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Abstract

The risk over a given time span can be calculated as the exponentiated value
of the negative of the integral of the incidence density function over that
time span. This relationship is widely used but, in the few instances where
textbooks have presented it, the derivations of it tend to be purely math-
ematical. We o↵er a more intuitive heuristic approach that draws on the
conceptualization of a person-year in Edmonds’ 1832 definition of the force
of mortality, and on the number of replacements in a dynamic population.
Similarly we show how the Nelson-Aalen risk estimator can be seen in the
context of this historical conceptualization of a person-year, scaled to the
experience of a dynamic population of (constant) size 1.
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1 Introduction

In the abstract, cumulative incidence is – in statistical terminology – a pa-

rameter : the proportion of a theoretical cohort – all members of which are

candidates initially – that, over a specified period or span of time [or age],

leaves the initial state and enters the state of interest. Typical applications

are the 30-day mortality rate, and the ‘x’-year risks of various illnesses.

In some instances, its empirical counterpart, which statisticians refer to as

an estimate, can be calculated directly as an proportion; in others, it can only

be arrived at indirectly, as the complement of the product of conditional ‘sur-

vival’ probabilities in an actuarial or medical life-table framework[1]. These

indirect computations are described in all epidemiology texts and the – quite

intuitive – steps are easily recalled. Less often presented, and less well mas-

tered, is the method based on the incidence density(ID) function over that

specified time span. This is understandable, as the formula, involving the

exponential function and an integral of the ID function, is less transparent.

As an simple example, suppose the ID of needle-stick injuries was assumed to

be constant (at, say, 0.095 per intern-month[2]) over the 12-month time-span

of interest. Without resorting to one of these textbooks, few could quickly

– and confidently – recall and use the ‘exponential’ formula to convert this

incidence function to an incidence proportion or risk.

Yet, this link between the ID function and risk is increasingly used. The

Nelson-Aalen estimator, now o↵ered alongside the familiar Kaplan-Meier es-
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timator in software packages, is based directly on it. In both non-parametric

and parametric statistical approaches, the link is used to calculate profile-

specific x-year risks,[3] risk di↵erences, and numbers needed to treat.[4] And,

it is used to assess (non)proportionality of hazards via log[survival] plots.

The main objective of this article is to demystify the formula, by taking

advantage of Edmonds’ conceptualization of a person year as “one person

‘constantly living’ for one year” (today termed a dynamic population of con-

stant size 1[5,6]). We clarify the meaning of the integral, and exploit it, along

with of a little-used property of the Poisson distribution, to arrive at the

formula. The secondary objective is to provide a di↵erent heuristic for the

Nelson-Aalen estimator of a survival probability or risk. Some of these con-

cepts are implicit in the ‘counting process’ approach to survival analysis; we

attempt to make them explicit and accessible, and to use them didactically.

2 Definitions, distinctions, and links

The term ‘incidence density’ was introduced in 1976[7, 00:54:45] to describe the

quantity with dimension time

�1, and to distinguish it from the ‘proportion-

type’ incidence rate or risk. However, the distinction between the concepts

of ‘rate’ (in the ID sense) and ‘risk’ is a very old and well described one[8,9].
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2.1 Incidence density (ID), and ID functions

Incidence density (ID) refers to the rate of transition from an initial (usually,

but not necessarily, health) state to a di↵erent state of interest:

Incidence density (“force of morbidity” or “force of mortality”)

– perhaps the most fundamental measure of the occurrence of

illness – is the number of new cases divided by the population-

time (person-years of observation) in which they occur.

Each (age-specific) value in the ID function in Figure 1 was computed

from the dynamic population experience in which “a population (...) with

turnover of membership moves over (7 years of) calendar time, with all mem-

bers being candidates throughout (so that the transition at issue is among

the mechanisms of removal of individuals from the candidate population).”

Alternatively, an ID can can be derived from a cohort experience, “in which

an enumerable set of individuals, all candidates initially, moves over the risk

period.’ As in the dynamic case, the cohort experience can be segregated by

age or time to yield an ID function, rather than a single ID value.

The concept of a ‘hazard’ is typically introduced in the context of a cohort.

Arguably, the ‘mathematical limit’ used to define it is more easily understood

via the ID in a dynamic population experience. Table 1 gives three examples

of the ‘ID in the limit’ at (deliberately selected to be a non-integer) ages.

An ID function that yields a continuous curve shortens otherwise tedious

calculations of annuities and of x-year cumulative incidence rates (risks).
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Figure 1: Age structure of, and age-specific numbers of deaths recorded in, the (dynamic)

USA population observed over the period January 1, 2000 to December 31, 2006, along

with the age-specific death rates (incidence densities) derived from them. Source: Human

Mortality Database, http://www.mortality.org/. For each (continuous) value of age

(t), shown as the thicker dotted line – with vertical axis in millions (M) – is N(t), the

number of persons who were ‘exactly t years of age’ on some date in the 7 calendar years.

Thus the numbers of person-years lived in any age-interval is the integral of (area under)

the N(t) curve over the interval in question. Most residents contributed 7 person-years

each to the overall total of 2,000 million person-years; some contributed fewer – mostly to

either the younger or older end of the person-years distribution. The numbers of deaths for

any age-interval is the integral of the ‘deaths per 1-year-of-age time slice’ curve (thinner

dotted line, axis on 100s of thousands) over the interval in question. The solid black curve

(vertical axis in increments of 0.1) is the full, and the solid grey curve the ‘below age 60’

portion (vertical axis in increments of 0.002) of the ID(t), or force of mortality or hazard

rate function. The ID(t) function ranges from a nadir of 0.000014 year�1 at approx.

t = 10, to 0.51 year�1 at age t = 105.
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Table 1: Incidence density (ID), calculated for (successively smaller) inter-
vals, of width �t, centered on 3 di↵erent ages

t = age 39.25⇤ t = age 59.25 t = age 79.25
�t PT* Deaths ID . PT Deaths ID . PT Deaths ID
1 year . 31.255 55,590 177.9 . 19.520 177,133 907.5 . 9.578 486,785 5,082.3
1 month . 2.605 4,629 177.7 . 1.626 14,772 908.6 . 0.798 40,567 5,082.5
1 week . 0.601 1,068 177.7 . 0.375 3,409 908.6 . 0.184 9,362 5,082.5
1 day . 0.086 152 177.7 . 0.053 486 908.6 . 0.026 1,334 5,082.5
*PT: Population-time (1 unit = 1 million person-years) ID Units: deaths / 100,000 person-years

Based on population-sizes and numbers of deaths, USA 2000-2006.
Source: Human Mortality Database, http://www.mortality.org/
⇤Technically, persons are only exactly 39.25 for a moment (infinitesimal, since a moment has no
duration), so we can only consider the calculation over an interval (t��t/2, t+�t/2), of width
�t, that includes t = 39.25.

2.2 Cumulative incidence rate, or risk

A cumulative incidence proportion (see Introduction) used as the probability

of transition for an individual is usually referred to as a risk. Farr[8, p2]

made this same distinction[10, p229] between an expected proportion in an

aggregate, and the probability for an individual,who distinguishing patients

‘in two lights’, in ‘collective masses, when general results can be predicted

with certainty’ or ‘separately, when the question becomes one of probability.’

2.3 The formula linking ID and risk

According to Chiang[11,p198], the equation that converts a smooth ID(t) func-

tion into a risk “has been known to students of the lifetable for more than two

hundred years. Unfortunately, it has not received much attention from inves-

tigators in statistics, although various forms of this equation have appeared
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in diverse areas of research”.

Epidemiologic coverage of it begins in 1976.[5] Miettienen’s worked ex-

ample addressed the 30 year risk of bladder cancer for a 50 year old man,

assuming that “without bladder cancer he would survive that period.” We

address the 20 year risks of death from any cause for 39.25, 59.25 and 79.25

year olds, making competing risks irrelevant. Thus, the formula can be used

directly: the cumulative incidence-rate (CIR) for the age span a

0 to a

00 is

CIR

a

0
,a

00 = 1� exp



�
Z

a

00

a

0
ID(a)da

�

2.4 Subsequent coverage of the link

Miettinen[5,13] merely cites Chiang[12] for the source of the equation; Mor-

genstern et al.[14] tell us that ‘a little calculus’ leads to it. Rothman’s 1986

textbook[15, pp29�31] is the only epidemiological textbook JH is aware of that

formally derives it. The derivation – with S(t) as the solution of a di↵erential

equation – is the same one typically used in survival analysis textbooks, and

in the 1980 article[14] This was also the approach used by Edmonds ([16, p xvii])

and, (implicitly) by Lambert in 1765 and Bernoulli in 1776[17].

The popular textbook[18,19] gives the discrete (i.e., summation) version,

stating that it is sometimes referred to as the exponential formula. It illus-

trates it using a numerical example, in which the Kaplan-Meier estimator

yields a 19-year risk of 0.56. while the exponential estimator yields 0.52.

The reader is left wondering which is an approximation to which.
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The introductory textbook[18, pp 33�38] uses heuristic arguments, but does

not show the full-blown formula. Instead it presents “the simplest formula to

convert an incidence rate to a risk” : Risk = Incidence rate ⇥ Time, which

gives a very close approximation in the two worked examples presented. The

warning that the product “can exceed 1” in some instances raises, but does

not answer, the question of what the product truly means.

Rather than advocate an approach in which the product is sometimes

‘close to the numerical value of risk’ and sometimes not, we explain what the

product means – it has the same meaning whether it is large or small – and

that a simple transformation of it can always be interpreted as a risk. In the

next section, we give the product (or more generally, the sum of products,

i.e. the integral) in this ‘exponential formula’ a concrete meaning.

3 A heuristic inspired by Edmonds

To do so, we take up Edmonds’ concept of a given number of persons con-

stantly living,[16] which he used in originating the term ‘force of mortality.’

We begin with a simpler shorter-term example, where ID is constant over

the entire span in question, before addressing the general case.

3.1 Constant-over-entire-timespan ID

How to convert an incidence density of 0.0975 1 (first) percutaneous injuries

per intern-month[1] —assumed constant over a span of 12 months – into a
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12-month cumulative incidence (proportion-type) rate or risk?

As Edmonds did, take the ‘given number of interns’ to be one (1). Imagine

a ‘chain’, starting at t0 = 0 and extending for 12 months until t00 = 12. The

chain is begun with a randomly selected never-injured intern, who continues

until he/she either reaches 12 months or is injured before then. If the latter,

and it occurs at age t, he/she is immediately replaced by another a randomly

selected never-injured intern. The chain proceeds, ‘with further replacements

as needed,’ until t00 = 12. From t

0 to t

00
, the 1 constantly-serving candidate

constitutes a dynamic population with a constant membership of 1.

The number of replacements required is a random variable, with possible

values 0, 1, 2, . . . . Its expected value (mean) is µ = 0.0975 m

�1 ⇥ 12 m =

0.00039 h�1⇥3000 h = 1.17 first injuries. Readers will recognize µ as integral

of the ID(t) function over the 12-month age-span. The probability that the

chain is completed by the same intern who initiated it is the probability that

0 replacements are required. The probability that it is not is the complement

of this ‘survival’ probability. Since the number of replacements (transitions,

first injuries) in the 12 months is a Poisson random variable, the probability

that the chain is completed by the same intern who initiated it is the Poisson

probability of observing 0 events when 1.17 are expected, i.e., as exp[�1.17] =

exp
⇥

�
R

t

00

t

0 ID(t)dt
⇤

= 0.31. The probability that this intern fails to complete

the chain, i.e., is injured before the 12 month period ends is 1 � exp
⇥

�
R

t

00

t

0 ID(t)dt
⇤

= 1� 0.31 = 0.69. Thus the 12-month risk of injury is 69%.

Fig 2, modeled after Fig 1 in Miettinen,[5] gives the expected values for
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Figure 2: An average of 1.17 transitions (percutaneous injuries) in 1 intern-year (I-Y) of experience

(117 in 100 I-Y), so that ID = 1.17 year

�1. 100 ‘chains’ start at t = 0 (the 100 chains are represented by

100 horizontal lines, so close to each other that the total person time appears as a rectangle 100 interns

high by 12 months wide); each chain continues for 12 months, each using as many replacements (Gen.

1, 2, . . . ) as necessary to complete the chain. The di↵erent shaded areas represent the population-time

for generations 0, 1, . . . . The proportion of chains that are completed using the initial (Gen. 0) intern is

exp[�1.17] = 0.31, i.e., 31%, so the 1-year risk is 100% - 31% = 69%. The proportion of chains in which,

by time t, the initial (Gen. 0) intern has been replaced, i.e., the cumulative incidence rate up to time t,

is 1 � exp[�ID ⇥ t] = 1 � exp[�(integral up to time t)] The straight line (the product of ID and time,

scaled up by 100) involves a constant number of candidates at each time point, and thus overestimates

the cumulative incidence rate – substantially so as generation 0 is replaced. The numbers of transitions

do not sum exactly to 117 because of rounding.
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a total of 100 separate such chains, and shows why the product of ID and

time (the 1.17, the integral) is not a risk, but rather an expected number of

events (transitions, turnovers, injuries) in a dynamic population of size 1. To

provide 100 intern-years of service, an average of 217 interns is required. Of

the 100 who began the chains (the average service of these 100 in ‘generation

0’ is 0.596 P-Y per intern) 31 complete them and 69 do not. Thus, the 12-

month risk is 69%. On average, of their 69 replacements (generation 1), 36

complete the chains and 33 do not; and so on, so that in all – over the initial

and replacement generations, totaling 100 P-Y – 117 do not and 100 do.

The proportion of chains in which, by time t, the ‘Gen. 0’ intern has

been replaced, is 1� exp[�ID ⇥ t] = 1� exp[�(integral up to time t)]. The

straight line (the product of ID and time, scaled up by 100) involves a con-

stant number of candidates at each time point, and thus overestimates the

cumulative incidence rate – substantially so as ‘gen. 0’ is replaced.

Table 3.2 and Fig. 3.3 of Rothman[20] show a 20-year incidence proportion,

but using an ID of 0.011 yr�1
, so that the expected number of transitions in a

dynamic population of 1 is 0.011yr�1⇥1 yr = 0.22. That curve is identical to

the first 0.22/0.0975 = 2.3 months of the curve for the percutaneous injuries.

The expected numbers of ‘cumulative deaths’ column in Rothman’s Table

3.2 can be (and probably were) arrived at using the ‘exponential’ formula

1000⇥ { 1� exp[� 0.011yr�1 ⇥ (number of years)] }.
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The 0.011 yr�1 ⇥ (number of years) is the integral of the ID function, i.e.,

the expected number of transitions, over the number of years in question.

3.2 Varying-over-the-timespan ID

We deal now with the 20-year risk of death from any cause for a person aged

a

0 = 79.25, based on the – clearly non-constant – ID function shown in Figure

3(A). Again, as Edmonds did, we imagine a 1-person ‘chain’ that starts with

a randomly selected living person aged a

0 = 79.25 and extends – with ‘with

further replacements as needed’ – for 20 years until a00 = 99.25.

The number of replacements (deaths) in the 1-day-wide interval centered

on age t is a Poisson random variable with expected value ID(t)⇥1[person]⇥

(1/365.25)[year]. The sum of 7305 independently distributed daily Poisson

random variables, each with a di↵erent expected value, is again a Poisson

random variable with expected value equal to the sum of these daily expected

values. This sum – e↵ectively the integral, from 79.25 to 99.25, of the ID

function in Figure 1(B) – is µ = 3.22 transitions/replacements/deaths. The

sum of a number of Poisson random variates is again a Poisson variate.

Thus, we can calculate the probability that the chain is completed by the

same person who initiated it, as the Poisson probability of observing 0 events

when 3.22 are expected, i.e., as exp[�3.22] = exp
⇥

�
R 99.25

79.25 ID(t)dt
⇤

= 0.04.

The 20-year risk is its complement, namely 1 - 0.04 = 0.96, or 96%. The

righmost panel of Fig 3(B) shows risk curve for spans shorter than 20 years.

To obtain the 20-year risk for a person aged 59.25, we calculate 1 minus
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Figure 3: (A) The death rate (incidence density, or force of mortality) as a function

of age (details in Figure 1) – lighter curve (vertical axis on left) is the ‘below age 60’

portion – (B) 20 year risks calculated from the ID function. Over the span from 79.25 to

99.25 years, the integral of the ID function, which can be successively approximated by

a sum of products, each of the form ID(tmid) ⇥ 1(person) ⇥�t (with each ID evaluated

at the midpoint of a very small time interval of width �t) is 3.22. Note that the ‘1’

person in the ‘1(person) ⇥ �t’ amount of population-time experience does not appear

explicitly in the usual formulation - the integral is usually written as
R

ID(t)�t rather

than
R

ID(t)⇥ {1⇥�t}.
The expected numbers of deaths “if 1 person (not necessarily the same person for the

entire span) were constantly living for a 20-year span” (i.e., in a dynamic population

of size 1) are shown for 3 selected spans. As in Figure 2, the di↵erent shaded areas

represent the population-time for generations 0, 1, . . . The 20-year risk for a person 79.25

years old is the (Poisson) probability that at least one replacement is observed, if 3.22

replacements are expected. Over the combined 60-year span from 39.35 to 99.25 years of

age, a total of 0.09+0.47+3.22 = 3.78 replacements are expected, so the 60-year risk is

1� exp[�3.78] = 97.7%.
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the Poisson probability of observing 0 events when 0.47 events are expected,

i.e., 1 � exp[�0.47] = 0.37. The 40-year risk for a person aged 59.25 is 1

minus the Poisson probability of observing 0 events when 3.22+0.47 = 3.59

events are expected, i.e., 1� exp[�3.69] = 0.98, or 98%.

In Rothman’s 2002 example, the expected number of motor-vehicle injury

deaths in a continuous 1-person chain (dynamic population) is

4.7

105Y
⇥ 15Y+

35.9

105Y
⇥ 10Y+

20.

105Y
⇥ 20Y+

18.4

105Y
⇥ 20Y+

21.7

105Y
⇥ 20Y = 0.016335.

and so we arrive at the 85-year risk of 1 � exp[�0.016335] = 0.016 or 1.6%

with fewer calculation steps that using the method he employed.

4 Approximation to Risk

From the expected value of 0.09 in Figure 3(B), the 20-year (all-cause mor-

tality) risk for a person aged 39.25 is 1 � exp[�0.09] = 0.086 or 8.6%. This

example, and the one involving the expected value of 0.016335, reflect the

fact that, if the expected value (E), is small, so that 1� exp[�E] ⇡ E, then

Risk
a

0
,a

00 ⇡ Expected no. (E) of events in (a0, a00) span, if E is small.

The following shows that the percentage over-estimation in using the approx-

imation Risk
approx

= E increases with increasing E, and is close to (50⇥E)%.
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Expected no. of events, E: 0.02 0.05 0.10 0.20 0.30 0.50 1.00

Risk = (1� exp[�E]) : 0.0198 0.049 0.095 0.181 0.259 0.393 0.632

% by which E overestimates Risk: 1 3 5 10 16 27 58

A large E can arise from a low rate over a longer interval, (e.g., 0.47 from

mortality rates in the age span 59.25 to 79.25) or higher ones over a shorter

one (e.g. 0.37 from mortality rates in the age span 99.25 to 100.25). Farr was

‘aware that when the number of deaths is small, relative to the population

studied, both measures approach each other numerically.’[9]

5 The Nelson-Aalen estimator

Although still not covered in most epidemiology texts, the Nelson-Aalen esti-

mator of the survival function[21] is included in most software packages along

with the Kaplan-Meier one, and is increasingly found in the medical litera-

ture. Both estimators are calculated for survival data that have been reduced

to J very narrow event-containing sub-intervals of the full [0, t] interval of

interest. Interval j is defined by distinct event-time t
j

. Intervals in [0, t] that

don’t contain events are ‘non-contributory’ and thus ignored. The jth riskset

is the set the ‘candidates’ (n
j

in all) just before the event(s) in interval j.

Some s
j

‘survive’ event-containing interval j, while the remaining d

j

do not.

In the Kaplan-Meier Product Limit estimator, each of the J empirical

conditional probabilities s1/n1, . . . , s

J

/n

J

is treated as a surviving fraction

of the previous fraction, and so, ultimately, the estimator is simply the overall
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product of these:

d

S(t)
KM

=
s1

n1
⇥ · · ·⇥ s

J

n

J

=
Y

j

s

j

n

j

=
Y

j

n

1� d

j

n

j

o

.

The Nelson-Aalen one is often merely presented, without justification, as

d

S(t)
NA

= exp
n

�
X

j

d

j

n

j

o

.

Sometimes it is accompanied by the statement that “the Kaplan-Meier Prod-

uct Limit estimator is an approximation to” to the Nelson-Aalen one. The

following algebra shows that the reverse also holds true: when each d

j

/n

j

is

small, then 1� d

j

/n

j

⇡ exp[�d

j

/n

j

], and so

d

S(t)
KM

=
Y

j

n

1� d

j

n

j

o

⇡
Y

j

n

exp
h

� d

j

n

j

io

= exp
n

�
X

j

d

j

n

j

o

= d

S(t)
NA

But the Nelson-Aalen estimator of the survival function can also be jus-

tified in its own right, as the empirical version of the exact link between ID

and risk. This in turn can be though of as the Poisson probability (exp[�µ])

of 0 events, where µ is the number of events that would be expected if the

empirical ID function (cID) were applied to a dynamic population with a

constant membership of one (“one person constantly living”), over the time-

span (0, t). The Nelson-Aalen formula is unveiled by examining the structure

of the integral, µ =
R

u=t

u=0
\
ID(u)du. The integrand takes on J positive val-

ues c

ID1 to c

ID

J

inside the J small event-containing intervals, and the value
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\
ID(t) = 0 everywhere outside of these intervals. If the width of interval j is

�t, then for all values of u within interval j, the fitted ID is \
ID(u) = dj

nj⇥�t

.

Thus, the overall integral is a sum of J non-zero integrals:
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Fig 4 illustrates the heuristics using data on the frequency of IUD discon-

tinuation because of bleeding.[21, p5] The fitted number of transitions (discon-

tinuations), µ̂ =
P9

1(dj/nj

) = 1.25, is the number of transitions we would

expect in a dynamic population of size 1 followed for 107 weeks. This fitted

number is obtained by scaling the observed population-time so that there is

always 1 candidate, and scaling the numbers of transitions accordingly. The

107-week risk of discontinuation is therefore 1� exp[�1.25] = 71%.

Terminology: Confusingly, di↵erent software packages report by di↵erent

entities as ‘Nelson-Aalen’ estimates. Sometimes the term is used to describe

bµ, the number of events for a 1-person dynamic population, and sometimes

the risk 1 � exp[�bµ]. As we saw above, the two are sometimes numerically

close, sometimes not. Referring to bµ, i.e., the sum of products or integral, as

the ‘integrated hazard’ or the ‘cumulative hazard’, avoids confusion. But –

as Rothman et. al [18,19] lament – the term “cumulative incidence” can fosters

it: does it mean the integral or the risk? To avoid this possibility, I have

used Miettinen’s term “cumulative incidence rate,” but also tried to ensure

that readers know when I use the word “rate” in the ‘proportion’ sense.
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Figure 4: Heuristics for Nelson-Aalen estimator, using data on IUD discon-
tinuation because of bleeding [21,p5]. 18 women began using an intrauterine
device (IUD) for contraception, and were followed until the end of the study
(entry was staggered) or until they discontinued it for unrelated reasons (to-
tal: 9 instances, treated as censored onservations), or until they discontinued
it because of bleeding ( 9 instances). The upper panel shows the actual
population-time using the function N(t), i.e., the number of candidates at
time t, and the timing of the 9 transitions. The lower panel shows the
population-time scaled so as to always have one candidate, and the numbers
of transitions scaled accordingly. Using the incidence density pattern in the
top panel, we would expect µ =

P9
1(dj/nj

) = 1.25 transitions in a dynamic
population of size 1 followed for 107 weeks. Thus, the probability that a per-
son who begins using an IUD at t = 0 will have discontinued it by t = 107 is
1� exp[µ] = 1� exp[�1.25] = 0.71, or 71%.
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6 Closing remarks

We have described four aspects of the expected number of replacements in

Edmonds’ ‘1 person constantly living’ or Miettinen’s ‘dynamic population of

(constant) size 1’. (1) It provides a heuristic for the integral in a central

epidemiologic formula. (2) It has a di↵erent conceptual meaning than ‘risk’

– even if it sometimes provides a close numerical approximation to it. (3) A

transformation of it into a Poisson probability provides an always-exact risk.

(4) A scaled version of it is the centrepiece of the Nelson-Aalen estimator.

In the light of (2) and (3), and the wide access to the exponential function,

it makes sense to always convert the expected number to a risk.

Increasingly, reports include risk curves rather than survival curves, show-

ing them at plots that go ‘up, not down.’[19]. In addition to reducing the

wasted white space, this practice removes an oxymoron in the phrase ‘cu-

mulative survival often used to label the y-axis in survival curves: in such

curves, the estimated proportions/percentages ‘still in the initial state’ must

go down; it is the transitions (from the initial state) that are cumulated!

Software packages di↵er in their use of terms for ‘going up’ curves, leaving

it unclear whether plotted is the number of events in a dynamic population

of size 1, or the probability – derived from it – that expresses the risk.

The Appendix describes an analogy between an ID function applied to a

cohort, and a compound penalty rate applied to a sum of money.
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Appendix: A heuristic from modern-day ‘interest’ rates

Suppose the balance S(t0) = $100 you planned to leave untouched in an

account is below the minimum at which the bank pays interest; instead,

from time t

0 onwards, it penalizes you by decrementing from the account.

Suppose also that, contrary to the usual practice, it does so in real-time –

‘continuously,’ i.e., every nanosecond, rather than weekly or daily or hourly

– and uses ‘compound’ rather than ‘simple’ decrements. Thus, the

decrement ‘at’ (the nanosecond corresponding to) time t is the product of

the penalty rate, and the balance, S(t), ‘at’ t. In the simplest case, the

‘penalty rate’ is a constant, say an ‘annualized’ rate of 18 ‘%’ (for every

million ‘$-years’ in such accounts, the bank takes $180,000) , or it might

vary with the financial market – as an e↵ectively continuous function.

Purists will, of course, note at least two di↵erences: this is a deterministic

formula, with no probabilities (beyond the volatility of the market); and, in

theory, if not in practice, the 100 dollars are infinitely divisible, whereas the

100 persons are not. Nevertheless, the S(t) does behave like a ‘survival’

function, and the key is how it is linked to the initial amount via a

summary of the ID or hazard function. Just what form the summary takes

becomes evident if one considers the following questions: (i) how is the

balance at time t

00 related to the penalty-rate function over the interval

(t0, t00)? (ii) for calculation purposes, is it su�cient to know just the average

of the rate function over the interval (t0, t00) and the duration (t00 � t

0)?
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