of

post-diagnostic follow-up time. Just as notably, a second

study subject entering this period of follow-up and dying of

lung cancer in it would have replaced this implicit certainly

by a very imprecise 50% point estimate of the rate of

survival across this period.

Clearly, something can be seriously wrong with the

KMG analysis of survival data, at least in studying a sur-

vival rate’s asymptotic level. With an equivalent of the

KMG analysis as the point of departure, a preferable sub-

stitute for the KMG survival analysis is introduced here.

The Kaplan–Meier–Greenwood statistics

The KMG analysis focuses on the points of follow-up time

at which deaths from the cause at issue occurred. The ith

one of these deaths occurred at a time immediately before

which some number Si of survivors still were being fol-

lowed. With a total of d deaths of interest having been

‘observed’ to occur during the entire period of follow-up,

the KM survival rate [2]—cause-specific, empirical—is the

product of the rates at these points, d in number:

cSR¼
Yd

1

Si � 1ð Þ=Si ¼
Yd

1

bRi:

The replication variance of cSR is, to a first-order Taylor

series approximation, equal to (SR)2 multiplied by the

variance of logðcSRÞ: The variance of logðcSRÞ; in turn, is

equal to the sum of the variances of logð bRiÞ; i = 1, …, d,

Table 1 Lung-cancer survival in the I-ELCAP experience [1]

Year of follow-up

1 2 3 4 5 6 7 8 9 10 11

Cohort A

Entries 302 280 242 191 120 59 34 18 12 7 1

P-Ta 291 261 216.5 155.5 89.5 46.5 26 15 9.5 4

Deaths 5 4 4 3 1 0 0 0 0 0

Cohort B

Entries 484 433 356 280 183 90 50 28 16 9 2

P-Tb 458.5 394.5 318 231.5 136.5 70 39 22 12.5 5.5

Deaths 24 29 15 4 2 0 1 0 0 0

Reported was survival of a cohort—Cohort A—of 302 subjects diagnosed with clinical Stage I disease and having its resection within 1 month

from diagnosis, and of a cohort—Cohort B—consisting of all 484 subjects in whom lung cancer was diagnosed. Shown here are the reported

numbers of subjects entering each of the 10 successive years of follow-up and the numbers of lung-cancer deaths in each of those years,

supplemented by the corresponding amounts of population–time (P–T, in years) of follow-up
a �(302 ? 280) = 291; etc.
b �(484 ? 433) = 458.5; etc.
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which to a first-order Taylor series approximation are

estimable as ð1� bRiÞ=Si
bRi: Thus the corresponding

approximation to the SE of the KM cSR is

SE ¼ ðcSRÞ
hX

i

ð1� bRiÞ=Si
bRi

i1=2

¼ ðcSRÞ
hX

i

1=SiðSi � 1Þ
i1=2

:

This is the Greenwood SE of the KM survival rate [2, 3].

Involved in this are ML (maximum likelihood) estimates of

the variances of the f bRig: With the respective unbiased

estimates the statistic would have been

SE ¼ ðcSRÞ
hX

i

1=ðSi � 1Þ2
i1=2

:

Clearly, no contributions to the SE are made by the

experiences in time intervals in which no deaths from the

cause at issue occurred; and thus, as for the examples here,

the paucity of the experience beyond 5 years of follow-up

is treated as irrelevant to the precision of the 10-year

survival rate’s KM point estimate.

Kaplan–Meier–Greenwood-equivalent statistics

Referring back to Table 1, for Cohort A in year 1 of fol-

low-up the incidence density [4] of lung-cancer death was

(approximately) 5 per ð1=2Þð302þ 280Þy (i.e., 5 per 291

person-years) or 1:7=100y; and for years 2–10, analo-

gously, the rates per 100y were 1.5, 1.8, 1.9, 1.1, 0.0, 0.0,

0.0, 0.0, and 0.0, respectively.

For the corresponding 10-year cumulative incidence [4]

of lung-cancer death, conditional on not succumbing to any

other cause of death, the point estimate from the Cohort A

data is

cCI0;10 ¼ 1� exp½�ð0:017þ � � � þ 0:011Þ� ¼ 0:080:

Thus the cause-specific survival rate was 1 - 0.080 =

92%, as also was the corresponding KM rate [1].

For Cohort B the corresponding 10 successive incidence

rates, per 100y, were (per Table 1 again) 5.2, 7.4, 4.7, 1.7,

1.5, 0.0, 2.5, 0.0, 0.0, and 0.0. These translate into a 10-

year integral of 0.23 and its corresponding cause-specific

survival rate of exp(-0.23) = 79%—well consistent with

the reported [1] 80% for the KM rate.

Further in the spirit of the KMG analysis, confidence

intervals for these rates would be based on the SEs of the

primary estimates involved. These estimates here are the

incidence-density integrals over the period of follow-up;

that is, they are the sums
P

jðcIDjÞð1yÞ used in the calcula-

tions above. For Cohort A this integral is 0.080 (cf. above).

The SE of this, given Poisson distribution of the number of

deaths in each interval and ML variance-estimation (à la

KMG), is ½5=ð291Þ2 þ � � � þ 1=ð89:5Þ2�2 ¼ 0:021: The cor-

responding SE-based 95% two-sided limits for the integral

are 0.039 and 0.12. The exponentials of the negatives of

these are the SE-based 95% two-sided limits for the survival

rate. They are 89% and 96%, in good accord with the

reported [1] KMG limits of 88% and 95%. For Cohort B the

corresponding results are 74% and 85%, the same as from

the KMG analysis.

In terms of this (practical) equivalent of the KMG anal-

ysis, the problem initially at issue here takes this form: For

an interval of follow-up time in which the empirical
cIDj ð¼dj=TjÞ involves dj = 0 as an input, this empirical

number is treated as though it were the corresponding

theoretical—‘expected’—number; that is, the empirical
cIDj ¼ 0 is treated as though all possible replications of the

experience, however small the population–time (Tj), be

known to reproduce this interval-specific result. This is

unjustifiable; and thus, at least when there are intervals with

dj = 0 after the last event of interest and in those intervals

ever fewer survivors still are under follow-up, a suitable

modification of this KMG-equivalent approach is needed.

The Nelson–Aalen counterparts of the KMG statistics I

address in Appendix 1.

Up from the Greenwood standard error

In the data from which the KMG statistics are derived,

information on the follow-up of any given person ends at

death from the cause at issue—or some other ‘failure’ of

interest—or it ends at ‘censoring,’ meaning termination of

follow-up before potential ‘failure’ within the survival per-

iod at issue. Censorings in this meaning result from deaths

due to extraneous causes and from losses to follow-up.

Regarding the KM survival function (of follow-up time

since entry into the cohort) and its SE, based on censored

data, Borkowf [5] made this ‘‘fundamental point’’:

The calculation of the KM survival function involves

both the estimation of the value of that function at

each time that an event [a failure] occurs, and the

decision to carry forward that value until the next

time that an event occurs, despite any censorings that

may happen in the meanwhile. This carry-forward

decision is an important part of the construction of

the KM survival function, but it is almost always

overlooked.… [W]hile it makes sense that the KM

survival function should remain constant between

events, its variance should increase with censorings.

So, as for the examples here, it is inherent in the KM

survival-function concept that the survival rate attained in

Cohort A within the 5th year of follow-up is carried
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forward all the way to the end of the 10-year survival

period at issue; and the same applies to Cohort B as of the

last death, within the 7th year. And given that censorings

(galore) occurred in these periods of constant KM survival

rate, its purported SE should have increased (substantially)

on account of those censorings. But the Greenwood SE

remained constant.

Using the SE introduced by Peto et al. [6] as the point of

departure, Borkowf [5] presented a modification of this SE

such that it indeed does increase as censorings occur. His

fine points aside, the basic idea was this: Right after the ith

outcome event of interest, the SE can be taken to be the

square root of a ‘binomial’ variance estimate involving the

KM survival rate at that time together with a suitably

defined ‘effective’ number of binomial observations:

SEi ¼ ½cSRið1� cSRiÞ=ðS0 � ciÞ�1=2;

where S0 is the initial number of survivors under follow-up

(i.e., the size of the cohort) and ci is the number of cens-

orings before the ith event.

From this it follows that if c increases (toward ci?1)

before the next event, this interim increase in censorings

from ci to ci?, increases the SE:

SEiþ ¼ ½cSRið1� cSRiÞ=ðS0 � ciþÞ�1=2� SEi:

After the last event of interest the increase can be very

substantial:

In Cohort A, with S0 = 291, right after the last (17th)

death, in the 5th year of follow-up, cSRi ¼ 0:92 and ci =

291 - 17 - 89 = 185, translating into (Borkowf) SEi =

0.026 and its corresponding 95% two-sided confidence

interval for the survival rate ranging from 87% to 97%. At

10 years, by contrast, ci = 291 - 17 - 1 = 273, so that

SE = 0.063 and the corresponding interval estimate is

80–100% (the nominal upper limit actually exceeding

100%).

Valuable though this Borkowf substitute for the

Greenwood SE is, I need to make a (novel) point about its

application: When censorings occur without the death of

interest occurring in the survivor group still under follow-

up, it is not that the amount of evidence about possible

increase in the underlying rate of survival is thereby

compromized, as the rate’s increase is logically impossible;

it is information about decrease of the survival rate that is

reduced. Thus, the upper confidence limit should not go

further up; only, the lower limit should go lower. The need

thus is to distinguish between upper SE and lower SE:

upper SEiþ ¼ ½cSRið1� cSRiÞ=ðS0 � ciÞ�1=2;

lower SEiþ ¼ ½cSRið1� cSRiÞ=ðS0 � ciþÞ�1=2;

where ci B ci? B ci?1. The upper SE is constant between

the ith and (i ? 1)th event, while the lower SE may grow.

Returning to the example above, the upper SE is 0.026

from the last (17th) event, in the 5th year, all the way to

10 years, while the lower SE grows from the 0.026 to

0.063. In consequence, then, the upper two-sided 95%

confidence limit remains at 97% throughout this period,

while the lower limit declines from 87% to 80% (the point

estimate remaining at 92%).

I might add, as a relatively minor point, that in each of

these SEs, the denominator of the variance estimate should

be reduced by one, to move from the ML estimate to its

unbiased counterpart. By the same token, by the way, the

elements f1=SiðSi � 1Þg in the Greenwood SE should be

replaced by f1=ðSi � 1Þ2g:
That Borkowf substitute for the Greenwood SE

naturally has its counterpart in the KMG-equivalent

framework outlined above. Borkowf’s essential point I

take to have been that due to censorings between the ith

and (i ? 1)th event the information about the survival rate

at issue is reduced by the factor ðS0 � c1þÞ=ðS0 � ciÞ: This

means that the SE of the ID integral over the survival

period at issue needs to be augmented by the square root

of the inverse of this factor, with ci the number of cens-

orings before the last event and ci? the total number of

censorings in the survival period at issue. And again, this

augmentation is to be applied in one direction only, here

to the SE that bears on the upper confidence limit of the

ID integral.

Without this correction, the lower limit of the survival

rate’s 96% two-sided confidence interval was derived

from the Cohort A data on ID as exp{-[0.080 ?

1.96(0.021)} = 89%. Now the ID integral’s upper SE is

that 0.021 multiplied by ½ð291� 185Þ=ð291� 273Þ�1=2 ¼
2:43: As a result, 89% is replaced by 84%. This is the

result also when applying that ‘Borkowf factor,’ 2.43, to

the corresponding KMG statistics—in contrast to the actual

Borkowf lower limit of 80% (cf. above).

Up from the Kaplan–Meier framework

That one of the SE-based confidence intervals above

has, for a survival rate, an upper limit in excess of 100%

reflects the fact that SE-based confidence intervals for

survival rates are not first-principles asymptotic intervals.

In the context of KM point estimation, this problem is

irremediable.

The KMG-equivalent approach that was outlined above

does lend itself to the modifications that provide for first-

principles asymptotic interval estimation; and they even

allow for an ‘exact’ counterpart of this.

A first-principles asymptotic interval for the survival

rate can be based on the Poisson distribution of
P

j
bkj ¼P

j dj; on a first-principles asymptotic interval for the
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parameter of this distribution. Based on the variance-

stabilizing transformation, 95% two-sided limits for k ¼P
j kj are ½ð

P
j djÞ1=2 � 1:96ð1=2Þ�2: These might be pre-

ferred to the solutions of ð
P

j dj � kÞ2=k ¼ ð1:96Þ2:
Focusing first on the upper limit for

P
j kj; the need is to

identify a corresponding suitable set fdþj g such that
P

j dþj
coincides with that limit for

P
j kj: Suitable augmentation

of the {dj} to the fdþj g; with that constraint, involves due

attention to the respective precisions in the fk̂ ¼ djg set.

These precisions are (essentially) identical upon the

square-root transformation. Thus, it is appropriate to use

fdþj g ¼ fðd
1=2
j þ dþÞ2g; where d? represents the suitable

augmentation constant, the same for each fd1=2
j g: The

corresponding limit—lower—for the survival rate is the

exponential of the negative of the ID integral with the fdþj g
in place of the {dj}.

The lower limit for
P

j kj translates, quite analogously,

to the substitute set fd�j g and, based on this, to the upper

limit for the survival rate. An added constraint in this

naturally is that the downward adjustments—fd�j ¼
ðd1=2

j � d�Þ2g—are applied to dj C 1 only.

For Cohort A, 95% two-sided limits in these first-prin-

ciples terms can be founded on the limits ½171=2 � 1:96

ð1=2Þ�2Þ�2 ¼ ð26:0; 9:9Þ for
P

j kj: The fdþj g set involves

d? = 0.409 as the augmentation of each d
1=2
j to ðdþj Þ

1=2;

consistent with
P

j dþj ¼ 26:0: The augmented set

{7.00, …, 0.17} implies the ID integral 0.206 and, then,

the lower limit exp(–0.206) = 81% for the 10-year sur-

vival rate. For the other limit, the fd�j g set, consistent with
P

j d�j ¼ 9:9; involves d- = 0.453; and the set resulting

from this contraction, {3.18, …, 0.00}, translates into 96%

as the survival rate’s upper limit. For Cohort B the survival

rate’s thus-derived limits are 70% and 85%, corresponding

to the
P

j kj limits 91.8% and 58.1%.

The 95% two-sided exact limits for
P

j kj are the solutions

of ð1=3Þ Pr
P

jDj ¼
P

jdjjk
� �

þ Pr
P

jDj\
P

jdjjk
� �

¼
ð0:025; 0:975Þ: (The multiplier 1=3 for the probability of the

observed realization provides for the latter to be the point

estimate in the meaning of 0% two-sided, or 50% one-sided,

interval estimate.) Corresponding to
P

j dj ¼ 17 in Cohort A,

these limits are 26.5 and 10.1, translating into the survival-

rate limits 81% and 96%. For Cohort B the exact limits of
P

j kj are 93.3 and 59.3, and the survival rate’s corresponding

exact limits are 69% and 85%.

The implications of this alternative to the KMG survival

analysis is illustrated further by comparing the 95% two-

sided confidence intervals it gives for the survival rate

based on the Cohort A data at 5 years and 10 years of

follow-up. In the here-introduced modified version of the

KMG-equivalent, constant from 5 years to 10 years with

Cohort A is, for a start, the (point and) interval estimate for

the parameter of the Poisson distribution whose realization

is d ¼
P

j dj ¼ 17; the 95% two-sided interval is, as was

noted, 9.9–26.0 in asymptotic terms (and 10.1–26.5 in

exact terms). At 5 years these Poisson limits imply for the

survival rate the 95% interval from 88% to 96%. The upper

limit remains constant, at that 96%, from 5 years to

10 years, but the lower limit declines from that 88% (with

d? = 0.446) to 81% (with d? = 0.409; cf. above). This is

akin to the results with the ‘semi-Borkowf’ SE-based limits

above, the transition in these from (87%, 97%) at 5 years to

(80%, 97%) at 10 years.

Hypothesis testing in the substitute framework

When survival rate is compared between two non-over-

lapping cohorts (different from those used in the examples

here), statistical testing of the hypothesis that there is a

difference (in the abstract) is readily based on the ID-ori-

ented data-formulation considered here. Let us denote the

inputs to the component rates in the jth interval of time by

d1j together with T1j for one of the cohorts, and by d0j

together with T0j for the other one. In these terms, a suit-

able, asymptotically standard-Gaussian test statistic has the

realization

z0 ¼
�X

j

d1j �
X

j

djT1j=Tj

�.�X

j

djT1jT0j=T2
j

�1=2

;

where dj ¼ dij þ d0j and Tj ¼ T1j þ T0j:

When at issue is hypothesized difference between a

single survival rate and its corresponding null value SR0,

the latter translates into its corresponding null value for the

ID integral (as the negative of the log of SR0). The latter, in

turn, translates into its corresponding set fdþj g or fd�j g with

a suitable constant adjustment of each d
1=2
j (cf. above). The

sum of these adjusted numbers constitutes what effectively

is the null value, k0, corresponding to the empirical value
P

j dj: Thus a suitable, asymptotically standard-Gaussian

test statistic for this test has the realization z0 ¼
2½ð
P

j djÞ1=2 � k1=2
0 �:

When, as in the examples here, the object of study is the

level of a survival rate’s asymptote, one is, in principle,

concerned to test the hypothesis/premise that the asymptote

indeed is reached within the survival period addressed in

the survival analysis—within 10 years in the examples

here. A testable prerequisite for this is that the ID late in the

follow-up is (if not actually nil, then at least) lower than

earlier in the follow-up.

In the Cohort A experience, the ID in years 8–10 may be

contrasted with that in years 1–5. None of the events of

interest occurred in that late period, while the null expected

number was 17 multiplied by the binomial proportion

of population–time in that period out of the total in years

1–5 and 8–10, 17½28:5=ð1; 013:5þ 28:5Þ� ¼ 17ð0:0274Þ ¼
0:466; and its associated variance was 17(0.0274)
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(1 - 0.0274) = 0.453. The corresponding value for a stan-

dard-Gaussian test statistic thus is z ¼ ð0� 0:466Þ=
ð0:453Þ1=2 ¼ �0:69: This represents no indication at all that

ID (theoretical) late in the follow-up is lower than early in

the follow-up, let alone that it has reached the asymptotic

level of zero.

The attainment of the survival rate’s asymptote actually

is not a matter of hypothesis testing but estimation. Study

of it requires setting a lower confidence limit for survival

rate over that subperiod of follow-up in which the empir-

ical cID ¼ 0 may correctly reflect the theoretical asymptotic
cID ¼ 0: For the number of events over the period at issue

(with ID = 0), the 95% one-sided upper confidence limit,

as the solution of ð1=2Þ expð�kÞ ¼ 0:05; is 2.30. Thus,

over the years 8–10 in the Cohort A experience, the sur-

vival rate’s corresponding limit (lower) is expf�½2:3=
ð15þ 9:5þ 4Þy�3yg ¼ 79%; and for the years 6–10 it is

89%—neither one of these very close to the asymptotic

100%. The Cohort B data mean, correspondingly, that the

focus needs to be on years 8–10, and that for this period the

survival rate’s lower limit is 84%.

For Bayesian hypothesis-testing—that is, evidence-

based updating of the (subjective) probability that the

hypothesis (non-null) is correct—the value of the null test

statistic needs to be translated into its corresponding

‘Bayes factor,’ the likelihood ratio to be used in Bayes’

theorem together with the prior probability (subjective) of

the correctness of the hypothesis. The null test statistic’s

realization (z0), however, explicitly provides the null like-

lihood only:

L0 ¼ ð2pÞ�1=2
expð�z2

0=2Þ:

The non-null counterpart of this is, in principle,

L1 ¼ ð2pÞ�1=2
expð�z2

1=2Þ;

where z1 is the non-null counterpart of z0, one in which the

null expectation is replaced by its non-null counterpart,

correct insofar as the hypothesis (non-null, qualitative) is

correct.

While that non-null expectation generally is unknown,

something is known about the non-null distribution of which

z1 is the notional realization. In particular, the median of the

distribution of |Z1| is 0.67. It thus is reasonable—and suitably

non-subjectivist—to use z1 = 0.67 and, thus,

L1 ¼ ð2pÞ�1=2
exp½�ð0:67Þ2=2�;

and from this it follows that

LR ¼ exp½ðz2
0 � 0:45Þ=2�:

Reporting this LR would be a suitable substitute for

reporting the p value corresponding to the z0 value.

The data on Cohort A regarding whether the ID (theo-

retical) is lower in years 8–10 than in years 1–5 gave

z0 = 0.69 (cf. above), which translates into LR = 1.01 ^
1.00; that is, the data give no support to the hypothesis/

premise/impression that there is a decline in the ID (which

attainment of the asymptote would imply).

Discussion: looking back at it all

The examples of survival analysis addressed here [1] had

two features that jointly gave rise to concern. They

involved calculation of the usual, Kaplan–Meier–Green-

wood (KMG) statistics [2, 3] for point and interval

estimation of the survival rate; and there was an unusual

degree of censoring after the last deaths contributing the

(decline in the) empirical rate of survival. It was quite

unsettling to me that the standard errors (SEs) of the sur-

vival rates, and hence the confidence intervals based on

these, remained unchanged over the periods of substantial

censoring after the empirical survival rates had reached

their respective asymptotes.

As I then came to realize, in 2005 Borkowf [5] made,

emphatically, the point that a proper SE of a KM point

estimate increases after the last event of interest in con-

sequence to the censorings that occur in this period,

different not only from the Greenwood SE but that of Peto

et al. [6] as well; and he proceeded to show how. In the

development of the substitute SE, the Peto SE was the

point of departure for Borkowf, specifically its underlying

idea of replacing the Greenwood SE by a binomial one: the

KM survival rate can be viewed as a point estimate of a

binomial proportion in conjunction with a suitably defined

‘effective’ number of trials, N. In the Peto SE, N is the

solution of NðcSRÞ ¼ S; where cSR is the KM survival rate

and S is the number of survivors under follow-up right

before (sic) the last event of interest.

As a potentially very important modification of this,

Borkowf replaced N ¼ S=ðcSRÞ by the total number of

those members of the cohort whose follow-up had not been

censored before the last event of interest. While the

resulting Borkowf SE generally is in good accord with the

Peto SE right after the last event of interest [5], it alone has

the characteristic of increasing in consequence of the

censorings that occur subsequent to the last event of

interest. In the principal example here, after the last death

of interest occurred, in the 5th year of the 10-year survival

period at issue, the Borkowf SE increased by a factor of 2.4

by the end of the 10th year of follow-up.

While laudably appreciating that a proper SE increases

with censorings subsequent to the last event of interest, and

also showing how it increases, Borkowf failed to recognize

that this increased SE is needed only in the calculation of

the lower confidence limit of the survival rate. When

(unjustifiably) applied in the calculation of the upper limit
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in the principal example here, that (nominal) limit exceeds

100%.

While Borkowf thus provided for the formulation of a

proper substitute for the Greenwood and Peto SEs of the

KM survival rate, potentially having a major implication

for the SE-based confidence interval (its lower limit), I here

call for leaving behind also the KM point estimator of

survival rate. My reason for this is that the KM point

estimation can only be supplemented by SE-based interval

estimation; that it does not lend itself to a first-principles

counterpart of this.

I suggest that the point estimate of a survival rate be

based on incidence density [4] of the death/failure at issue,

on the integral of this over the survival period (as the

exponential of the negative of this integral). In this

framework, the total number of the events of interest can be

taken to have a replication distribution of the Poisson type.

First-principles asymptotic confidence limits for the

parameter of this Poisson distribution can readily be

derived, and these can be translated into their corre-

sponding limits for the incidence-density integral and,

through these, into the corresponding limits for the survival

rate itself. By the same token, exact limits for the Poisson

parameter can be derived and then translated into exact

limits for the survival rate.

Once there is a preferable alternative to the KMG sta-

tistics in interval estimation of a ‘cause-specific’ rate of

survival, hypothesis testing about survival rates also is to

be brought into a new framework, not yet envisioned in the

1998 review by Barber and Jennison [7] but addressed

here.

Different estimators lead to different estimates. In the

principal example here (Cohort A, Table 1), the KMG

analysis gave for the survival rate the point estimate 92%

together with the 95% two-sided interval estimate of 88%

to 95%. The approach proposed here would replace that

interval by one ranging from 81% to 96%.

Now, as the data gave no indication at all that the under-

lying (theoretical) incidence density (ID) is anything but

constant over the survival period at issue, 10 years, it would

not have been unreasonable to base the survival rate’s point

estimate on the overallcID in place of the ones specific to one-

year subintervals of the 10 years at issue; that is, on cID ¼
ð5 þ 4þ � � � þ 0Þ=ð291þ 261þ � � � þ 4Þy ¼ 1:53=100y:

On this basis the point estimate would have been cSR ¼
exp � 1:53=100yð Þ10y½ � ¼ 86%; and the Poisson limits 26.0

and 9.9 corresponding to the ‘observed’ number of 17

‘failures’ would have translated into the survival rate limits

79% and 92%. Most notable in this would have been the point

estimate’s shift from 92% to 86%.

A salient feature of the approach proposed here is the

definition of the set of intervals of follow-up time, meant to

be short enough so that the incidence density within each of

them is essentially constant. Good practice is to use

intervals of identical widths; and it deserves note that while

use of shorter intervals may add to validity, it does not take

away from the efficiency of the analysis (increasing the

width of the interval estimate).

All in all, it seems that there is a need to rethink the

KMG routines that now permeate and dominate the avail-

able software systems for survival analysis.

Appendix 1

The Nelson–Aalen estimator

An eminent alternative to the KMG statistics is now con-

stituted by the Nelson–Aalen (NA) statistics [8], which,

like the statistics proposed here, are based on consideration

of survival rate (‘cause-specific’) as the complement of

cumulative incidence based on the integral of incidence

density (ID). In the NA approach, the ID integral is derived

as
P

j di=Si; where di is the number of deaths/failures at a

point in follow-up time when Si survivors were at risk for

that outcome (and di of them experienced this event). Thus

the point estimate of the survival rate is taken to be cSR ¼
exp �

P
i di=Si

� �
: The value of this is always somewhat

higher than that of the corresponding KM estimate [8].

As a simple example, we might have d1=S1 ¼ 2=6

together with only d2=S2 ¼ 2=4; this in the absence of any

censorings. The correct point estimate in this case may be

taken to be the binomial one: cSR ¼ 2=6 ¼ 0:33: The cor-

responding NA estimate is exp ½�ð2=6þ 2=4Þ� ¼ 0:43;

while the KM estimate is ð4=6Þð2=4Þ ¼ 2=6 ¼ 0:33:

One way to arrive at the N/A estimator, based on data in

the form of {Si, di}, is to focus on time elements of duration

dt backward (sic) from each of the failure times (indexed

by i = 1, 2,…). From the ith one of these time elements the

contribution to the ID integral is ðdi=Si dtÞdt ¼ di=Si: As

only these time elements contribute to the ID integral, the

latter is
P

i di=Si:

If, however, we consider time elements of duration 2dt

and, specifically, of duration dt forward as well as back-

ward from each of the failure times, as is natural, then

the ID integral becomes
P

ifdi=½Sidt þ ðSi � diÞdt�2dt ¼
P

i di=(Si - �di). In the simple example above, this

modification replaces the NA estimate, 0.43 (above), by

0.34 ð’ 2=6Þ:
For the here-proposed approach, the NA estimator has

the virtue of suggesting that the population–time for the jth

interval (with dj [ 0) can be derived from the usual {Si, di}

data, supplemented by the timings of the {di}, as Tj ¼
tj

P
i dij=

P
i dij=(Sij - �dij), the {Sij, dij} constituting the

set falling in the jth interval of follow-up time.

Up from Kaplan–Meier 591

123



References

1. The International Early Lung Cancer Action Program investiga-

tors. Survival of patients with Stage I lung cancer detected on CT

screening. N Engl J Med. 2006;355(17):1763–71. doi:10.1056/

NEJMoa060476.

2. Kaplan EL, Meier P. Nonparametric estimation from incomplete

observations. J Am Stat Assoc. 1958;53(282):457–81. doi:10.2307/

2281868.

3. Greenwood M. A report on the natural duration of cancer. In:

Reports on public health and medical subjects, vol. 33. His

Majesty’s Stationery Office: London; 1926. p. 1–26.

4. Miettinen OS. Estimability and estimation in case-referent studies.

Am J Epidemiol. 1976;103:30–6.

5. Borkowf CB. A simple hybrid variance estimator for the Kaplan–

Meier survival function. Stat Med. 2005;24:827–51. doi:10.1002/

sim.1960.

6. Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV,

et al. Design and analysis of randomized clinical trials requiring

prolonged observation of each patient. II. Analysis and examples.

Br J Cancer. 1977;35(1):1–39.

7. Barber S, Jennison C. A review of inferential methods for the

Kaplan-Meier estimator. In: Research Report 98: 02, Statistics

Group, University of Bath, UK. 1998. http://www.maths.leeds.ac.

uk/*stuart/research/publications.html.

8. Collett D. Modelling survival data in medical research. 2nd ed.

Boca Raton: Chapman & Hall/CRC; 2003.

592 O. S. Miettinen

123

http://dx.doi.org/10.1056/NEJMoa060476
http://dx.doi.org/10.1056/NEJMoa060476
http://dx.doi.org/10.2307/2281868
http://dx.doi.org/10.2307/2281868
http://dx.doi.org/10.1002/sim.1960
http://dx.doi.org/10.1002/sim.1960
http://www.maths.leeds.ac.uk/~stuart/research/publications.html
http://www.maths.leeds.ac.uk/~stuart/research/publications.html

	Survival analysis: up from Kaplan-Meier-Greenwood
	Abstract
	Introduction: examples give rise to concern
	The Kaplan-Meier-Greenwood statistics
	Kaplan-Meier-Greenwood-equivalent statistics
	Up from the Greenwood standard error
	Up from the Kaplan-Meier framework
	Hypothesis testing in the substitute framework
	Discussion: looking back at it all
	Appendix 1
	The Nelson-Aalen estimator

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


