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The Efficiency of Cox’s Likelihood

BRADLEY -EFRON*

Function for Censored Data:

D.R. Cox has suggested a simple method for the regression analysis
of censored data. We carry out an information calculation which
shows that Cox’s method has full asymptotic efficiency under con-
ditions which are likely to be satisfied in many realistic situations.
The connection of Cox’s method with the Kaplan-Meier estimator
of a survival curve is made explicit.

KEY WORDS: Censored data; Cox likelihood; Survival curves.

1. INTRODUCTION

A recent California study investigated the survival
times of residents at a senior citizens’ facility. New
arrivals joined the facility at various ages past 65,
sometimes moved out of the facility, and of course not
all had died by the end of the study. Complicated data-
censoring patterns such as this are common in studies
involving human beings. In a heavily censored situation
standard regression techniques are inappropriate for
analyzing the effects of covariates (such as race, sex, and
blood pressure in the example above) on survival time.

D.R. Cox (1972) has suggested a regression analysis
for survival data which cleverly finesses censoring
difficulties. Cox’s model assumes that the ith subject
has hazard rate

hi(t) = oi(t; @)h(ty Y) ) (11)

where the unobserved vector 3, which parameterizes the
regression of survival time on the observed covariates,
is the main object of interest. Cox uses the parameter-
ization 6;(¢, ) = exp (B-z:(¢)), where z;(¢) is the possibly
time-varying vector of observed covariates, but this
particular form does not play a crucial role in the analysis.
The unknown nuisance function A(¢, ¥) modifies all the

individual hazard rates equally, depending for its form

on another unobserved vector y of parameters.

In order to visualize (1.1) more concretely, it helps to
imagine the time axis divided into infinitesimal intervals
of length e. We have a collection of (time-varying) coins
indexed by 7 =1, 2, ..., n corresponding to all the
subjects ever observed in the study. During time interval

(t, t + ¢ a subset ®R(¢) of these coins, called the “risk:

set at time ¢,”” are each flipped once, with the probability
of heads (death, in the senior citizens’ study) equal to
h:(t)e for the 7th coin, independently of all other coins.
This process proceeds sequentially in time. Once a head
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is achieved that coin is removed from subsequent flip-
pings. Coins may be removed from the risk set for
reasons other than death, and new coins may come on
risk, i.e., join ®(¢) as ¢ increases.

Cox’s analysis proceeds as follows:let t;, < ¢, <... <t
be the observed failure times, assuming no ties, say for
items 41, %s, ..., 17, respectively, and let ®R(¢;) be the risk
set of items on test just before the jth failure. Given
®(¢;) and the fact that one item failed at time ¢; the
conditional prebability that item ¢; failed is

oij(tj} g)/ Z 0i(ti’ @) .
1€ R(t))

Simply multiplying these factors together gives the
“partial likelihood function”
\

J

II {65, 8)/ X 6it;,8)} . (1.2)
ie1 iERE)

The coin-tossing model in the preceding paragraph
clarifies the derivation of (1.2).

Cox treats (1.2) as an ordinary likelihood function for
the purposes of inference on §. Maximum likelihood
estimates, hypothesis tests, and asymptotic confidence
intervals are then derived in the usual way. Cox’s
analysis relates to earlier work by many authors, in

" particular Mantel and Haenzel (1959) and Peto and

Peto (1972). A “major outstanding problem,” which is
the main topic of this paper, is the efficiency of inferences
about 8 based on (1.2) (Cox 1972).

There are three very attractive features of Cox’s
approach : (1) The nuisance function A(t, v) is completely
removed from the inference process on §; (2) Covariate
information on the different items is easily incorporated
into (1.1), for example in the form 6;(¢, B) = exp (8-z:(¢))
suggested by Cox; and (3) Data censoring patterns often
encountered in life tests, such as those in the senior
citizens study, do not affect (1.2).

Qualms about (1.2) were expressed in the discussion
following Cox’s.paper. It is not really a likelihood function
since it ignores a factor in the likelihood, essentially
that relating to the ‘“nonfailure intervals,” &, & — &,
t3 — t2, ..., ty — ts_1, nor is it a conditional or marginal
likelihood, except in very special cases. (See Kalbfleisch
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and Prentice 1973 and also Remark E, Section 6.) Cox’s
(1975) theory of partial likelthood shows among other
things that (1.2) produces inferences similar to ordinary
likelihood procedures. We use his results in Section 3.

In this article, the meaning of (1.2) is set in context by
considering the complete likelihood function of all the
observed data. The heuristic argument of Section 3 shows
that if the class of nuisance functions A (¢, y) is moderately
large, then inferences about 3 based on (1.2) are asymp-
totically equivalent to those based on all the data. In a
rough sense this solves Cox’s “outstanding problem.”

In practice, h(¢, ¥) may be an important quantity in
its own right rather than a nuisance. The connection
between (1.2) and inferences about A(Z, v) is considered
briefly in Section 5, particularly as it concerns the
Kaplan-Meier estimator. This analysis is closely related
to that in Breslow (1974). There is also considerable
overlap with Breslow and Crowley (1974), and the work
of Aalen (1975) which concerns the efficiency of (1.2)
for testing purposes.

We begin in Section 2 with the case of many identical
items on test, to which the Kaplan-Meier estimator
refers. The main result is in Section 3 with the proof
deferred until Section 7. Section 4 illustrates the general
theory in the special case of the two-sample problem.

" Section 6 consists of several brief remarks on Cox’s

likelihood and the Kaplan-Meier estimator.

2. IDENTICAL ITEMS ON TEST

Suppose several identical items are on test, each
obeying the same hazard function A(¢). A typical item
has lifetime T, a continuous positive random variable
with

Prob {T > &,|T > t1} = exp {——/h h(t)dt} . (2.1)

We wish to infer A from the observed failure times ¢; < £,

<...<tys; his assumed to belong to some parametric

family, which for the moment won’t be indicated in the

notation; and the nonparametric case is the limit when

the family is allowed to include all hazard functions.
Let

n(f) = number of items on test jusﬁ before time ¢ . (2.2)

In what follows, n(t) is assumed to be a step function
continuous from the left, changing value (due to losses,
failures, and introduction of new items) only finitely
often in any finite interval. The likelihood of the observed
data, considered as a function of the unknown hazard
rate h, is

fr(data) = exp {—fwn(t)h(t)dt} fI n(t;)h(@;) . (2.3)
0 =1

This is derived from standard Poisson process arguments
by noting that the probability of no event between ¢,
and ¢; is

/ y n(t)h(t)dt} ,

tj—1

exp {—
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while the probability of the single event, ‘“one out of
n(t;) items fails at time £, is proportional to n(¢;)k(¢;).
A more careful derivation is obtained by dividing the
time axis into infinitesimal discrete units as in the
introduction, see also Aalen (1975). Formula (2.3)

‘assumes that A(f) is continuous at the failure times ;.

It can be shown that in the nonparametric case, the
unrestricted maximizer of (2.3), say A*(t), satisfies

tit

exp{—/tj_

This leads to the familiar “Kaplan-Meier estimate’ of
the survival function (1958).

i=12 ...,J . (24)

Prob* {T >t} = JI [1 — L ] (2.5)
<t n(t;)

There are some minor technical difficulties in deriving
(2.4) from (2.3) because h*(f) does not refer to a con-
tinuous distribution for 7. The discretization argument
mentioned above avoids this difficulty.

3. COX’S PARTIAL LIKELIHOOD FUNCTION

We return to the situation where the different items
on test have different hazard rates,

hi() = 0:(OR(E) i=1,2,...,n (3.1)

Here n is the number of items ever on test during the
course of the experiment. The parameterization of the
unknown functions 6; and % introduced below is slightly
different from (1.1); for the moment it will not be indi-
cated in the notation.

The likelihood function of the observed data is now

( 2 6:(0)hr(t)dt

fo.n(data) = exp {—
0 tER®

H 8:;(tDR() ,  (3.2)
j=1
where as before ¢; is the jth ordefed failure time, ¢; the
index of the failed item, and ®(¢) the risk set of items on
test just before time £. This is derived in the same way
as (2.3). Aalen (1975) gives a rigorous derivation.
Equation (3.2) assumes that h; () is continuous at ¢; and
that the risk sets are continuous from the left and change
only finitely often in any finite interval.

We will rewrite (3.2) to emphasize its relation to the
partial likelihood (1.2) and the likelihood (2.3) for the
identical items situation. Define

= ( 6:0) /W) - (3.3)

i=1

H()

the average hazard rate if all n items were on test at
time ¢, and also

NO =nl £ 60/ 60} . (3.4)
1ER(®) i=1
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If all the items are identical, i.e., if 6;(¢) doesn’t depend
on ¢, then N(f) = n(f), the number at risk at time ¢.
In general N (f)/n is the proportion of the total possible
hazard on test at time £ To put it another way, N (f)
identical items each with hazard rate H () would have
the same total hazard as the items actually in ®(Z).

The likelihood function (3.2) can now be written as

J
fo.n(data) = {1:[ [01~,.(tj)/2 0:(t5) 1}

H:exp / N(t)H(t)dt] HN(t,)H(t,)} (3.5)

j=1

The first factor is the Cox likehhood, while the second
factor is similar to (2.3). ‘

The parameterization we will use assumes that the
relative value of 6;(t) and 6. (f), for any two indices 7
and ¢, is

0.0) _ exp (62:(0)
0:(t) exp {8z ()}’

where 8 is a 1 X B unknown parameter vector, and
z;(t) is a B X 1 possibly time-varying vector of observed

(3.6)

covariates. This parameterization makes (1.2) equal to

II [exp {8z;;(¢t)}/ > exp {Bz:(t)}], (3.7)
in1 i€qa /

as in Cox (1972); (3.4) becomes
N@® =N 8)

=n Z exp {6z (t)}/Z exp {8z:()} : (3.8)
Notice that (3.6) is weaker than the assumption
0;(t) = exp {Bz;(t)} mentioned in Section 1. We will
work directly with (3.7) and (3.8), obviating the need
‘to explicitly parameterize the functions 6,(t).

The function H () is assumed to be of the form

H(t,y) = exp {yw(8)} ,

where ¥ is a 1 X C unknown parameter vector func-
tionally independent of B, and w({) is another time-
varying C X 1 vector of observed covariates. Substltut-
ing (3.7)-(3.9) into (3.5) gives the likelihood express1on

T exp {Bzi;(t)} }

(3.9)

fo.4(data) = {JI;II Z exp {Bz:(;)}

.‘exp{ / NG, @)H(t,v)dt}IIN(tJ,wﬁ(t,,v)}

j=1

(3.10)

(See Remark =, Section 6.)

Cox (1975) shows that the first factor can be treated
as an ordinary likelihood function for the purpose of
large-sample inference. In particular, the “maximum
likelihood estimator” of @ obtained by maximizing (3.7)
will asymptotically have mean @ and a covariance matrix

559

which is the inverse of the “Fisher information matrix,”
the covariance matrix of the partial derivatives of the
log of (3.7) with respect to the components of 3. The
quotation marks used here serve as a reminder that
(3.7) is not really a likelihood function. (For example it
it mot in general the likelihood of the reduced data set
(CR(tl); il)y ((R‘(t2)) 7:2); RS ((R(ti); 7fJ))

In what follows we will calculate the actual Fisher
information matrix for 8 from (3.10) and give a heuristic
demonstration that asymptotically it equals the infor-
mation matrix based just on (3.7) assuming that the
class of hazards H (t, v) is moderately large. This equality
shows that the maximum likelihood estimate of 3 based
on (3.7) must be asymptotically equivalent to that based
on all the data. Similar statements hold true for asymp-
totic testing and confidence procedures (see Aalen 1975).

For convenience we consider only the case where B
and, therefore, z;(¢) is a scaler rather than a vector. The -
vector case is discussed briefly in Remark A, Section 6.
Define

Eplz|®()} = T a()exp {Bz:(t)}/ T exp {Bz(®)},

te () tER(E)

. (3.11)

Egz = 3 2(t) exp {B2:(t)}/ X exp {Bz:(0)}
and =t ‘ = ‘
varg {z|®(t)} = X [2:t) — Eslz|®(D)}
1ER®E)
exp {Bz:(1)} . (3.12)

-exp {Bz:i(t)}/ 2
PIERQ)

Es{z|®(t)} and varg {z|®R(¢)} are the conditional mean
and variance of z;(t) with respect to a probability distri-
bution proportional to exp {82;(t)} on¢ & ®(¢). They are
functions of 8 and the random variable ®(¢). The follow-
ing lemma computes the Fisher information in (3.10) for
estimating B, i.e., one over the.Cramér-Rao lower bound
for unbiased estimation. g
Lemma: The Fisher information for estimating 8 in
(3.10) is .

inf fw 8({varg{z| ®R(t)} + [(Eg{zldi(tZ}

— Eg2) — gw() PIN @, B)H(, v))dt , (3.13)

where the infimum is over all choices of the C dimen-
sional vector g, and & indicates expectation over the
randomness in the risk sets ®(¢). The same expression
without the term in square brackets is the Fisher infor-
mation for 8 based just on Cox’s partial likelihood (3.7).
(The proof is given in Section 7.) .

Recall that if A and B are any two random Varlables
B is nonnegative, and o is any constant, then

E(A — a)?B = [varg A + (a — EgA)*]EB ,
where (3.14)
EzA = EAB/EB and varg A = E(A — EsA)’B/EB .
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Let n(t, 8) be the expectation, over the randomness in
®(1), of N, 8),

7(t, 8) = EN(¢, 8)

= n(8 ¥, exp (80)/E o (8:0)) 5 (315)

define ,
' B=N(@t8) , A=Esz|®R®)} — Egz ,

and o = gw(?). Using (3.14), the integrand of (3.13) can
be expressed as

{6[N (@, B)/n(t, B) ] varg {z|®R()} + varnEg{z| R(t)}

+ [es(®) — gw(®) PIn(t, B)H(E, v) , (3.16)
where ~
es(t) = En(Bp{z|R(} — Ege) , (3.17)

and vary Eg{z|®(f)} indicates a weighted variance, as in
(8.14) with the random quantity being ®(Z).

A simple calculation shows that if P;(¢) is the proba-
bility that item ¢ is in ®(Z), then

eslt) = z Pi(t)2:(t) oxp (82:(0)} /S Pi(t) exp {Bz:(0))

~ 5 ) exp (Bu()}/3 exp (8D} . (3.19)

Notice that P;(¢) is also a function of 8 and v and possibly
other extraneous random factors.

The principle implied by the lemma and (3.16),
admittedly in a rough manner, is the following: If, as
the number tlems tested goes to infinity, the function es(t)
can be approximated arbitrarily well by a linear combination
of the functions wi(t), wa(t), ..., we(t), then the Cox
likelrhood s asymptotically fully efficient for the estimation
of 8. In other words, the Fisher information for 8 based
on the Cox likelihood has asymptotic ratio unity with
that based on all the data. Section 4 illustrates this
principle in a particularly simple special case.

Suppose for a moment that es(t) = gw(t) for all ¢ for
some choice of g. This eliminates the last term in square
brackets from (3.16). The additional information for
estimating 8 not in the Cox likelihood corresponds to the
term vary Eg{z|®(¢)}. Intuitively this comes from local
variations in N (¢, 8) due to random fluctuations in the
risk sets, which influence the observed times between
failures. These random fluctuations can not be explained

away by any possible choice of H({, v) since this is

necessarily a fixed (nonrandom) function of time. How-
ever, the magnitude of this term tends to be 0(1/7)
compared to the term (N/q) varg {z|®(f)} from the
partial likelihood, essentially because Eg{z|®(¢)} is the
average of about 7 random quantities. (See Remark 1,
Section 6.)

For asymptotic efficiency we don’t need es(f) to ac-
tually be in the linear space generated by wi, ws, ..., we,

£w) = {2 gcwc(t)} ’ (3.19)

e=1
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but only that it be increasingly well approximated by

- some function in £(w) as the number of tested items

grows large. In other words, we need to be able to ignore
the term [ep(tf) — gw(¢) J? in (3.16).

In order for the partial likelihood to estimate g with
reasonable efficiency in finite samples it is necessary for
es(t) to be in or at least near £(w). Is this a realistic
assumption? In many situations the answer is yes. For
example, if the z; are not functions:of time, and if there
is no censoring, then (3.18) shows that eg(f) is monotonic.
For 8 > 0, es(t) will decrease monotonically in time as
those items with large values of z; are selectively removed
by earlier failure. Censoring can distort es(f) but not
seriously unless a large proportion of the items have the
same fixed censoring time. (See Section 4.) In the absence
of firm prior knowledge it may be reasonable to assume
that H(t, v) = exp {yw(¢)} can be any smooth monotonic
function, which in this case guarantees the asymptotic
efficiency of the partial likelihood. ‘

Of course there are situations in which the partial
likelihood by itself -produces seriously inefficient infer-
ences. For example £(w) might be known to be the class
of linear functions w; + wst while eg(t) is some con-
siderably more complicated function. In theory at least,
the statistician can always calculate the actual maxi-
mum likelihood estimator (MLE) of 8 from (3.10) in

such cases. Kalbfleisch (1974) gives an efficiency calcu-

lation in one such case, which reinforces faith in using
(3.7) by itself, as do the calculations of Section 4.

4. THE TWO-SAMPLE PROBLEM

The general calculations of Section 3 are more under-
standable in special cases, the most special of which we
consider now : the two-sample problem with exponentially
distributed lifetimes. Let :

(4.1)

. .
be the ratio of expectations for the two samples, and let
8 be the parameter to be estimated. The two samples are
of sizes, say, no and ny, respectivély, no + n, = n, with
sample membership being indicated by the dummy
variable

2z, =0 ifitem<isinsample0,7=1,2,...,7n ;

= lifitemzisinsamplel, 1 =1,2, ..., n 4.2)
Also let

g=mno/n, p=n/n, and D,=q+ pa . (43)

To parameterize this situation as in Section 3 the
hazard rates (3.1) are written as

hi() = a%e?/D, , T=1,2,...,n . (4.4)
This makes H (¢, v) defined at (3.3) equal e?, and, as will
be apparent, there is no loss of generality in assuming

v =0, H(t, v) = 1. We see that the probability of item
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’s lifetime exceeding ¢ equals
P;(t) = exp {—ta*i/D,} ,

assuming that there is no censoring.

In the absence of censoring, (3.13) and (3.16) give a
simple expression for the asymptotic variance of §%*,
which is the MLE based on Cox’s partial likelihood func-
tion (3.7). We will consider the effects of censoring later.
Let

4.5)

n¢(t) = number of sample £{ membersin ®(t), £ = 0,1 ,

and (4.6)
n(t) = no(®) + ma@) , ge=mn()/n@) ,
pe=m(t)/n() .

Then
NG, B) = n(®)(q: + pw)/De (4.7)

varg {z|®R®{)} = qpw/(q: + pia)?

by substitution in (3.8), (3.12). As n gets large, the
random quantities n(f)/n, ¢(t), and p(¢) approach con-
stants easily determined from (4.5) giving

lim 1 E[vars {z|®RE®)}ING, BYH (L, v)

i 3 pqa exp { —ta/Da} 4.8)
Do[q + paexp {—t(a — 1)/Da}]
The lemma gives the expression
1 L d
lim - parw (4.9)

n-w N VAr B* o ¢ + paute—ia

for the limiting variance of 3* where the substitution
u = exp {—ta/D,} has been made in (3.13), (3.16). The
limiting variance of 8**, the MLE based on all the data, is

lim n var 8** = 1/pq (4.10)

under (4.4), as shown by standard Fisher information
arguments. The asymptotic relative efficiency (ARE) of
the partial likelihood estimate compared to full maximum
likelihood is

ARE = lim
now vVar g*

var 3** 1 du
=] —— . (411
0 q + pau(a‘l)/a
The first line of the table tabulates (4.11) for various
choices of @ with p = ¢ = %.

The Asymptotic Relative Efficiency of the Partial .
Likelihood Estimate of 3 Compared to the Full
Maximum Likelihood Estimate, p = q = V2.

a=e? 1 2 4 8 16
ARE from (4.11) 1.000 .901 .705 502 .334
ARE under model (4.15)-(4.17)
No censoring |, . 1.000 .982 .959 914 819
Censoring pattern 1 991 978 950 912 .819
Censoring pattern 2 994 987 967 -.915 .816

NOTE: The ARE increases under the larger model (4.15)-(4.17) for.H(t,y). Censoring
has little effect on these calculations. Pattern 1 has half of sample 1 censored at the
median of the distribution for sample 0. Pattern 2 has one quarter of sample 1 censored
at each quartile of the distribution for sample 0. ~

561

. Any inefficiency of 8* compared to 8** comes from the
last term in (3.16), [ep(t) — gw () 2. By assuming H (¢, v)
constant we have restricted £(w), (3.19), to involve only
constant funetions. The inefficiency, 1 — ARE, equals

ﬂ(t> .3)

n

oyt min [ Cest) — o702 a12)

(the factor (pg)~! coming from (4.10)), where

n(t,8) _ gexp {—t/Da} + pa exp {—ta/Da} (4.13)
n Da
by (3.15) and (4.5).
It is easy to evaluate eg(¢) from (3.18),

pa D,
= —1]. (414
@ D, [q exp {t(a — 1)/Da} + pa :| (14

The figure graphs eg(f) for a« = ¢f =1, 2, 4, 8, and, 16
in the case p = ¢ = .5 showing a smooth monotonic
decrease to the asymptote —pa/D, (for o > 1). Notice
that in the absence of censoring, e;(f) & £(w) which
explains the full asymptotic efficiency in this case.

The Function eg(t), (4.14) for o« = ef =1,2,4,8,16
(p=q=.5)"
t
(o] | 2 3 4 S 6 7
N T T 71 T T 1
ef=

=10 —

2 The insert shows eg(t), ¢f = 2, for the two censoring patterns mentioned in
the text.

Suppose now that we are not willing to assume an
exponential model for the lifetimes, but are willing to
assume that the relative hazard rate between the two
groups is constant, hy(t)/ho(t) = €f. This type of “Leh-
mann alternative’’ is more in the spirit of Cox’s article.
As a first step, (4.4) can be expanded to

a® exp {yo + vwi(t)}

hi(t) = D

(4.15)

1=1,2...,n,
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making
H(t’ Y) = exp {'YO + "Ylwl(t)} )
L(w) = {go + g1 (t)} .

Here w;(¢) is some specified function we are willing to

(4.16)

use to expand the class of possible hazard rates. For

example,
w1 () = et

(4.17)

allows h;(t) to vary monotonically by a finite factor as ¢
goes from zero to infinity.

The partial likelihood (3.7) is unaffected by changes
in H(t, v), so (4.9) remains valid when sampling under
v = (0, 0). The full MLE 8** now has greater limiting
variance, so the ARE of 8* to 8** is larger, as shown in
the fourth line of the table. The asymptotic inefficiency
of 8* relative to 8** depends on the magnitude of

mln/ Les®) — go — grwi(t) ]2 — nt, B) dt .

90,91

(4.18)

The choice w, (t) = ¢! gives high ARE in this case because
it closely matches the shape of eg(t), at least for ¢ < 8.
It is easiest to interpret the table in terms of the
asymptotic variance of the MLE based on all the data,
relative to that of the MLE based just on the partial
likelihood (3.7). The numbers also have a testing interpre-
tation as Pitman efficiencies. For example, under Censor-
ing pattern 1, the locally most powerful test of & = 1 vs
a > 1 based on (3.7) has Pitman efficiency .991 com-
pared to that based on all the data. (The test based on
(3.7) is a generalization of the Savage rank test, de-
scribed in Cox (1972) and also in Thomas (1971) ) A
more general interpretation is that usmg (3.7) rather than
the full likelihood asymptotically wastes nine out of 1,000
observations in this particular situation, for any infer-
ential purpose at all.

Of course there is no real reason behind the choice
(4.17). In most practical problems there isn’t any obvious
choice, beyond perhaps a qualitative preference for
monotonic reasonably smooth hazard rates. The functions
eg(t) in the figure fit this descrlptlon ‘If we take
wy(f) = eﬁ(t), the ARE of 8* to B** is one. It is the
author’s opinion that Cox’s method will usually give
high efficiency under any reasonably realistic assumptions
on the class of possible hazard rates.

Censoring seems to have little effect on the efficiency
calculations. The insert to the figure shows eg(t), ef = 2,
for two censoring patterns: (1) sample 0 uncensored,
50 percent of s(ample 1 censored at the median of the
distribution for sample 0; (2) sample 0 uncensored, 25
percent of sample 1 censored at each quartile of the
distribution for sample 0. The discontinuities in eg(t)
come from the P;() in (3.18) going suddenly to zero as
the fixed censoring times are encountered. Nevertheless,
the ARE stays almost constant as the last two lines of
the table show.

All of these calculations are asymptotic in nature. In
finite samples there is a further loss of efficiency for g*
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compared to 8** coming from the term vary Es{z|®(f)}
in (3.16). The calculations in Kalbfleisch (1974), in
particular his Table 1 and equation (15), suggest an
additional efficiency loss of about 10 percent for n = 10,
6 percent for n = 20, and 5 percent for n = 40.

5. ESTIMATING THE HAZARD RATES

Suppose we are willing to rely on the first factor in
(3.10), the Cox likelihood, for the estimation of §. We
can treat the estimate obtained in this way, say 8* as
if it were the true value of 3 and then maximize the
second factor in (3.10) to estimate +.

Let v* be the “maximum likelihood” estimator of y
obtained in this way, the quotes indicating that y* is
really only the conditional maximizer given the value
8* obtained from the Cox likelihood. From (3.1), (3.3), .
and (3.6), we get

n[0:0)/ S 000 JH()

=1

hi(2)

nloxp (82:(0)/ . exp (620®) JHG, 1) 5 (5.1)

=1

therefore, the corresponding estimate of the hazard rate
for item ¢ is

hi*(¢)

— nlexp {320}/ $ exp (820} THG, v . (5.2)

=1

In the Kaplan-Meier nonparametric situation, H (¢, v*)'

approaches H*(t), a sum of delta functions at &1, ¢y, ..., ts
satisfying
tit
exp {— H*(t)dt} =1 - —- (5.3)
4- N, 6%

Assuming that the functions z;(f), 1 €& ®(f;) are con-
tinuous at ¢;, this gives
*
]d’” T (5.4

“hotga] <[1-

where

$i* = nexp {B*z:(t)} /S exp (B*20()) -
1
The estimate of the ¢th cdf is
wn 1 @i
e = tgt [1 N, @*)]
~ exp — [§ (exp {B*z:(t5)}/
> exp{B*zo(t)})] ;

1€ R(t)

(5.5)

this last form is essentially the same as that derived in
Breslow (1974) and also in Kalbfleisch and Prentice
(1973) for the case which is not time-dependent. (See
Remark ¢, Section 6 of this article.)
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6. SOME REMARKS

A. The information calculations of Section 3 carry over
directly to the case where B is a vector. The expression
for the information matrix for estimating 8 is the multi-
variate analog of (3.13),

int [ 8((eovslz| &) + [(Hs{z18()) — Ey2)

— 6w TL(Eslz| &)} — Bsz) — Gw()T)
NG ®HEG ), (6.1)

with the infimum being taken over all B X C matrices G.

B. There is no particular advantage to the exponential
forms exp {Bz:(¢)}, exp {yw ()} used in Section’' 3. Any
other simple positive function serves just as well and
may be more natural in some situations. Suppose, e.g.,
that the event T < 1 is hypothesized to follow a linear
logistic law in terms of 8 and the (non-time-varying)
covariate z;,

Prob {T; < 1} = exp {Bz:}/1 + exp {Bz:} . (6.2)
This implies
6:(8) =« log [1 + exp {Bz:}] (6.3)
rather than 6,(8) « exp {Bz.}.
c. If m is a large positive number then
log(1 — 1/m) =—1/[m — ¢(m)] , (6.4)

where c¢(m) = 3 — 1/12m +.... Expression (2.5) for
the Kaplan-Meier estimator can be written as

Prob* {T > t}
=exp {— X2 1/[n@) —c(n(t:))]} .- (6.5)

<

Ignoring the correction term c(n(f;)) leads to the last
expression in (5.5).

p. The Kaplan-Meier estimator corresponds to the
limit of continuous hazard functions putting mass
1/[n(t;) — c(n(t;))] at ¢, not mass 1/n(t))

(since exp — {massatt;} =1 — 1/n(;)) .

E. The likelihood expressions (3.2), (3.5), and (3.10)
assume that the risk sets ®(¢) are themselves uninforma-
tive for § and v. It is allowable for ®(¢) to depend on all
data observed before time #, plus random elements whose
distributions don’t depend on 8 or y. Subject to these
restrictions, a malevolent censorer trying to confuse the
statistician cannot affect the likelihood function or any
Bayesian/likelihood based inferences, though he can
affect expectations connected with the likelihood such as
the Fisher information.

Kalbfleisch and Prentice (1973) tacitly make a stronger
assumption about the censoring mechanism; it in no
way depends on the real time axis except through the
ordering of .the observed events. Otherwise, their mar-
ginal likelihood interpretation of Cox’s likelihood can
easily be contradicted. Take n = 3, and suppose that
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21, 22, 23 do not depend on time, so that 8y, 6,, 65 are time
independent. Suppose also that no observations are
censored if min {Th, T, Ts} <-1.5, but if the first
observation is T'; and it exceeds 1.5, then further obser-
vation on T, is immediately censored. An easy calcu-
lation gives the probability of observing the partial
ordering ““T'; less than min {7, T5}” to be

Prob {(1,2,3,) U (1, 3, 2)}
— exp {—(e1 + 00+ 60) [ mh(t)dt}

“01/(01 4 0+ 65) , (6.6)

which does not equal the Cox likelihood 6/ (6, + 65 + 63).
F. Another hidden assumption in (3.2) is that once
an item leaves the experiment due to censoring it does
not return on test at a later time. Suppose an item did
drop out at time ¢ = a and returned at ¢ = b; then
either it will be known to have failed during that interval,
multiplying the likelihood function by the ungainly factor
1 — exp {— f20:(t)h(t)dt}, or it will be seen not to have
failed during that interval, in which case it really was
observed. This point does not arise in the Kaplan-Meier
situation of Section 2 unless we add labels to the identical
test items in order to make them identifiable. ’

The two types of allowable changes in the risk sets,
aside from failure, are illustrated in the senior citizen
study. These are caused by items entering the study late,
without any information on those failing before entry
(left truncation), and items leaving the study before
failure (right censoring).

6. Real censored data problems are often discrete;
items are reported to fail during intervals, not by exact
times. - (In the senior citizen study, e.g., deaths and
changes in the risk sets were reported by day but not by
minute and second.) Let us add the assumption that the
ratio of hazards (3.6) is constant during any one such
reporting interval, and that no changes in G (¢) occur
within such an interval except those due to failure. Then
given the information that the m items 41, %,
failed during the jth reporting ‘interval, we know that
the Cox likelihood for the (unobservable) continuous
data takes on one of m! possible values, corresponding
to the m! possible orderings of 4,1, %2, ..., %jm, each with
equal probability. It is notationally messy to average
these m! quantities, but an obvious approximation for
the jth factor in the Cox likelihood is

055, (85 0i55(t5) . - . Oijm (25)

ooy Uim

(6.7)

m—1

IIc >

{ m
0:(¢) — — X 0::@)]
(=0 iERE) m r=1

This is a slightly more accurate approximation than
those suggested in the discussion following Cox’s 1972
article, but as Peto suggests there, it probably doesn’t
make much difference.

H. The parameterization, (3.6)-(3.9), which leads to
the likelihood expression (3.10) assumes that the relative
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hazard rates for the different items in the experiment do
not functionally determine the total hazard rate. More
precisely, the information calculations at, say, 3@, v©
require that the possible y vectors corresponding to
8 = 8@ include an open set around y©.

An alternative parameterization which seems appealing
is to let A(t, v) = (X & 0:(t, B)/n(t)k(f) be the
average hazard rate of those items on test at time ¢,
where 7 (?) is the number of items in ®(¢), and to assume
0:(t, 8) = exp {Bz:()}, h(t, v) = exp {yw(?)}. This makes
the second factor in (5.10) equal to

exp {_ / wn(t)};(t, Y)dt} IT n@oh(ti x) , (6.8)

0 j=1

which is much simpler since it does not involve 8 at all.
However, this parameterization is untenable. The function
h must depend on § in some way, since if § is not zero,
h changes value discontinuously whenever the risk set
changes. This is impossible for any function of the form
exp {yw(f)}, except in very restricted situations.

1. Suppose that all the items act independently of each
other in terms of failures and censoring. Then standard
expansion methods would show that the quantity
vary Eg{z|® ()}, which figures in (3.16), approximately
equals

U/D(E PQee — B, (69)

where ¢, 8, and y have been dropped from the notation,
Q,’ =1-—-P 4 and

¢: = nexp {Bz:}/ 2 exp {Bei} ,

i1
R= zn: Pz exp {,82@-}/2”: Piexp {Bz:} . (6.10)
i1 i=1

.. Assuming the z;(f) are bounded, (6.9) is 0(1/9) as n goes
to infinity.

7. PROOF OF THE LEMMA

To prove the lemma of Section 3, we calculate the
score functions for 8 and vy, vz, . . ., v¢ from (3.8)—(3.10),

log fo, 7
8= 280 L S Ly) - Bela)]
B j=1
+ [ (Bl 0®) ~ Ee)
IO - NG OHG 1), (7.1)
and
s = 2800 7 030) - M@ EE DI
a'Yc 0

where J(t) = 7., 8(t — t;), which is the sum of delta
functions at ¢, &, ..., {5 For an arbitrary choice of
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g = (9192 --., gc) We can write
c

Sﬂ - z ch'yc
c=1

~ f [U® + (D) — gw®)JK®) , (7.2)
where
U@) = z;(t;) — Eglz|®R(E)} , if t =1
= 0, if ¢& {tntsy ..., 5},

Dg(t) = Eplz|®R()} — Egz (7.3)

and
dK(@t) = [J(t) — N, B)H (¢, v)1dt .

Given the observed value of ®(t), Ds(f) is a fixed
number while U(¢) is a random variable with mean zero
and variance

var {U@) |®R(@)} = varg {z|®R@)} , if t=1¢

=0, lf te;{tl,tz,...,tj},
with varg {z|®(¢)} as defined in (3.12). Also, still as-
suming ® () given,
dK () = 1 — N(t, HH(, y)dt
with Prob N (¢, B)H (¢, v)dt
= —N(ta B)H(t) Y)dt
with Prob 1 — N (¢, B)H (¢, v)dt .

(7.4)

\

(7.5)

Notice that the two cases for dK(¢) correspond to the
two cases for U (¢) given in (7.3). Expressions (7.4)—(7.5)
are easier to understand in the coin-tossing formulation
of Section 1.

Putting (7.3)-(7.5) together gives

E{[U® + (Ds(t) — gw(®)JdK (®))*| R (1)}
= {vars {z|R()} + [(Ep{z| R (D)}

— Egz) — gw()PIN(t, B)H(t, v)dt , (7.6)
and, fort’ <i¢ , ©
E{([[U{) + (Ds(t) — gw(t))1dK ()
“(LU®) + (Ds(t) — gw(®)JAK (1)) | ®R(s) ,
0<s<t=0. (7.7

(In deriving (7.7) we have used E{dK(t)|®()}
= E{U@)dK ()| ®(t)} = 0.) Therefore, writing the inte-
gral (7.2) as a Reimann sum and conditioning succes-
sively on ®(¢) as t increases from 0 to « gives the ex-
pected value of (Ss — X¢—4 goSy,)? to be the integral in
(3.13). But the reciprocal of the Cramér-Rao lower bound
for 8, by definition the Fisher information for B, is the
infimum of the expected value of (Ss — X¢~1 geSy,)? OVer
all choices of g. This proves the first part of the lemma.
The second part follows by a similar argument which is
made easier by the fact that (3.7) does not involve y.

[Received May 1976. Revised November 1976.]
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