4.5 Measurement Errors and their effects

a) Measurement Errors in Y

They get absorbed into residuals

$$Y = 0 + 1X + m$$

biologic/real/unexplained

measurement error

$$var(Y | X) = \frac{2}{m} + \frac{2}{m}$$

m

Can average several (k) measurements on same individual to reduce effect of measurement error

$$\operatorname{var}(\mathbf{Y}|\mathbf{X}) = \frac{2}{k} + \frac{\frac{m^2}{m^2}}{k}.$$

b) Measurement Errors in X

- X real/"true" X
- X* observed/recorded value

2 situations (difference is quite subtle!!)

- "Classical" Error Model

 $X^* = X +$

(X,Y[X]) chosen but $(X^*,Y[X])$ recorded; E[] = 0; uncorrelated with X so that $var(X^*) = var(X) + Var() \#$

"Berkson" Error Model

 $X^* = X +$

-

 $(X^*, Y[X^*])$ targetted but $(X^*, Y[X])$ recorded; E[] = 0; uncorrelated with X* (but necessarily correlated with X:- if told , would know X)

Interpreting Var(X) as <u>observed</u> var; Var () in sampling variance (repeatable) sense.

4.5 Measurement Errors ... b) Measurement Errors in X ...

-''Classical'' Error Model

True regression model : $Y = _0 + _1X +$

<u>BUT</u> the "X" values we record are not correct . i.e.

although X generated Y, we record it as $X^* = X +$

X: true value ; E[] = 0; uncorrelated with X

If use naive LS estimator b_1 to estimate β_1 from the X*'s ... then b_1 <u>biased towards null</u> (zero) ("ATTENUATION") $E[b_1] = \beta_1 \frac{var(X)}{var(X^*)} = \frac{var(X)}{var(X) + var(\delta)} < \beta_1$ if $var(\delta) > 0$.

 $\frac{var(X)}{var(X^*)} = \frac{var(X)}{var(X) + var(\delta)} = \frac{variation in "true" X values}{variation in observed values} \le 1$

alias: "Intra-Class Correlation Coefficient" or "Reliability Coefficient" is the "ATTENUATION" factor

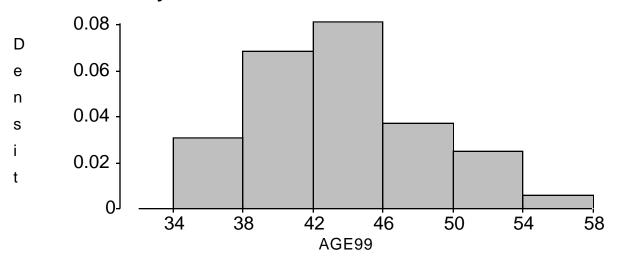
If pilot studies or literature can furnish an estimate of ICC... one can DE-ATTENUATE:

"bias-corrected" estimator of β_1 : $b_{1[LS]} \times \frac{1}{ICC}$

EXAMPLE OF "FLAT" SLOPE ("classical" measurement error model) Ages of 40 students in 1986 class 513-607 (Inferential Statistics)

```
DATA ages; keep age86 age86____ age99;
                                      /* @@ : multiple observations on 1 line */
  INPUT Age86 @@;
  age99 = Age86+13;
        int(ranuni(7534567)+0.5); /* b ~ Bernoulli(0,1), prob 0.5 each */
 b =
 sign = 2 * b - 1;
                                   /* sign ~ Bernoulli(-1,1) prob 0.5 each */
 d =
        sign * 5
                                   /* d ~ Bernoulli(-5,5) prob 0.5 each */
                    ;
 age86 = Age86 + d;
 LINES;
  22 22 22 22
                 23
                        25
                               26 26 26
                                           27 27 27 27
                                                           28 28 28
        30 30 30 30 30
  29 29
                              31 31 31 31
                                             32 32
                                                    33 33
                                                                 34 34
  35
        36
               37
                      38 38
                                39
                                       42
;
             0.08
       D
       е
             0.06
       n
             0.04
       s
       i
             0.02
      t
                 0-
                             24
                                      28
                    20
                                               32
                                                       36
                                                                40
                                                                        44
```

These 40 students 13 years later ... in 1999

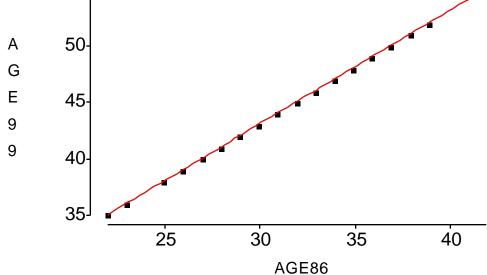


AGE86

How much, and at what rate, did they age in these 13 years?

▶	AGE99	= ,	AGE86
Re	sponse	Distribution:	Normal
Li	nk Funo	ction: Ide	entity

Model Equation				
AGE99 =	13	+	1.0	AGE86
]			



What if these 40 students had given their ages as true age +/- 5 years (with the + or - determined at random, without regard to true age)?

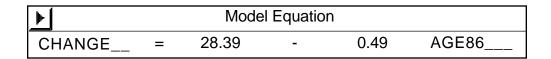
Age86____ = Age86 +/- 5

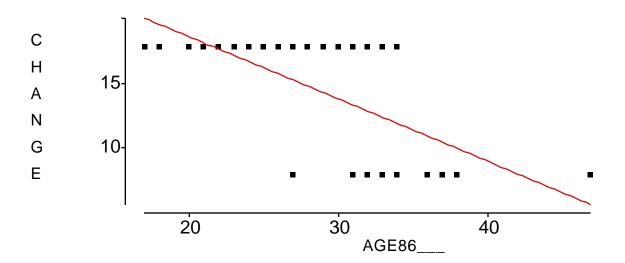
0	Age86	Age99	Age86
Mean	30.0	$43.0 \\ 4.9 \\ 24.4$	28.5
Std Dev	4.9		6.5
Variance	24.4		41.9
Minimum	22	35	17
Maximum	42	55	47

change__ = Age99 - Age86___;

AGE99 28.39 0.51 AGE86____ + = А 50-G Е 45-9 40 9 35 40 20 30 AGE86_

	Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Stat	Prob > F
Model	1.00	430.76	430.76	31.35	0.0001
Error C Total	38.00 39.00	522.21 952.98	13.74		





Fall 1999 Course 513-697: Applied Linear Models *Highlights / Key Concepts in NKNW4 Chapter 4*

4.5 Measurement Errors ... b) Measurement Errors in X ...

-''Berkson'' Error Model

True regression model : $Y = _0 + _1X + _1$

<u>BUT</u> the "X" values we record are not correct . i.e.

we targetted (and recorded) X^* (e.g. thermostat set to $X^* = 22$ C) but actual X is different from targetted/recorded X^* i.e. true value $X = X^* + ; E[] = 0;$ uncorrelated with X^*

If use naive LS estimator b_1 to estimate β_1 from the X*'s ... then b_1 un<u>biased</u>

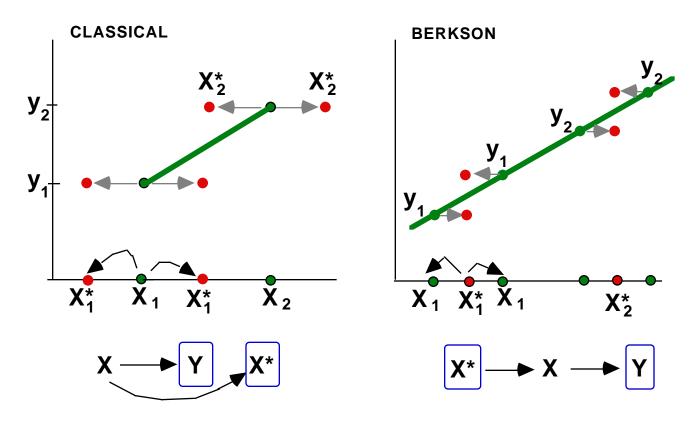
The "Classical" vs. "Berkson" difference ...

Assume

• No Biologic Variation (i.e. all ε 's = 0)

i.e. $Y = \beta_0 + \beta_0 X + 0$

• 2-point regression (x^*_1, y_1) and (x^*_2, y_2)



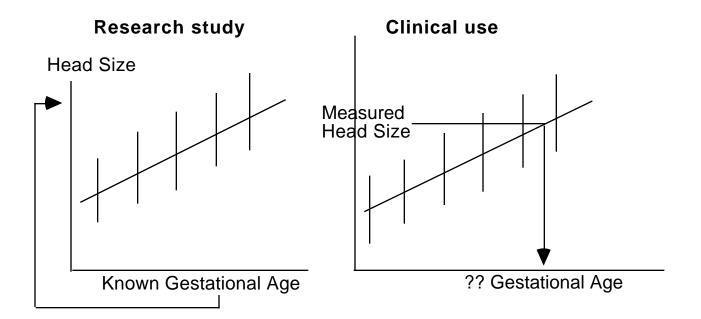
Without loss of generality, assume $\beta_0 = 0$ and $\sigma^2(\epsilon)=0$

''Classical'' Error Model	''Berkson'' Error Model
$\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}^*_2 - \mathbf{x}^*_1}$	$\frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}^*_2 - \mathbf{x}^*_1}$
$\frac{\beta \{ \mathbf{x}_2 - \mathbf{x}_1 \}}{[\mathbf{x}_2 + \delta_2] - [\mathbf{x}_1 + \delta_1]}$	$\frac{\beta \{ \mathbf{x}^{*}_{2} + \delta_{2} \} - \beta \{ \mathbf{x}^{*}_{1} + \delta_{1} \}}{\mathbf{x}^{*}_{2} - \mathbf{x}^{*}_{1}}$
$\frac{\beta \{\mathbf{x}_2 - \mathbf{x}_1\}}{[\mathbf{x}_2 - \mathbf{x}_1] + [\delta_2 - \delta_1]}$	$\frac{\beta \{ \mathbf{x}^{*}_{2} - \mathbf{x}^{*}_{1} \} + \beta \{ \delta_{2} - \delta_{1} \}}{\mathbf{x}^{*}_{2} - \mathbf{x}^{*}_{1}}$
$\frac{\beta}{1+\frac{\delta_2-\delta_1}{x_2-x_1}}$	$\beta \left(1 + \frac{\delta_2 - \delta_1}{\mathbf{x}^*_2 - \mathbf{x}^*_1}\right)$
random component $\delta_2 - \delta_1$ is in denominator	random component $\delta_2 - \delta_1$ is in numerator

Replacing subjects' ages (X) with X* = average age for subjects in an age category, generates Berkson type measurement errors.

4.6 Inverse Predictions (Use of regression for "calibration": see comments p 169) *Example:*

Estimation of Gestational Age from Ultrasound Measurements of Fetal Head Size



n (X,Y) pairs with known X's ==> (b₀, b₁, MSE, X_{bar}) $Y_h ==> \hat{X}_h = \frac{Y_h - b_0}{b_1}$

Exact Var(
$$\hat{X}_h$$
) ???

$$\hat{X}_{h} = \frac{Y_{h} - RV_{0}}{RV_{1}}$$

(Approx) est. of Var(
$$\hat{X}_h$$
): $\frac{MSE}{b_1^2} \left[1 + \frac{1}{n} + \frac{(\hat{X}_h - X_{bar})^2}{(X - X_{bar})^2} \right]$

4.7 Choice of X levels

Well explained in book, pp 169-170

Would simply emphasize a different way of viewing the terms

$$\frac{2}{(X - X_{bar})^2} ,$$

$$\frac{1}{n} + \frac{(X_h - X_{bar})^2}{(X - X_{bar})^2} , \text{ etc}$$

namely

$$\frac{2}{n \operatorname{Var}(X)} ,$$

$$\frac{1}{n} + \frac{(X_{h} - X_{bar})^{2}}{n \operatorname{Var}(X)} , \text{ etc}$$

This way, for example, $SD(b_1) = \sqrt{n SD(X)}$

Here, don't fuss about Var(X) being defined with divisor of n vs. n-1. If we have the choice of which X's to study, we are using our definiton of variance, namely

'Var''(X) =
$$\frac{1}{n}$$
 (X - X_{bar})²

as a measure of the spread of the chosen X's.

1