Introduction to Measurement Statistics 1

Two aspects: * Reliability * Validity
Reliability (Reproducibility, Precision)

Extent to which obtain the same answer/value/score if object/subject is measured
repeatedly under similar situations...

Some ways to quantify Reliability:

- For one subject: average variation of individual measurements around their
mean... either the square root of the average of squared deviations) i.e.
standard deviation (SD); or the average absolute deviation, which will
usually be quite close to the SD. Could also use range or other measures
such as Inter Quartile Range)

- For one subject: average variation or SD as % of the mean of the
measurements for that subject...called the {within-subject} Coefficient of
Variation (CV) if calculate it as [SD/Mean] x 100.

- For several subjects: : average the the CV's calculated for the different
subjects; if CV's are highly variable, may want to give some sense of this
using the range or other measure of spread of the CV's.

Unfortunately, CV gives no sense of how well the measurements of
different subjects (ss) segregate from each other

How about
SD of within-ss measurements
SD of between-ss meassurements

77 see last item below*

- Correlation (Pearson or Spearman) if 2 assessments of each ss. ??

Using correlation betwen scores on random halves of a test, can estimate
how 'reproducible' the full test is (helpful if cannot repeat the test)

If the measurement in question concerns a population (eg the percentage of
smokers among Canadian adults) and if it is measured (estimated) using a
statistic: e.g. the proportion in a random sample of 1000 adults, it is
possible from statistical laws concerning averages to quantify the reliability
of the statistic without having to actually perform repeated measurements
(samples). For simple random sampling, the formula

SD[individuals]

\/number of individuals measured

SE[average] =

allows us to quantify the reliability indirectly. If we didn't know this
formula, we could also arrive at an answer by various re-sampling methods
applied to the individuals in the sample at hand -- again without resorting to
oberving any additional individuals.

* Some function of Variance of Within-ss measurements and Variance of
Between-ss values? ? Estimate these COMPONENTS OF VARIANCE
USING Analysis of Variance (ANOVA)
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First, a General Orientation to ANOVA and its primary use, namely DE-COMPOSITION OF OBSERVED (EMPIRICAL) VARIATION
testing differences between pu's of k ( =2 ) different groups.

T )2 - sEY) + T T2

E.g. 1-way ANOVA: EE(YU y) 220i-Y) EE(YU ¥i)

. TOTAL Sum = BETWEEN Groups + WITHIN Group
DATA:

of Squares Sum of Squares Sum of Squares
Group ANOVA TABLE
1 2 . i k
Sub]lect Sum of Degrees Mean F P-Value
) yi : : : : : Squares  of Freedom Square Ratio
: : : . 3 : : MSgETWEEN
j Yij SOURCE  SS df MS MS Prob(>F)
WITHIN
: =SS /d
n Ykn ( D
_ _ _ _ BETWEEN xx.x k-1 XX.X XXX 0.xx
Mean ¥yl y2 Yi Yk WITHIN  xx.x k(n-1)  xxxX
Variance 21 25 2y LOGIC FOR F-TEST (Ratio of variances) as a test of
Ho: up =uz = ... = uj = ... = pk
MODEL UNDER HO
o vig .
| N vijg d z p=pl=p2=.
Hl = ]/“ 1 \ P O, o o
2 4 o
o /
Means, based on samples of n, 2

should vary around y with a variance of %

o refers to the variation (SD) of all possible individuals in a group;
It is an (unknowable) parameter; it can only be ESTIMATED.

Thus, if Hy is true, and we calculate the empirical variance of the k different yj's, it
2

Or, in symbols...
. . . o
should give us an unbiased estimate of o

Yij = Wi +ejj = uo+ (Wi-w + e
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v _ v12 2
ie. M is an unbiased estimate of o
k-1 n
bl 512
n —
ie. % is an unbiased estimate of o2
o _ 12
i.e. 22[}11% = MSBETWEEN is an unbiased estimate of 0?2

Whether or not Hy is true, the empirical variance of the n (within-group) values

Ve _ ve12
Vi1 to yin i.e. E[YIH_I yil should give us an unbiased estimate of o2
Ve _ ve12
ie. $2; = E[yln_l yil is an unbiased estimate of o2

so the average of the k diferent estimates,
1 E 2 - 1 E Shyij - yil?
k 17k n—1

is also an unbiased estimate of o2

>3l - yil?

_ . . . 2
K[n—1] = MSWwITHIN is an unbiased estimate of o

ie.
THUS, under Hy, both MSgeTwWEEN and MSwITHIN are unbiased estimates of

estimates of o2 and so their ratio should, apart from sampling variability, be 1.
IF however, Hy is not true, MSBeTwEEN Will tend to be larger than MSwiTHIN,

since it contains an extra contribution that is proportional to how far the y's are
from each other.

In this "non-null" case, the MSBETWEEN is an unbiased estimate of

. 12
5 . 2nlwi - ul
o + 1
and so we expect that, apart from sampling variability, the ratio MSBETWEEN
’ ’ MSWITHIN

should be greater than 1. The tabulated values of the F distribution (tabulated
under the assumption that the numerator and denominator of the ratio are both

estimaes of the same quantity) can thus be used to assess how extreme the observed

F ratio is and to assess the evidence against the Hg that the u's are equal.

How ANOVA can be used to estimate Components of Variance used
in quantifying Reliability.

The basic ANOVA calculations are the same, but the MODEL underlying them is
different. First, in the more common use of ANOVA just described, the groups can
be though of as all the levels of the factor of interest. The number of levels is
necessarily finite. The groups might be the two genders, all of the age groups, the 4
blood groups, etc. Moreover, when you publish the results, you explicitly identify
the groups.

When we come to study subjects, and ask "How big is the intra-subject variation
compared with the inter-subject varaition, we will for budget reasons only study a
sample of all the possible subjects of interest. We can still number them 1 to k, and
we can make n measurements on each subject, so the basic layout of the data doesn'y
change. All we do is replace the word 'Group' by 'Subject' and speak of BETWEEN-
SUBJECT and WITHIN-SUBJECT variation. So the data layout is...

DATA:
Subject
1 2 . i . k
Measurement

1 Y11

2

J Yij

n Ykn
Mean ¥l y2 Yi Yk
Variance 21 25 2y
MODEL

The model is different. There is no interest in the specific subjects. Unlike the critical
labels "male" anf "female", or "smokers", "nonsmokers" and "exsmokers" to identify
groups of interest, we certainly are not going to identify subjects as Yves, Claire,
Jean, Anne, Tom, Jim, and Harry in the publication, and nobody would be fussed if
in the dataset we used arbitrary subject identifiers to keep track of which
measurements were made on whom. we wouldn't even care if the research assistant
lost the identities of the subjects -- as long as we know that the correct measurents

go with the correct subject!



Introduction to Measurement Statistics 4

The "Random Effects" Model uses 2 stages:

(1) random sample of subjects, each with his/her own y
(2) For each subject, series of random variations around his/her u

Notice the diagram has considerable 'segregation' of the measurements on different
individuals. There is no point in TESTING for (inter-subject) differences in the y's.
The task is rather to estimate the relative magnitudes of the two variance components

GZB and Ozw

u's for Universe A

of Subjects
y. =pu(Tom) + & G———— (Tom)
ij 1) — H
— o,
Yves —
_ - . o
Jim = = — Xﬂ(Anne)
— 3,

o refers to the SD of the universe of y's ; It is an
B unknowable parameter and can only be ESTIMATED

refers to the variation (SD) of all possible measurements on a subject
WIt is an (unknowable) parameter; it can only be ESTIMATED.

Or, in symbols...

i = Mitej = w4+ (Wi-w o+ g
= u + o + &jj

ai ~ N(0, 0%p)

ei ~ N0, 0%yy)

DE-COMPOSITION OF OBSERVED (EMPIRICAL) VARIATION

>3 -y = S3Gi-y)? + 330 -yi)?
TOTAL Sum = BETWEEN Subjects +  WITHIN Subjects
of Squares Sum of Squares Sum of Squares

ANOVA TABLE (Note absence of F and P-value Columns)

What the Mean
Square is an
estimate of*

Sum of Degrees Mean
Squares of Freedom Square

SOURCE SS df MS
(=SS /df)

BETWEEN Subjects ~ xx.X k-1 XX.X o’w +n o’y

WITHIN Subjects  xx.x k(n-1)  xxx 02W

ACTUAL ESTIMATION OF 2 Variance Components

MSBETWEEN is an unbiased estimate of 02W +n 02B
MSWITHIN is an unbiased estimate of OZW
By subtraction...

MSBETWEEN — MSWITHIN is an unbiased estimate of n OZB

MSBETWEEN - MSWITHIN
n

is an unbiased estimate of 02]3

This is the definitional formula; the computational formula may be different.

* Pardon my ending with a preposition, but I find it difficult to say otherwise. These
parameter combinations are also called the "Expected Mean Squares". They are the
long-run expectations of the MS statistics As Winston Churchill would say, "For
the sake of clarity, this one time this wording is something up which you would

n

put”.
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Example....

DATA: Subject
Tom Anne  Yves Jean Claire
Measurement

1 4.8 55 5.1 64 5.8 4.5

2 4.7 52 49 6.2 6.3 4.1

3 49 52 53 6.6 5.6 40
Mean 4.8 53 5.1 64 59 4.2 Variance =0.614
Variance 0.01 0.03 0.04 0.04 0.13 0.07

ANOVA TABLE (Check... I did it by hand!)

Sum of Degrees Mean
Squares of Freedom Square

SOURCE SS df MS

(=SS /df)
BETWEEN Subjects  9.205 5 1.841
WITHIN  Subjects 0.640 12 0.053
TOTAL 9.845 17

ESTIMATES OF VARIANCE COMPONENTS

MSWITHIN

1.841 - 0.053

3

What the Mean
Square is an
estimate of... =

OZ‘V'+ n 02B
o

= 0.053 is an unbiased estimate of 02W

= 0.596 is an unbiased estimate of OZB

1-Way ANOVA Calculations performed by SAS; Components estimated manually

| PROC GIM in SAS ==> estimating components 'by hand' |

DATA a; INPUT Subject Value; LINES;
148
147

645

Estimating Components of Variance using "Black Box"

PROC VARCOMP; class subject ; model Value = Subject
See worked example following...

2 measurements (in mm) of earsize of 8 subjects by each of 4

observers

subject 1 2 3 4

obsr 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
1st|67 65 65 64 74 74 74 72 67 68 66 65 65 65 65 65
2nd| 67 66 66 66 74 73 71 73 68 67 68 67 64 65 65 64
subject 5 6 7 6

obsr 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
lst|65 62 62 61 59 56 55 53 60 62 60 59 66 65 65 63
2nd|61 62 60 61 57 57 57 53 60 65 60 58 66 65 65 65

INTRA-OBSERVER VARIATION (e.g. observer #1)

e.g. observer #1

| PROC GIM in SAS ==> estimating components 'by hand' |
INPUT subject rater occasion earsize; if observer=1;
The data set has 16 obsns & 4 variables.

proc glm; class subject; model earsize=subject / ss3;
random subject ;

General Linear Models Procedure: Class Level Information

Levels Values
123456 78 ; # of obsns. in data set = 16

Class
SUBJECT 8

Dependent Variable: EARSIZE

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 7 341.00 48.71 35.43 0.0001
Error 8 11.00 1.38
Corrected Total 15 352.00
R-Square C.V. Root MSE EARSIZE Mean
0.968750 1.80 1.17260 65.0
Source DF Type III SS Mean Square F Value Pr > F
SUBJECT 7 341.00 48.71 35.43 0.0001
Source Type III Expected Mean Square

SUBJECT Var (Error) + 2 Var (SUBJECT)

proc glm; class subject; model value=subject / ss3;
random subject ;

See worked example using earsize data.
If unequal numbers of measurements per subject, see formula in A&B or Fleiss

Var (Error) + 2 Var (SUBJECT)
Var (Error)

48.71
1.38

2 Var (SUBJECT)
Var (SUBJECT)

47.33
47.33 / 2 = 23.67
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| Estimating Variance components using PROC VARCOMP in SAS |

proc varcomp; class subject ; model earsize = subject ;

Variance Components Estimation Procedure: Class Level Information
Class Levels Values

SUBJECT 8 123456 7 8 ; # obsns in data set = 16

MIVQUE(0) Variance Component Estimation Procedure

Estimate
Variance Component EARSIZE
Var (SUBJECT) 23.67
Var (Error) 1.38
+ ICC (Fleiss § 1.3)
Var (SUBJECT) 23.67
ICC = = = 0.94

Var (SUBJECT) + Var(Error) 23.67 + 1.38

1-sided 95% Confidence Interval (see Fleiss p 12)

df for F in CI: (8-1)= 7 and 8
so from Tables of F distribution with 7 & 8 df, F = 3.5
So lower limit of CI for ICC is

35.43 - 3.5

35.43 + (2 - 1)*3.5

EXERCISE: Carry out the estimation procedure for one of the other 3 observers.
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INTERPRETING YOUR GRE SCORES

(Blurb from Educational Testing Service)

Your test score is an estimate, not a complete and perfect measure, of your
knowledge and ability in the area tested. In fact, if you had taken a different
edition of the test that contained different questions but covered the same
content, it is likely that your score would have been slightly different. The only
way to obtain perfect assessment of your knowledge and ability in the area
tested would be for you to take all possible test editions that could ever be
constructed. Then assuming that your ability and knowledge did not change,
the average score on all those editions, referred to as your "true score,"
would be a perfect measure of your knowledge and ability in the content
areas covered by the test. Therefore, scores are estimates and not perfect
measures of a person's knowledge and ability. Statistical indices that address
the imprecision of scores in terms of standard error of measurement and
reliability are discussed in the next two sections.

STANDARD ERROR OF MEASUREMENT

The difference between a person's true and obtained scores is referred to as
"error of measurement."* The error of measurement for an individual person
cannot be known because a person's true score can never be known. The
average size of these errors, however, can be estimated for a group of
examinees by the statistic called the "standard error of measurement for
individual scores:" The standard error of measurement for individual scores is
expressed in score points. About 95 percent of examinees will have test
scores that fall within two standard errors of measurement of their true scores.
For example, the standard error of measurement of the GRE Psychology Test
is about 23 points. Therefore, about 95 percent of examinees obtain scores
in Psychology that are within 46 points of their true scores. About 5 percent
of examinees, however, obtain scores that are more than 46 points higher or
lower than their true scores.

Errors of measurement also affect any comparison of the scores of two
examinees. Small differences in scores may be due to measurement error
and not to true differences in the abilities of the examinees. The statistic
"standard error of measurement of score differences" incorporates the error
of measurement in each examinee's score being compared. This statistic is
about 1.4 times as large as the standard error of measurement for the
individual scores themselves. Approximately 95 percent of the differences
between the obtained scores of examinees who have the same true score
will be less than two times the standard error of measurement of score
differences. Fine distinctions should not be made when comparing the
scores of two or more examinees.

RELIABILITY

The reliability of a test is an estimate of the degree to which the relative
position of examinees' scores would change if the test had been
administered under somewhat different conditions (for example, examinees
were tested with a different test edition).

Reliability is represented by a statistical coefficient that is affected by errors of
measurement. Generally, the smaller the errors of measurement in a test, the
higher the reliability. Reliability coefficients may range from 0 to 1, with 1
indicating a perfectly reliable test (i.e., no measurement error) and zero
reliability indicating a test that yields completely inconsistent scores.
Statistical methods are used to estimate the reliability of the test from the data
provided by a single test administration. Average reliabilities of the three
scores on the General Test and of the total scores on the Subject Tests
range from .88 to .96 on recent editions. Average reliabilities of subscores on
recent editions of the Subject Test range from .82 to .90.

Data regarding standard errors of measurement and reliability of individual
GRE tests may be found in the leaflet Interpreting Your GRE General and
Subject Test Scores, which will be sent to you with your GRE Report of
Scores.

VALIDITY

The validity of a test—the extent to which it measures what it is intended to
measure—can be assessed in several ways. One way of addressing validity is
to delineate the relevant skills and areas of knowledge for a test, and then,
when building each edition of the test, make sure items are included for each
area. This is usually referred to as content validity. A committee of ETS
specialists defines the content of the General Test, which measures the
content skills needed for graduate study. For Subject Tests, ETS specialists
work with professors in that subject to define test content. In the assessment
of content validity, content representativeness studies are performed to
ensure that relevant content is covered by items in the test edition.

Another way to evaluate the validity of a test is to assess how well test scores
forecast some criterion, such as success in grade school. This is referred to
as predictive validity. Indicators of success in graduate school may include
measures such as graduate school grades, attainment of a graduate degree,
faculty ratings, and departmental examinations. The most commonly used
measure of success in assessing the predictive validity of the GRE tests is
graduate first year grade point average. Reports on content
representativeness and predictive validity studies of GRE tests may be
obtained through the GRE Program office.

* The term "error of measurement" does not mean that someone has made a
mistake in constructing or scoring the test. It means only that a test is an
imperfect measure of the ability or knowledge being tested.
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Outline

Some ways to quantify Reliability:
Reliability Coefficient
- Reliability Coefficient o2

I yx= i.e. the fraction of observed variation that is 'real’

o1 + 02,
- Internal Consistency (Cronbach's o)
Note that one can 'manipulate' r by choosing a large or small 02T

Implications:

................................................................................... Effect of # of Items on Reliability Coefficient

Model for Reliability (if all items have same variance and same intercorrelations)

SCALE 2 N Times more items than SCALE 1
Distribution of

TRUE values B N x I'SCALE 1
Var for individuals TSCALE2 = T { [NZ1] x ISCALE |
2
OT e.g.
T
N Scale # Items r
5 +
1 10 04
€ A N €
0 2 20 (x 2) 0.57
3 30 (x 3) 0.67
Distribution of
o 2 + 0 2 OBSERVED values

for individuals

® X=T+¢€

"True" scores / values not knowable;

Variance calculation assumes that the distribution of errors is independent of T
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Cronbach's o

k items

o="""_
1+ [k-1]xT

o is an estimate of the expected correlation of one test with an alternative form

kxT

, where T = average of inter-item correlations

with the same number of items.

a is alower bound forr xx i.e I'yxyx = O

I'XX=0(

parallel

if items are parallel.

Average [ item 1] = Average [ item 2] =Average [ item 3] = ...
Variance[ item 1] = Variance| item 2] =Variance [ item 3] = ...
Correlation[ item 1, item 2] = Correlation|[ item 1, item 3] = ...

=Correlation[ item 2, item 3] = ...

INTRACLASS CORRELATIONS (ICC's)
* Various versions

TEST-RETEST

INTRA-RATER

INTER-RATER...

¢ Formed as Ratios of various Variances

2
O TRUE
y)
O"TRUE * o ERROR

e.g.

with estimates of various o2 's substituted for the 2 's .

Estimates of various components typically derived from ANOVA.
* Note the distinction between DEFINITIONAL FORM (involving
PARAMETERS) and COMPUTATIONAL FORM (involving
STATISTICS)

Fleiss Chapter 1 good here; Norman & Streiner not so good!!)
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ICC's (Portnoy and Wilkins)
(1) multiple (unlabeled) measurements of each subject

(2) same set of raters measure each subject; raters thought of as a random sample
of all possible raters.

(3) asin(2), but these raters studied are the only raters of interest

(1) multiple (unlabeled) measurements of each subject

OSUBJECTS G
N
U |

w4+ a

|

[ ]
U+ O+ ¢

-2
CC = SUBJECTS

O SUBJECTS t O_2ERROR

Model for observed data:

y[subject i, measurement j] = u + a; + g;
EXAMPLE 1

This example is in the spirit of the way the ICC was first used, as a measure of the
greater similarity within families than between families: Study by Bouchard (NEJM)
on weight gains of 2 members from each of 12 families: It is thought that there will
be more variation between members of different families than between members of
the same family: family (genes) is though to be a large source of variation; the two
twins per family are thought of as 'replicates' from the family and closer to each other
(than to others) in their responses. Here the "between" factor is family i.e. families
are the subjects and the two twins in the family are just replicates and they don't need
to be labeled (if we did label them 1 and 2, the labels would be arbitrary, since the
two twins are thought to be 'interchangeable'. (weight gain in Kg over a summer)

model: weight gain for person j in family i =u + w + aj + €jj

1-way Anova and Expected Mean Square (EMS)

Source Sum df Mean
of Sq Square

Expected Mean Square

Between (families) 99 11 9.0 02“err0r" + k() Ozbetween

Error(Within families) 30 12 2.5

In our example, we measure k=2 members from each family, so k;, is simply 2

[if the k's are unequal, k; is somewhat less than the average k... k, = average k —
(variance of k's) / (n times average k) ...see Fleiss page 10]

Estimation of parameters that go to make up ICC
2.5 is an estimate of O2vgpror"

9.0 is an estimate of O2verror" + 2 O2between

6.5 is an estimate of 2 Ozbetween

% is an estimate of O2petween
6.5
2 3.25
65, < 325425 =0.57
O2between

is an estimate of ICC = 2] )
O“between + O%error
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COMPUTATIONAL Formula for "1-way" ICC

MSbetween — MSwithin
Ko
MSbetween — MSwithin
ko

+ MSwithin

_ MSbetween— MSwithin
~ MSbetween + (ko—1)MSwithin

[shortcut]

is an estimate of the ICC

Notes:

e Streiner and Norman start on page 109 with the 2-way anova for inter-observer
variation. There are mistakes in their depiction of the SSerror on p 110 [it should be
(6-6+(4-4)>+(2-1)* +...(8-)2 =10. If one were to do the calculations by hand, one
usually calculates the SStotal and then obtains the SSerror by subtraction]

* They then mention the 1-way case, which we have discussed above, as "the
observer nested within subject" on page 112

¢ Fleiss gives methods for calculating CI's for ICC's.

EXAMPLE 2: INTRA-OBSERVER VARIATION FOR 1 OBSERVER

Computations performed on earlier handout...

Var(SUBJECT) =23.67 Var(ERROR) = 1.38

1¢C =23.67/ (23.67+1.38)=0.94

An estimated 94% of observed variation in earsize measurements by this observer is
'real' .. i.e. reflects true between-subject variability.

Note that I say 'an estimated 94% ...". I do this because the 94% is a statistic that is
subject to sampling variability (94% is just a point estimate or a 0% Confidence
Interval). An interval estimate is given by say a 95% confidence interval for the true
ICC (lower bound of a 1-sided CI is 82% ... see previous handout)

Increasing Reliability by averaging several measurements
In 1-way model: Yij = W+ aj + €jj
where  var[aj ] = 02petween subjects > Var[eij 1= 02”error“

Then if we average k measurements, i.e.,

ybarj = w + aj + ebar;

then
1~ 02"error"
V?T [ybarj | = O“petween + K
O'zbetween
So ICC[k] = >
O "error"

O2between + K

This is called "Stepped-Up" Reliability.



Quantifying Reliability 5

ICC's (Port d Wilkins).
s (Portnoy and Wilkins) ESTIMATING INTER-OBSERVER VARIATION from occasion=1;

(2) same set of raters measure each subject; raters thought of as a random sample

of all possible raters | PROC GIM in SAS ==> estimating components 'by hand' |

INPUT subject rater occasion earsize; if occasion=1; (32 obsns)

* Model proc glm; class subject rater; model earsize=subject rater / ss3;
Raters random subject rater;
. || .
Subjects 0 y for subject 2, rater II General Linear Models Procedure: Class Level Information
I
N I Class Levels values
é_,<43 SUBJECT 8 12345678
2' RATER 4 1 2 3 4 Number of observations in data set = 32
-— —40
1 e I V\ Sum of Mean
y for subject 2, rater 1 Source DF _Squares Square F Value Pr > F
. Model 10 764.500 76.45 78.80 0.0001
5 : II y for subject 3, rater II Error 21 20.375  0.97
3 . Corrected Total 31 784.875
- y for subject 3, rater 1
4 I R-Square C.V. Root MSE EARSIZE Mean
[ ] 0.974040 1.534577 0.98501 64.1875
etc ... Source DF Type III SS Mean Square F Value Pr > F
SUBJECT 7 734.875000 104.98 108.20 0.0001
RATER 3 29.625000 9.87 10.18 0.0002
Source Type III Expected Mean Square
. SUBJECT Var (Error) + 4 Var (SUBJECT)
¥+ Ofsubject] + P [rater] + € RATER Var(Error) + 8 Var(RATER)
’ 5 So... solving 'by hand' for the 3 components...
2
subjects Oraters Oerror Var (Error) + 4 Var(SUBJECT) = 104.98

Var (Error) = 0.97
==> 4 Var(SUBJECT) = 104.01
==> Var (SUBJECT) 104.01 / 4 = 26.00

* From 2- way data layout (subjects x Raters)

estimate 02"Subjects" . 02"raters" and 02"err0r" by 2'Way ANOVA Var (Error) + 8 Var (RATER) = 9.87
Var (Error) = 0.97
* Substitute variance estimates in appropriate ICC form ==> 8 Var(RATER) = 8.90
==> Var (RATER) = 8.90 / 8 = 1.11
e.g. 2 measurements (in mm) of earsize of 8 subjects by each of 4 observers
Var (Error) = 0.97
subject 1 2 3 4
obsr 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 | Estimating Variance components using PROC VARCOMP in SAS
1st|67 65 65 64 74 74 74 72 67 68 66 65 65 65 65 65 proc varcomp; class subject rater; model earsize = subject rater;
2nd|67 66 66 66 74 73 71 73 68 67 68 67 64 65 65 64
Estimate
subject 5 6 7 6 Variance Component EARSIZE
obsr 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Var (SUBJECT) 26.00
1st|65 62 62 61 59 56 55 53 60 62 60 59 66 65 65 63 Var (RATER) 1.11
2nd|61 62 60 61 57 57 57 53 60 65 60 58 66 65 65 65 Var (Error) 0.97
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« ICC: "Raters Random" (Fleiss § 1.5.2)

Var (SUBJECT) 26.00
ICC = = = 0.93
Var (SUBJECT) + Var(RATER) + Var(Error) 26.00+1.11+0.97

1-sided 95% Confidence Interval (see Fleiss p 27)

df for F in CI: (8-1)= 7 and v* , where

(8-1)(4-1)(4°0.93910.18 + 8[1+(4-1)*0.93]-4°0.93)2
vk = = 8.12
(8-1)4200.932¢10.182 + (8[1+(4-1)0.93]1-4°0.93)2

so from Tables of F distribution with 7 & 8 df, F = 3.5
So lower limit of CI for ICC is

8(104.98 - 3.5¢0.97)

80104.98 + 3.5¢[409.87 + (8¢4 — 8 - 4)0.97]

+ ICC: if use one "fixed" observer (see Fleiss p 23, strategy 3)

Var (SUBJECT) 26.00
ICC = = = 0.96
Var (SUBJECT) + Var(Error) 26.00 + 0.97

lower limit of 95% l-sided CI (egn 1.49: F = 2.5 ; 7 & 7x3=21 df)

104.98 - 2.5
ICC = = 0.91
104.98 + (4-1)e2.5

USING ALL THE DATA SIMULTANEOUSLY

(can now estimate subject x Rater interaction .. i.e extent to which raters 'reverse
themselves' with different subjects)

|Components of variance when use both measurements (all 64 obsns”

proc varcomp;
class subject rater;
model earsize = subject rater;

proc varcomp;

class subject rater;

model earsize = subject rater
subject*rater;

Estimate

Variance Component EARSIZE Variance Component EARSIZE

Var (SUBJECT) 25.52 Var (SUBJECT) 25.47
Var (RATER) 0.70 Var (RATER) 0.67
Var (Error) 1.37 Var (SUBJECT*RATER) 0.31

Var (Error) 1.13
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LINK between STANDARD ERROR OF MEASUREMENT
and RELIABILITY COEFFICIENT

Example: GRE Tests (cf blurb from Educational Testing Service)
Standard Error of Measurement = 23 points

Reliability Coefficient: R = 0.93

recall...
Distribution of
Y TRUE values
yar for individuals
o 2
T
T
+ +
% 4¥
€ €

Distribution of

2 2 OBSERVED values
OT + ONVMMIS
X=T+¢

L 4

0%, =23 ==>0% = 529;

R x 0% _ 0.93 x 529
- —— 2 — € _ -
=093 ==>02y =" o= o =7028

A
o1 + 0%

R=

21 + 0% =7028+529 = 7557 ==> \o? ; + 0% = V7557 =87

So if 3 SD's on either side of the mean of 500 covers most of the observed scores,

this would give a range of observed scores of 500 — 261 =239 to 500 + 261 = 761.

Another way to say it (see Streiner and Norman, bottom of page 119) :-

o, =Vo?  + 0% x Vi-R = SD[observed scores] x V1 — R

Confidence Intervals / Sample Sizes for ICC's

see Fleiss...
ClI's based on F distribution tables;
CT's not symmetric;

More interested in 1-sided CI's i.e. (lower bound, 1) i.e. ICC =
0.xx;

See also Donner and Eliasziw.

NOTE: If interested in ICC that incorporates random raters, then
sample size must involve both # of raters and # of raters

CI will be very wide if use only 2 or 3 raters

Approach sample size as "n's or raters and subjects needed for a
sufficiently narrow CI.
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Why Pearson's r is not always a good [or practical] Method of Bland & Altman [Lancet ]
measure of reproducibility
1. It does not pick up "shifts" Difference of 2
measurements
X
X X X
XX X X
X X X average™
X X X X of 2
X x X X X X
X X
X icc includes "shifts" * use mean of 2 if neither measurements
x X and is lower than r is considered the gold standard; use gold
X X standard otherwise
X X
+++  see biases quickly
can explain to your in-laws
2. not practical if > 2 measurements or variable # of measurements (can you explain ICC to them?)

per subject

ICC 'made for' such situations

emphasises errors in measurements scale itself
(like 23 in GRE score)

if don't know real range, magnitudes of standard error of
measurement not helpful (see Norman & Streiner)

cannot use with > 2 measurements

doesn't generalize to raters
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Assessing reproducibility of measurements made on a
CATEGORICAL scale

Categorizations of n

subjects by RATER 2
C1 C2 C3

C1
Categorizations of
subjects by RATER 1

Cc2

C3

n

See chapter 13 in Fleiss's book on Rates and Proportions
or pp 516-523 of Chapter 26 of Portnoy and Wilkins

* Simple Measure

# in diagonal cells

% agreement = x 100

¢ Chance-Corrected Measure

_ % agreement — % agreement expected by chance*
~ 100% agreement — % agreement expected by chance

* expected proportion = Y, p[row]*p[col] --- 3, over the diagonals

(see Aickin's arguments against 'logic' of chance-correction:
Biometrics 199)

can give weights for 'partial' agreement
if > 2 raters, use range or average of pairwise kappas

with quadratic weights, weighted kappa = icc



Receiver Operating Characteristic Curve

instrument criterion

numerical or ordered scale binary ( e or 0)

SERIES of {sensitivity, specificity} statistics,
each based on a different cut-off

usually plotted on a graph, showing tradeoff between sensitivity and

specificity

Summary statistics (performance)
- sensitivity at a given (specified) specificity
- area under the ROC curve

criterion positive

o e O o o000 0O 4 numerical or

OO0 OO O O 0 O0O0 ®)

criterion negative

OO0 OO O O 0 O0O0 ®)

ordinal scale

/
3/10

1/10

OO0 OO O O 0O]J0O0 ®)

6/10
3/10

OO0 OO0 |O O O OO0 O

8/10
6/10

O OO0 O O O 0O 0]

9/10
8/10

Sensitivity
(TPF)

~.1 minus

Specificity
(FPF)

Sensitivity
(TPF)
1

no discrimination

—
0 1
1 minus
Specificivity
(FPF)

TPF: True Positive Fraction
FPF: False Positive Fraction

Reference: section 5 chapter 13 in 2nd edition of Basic & Clinical
Biostatistics by Beth Dawson-Saunders and Robert Trapp, Appleton &
Lange, Norwalk (CT)



