
Introduction to the
R Project for Statistical Computing
for use at ITC

D G Rossiter
Department of Earth Systems Analysis

International Institute for Geo-information Science
& Earth Observation (ITC)

Enschede (NL)

04-February-2006

Contents

1 What is R? 1

2 Why R for ITC? 2
2.1 Advantages . 2
2.2 Disadvantages . 3
2.3 Alternatives . 4

3 Using R for Windows 6
3.1 R on the ITC network . 6
3.2 Starting R . 6
3.3 Stopping R . 6

Revision 2.5 Copyright c© D G Rossiter 2003, 2004, 2005, 2006. All
rights reserved. Reproduction and dissemination of the work as a
whole (not parts) freely permitted if this original copyright notice is in-
cluded. Sale or placement on a web site where payment must be made
to access this document is strictly prohibited. To adapt or translate
please contact the author (rossiter@itc.nl; http://www.itc.
nl/personal/rossiter).

rossiter@itc.nl
http://www.itc.nl/personal/rossiter
http://www.itc.nl/personal/rossiter

3.4 Setting up a workspace . 7
3.5 The command prompt . 8
3.6 On-line help . 9
3.7 Saving your analysis steps 10
3.8 Saving your graphs . 10
3.9 Writing and running scripts 11
3.10 Using the Rcmdr GUI . 12
3.11 Loading optional packages 12
3.12 Sample datasets . 14

4 The S language 15
4.1 Command-line calculator and mathematical operators . . 15
4.2 Creating new objects: the assignment operator 16
4.3 Methods and their arguments 17
4.4 Vectorized operations and re-cycling 19
4.5 Vector and list data structures 20
4.6 Arrays and matrices . 22
4.7 Data frames . 26
4.8 Factors . 31
4.9 Selecting subsets . 32
4.10 Simultaneous operations on subsets 35
4.11 Rearranging data . 36
4.12 Random numbers and simulation 37
4.13 Character strings . 39
4.14 Objects and classes . 39
4.15 Descriptive statistics . 41
4.16 Classification tables . 42
4.17 Sets . 43
4.18 Statistical models in S . 44
4.19 Models with categorical predictors 47
4.20 Analysis of Variance (ANOVA) 49
4.21 Model output . 50
4.22 Advanced statistical modelling 52
4.23 Missing values . 53
4.24 Control structures and looping 54
4.25 User-defined functions . 55
4.26 Computing on the language 56

5 R graphics 58
5.1 Base graphics . 58
5.2 Types of base graphics plots 63
5.3 Interacting with base graphics plots 65

ii

5.4 Trellis graphics . 65
5.5 Types of Trellis graphics plots 71
5.6 Adjusting Trellis graphics parameters 71
5.7 Multiple graphics windows 73
5.8 Multiple graphs in the same window 73
5.9 Colours . 75

6 Preparing your own data for R 79
6.1 Preparing data directly . 79
6.2 Importing data from a CSV file 81

7 Exporting from R 83

8 Miscellaneous R tricks 84
8.1 Setting up a regular grid 84
8.2 Setting up a random sampling scheme 84

9 Learning R 86
9.1 R tutorials and introductions 86
9.2 Textbooks using R . 87
9.3 Technical notes using R . 87
9.4 Web Pages to learn R . 87
9.5 Keeping up with developments in R 88

10 Frequently-asked questions 89
10.1 Help! I got an error, what did I do wrong? 89
10.2 Why didn’t my command(s) do what I expected? 91
10.3 How do I find the method to do what I want? 92
10.4 What statistical procedure should I use? 94

A Obtaining your own copy of R 95
A.1 Installing new packages 97
A.2 Customizing your installation 97

B An example script 98

C An example function 102

References 106

Index of R concepts 111

iii

1 What is R?

R is an open-source environment for statistical computing and visual-
isation. It is based on the S language developed at Bell Laboratories in
the 1980’s [11], and is the product of an active movement among statis-
ticians for a powerful, programmable, portable, and open computing
environment, applicable to the most complex and sophsticated prob-
lems, as well as “routine” analysis, without any restrictions on access
or use. Here is a description from the R Project home page:1

“R is an integrated suite of software facilities for data ma-
nipulation, calculation and graphical display. It includes:

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in par-
ticular matrices,

• a large, coherent, integrated collection of intermediate
tools for data analysis,

• graphical facilities for data analysis and display ei-
ther on-screen or on hardcopy, and

• a well-developed, simple and effective programming
language which includes conditionals, loops, user-defined
recursive functions and input and output facilities.”

The last point has resulted in another major feature:

• Practising statisticians have implemented hundreds
of specialised statistical produres for a wide variety
of applications as contributed packages, which are also
freely-available and which integrate directly into R.

A few examples especially relevant to ITC are the gstat and spatial
packages for geostatistical analysis, contributed by Pebesma [15] and
Ripley [19], respectively; the spatstat package for spatial point-pattern
analysis and simulation; the vegan package of ordination methods for
ecology; the circular package for directional statistics; the sp pack-
age for a programming interface to spatial data, and the rgdal pack-
age for GDAL-standard data access. There are also packages for the
most modern statistical techniques such as neural networks (nnet),
non-linear mixed-effects models (nlme), recursive partitioning (rpart),
and splines (splines), as well as standard sophisticated techniques

1 http://www.r-project.org/

1

http://www.r-project.org/

such as generalized linear models, principal components, factor anal-
ysis, bootstrapping, and robust regression.

2 Why R for ITC?

ITC is an international institution of post-graduate education located
in Enschede, the Netherlands, with a thematic focus on geo-information
science and earth observation in support of development. Its mission2

is described as follows:

“ITC aims at capacity building and institutional develop-
ment of professional and academic organizations and indi-
viduals specifically in countries that are economically and/or
technologically less developed.”

Thus the two pillars on which ITC stands are development-related and
geo-information. R supports both of these.

2.1 Advantages

R has several major advantages for a typical ITC student or collabora-
tor:

1. It is completely free and will always be so, since it is issued un-
der the GNU Public License;3

2. It is freely-available over the internet, via a large network of
mirror servers; see Appendix A for how to obtain R;

3. It runs on almost all operating systems: Unix c© and derivatives
including Darwin, Mac OS X, Linux, FreeBSD, and Solaris; most
flavours of Microsoft Windows; Apple Macintosh OS; and even
some mainframe OS.

4. It is the product of international collaboration between top com-
putational statisticians and computer language designers;

5. It allows statistical analysis of unlimited sophistication; you are
not restricted to a small set of procedures or options, and because
of the contributed packages, you are not limited to one method
of accomplishing a given computation;

6. It can work on objects of unlimited size and complexity with a
consistent, logical expression language;

2 http://www.itc.nl/about_itc/mission_statement.asp
3 http://www.gnu.org/copyleft/gpl.html

2

http://www.itc.nl/about_itc/mission_statement.asp
http://www.gnu.org/copyleft/gpl.html

7. It is supported by comprehensive technical documentation and
user-contributed tutorials (§9). There are also several good text-
books on statistical methods that use R (or S) for illustration.

8. Every computational step is recorded, and this history can be
saved for later use or documentation.

9. It stimulates critical thinking about problem-solving rather than
a “push the button” mentality.

10. It is fully programmable, with its own sophisticated computer
language (§4). Repetitive procedures can easily be automated by
user-written scripts (§3.9). It is easy to write your own functions
(§B), and not too difficult to write whole packages if you invent
some new analysis;

11. All source code is published, so you can see the exact algorithms
being used; also, expert statisticians can make sure the code is
correct;

12. It can exchange data in MS-Excel, text, fixed and delineated for-
mats (e.g. CSV), so that existing datasets are easily imported (§6),
and results computed in R are easily exported (§7).

13. Most programs written for the commercial S-PLUS program will
run unchanged, or with minor changes, in R (§2.3.1).

2.2 Disadvantages

R has its disadvantages (although some of these may be considered
advantages as well):

1. The default Windows and Mac OS X graphical user interface
(GUI) is limited to simple system interaction and does not in-
clude statistical procedures. The user must type commands to
enter data, do analyses, and plot graphs. This has the advan-
tage that you have complete control over the system. The Rcmdr
add-on package (§3.10) provides a reasonable GUI for common
tasks.

2. The user must decide on the sequence of analyses and execute
them step-by-step. However, it is easy to create scripts with all
the steps in an analysis, and run the script from the command
line or menus (§3.9).

3. The user must learn a new way of thinking about data, as data
frames (§4.7) and objects each with its class, which in turn sup-

3

ports a set of methods. This has the advantage common to object-
oriented languages that you can only operate on an object ac-
cording to methods that make sense4 and methods can adapt to
the type of object.5

4. The user must learn the S language (§4), both for commands and
the notation used to specify statistical models. The S statistical
modelling language is a lingua franca among statisticians, and
provides a compact way to express models (§4.18).

2.3 Alternatives

There are many ways to do computational statistics; this section dis-
cusses them in relation to R. None of these programs are open-source,
meaning that you must trust the company to do the computations cor-
rectly.

2.3.1 S-PLUS

S-PLUS is a commercial program distributed by the Insightful corpo-
ration,6 and is a popular choice for large-scale commerical statistical
computing. Like R, it is a dialect of the original S language devel-
oped at Bell Laboratories.7 S-PLUS has a full graphical user interface
(GUI); it may be also used like R, by typing commands at the console
or by running scripts. It has a rich interactive graphics environment
called Trellis, which has been emulated with the lattice package in
R (§5.4). S-PLUS is licensed by local distributors in each country at
prices ranging from moderate to high, depending factors such as type
of licensee and application, and how many computers it will run on.
The important point for ITC R users is that their expertise will be im-
mediately applicable if they later use S-PLUS in a commercial setting.

2.3.2 Statistical packages

There are many statistical packages, including MINITAB, SPSS, Systat,
GenStat, and BMDP,8 which are attractive if you are already familiar

4 For example, the t (transpose) method only can be applied to matrices
5 For example, the summary and plot methods give different results depending on

the class of object.
6 http://www.insightful.com/
7 There are differences in the language definitions of S, R, and S-PLUS that are im-

portant to programmers, but rarely to end-users. There are also differences in how
some algorithms are implemented, so the numerical results of an identical method
may be somewhat different.

8 See the list at http://www.stata.com/links/stat_software.html

4

http://www.insightful.com/
http://www.stata.com/links/stat_software.html

with them or if you are required to use them at your workplace. Al-
though these are programmable to varying degrees, it is not intended
that specialists develop completely new algorithms. These must be
purchased from local distributors in each country, and the purchaser
must agree to the license terms. These often have common analyses
built-in as menu choices; these can be convenient but it is tempting to
use them without fully understanding what choices they are making
for you.

SAS is a commercial competitor to S-PLUS, and is used widely in in-
dustry. It is fully programmable with a language descended from PL/I
(used on IBM mainframe computers).

2.3.3 Special-purpose statistical programs

Some programs adress specific statistical issues, e.g. geostatistical anal-
ysis and interpolation (SURFER, gslib, GEO-EAS), ecological analy-
sis (FRAGSTATS), and ordination (CONOCO). The algorithms in these
programs have or can be programmed as an R package; examples
are the gstat program for geostatistical analysis9 [16], which is now
available within R [15], and the vegan package for ecological statistics.

2.3.4 Spreadsheets

Microsoft Excel is useful for data manipulation. It can also calculate
some statistics (means, variances, . . .) directly in the spreadsheet. This
is also an add-on module (menu item Tools | Data Analysis. . .) for
some common statistical procedures including random number gener-
ation. Be aware that Excel was not designed by statisticians. There are
also some commercial add-on packages for Excel that provide more
sophisticated statistical analyses.

OpenOffice10 includes an open-source and free spreadsheet which can
replace Excel.

2.3.5 Applied mathematics programs

MATLAB is a widely-used applied mathematics program, especially
suited to matrix maniupulation (as is R, see §4.6), which lends itself
naturally to programming statistical algorithms. Add-on packages are
available for many kinds of statistical computation. Statistical meth-
ods are also programmable in Mathematica.

9 http://www.gstat.org/
10 http://www.openoffice.org/

5

http://www.gstat.org/
http://www.openoffice.org/

3 Using R for Windows

3.1 R on the ITC network

R has been installed on the ITC Windows NT network at:

\\Itcnt03\Apps\R\bin\RGui.exe

For most ITC accounts drive P: has been mapped to \\Itcnt03\Apps,
so R can be accessed using this drive letter instead of the network ad-
dress:

P:\R\bin\RGui.exe! →
You can copy this to your local desktop as a shortcut.

Documentation has been installed at:

P:\R\doc

3.2 Starting R

R is started like any Windows program:

1. Open Windows Explorer

2. Navigate to the directory where the R executable is located; e.g.
on the ITC network, this is P:\R\bin

3. Double-click on the icon for RGui.exe

This will start R the directory where it was installed, which is not
where you should store your projects. If you are using the copy of
R on the ITC network, you do not have write permission to this di-
rectory, so you won’t be able to save any data or session information
there. So, you will probably want to change your workspace, as ex-
plained in §3.4. You can also create a desktop shortcut or Start menu
item for R, also as explained in §3.4.

3.3 Stopping R

To stop an R session, type q() at the command prompt11, or select the
File | Exit menu item in the Windows GUI.

11 This is a special case of the q method

6

3.4 Setting up a workspace

An important concept in R is the workspace, which contains the local
data and procedures for a given statistics project. Under Windows this
is usually determined by the folder from which R is started.

Under Windows, the easiest way to set up a statistics project is:

1. Create a shortcut to RGui.exe on your desktop;

2. Modify its properties so that its in your working directory rather
than the default (e.g. P:\R\bin).

Now when you double-click on the shortcut, it will start R in the di-
rectory of your choice. So, you can set up a different shortcut for each
of your projects.

Another way to set up a new statistics project in R is:

1. Start R as just described: double-click the icon for program RGui.exe

in the Windows Explorer;

2. Select the File | Change Directory ... menu item in R;

3. Select the directory where you want to work;

4. Exit R by selecting the File | Exit menu item in R, or typ-
ing the q() command; R will ask “Save workspace image?”; An-
swer y (Yes). This will create two files in your working directory:
.Rhistory and .RData.

The next time you want to work on the same project:

1. Open Windows Explorer and navigate to the working directory

2. Double-click on the icon for file .RData

R should open in that directory, with your previous workspace al-
ready loaded. (If R does not open, instead Explorer will ask you what
programs should open files of type .RData; navigate to the program
RGui.exe and select it.)

If you don’t see the file .RData in your Windows Explorer, this is
because Windows considers any file name that begins with “.” to beRevealing

hidden files
in Windows

a ‘hidden’ file. You need to select the Tools | Folder options

in Windows Explorer, then the View tab, and click the radio button for
Show hidden files and folders. You must also un-check the box
for Hide file extensions for known file types.

7

3.5 The command prompt

You perform most actions in R by typing commands in a console win-
dow,12 in response to a command prompt, which usually looks like
this:

>

The > is a prompt symbol displayed by R, not typed by you. This is R’s
way of telling you it’s ready for you to type a command.

Type your command and press the Enter or Return keys; R will ex-
ecute your command.

If your entry is not a complete R command, R will prompt you to com-
plete it with the continuation prompt symbol:

+

R will accept the command once it is syntactically complete; in particular
the parentheses must balance. Once the command is complete, R then
presents its results in the same console window, directly under your
command.

If you want to abort the current command (i.e. not complete it), press
the Esc (“escape”) key.

For example, to draw 500 samples from a binomial distribution of 20
trials with a 40% chance of success13 you would first use the rbinom
method and then summarize it with the summarymethod, as follows:14

> x <- rbinom(500,20,.4)

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 7.000 8.000 8.232 10.000 15.000

This could also have been entered on several lines:

> x <- rbinom(

+ 500,20,.4

+)

You can use any white space to increase legibility, except that the as-
signment symbol <- must be written together:

12 An alternative for some analyses is the Rcmdr GUI explained in §3.10.
13 This simulates, for example, the number of women who would be expected, by

chance, to present their work at a conference where 20 papers are to be presented,
if the women make up 40% of the possible presenters.

14 Your output will probably be somewhat different; why?

8

> x <- rbinom(500, 20, 0.4)

R is case-sensitive; that is, method rbinom must be written just that
way, not as Rbinom or RBINOM (these might be different methods).
Variables are also case-sensitive: x and X are different names.

Some methods produce output in a separate graphics window:

> hist(x)

3.6 On-line help

Both the base R system and contributed package have extensive help.

In Windows , you can use the Help menu and navigate to the methodIndividual
methods you want to understand. You can also get help on any method with

the ? method, typed at the command prompt; this is just a shorthand
for the help method:

For example, if you don’t know the format of the rbinommethod used
above. Either of these two forms:

> ?rbinom

> help(rbinom)

will display a text page with the syntax and options for this method.
There are examples at the end of many help topics, with executable
code that you can experiment with to see just how the method works.

If you don’t know the method name, you can search the help for rele-Searching for
methods vant methods using the help.search method15:

> help.search("binomial")

will show a window with all the methods that include this word in
their description, along with the packages where these methods are
found, whether already loaded or not.

In the list shown as a result of the above method, we see the Binomial
(stats) topic; we can get more information on it with the ? method;
this is written as the ? character immediately followed by the method
name:

> ?Binomial

This shows the named topic, which explains the rbinom (among other)
methods.

Packages have a long list of methods, each of which has its own doc-Vignettes
15 also available via the Help | Search help ... menu item

9

umentation as explained above. Some packages are documented as
a whole by so-called vignettes16; for now most packages do not have
one, but more will be added over time.

You can see a list of the vignettes installed on your system with the
vignette method with an empty argument:

> vignette()

and then view a specific vignette by naming it:

> vignette("sp")

3.7 Saving your analysis steps

The File | Save to file ... menu command will save the en-
tire console contents, i.e. both your commands and R’s response, to a
text file, which you can later review and edit with any text editor. This
is useful for cutting-and-pasting into your reports or thesis, and also
for writing scripts to repeat procedures.

3.8 Saving your graphs

In the Windows version of R, you can save any graphical output for
insertion into documents or printing. If necessary, bring the graphics
window to the front (e.g. click on its title bar), select menu command
File | Save as ..., and then one of the formats. Most useful for
insertion into MS-Word documents is Metafile; most useful for LATEX is
Postscript; most useful for PDFLaTeX and stand-alone printing is PDF.
If you want to add other graphical elements, you may want to save as
a PNG or JPEG; however in most cases it is cleaner to add annotations
within R itself.

You can also write your graphics commands directly to a graphics file
in many formats, e.g. PDF or JPEG. You do this by opening a graphics
device, writing the commands, and then closing the device. You can
get a list of graphics devices (formats) available on your system with
?Devices (note the upper-case D).

For example, to write a PDF file, we open the pdf graphics device:

pdf("figure1.pdf", h=6, w=6)

hist(rnorm(100), main="100 random values from N[0,1])")

dev.off()

16 from the OED meaning “a brief verbal description of a person, place, etc.; a short
descriptive or evocative episode in a play, etc.”

10

Note the use of the optional height= and width= arguments (here
abbreviated h= and w=) to specifiy the size of the PDF file (in US inches);
this affects the font sizes.

3.9 Writing and running scripts

After you have worked out an analysis by typing a sequence of com-
mands, you will probably want to re-run them on edited data, new
data, subsets etc. This is easy to do by means of scripts, which are
simply lists of commands in a file, written exactly as you would type
them at the console. They are run with the source method. A useful
feature of scripts is that you can include comments (lines that begin
with the # character) to explain to yourself or others what the script is
doing and why.

Here’s a step-by-step description of how to create and run a simple
script which draws two random samples from a normal distribution
and computes their correlation:17

1. Open Notepad or another pure-text editor.

2. Type in the following lines:18

x <- rnorm(100, 180, 20)

y <- rnorm(100, 180, 20)

plot(x, y)

cor.test(x, y)

3. Save the file with the name test.R, in a convenient directory.

4. Start R (if it’s not already running)

5. In R, select menu command File | Source R code ...

6. In the file selection dialog, locate the file test.R that you just
saved (changing directories if necessary) and select it; R will run
the script.

7. Examine the output.

You can source the file directly from the command line. Instead of
steps 5 and 6 above, just type source("test.R") at the R command
prompt (assuming you’ve switched to the directory where you saved
the script).

Appendix B contains an example of a more sophisticated script.

17 What is the expected value of this correlation cofficient?
18 You can cut-and-paste from here if you’re feeling lazy

11

For serious work with R you should consider using a more flexible
editor than Notepad. The R for Windows, R for Mac OS X and JGR
interfaces include built-in editors; other choices include WinEdit (on
Windows only) and, for power users, EMACS with the ESS (Emacs
Speaks Statistics) module. The Tinn-R code editor for Windows19 is
tightly integrated with the Windows R GUI.

3.10 Using the Rcmdr GUI

The Rcmdr add-on package, written by John Fox of McMaster Uni-
versity, provides a GUI for common data management and statistical
analysis tasks. It is loaded like any other package, with the library
method:

> library("Rcmdr")

As it is loaded, it starts up in another window, with its own menu
system. You can run commands from these menus, but you can also
continue to type commands at the R prompt. Figure 1 shows an R
Commander screen shot.

To use Rcmdr, you first import or activate a dataset using one of the
commands on Rcmdr’s Data menu; then you can use procedures in
the Statistics, Graphs, and Models menus. You can also create
and graph probability distributions with the Distributions menu.

When using Rcmdr, observe the commands it formats in response to
your menu and dialog box choices. Then you can modify them your-
self at the R command line or in a script.

Rcmdr also provides some nice graphics options, including scatter-
plots (2D and 3D) where observations can be coloured by a classifying
factor.

3.11 Loading optional packages

R starts up with a base package, which provides basic statistics and
the R language itself. There are a large number of optional packages
for specific statistical procedures which can be loaded during a ses-
sion. Some of these are quite common, e.g. MASS (“Modern Applied
Statistics with S” [29]) and lattice (Trellis graphics [26], §5.4). Oth-
ers are more specialised, e.g. for geostatistics and time-series analysis,
such as gstat. Some are loaded by default in the base R distribution
(see Table 4).
19 http://www.sciviews.org/Tinn-R/

12

http://www.sciviews.org/Tinn-R/

Figure 1: The R Commander screen: Menu bar at the top; a top panel showing com-
mands submitted to R by the menu commands; a bottom panel showing the results
after execution by R

If you try to run a method from one of these packages before you load
it, you will get the error message

object not found

You can see a list of the packages installed on your system with the
library method with an empty argument:

13

> library()

To see what functions a package provides, use the library method
with the named argument. For example, to see what’s in the geosta-
tistical package gstat:

> library(help=gstat)

To load a package, simply give its name as an argument to the library
method, for example:

> library(gstat)

Once it is loaded, you can get help on any method in the package in
the usual way. For example, to get help on the variogram method of
the gstat package, once this package has been loaded:

> ?variogram

3.12 Sample datasets

R comes with many example datasets (part of the default datasets
package) and most add-in packages also include example datasets.
Some of the datasets are classics in a particular application field; an
example is the iris dataset used extensively by R A Fisher to illus-
trate multivariate methods.

To see the list of installed datasets, use the data method with an
empty argument:

> data()

To see the datasets in a single add-in package, use the package= ar-
gument:

> data(package="gstat")

To load one of the datasets, use its name as the argument to the data
method:

> data(iris)

The dataframe representing this dataset is now in the workspace.

14

4 The S language

R is a dialect of the S language, which has a syntax similar to many
common programming languages such as C. However, S is object-
oriented, and makes vector and matrix operations particularly easy;
these make it a modern and attractive user and programming environ-
ment. In this section we build up from simple to complex commands,
and break down their anatomy. A full description of the language is
given in the R Language Definition [18]20 and a comprehensive introduc-
tion is given in the Introduction to R [17].21 Both of these are installed
with R. Here we just give some of the most outstanding features which
you will need to understand before you can use R effectively.

All the methods, packages and datasets mentioned in this section (as
well as the rest of this note) are indexed for quick reference.

4.1 Command-line calculator and mathematical operators

The simplest way to use R is as an interactive calculator. For example,
to compute the number of radians in one Babylonian degree of a circle:

> 2*pi/360

[1] 0.0174533

As this example shows, S has a few built-in constants, among them pi

for the mathematical constant π. (The Euler constant e is not built-in,
it must be calculated with the exp method as exp(1).)

If the assignment operator (explained in the next section) is not present,
the expression is evaluated and its value is displayed on the console. S
has the usual arithmetic operators +, -, *, /, ^ and some less-common
ones like %% (modulus) and %/% (integer division). Expressions are
evaluated in accordance with the usual operator precedence; parenthe-
ses may be used to change the precedence or make it explicit:

> 3 / 2^2 + 2 * pi

[1] 7.03319

> ((3 / 2)^2 + 2) * pi

[1] 13.3518

Spaces may be used freely and do not alter the meaning of any S ex-
pression.

Common mathematical functions are provided as methods (see §4.3),
including log, log10 and log2 methods to compute logarithms; exp
20 In RGui, menu command Help | Manuals | R Language Manual
21 In RGui, menu command Help | Manuals | R Introduction

15

for exponentiation; sqrt to extract square roots; abs for absolute value;
round, ceiling, floor amd trunc for rounding and related opera-
tions; trigonometric functions such as sin, and inverse trigonometric
functions such as asin.

log(10); log10(10); log2(10)

[1] 2.3026

[1] 1

[1] 3.3219

> round(log(10))

[1] 2

> sqrt(5)

[1] 2.2361

sin(45 * (pi/180))

[1] 0.7071

> (asin(1)/pi)*180

[1] 90

4.2 Creating new objects: the assignment operator

New objects in the workspace are created with the assignment operator
<-, which may also be written as =:

> mu <- 180

> mu = 180

The symbol on the left side is given the value of the expression on the
right side, creating a new object (or redefining an existing one), here
named mu, in the workspace and assigning it the value of the expres-
sion, here the scalar value 180, which is stored as a one-element vector.
The two-character symbol <- must be written as two adjacent charac-
ters with no spaces..

Now that mu is defined, it may be printed at the console as an expres-
sion:

> print(mu)

[1] 180

> mu

[1] 180

and it may be used in an expression:

> mu/pi

[1] 57.2958

More complex objects may be created:

16

> s <- seq(10)

> s

[1] 1 2 3 4 5 6 7 8 9 10

This creates a new object named s in the workspace and assigns it the
vector (1 2 ...10). (The function syntax in seq(10) is explained
in the next section.)

Multiple assignments are allowed in the same expression:

(mu <- theta <- pi/2)

[1] 1.5708

The final value of the expression, in this case the value of mu, is printed,
because the parentheses force the expression to be evaluated as a unit.

Remvoing objects from the workspace You can remove objects when
they are no longer needed with the rm method:

> rm(s)

> s

Error: Object "s" not found

4.3 Methods and their arguments

In the command s <- seq(10), seq is an example of an S method,
often called a function by analogy with mathematical functions, which
has the form:

function.name (arguments)

Some functions do not need arguments, e.g. to list the objects in the
workspace use the ls method with an empty argument list:

> ls()

Note that the empty argument list, i.e. nothing between the (and)

is still needed, otherwise the computer code for the function itself is
printed.

Optional arguments Most methods have optional arguments, which
may be named like this:

> s <- seq(from=20, to=0, by=-2)

> s

[1] 20 18 16 14 12 10 8 6 4 2 0

17

Named arguments have the form name = value.

In some cases arguments can also be positional, that is, their meaning
depends on their position in the argument list. The previous command
could be written:

> s <- seq(20, 0, by=-2); s

[1] 20 18 16 14 12 10 8 6 4 2 0

because the seq method expects its first un-named argument to be the
starting point of the vector and its second to be the end.

The command separator This example shows the use of the ; com-
mand separator. This allows several commands to be written on one
line. In this case the first command computes the sequence and stores
it in an object, and the second displays this object. This effect can also
be achieved by enclosing the entire expression in parentheses, because
then S prints the value of the expression, which in this case is the new
object:

> (s <- seq(from=20, to=0, by=-2))

[1] 20 18 16 14 12 10 8 6 4 2 0

Named arguments give more flexibility; this could have been written
with names:

> (s <- seq(to=0, from=20, by=-2))

[1] 20 18 16 14 12 10 8 6 4 2 0

but if the arguments are specified only by position the starting value
must be before the ending value.

For each method, the list of arguments, both positional and named,
and their meaning is given in the on-line help:

> ? seq

Any element or group of elements in a vector can be accessed by us-
ing subscripts, very much like in mathematical notation, with the []
(select array elements) operator:

samp[1]

[1] -1.239197

> samp[1:3]

[1] -1.23919739 0.03765046 2.24047546

> samp[c(1,10)]

[1] -1.239197 9.599777

18

The notation 1:3, using the : sequence operator, produces the sequence
from 1 to 3.

The catenate method The notation c(1, 10) is an example of the
very useful c or catenate (“make a chain”) method, which makes a list
out of its arguments, in this case the two integers representing the in-
dices of the first and last elements in the vector.

4.4 Vectorized operations and re-cycling

A very powerful feature of S is that most operations work on vectors
or matrices with the same syntax as they work on scalars, so there is
rarely any need for explicit looping commands (which are provided,
e.g. for). These are called vectorized operations.

As an example of vectorized operations, consider simulating a noisy
random process:

> (sample <- seq(1, 10) + rnorm(10))

[1] -0.1878978 1.6700122 2.2756831 4.1454326

[5] 5.8902614 7.1992164 9.1854318 7.5154372

[9] 8.7372579 8.7256403

This adds a random noise (using the rnorm method) with mean 0 and
standard deviation 1 (the default) to each of the 10 numbers 1..10.
Note that both vectors have the same length (10), so they are added
element-wise: the first to the first, the second to the second and so forth

If one vector is shorter than the other, its elements are re-cycled as
needed:

> (samp <- seq(1, 10) + rnorm(5))

[1] -1.23919739 0.03765046 2.24047546 4.89287818

[5] 4.59977712 3.76080261 5.03765046 7.24047546

[9] 9.89287818 9.59977712

This perturbs the first five numbers in the sequence the same as the
second five.

A simple example of re-cycling is the compution of sample variance
directly from the definition, rather than with the var method:

> (sample <- seq(1:8))

[1] 1 2 3 4 5 6 7 8

> (sample - mean(sample))

[1] -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

> (sample - mean(sample))^2

[1] 12.25 6.25 2.25 0.25 0.25 2.25 6.25 12.25

19

> sum((sample - mean(sample))^2)

[1] 42

> sum((sample - mean(sample))^2)/(length(sample)-1)

[1] 6

> var(sample)

[1] 6

In the expression sample - mean(sample), the mean mean(sample)
(a scalar) is being subtracted from sample (a vector). The scalar is a
one-element vector; it is shorter than the eight-element sample vector,
so it is re-cycled: the same mean value is subtracted from each element
of the sample vector in turn; the result is a vector of the same length as
the sample. Then this entire vector is squared with the ^ operator; this
also is applied element-wise.

The sum and length methods are examples of methods that summa-
rize a vector and reduce it to a scalar.

Other methods transform one vector into another. Useful examples are
sort, which sorts the vector, and rank, which returns a vector with
the rank (order) of each element of the original vector:

> data(trees)

> trees$Volume

[1] 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9

[11] 24.2 21.0 21.4 21.3 19.1 22.2 33.8 27.4 25.7 24.9 34.5

[22] 31.7 36.3 38.3 42.6 55.4 55.7 58.3 51.5 51.0 77.0

> sort(trees$Volume)

[1] 10.2 10.3 10.3 15.6 16.4 18.2 18.8 19.1 19.7 19.9

[11] 21.0 21.3 21.4 22.2 22.6 24.2 24.9 25.7 27.4 31.7 33.8

[22] 34.5 36.3 38.3 42.6 51.0 51.5 55.4 55.7 58.3 77.0

> rank(trees$Volume)

[1] 2.5 2.5 1.0 5.0 7.0 9.0 4.0 6.0 15.0 10.0

[11] 16.0 11.0 13.0 12.0 8.0 14.0 21.0 19.0 18.0 17.0 22.0

[22] 20.0 23.0 24.0 25.0 28.0 29.0 30.0 27.0 26.0 31.0

Note how rank averages tied ranks by default; this can be changed by
the optional ties.method argument.

This example also illustrates the $ operator for extracting fields from
dataframes; see §4.7.

4.5 Vector and list data structures

Many S commands create complicated data structures, whose structure
must be known in order to use the results in further operations. For ex-
ample, the sort method sorts a vector; when called with the optional
index=TRUE argument it also returns the ordering index vector:

20

> ss <- sort(samp, index=TRUE)

> str(ss)

List of 2

$ x : num [1:10] -1.2392 0.0377 2.2405 3.7608 ...

$ ix: int [1:10] 1 2 3 6 5 4 7 8 10 9

This example shows the very important str method, which displays
the S structure of an object.

Lists In this case the object is a list, which in S is an arbitrary collec-
tion of other objects. Here the list consists of two objects: a ten-element
vector of sorted values ss$x and a ten-element vector of the indices
ss$ix, which are the positions in the original list where the corre-
sponding sorted value was found. We can display just one element of
the list if we want:

> ss$ix

[1] 1 2 3 6 5 4 7 8 10 9

This shows the syntax for accessing named components of a data frame
or list using the $ operator: object $ component, where the $ in-
dicates that the component (or field) is to be found within the named
object.

We can combine this with the vector indexing operation:

> ss$ix[length(ss$ix)]

[1] 9

So the largest value in the sample sequence is found in the ninth posi-
tion. This example shows how expressions may contain other expressions,
and S evaluates them from the inside-out, just like in mathematics. In
this case:

• The innermost expression is ss$ix, which is the vector of indices
in object ss;

• The next enclosing expression is length(...); the lengthmethod
returns the length of its argument, which is the vector ss$ix (the
innermost expression);

• The next enclosing expression is ss$ix[...], which converts
the result of the expression length(ss$ix) to a subscript and
extracts that element from the vector ss$ix.

The result is the array position of the maximum element. We could go
one step further to get the actual value of this maximum, which is in
the vector ss$x:

21

> samp[ss$ix[length(ss$ix)]]

[1] 9.599777

but of course we could have gotten this result much more simply with
the max method as max(ss$x) or even max(samp).

4.6 Arrays and matrices

An array is simply a vector with an associated dimension attribute, to
give its shape. Vectors in the mathematical sense are one-dimensional
arrays in S; matrices are two-dimensional arrays; higher dimensions
are possible.

For example, consider the sample confusion matrix of Congalton et al.
[3], also used as an example by Skidmore [27] and Rossiter [21]:22

Reference Class
A B C D

A 35 14 11 1
Mapped B 4 11 3 0

Class C 12 9 38 4
D 2 5 12 2

This can be entered as a list in row-major order:

> cm <- c(35,14,11,1,4,11,3,0,12,9,38,4,2,5,12,2)

> cm

[1] 35 14 11 1 4 11 3 0 12 9 38 4 2 5 12 2

> dim(cm)

NULL

Initially, the list has no dimensions; these may be added with the dim
method:

> dim(cm) <- c(4, 4)

> cm

[,1] [,2] [,3] [,4]

[1,] 35 4 12 2

[2,] 14 11 9 5

[3,] 11 3 38 12

[4,] 1 0 4 2

> dim(cm)

[1] 4 4

> attributes(cm)

$dim

[1] 4 4

> attr(cm, "dim")

22 This matrix is also used as an example in §6.1

22

[1] 4 4

The attributes method shows any object’s attributes; in this case
the object only has one, its dimension; this can also be read with the
attr or dim method.

Note that the list was converted to a matrix in column-major order, fol-
lowing the usual mathematical convention that a matrix is made up
of column vectors. The t (transpose) method must be used to specify
row-major order:

> cm <- t(cm)

> cm

[,1] [,2] [,3] [,4]

[1,] 35 14 11 1

[2,] 4 11 3 0

[3,] 12 9 38 4

[4,] 2 5 12 2

A new matrix can also be created with the matrix method, which
in its simplest form fills a matrix of the specified dimensions (rows,
columns) with the value of its first argument:

> (m <- matrix(0, 5, 3))

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 0

[4,] 0 0 0

[5,] 0 0 0

This value may also be a vector:

> (m <- matrix(1:15, 5, 3, byrow=T))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

[5,] 13 14 15

> (m <- matrix(1:5, 5, 3))

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 2 2 2

[3,] 3 3 3

[4,] 4 4 4

[5,] 5 5 5

23

In this last example the shorter vector 1:5 is re-cycled as many times
as needed to match the dimensions of the matrix; in effect it fills each
column with the same sequence.

A matrix element’s rows and column are given by the row and col

methods, which are also vectorized and so can be applied to an entire
matrix:

> col(m)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 1 2 3

[3,] 1 2 3

[4,] 1 2 3

[5,] 1 2 3

The diag method applied to an existing matrix extracts its diagonal
as a vector:

> (d <- diag(cm))

[1] 35 11 38 2

The diag method applied to a vector creates a square matrix with the
vector on the diagonal:

(d <- diag(seq(1:4)))

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 2 0 0

[3,] 0 0 3 0

[4,] 0 0 0 4

And finally diag with a scalar argument creates an indentity matrix
of the specified size:

> (d <- diag(3))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

Arithmetic operators such as * operate element-wise on matrices as on
any vector; if matrix multiplication is desired the %*% operator must
be used:

> cm*cm

[,1] [,2] [,3] [,4]

[1,] 1225 196 121 1

[2,] 16 121 9 0

[3,] 144 81 1444 16

[4,] 4 25 144 4

24

> cm%*%cm

[,1] [,2] [,3] [,4]

[1,] 1415 748 857 81

[2,] 220 204 191 16

[3,] 920 629 1651 172

[4,] 238 201 517 54

> cm%*%c(1,2,3,4)

[,1]

[1,] 100

[2,] 35

[3,] 160

[4,] 56

As the last example shows, %*% also multiplies matrices and vectors.

A matrix can be inverted with the solve method, usually with littleMatrix
inversion accuracy loss; in the following example the round method is used to

show that we recover an identity matrix:

> solve(cm)

[,1] [,2] [,3] [,4]

[1,] 0.034811530 -0.03680710 -0.004545455 -0.008314856

[2,] -0.007095344 0.09667406 -0.018181818 0.039911308

[3,] -0.020399113 0.02793792 0.072727273 -0.135254989

[4,] 0.105321508 -0.37250554 -0.386363636 1.220066519

> solve(cm)%*%cm

[,1] [,2] [,3] [,4]

[1,] 1.000000e+00 -4.683753e-17 -7.632783e-17 -1.387779e-17

[2,] -1.110223e-16 1.000000e+00 -2.220446e-16 -1.387779e-17

[3,] 1.665335e-16 1.110223e-16 1.000000e+00 5.551115e-17

[4,] -8.881784e-16 -1.332268e-15 -1.776357e-15 1.000000e+00

> round(solve(cm)%*%cm, 10)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

The same solve method applied to a matrix A and column vector b
solves the linear equation b = Ax for x:Solving

linear
equations

> b <- c(1, 2, 3, 4)

> (x <- solve(cm, b))

[1] -0.08569845 0.29135255 -0.28736142 3.08148559

> cm %*% x

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

25

The apply method applies a function to the margins of a matrix, i.e. the
rows (1) or columns (2). For example, to compute the row and column
sums of the confusion matrix, use apply with the sum method as the
function to be applied:

> (rsum <- apply(cm, 1, sum))

[1] 61 18 63 21

> (csum <- apply(cm, 2, sum))

[1] 53 39 64 7

These can be used, along with the diag method, to compute the pro-
ducer’s and user’s classification accuracies, since diag(cm) gives the
correctly-classified observations:

> (pa <- round(diag(cm)/csum, 2))

[1] 0.66 0.28 0.59 0.29

> (ua <- round(diag(cm)/rsum, 2))

[1] 0.57 0.61 0.60 0.10

There are also methods to compute the determinant (det), eigenvalues
and eigenvectors (eigen), the singular value decomposition (svd),
the QR decomposition (qr), and the Choleski factorization (chol);
these use long-standing numerical codes from LINPACK, LAPACK,
and EISPACK.

4.7 Data frames

The fundamental S data structure for statistical modelling is the data
frame. This can be thought of as a matrix where the rows are cases,
called observations by S (whether or not they were field observations),
and the columns are the variables. In standard database terminology,
these are records and fields, respectively. Rows are generally accessed
by the row number (although they can have names), and columns by
the variable name (although they can also be accessed by number). A
data frame can also be considerd a list whose members are the fields;
these can be accessed with the [[]] (list access) operator.

Sample data R comes with many example datasets (§3.12) organized
as data frames; let’s load one (trees) and examine its structure and
several ways to access its components:

> data(trees)

> str(trees)

‘data.frame’: 31 obs. of 3 variables:

$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 ...

$ Height: num 70 65 63 72 81 83 66 75 80 75 ...

26

$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 ...

So, this is a data frame with 31 observations (rows, cases, records) each
of which has three variables (columns, attributes, fields). Their names
can be retrieved or changed by the names method. For example, to
name the fields Var.1, Var.2 etc. we could use the paste method
to build the names into a list and then assign this list to the names
attribute of the data frame:

> (saved.names <- names(trees))

[1] "Girth" "Height" "Volume"

> (names(trees) <- paste("Var", 1:dim(trees)[2], sep="."))

[1] "Var.1" "Var.2" "Var.3’’

> names(trees)[1] <- "Perimeter"

> names(trees)

[1] "Perimeter" "V.2" "V.3"

> (names(trees) <- saved.names)

[1] "Girth" "Height" "Volume"

> rm(saved.names)

Note in the paste method how the shorter vector "Var" was re-cycled
to match the longer vector 1:dim(trees)[2]. This was just an ex-
ample of how to name fields; at the end we restore the original names,
which we had saved in a variable which, since we no longer need it,
we remove from the workspace with the rm method.

The data frame can accessed various ways:

> # most common: by field name

> trees$Height

[1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69

[15] 75 74 85 86 71 64 78 80 74 72 77 81 82 80

[29] 80 80 87

> # the result is a vector, can select elements of it

> trees$Height[1:5]

[1] 70 65 63 72 81

> # but this is also a list element

> trees[[2]]

[1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69

[15] 75 74 85 86 71 64 78 80 74 72 77 81 82 80

[29] 80 80 87

> trees[[2]][1:5]

[1] 70 65 63 72 81

> # as a matrix, first by row....

> trees[1,]

Girth Height Volume

1 8.3 70 10.3

> # ... then by column

> trees[,2]

27

> trees[[2]]

[1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69

[15] 75 74 85 86 71 64 78 80 74 72 77 81 82 80

[29] 80 80 87

> # get one element

> trees[1,2]

[1] 70

> trees[1,"Height"]

[1] 70

> trees[1,]$Height

[1] 70

The forms like $Height use the $ operator to select a named field within
the frame. The forms like [1, 2] show that this is just a matrix
with column names, leading to forms like trees[1,"Height"]. The
forms like trees[1,]$Height show that each row (observation, case)
can be considered a list with named items. The forms like trees[[2]]
show that the data frame is also a list whose elements can be accessed
with the [[]] operator.

Attaching data frames to the search path To simplify access to named
columns of data frames, S provides an attach method that makes the
names visible in the outer namespace:

> attach(trees)

> Height[1:5]

[1] 70 65 63 72 81

Building a data frame S provides the data.frame method for cre-
ating data frames from smaller objects, usually vectors. As a simple
example, suppose the number of trees in a plot has been measured at
five plots in each of two transects on a regular spacing. We enter the
x-coordinate as one list, the y-coordinate as another, and the number
of trees in each plot as the third:

> x <- rep(seq(182,183, length=5), 2)*1000

> y <- rep(c(381000, 310300), 5)

> n.trees <- c(10, 12, 22, 4, 12, 15, 7, 18, 2, 16)

> (ds <- data.frame(x, y, n.trees))

x y n.trees

1 182000 381000 10

2 182250 310300 12

3 182500 381000 22

4 182750 310300 4

5 183000 381000 12

6 182000 310300 15

7 182250 381000 7

28

8 182500 310300 18

9 182750 381000 2

10 183000 310300 16

Note the use of the repmethod to repeat a sequence. Also note that an
arithmetic expression (in this case * 1000) can be applied to an entire
vector (in this case rep(seq(182,183, length=5), 2)).

In practice, this data frame would probably be prepared outside R and
then imported, see §6.

Adding rows to a data frame The rbind (“row bind”) method is
used to add rows to a data frame, and to combine two data frames
with the same structure. For example, to add one more trees to the
data frame:

> (ds <- rbind(ds, c(183500, 381000, 15)))

x y n.trees

1 182000 381000 10

2 182250 310300 12

3 182500 381000 22

4 182750 310300 4

5 183000 381000 12

6 182000 310300 15

7 182250 381000 7

8 182500 310300 18

9 182750 381000 2

10 183000 310300 16

11 183500 381000 15

This can also be accomplished by directly assigning to the next slot:

> ds[12,] <- c(183400, 381200, 18)

> ds

x y n.trees

1 182000 381000 10

2 182250 310300 12

3 182500 381000 22

4 182750 310300 4

5 183000 381000 12

6 182000 310300 15

7 182250 381000 7

8 182500 310300 18

9 182750 381000 2

10 183000 310300 16

11 183500 381000 12

12 183400 381200 18

29

Adding fields to a data frame A vector with the same number of
rows as an existing data frame may be added to it with the cbind

(“column bind”) method. For example, we could compute a height-
to-girth ratio for the trees (a measure of a tree’s shape) and add it as a
new field to the data frame; we illustrate this with the trees example
dataset introduced in §4.7:

> attach(trees)

> HG.Ratio <- Height/Girth; str(HG.Ratio)

num [1:31] 8.43 7.56 7.16 6.86 7.57 ...

> trees <- cbind(trees, HG.Ratio); str(trees)

‘data.frame’: 31 obs. of 4 variables:

$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 ...

$ Height : num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume : num 10.3 10.3 10.2 16.4 18.8 19.7 ...

$ HG.Ratio: num 8.43 7.56 7.16 6.86 7.57 ..

> rm(HG.Ratio)

Note that this new field is not visible in an attached frame; the frame
must be detached (with the detach method) and re-attached:

> summary(HG.Ratio)

Error: Object "HG.Ratio" not found

> detach(trees); attach(trees)

> summary(HG.Ratio)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.22 4.70 6.00 5.99 6.84 8.43

Sorting a data frame This is most easily accomplished with the order
method, naming the field(s) on which to sort, and then using the re-
turned indices to extract rows of the data frame in sorted order:

trees[order(trees$Height, trees$Girth),]

Girth Height Volume

3 8.8 63 10.2

20 13.8 64 24.9

2 8.6 65 10.3

...

4 10.5 72 16.4

24 16.0 72 38.3

16 12.9 74 22.2

23 14.5 74 36.3

...

18 13.3 86 27.4

31 20.6 87 77.0

Note that the trees are first sorted by height, then any ties in height are
sorted by girth.

30

4.8 Factors

Some variables are categorical: they can take only a defined set of val-
ues. In S these are called factors and are of two types: unordered (nomi-
nal) and ordered (ordinal). An example of the first is a soil type, of the
second soil structure grade, from “none” through “weak” to “strong”
and “very strong”; there is a natural order in the second case but not in
the first. Many analyses in R depend on factors being correctly identi-
fied; some such as table (§4.16) only work with categorical variables.

Factors are defined with the factor and ordered methods. They
may be converted from existing character or numeric vectors with
the as.factor and as.ordered method; these are often used after
data import if the read.table or related methods could not correctly
identify factors; see §6.2 for an example. The levels of an existing factor
are extracted with the levels method.

For example, suppose we have given three tests to each of three stu-
dents and we want to rank the students. We might enter the data frame
as follows (see also §6.1):

> student <- rep(1:3, 3)

> score <- c(9, 6.5, 8, 8, 7.5, 6, 9.5, 8, 7)

> tests <- data.frame(cbind(student, score))

> str(tests)

‘data.frame’: 9 obs. of 2 variables:

$ student: num 1 2 3 1 2 3 1 2 3

$ score : num 9 6.5 8 8 7.5 6 9.5 8 7

We have the data but the student is just listed by a number; the table
method won’t work and if we try to predict the score from the student
using the lm method (see §4.18) we get nonsense:

> lm(score ~ student, data=tests)

Coefficients:

(Intercept) student

9.556 -0.917

The problem is that the student is considered as a continuous variable
when in fact it is a factor. We do much better if we make the appropri-
ate conversion:

> tests$student <- as.factor(tests$student)

> str(tests)

‘data.frame’: 9 obs. of 2 variables:

$ student: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3

$ score : num 9 6.5 8 8 7.5 6 9.5 8 7

> lm(score ~ student, data=tests)

31

Coefficients:

(Intercept) student2 student3

8.83 -1.50 -1.83

Factors require special care in statistical models; see §4.19.

4.9 Selecting subsets

We often need to examine subsets of our data, for example to perform
a separate analysis for several strata defined by some factor, or to ex-
clude outliers defined by some criterion.

Selecting known elements If we know the observation numbers, we
simply name them as the first subscript, using the [] (select array ele-
ments) operator:

> trees[1:3,]

Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

> trees[c(1, 3, 5),]

Girth Height Volume

1 8.3 70 10.3

3 8.8 63 10.2

5 10.7 81 18.8

> trees[seq(1, 31, by=10),]

Girth Height Volume

1 8.3 70 10.3

11 11.3 79 24.2

21 14.0 78 34.5

31 20.6 87 77.0

A negative subscript in this syntax excludes the named rows and in-
cludes all the others:

> trees[-(1:27),]

Girth Height Volume

28 17.9 80 58.3

29 18.0 80 51.5

30 18.0 80 51.0

31 20.6 87 77.0

Selecting with a logical expression The simplest way to select sub-
sets is with a logical expression on the row subscript which gives the
criterion. For example, in the trees example dataset introduced in
§4.7, there is only one tree with volume greater than 58, and it is sub-
stantially larger; we can see these in order with the sort method:

32

> attach(trees)

> sort(Volume)

[1] 10.2 10.3 10.3 15.6 16.4 18.2 18.8 19.1 19.7

[11] 19.9 21.0 21.3 21.4 22.2 22.6 24.2 24.9 25.7

[21] 27.4 31.7 33.8 34.5 36.3 38.3 42.6 51.0 51.5

[31] 55.4 55.7 58.3 77.0

To analyze the data without this “unusual” tree, we use a logical ex-
pression to select rows (observations), here using the < (less than) com-
paraison operator, and then the [] (select array elements) operator to
extract the array elements that are selected:

> tr <- trees[Volume < 60,]

Note that there is no condition for the second subscript, so all columns
are selected.

Logical expressions may be combined with logical operators such as &
(logical AND) and | (logical OR), and their truth sense inverted with
! (logical NOT). For example, to select trees with volumes between 20
and 40:

> tr <- trees[Volume >=20 & Volume <= 40,]

Note that &, like S arithmetical operators, is vectorized, i.e. it operates
on each pair of elements of the two logical vectors separately.

Parentheses should be used if you are unclear about operator prece-
dence.

Another way to select elements is to make a subset, with the subset
method:

> (tr.small <- subset(trees, Volume < 18))

Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

4 10.5 72 16.4

7 11.0 66 15.6

Selecting random elements of an array Random elements of a vec-
tor can be selected with the sample method:

> trees[sort(sample(1:dim(trees)[1], 5)),]

Girth Height Volume

13 11.4 76 21.4

18 13.3 86 27.4

22 14.2 80 31.7

33

23 14.5 74 36.3

26 17.3 81 55.4

Each call to sample will give a different result.

By default sampling is without replacement, so the same element can
not be selected more than once; for sampling with replacement use the
replace=T optional argument.

In this example, the command dim(trees) uses the dim method to
give the dimensions of the data frame (rows and columns); the first ele-
ment of this two-element list is the number of rows: dim(trees)[1].

Splitting on a factor Another common operation is to split a dataset
into several strata defined by some factor. For this, S provides the
split method, which we illustrate with the iris dataset which has
one factor, the species of Iris:

> data(iris); str(iris)

‘data.frame’: 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versic..",..: 1 1 ...

> attach(iris)

> ir.s <- split(iris, Species); str(ir.s)

List of 3

$ setosa :‘data.frame’: 50 obs. of 5 variables:

..$ Sepal.Length: num [1:50] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 ...

..$ Sepal.Width : num [1:50] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 ...

..$ Petal.Length: num [1:50] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 ...

..$ Petal.Width : num [1:50] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 ...

..$ Species : Factor w/ 3 levels "setosa","versic..",..: 1 1 ...

$ versicolor:‘data.frame’: 50 obs. of 5 variables:

..$ Sepal.Length: num [1:50] 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 ...

..$ Sepal.Width : num [1:50] 3.2 3.2 3.1 2.3 2.8 2.8 3.3 2.4 ...

..$ Petal.Length: num [1:50] 4.7 4.5 4.9 4 4.6 4.5 4.7 3.3 ...

..$ Petal.Width : num [1:50] 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1 ...

..$ Species : Factor w/ 3 levels "setosa","versic..",..: 2 2 ...

$ virginica :‘data.frame’: 50 obs. of 5 variables:

..$ Sepal.Length: num [1:50] 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3 ...

..$ Sepal.Width : num [1:50] 3.3 2.7 3 2.9 3 3 2.5 2.9 2.5 ...

..$ Petal.Length: num [1:50] 6 5.1 5.9 5.6 5.8 6.6 4.5 6.3 ...

..$ Petal.Width : num [1:50] 2.5 1.9 2.1 1.8 2.2 2.1 1.7 1.8 ...

..$ Species : Factor w/ 3 levels "setosa","versic..",..: 3 3 ...

The split method builds a list of data frames named by the level of
the factor on which the original data frame was split. Here the original

34

150 observations have been split into three lists of 50, one for each
species. These can be accessed by name:

> summary(ir.s$setosa$Petal.Length)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 1.40 1.50 1.46 1.58 1.90

4.10 Simultaneous operations on subsets

We often want to apply some computation to all subsets of a data
frame. For example, to compute the mean petal length of the iris

data set for each species separately, we could first split the set as shown
in the previous section (§4.9), compute each subset’s mean, and join
them in one vector. This can be accomplished in one step using the by
method:

> by(Petal.Length, Species, mean)

INDICES: setosa

[1] 1.462

INDICES: versicolor

[1] 4.26

INDICES: virginica

[1] 5.552

In this example, we applied the mean function to the Petal.Length
field in the attached data frame, grouping the petal lengths by the
Species categorical factor.

A function can be applied to several fields at the same time, and the
results can be saved to the workspace:

> iris.m <- by(iris[,1:4], Species, mean)

> class(iris.m)

[1] "by"

> str(iris.m)

List of 3

$ setosa : Named num [1:4] 5.006 3.428 1.462 0.246

..- attr(*, "names")= chr [1:4] "Sepal.Length" "Sepal.Width" ...

$ versicolor: Named num [1:4] 5.94 2.77 4.26 1.33

..- attr(*, "names")= chr [1:4] "Sepal.Length" "Sepal.Width" ...

$ virginica : Named num [1:4] 6.59 2.97 5.55 2.03

..- attr(*, "names")= chr [1:4] "Sepal.Length" "Sepal.Width" ...

- attr(*, "dim")= int 3

- attr(*, "dimnames")=List of 1

..$ Species: chr [1:3] "setosa" "versicolor" "virginica"

- attr(*, "call")= language by.data.frame(data = iris[, 1:4],

INDICES = Species, FUN = mean)

35

- attr(*, "class")= chr "by"

> iris.m$setosa

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.006 3.428 1.462 0.246

> iris.m$setosa[3]

Petal.Length

1.462

> iris.m$setosa["Petal.Length"]

Petal.Length

1.462

As this example shows, the result is one list for each level of the group-
ing factor (here, the Iris species). Each list is a vector with named ele-
ments (the dimnames attribute).

4.11 Rearranging data

As explained above (§4.7), the data frame is the object class on which
most analysis is performed. Sometimes the same data must be ar-
ranged different ways into data frames, depending on what we con-
sider the observations and columns.

A typical re-arrangement is stacking and its inverse, unstacking. In
stacking, several variables are combined into one, coded by the origi-
nal variable name; unstacking is the reverse.

For example, consider the data from a small plant growth experiment:

> data(PlantGrowth); str(PlantGrowth)

‘data.frame’: 30 obs. of 2 variables:

$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 ...

$ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 ...

There were two treatments and one control, and the weights are given
in one column. If we want to find the maximum growth in the control
group, we could select just the controls and then find the maximum:

> max(PlantGrowth$weight[PlantGrowth$group == "ctrl"])

[1] 6.11

But we could also unstack this two-column frame into a frame with
three variables, one for each treatment, and then find the maximum of
one (new) column; for this we use the unstack method:

> pg <- unstack(PlantGrowth, weight ~ group; str(pg)

‘data.frame’: 10 obs. of 3 variables:

$ ctrl: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14

$ trt1: num 4.81 4.17 4.41 3.59 5.87 3.83 6.03 4.89 4.32 4.69

$ trt2: num 6.31 5.12 5.54 5.5 5.37 5.29 4.92 6.15 5.8 5.26

36

> max(pg$ctrl)

[1] 6.11

The names of the groups in the unstacked frame become the names of
the variables in the stacked frame; the formula weight g̃roup told
the unstack method that group was the column with the new col-
umn names.

This process also works in reverse, when we have a frame with several
variables to make into one, we use the stack method:

> pg.stacked <- stack(pg); str(pg.stacked)

‘data.frame’: 30 obs. of 2 variables:

$ values: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 ...

$ ind : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 ...

> names(pg.stacked) <- c("weight", "group"); str(pg.stacked)

‘data.frame’: 30 obs. of 2 variables:

$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 ...

$ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 ...

The stacked frame has two columns with default names value (for
the variables which were combined) and ind (for their names); these
can be changed with the names method.

A more general method for data re-shaping is reshape.

4.12 Random numbers and simulation

R includes methods to evaluate a cumulative distribution function (CDF),
the probability density function (PDF) and the quantiles, and to draw
random samples, from a large number of distributions including the
uniform (R name unif), normal (R name norm), Student’s t (R name t),
binomial (R name binom), Poisson (R name pois), and many others;
see Chapter 8 of [17] for a complete list.

The names of the methods are built from two parts:

1. A prefix indicating the type of method: p for the CDF, d for the
density, q for the quantile, and r for random samples;

2. The R name of the distribution, as listed above, e.g. norm for the
normal distribution.

So the functions for the normal distribution are:

p pnorm for the CDF;

d dnorm for the density;

q qnorm for the quantiles (inverse probability);

37

r rnorm to draw random numbers.

For example, to find the proportion of people in a normally-distributed
population with mean height 170 cm and standard deviation 15 cm
shorter than 200 cm use pnorm:

> pnorm(200, 170, 15)

[1] 0.9772499

To plot the bell-shaped normal curve use dnorm:

> q <- seq(-3, 3, by=.05)

> plot(q, dnorm(q), type="l", xlab="z", ylab="Prob(z)")

To find which normal score corresponds to a list of critical Type I error
probabilities use qnorm:

> alpha <- c(0.1, 0.05, 0.01, 0.001)

> qnorm(1-alpha/2)

[1] 1.644854 1.959964 2.575829 3.290527

Finally, to simulate sampling ten individuals from a normally-distributed
population with mean height 170 cm and standard deviation 15 cm,
with a measurement precision of 1 cm, use rnorm draw the sample
and then round the results to the nearest integer:

> sort(round(rnorm(10, 170, 15)))

[1] 147 159 166 169 169 174 176 180 183 185

Each time this command is issued it will give different results, because
the sample is random:

> sort(round(rnorm(10, 170, 15)))

[1] 155 167 170 177 181 182 185 186 188 199

To start a simulation at the same point (e.g. for testing) use the set.seed
method:

> set.seed(61921)

> sort(round(rnorm(10, 170, 15)))

[1] 129 157 157 166 168 170 173 175 185 193

> set.seed(61921)

> sort(round(rnorm(10, 170, 15)))

[1] 129 157 157 166 168 170 173 175 185 193

Now the results are the same every time.

38

4.13 Character strings

R can work with charachter vectors, also known as strings. These are
often used in graphics as labels, titles, and explanatory text. A string
is created by the " quote operator:

> (label <- "A good graph")

[1] "A good graph"

Strings can be built from smaller pieces with the paste method; parts
can be extracted or replaced with the substring method; strings can
be split into pieces with the strsplit method:

> paste(label, ":", 15, "x", 20, "cm")

[1] "A nice graph : 15 x 20 cm"

> (labels <- paste("B", 1:8, sep=""))

[1] "B1" "B2" "B3" "B4" "B5" "B6" "B7" "B8"

> substring(label, 1, 4)

[1] "A go"

> substring(label, 3) <- "nice"; label

[1] "A nice graph"

> strsplit(label, " ")

[[1]]

[1] "A" "nice" "graph"

> unlist(strsplit(label, " "))

[1] "A" "nice" "graph"

> unlist(strsplit(label, " "))[3]

[1] "graph

Note the use of the unlist method to convert the list (of one element)
returned by strplit into a vector.

Numbers or factors can be converted to strings with the as.character
method; however this conversion is performed automatically by many
methods so is rarely needed.

4.14 Objects and classes

S is an object-oriented computer language: everything in S (including
variables, results of expressions, results of statistical models, and func-
tions) is an object, each with a class, which says what the object is and
also controls the way in which it may be manipulated. The class of an
object may be inspected with the class method:

> class(lm)

[1] "function"

> class(letters)

[1] "character"

> class(seq(1:10))

39

[1] "integer"

> class(seq(1,10, by=.01))

[1] "numeric"

> class(diag(10))

[1] "matrix"

> class(iris)

[1] "data.frame"

> class(iris$Petal.Length)

[1] "numeric"

> class(iris$Species)

[1] "factor"

> class(iris$Petal.Length > 2)

[1] "logical"

> class(lm(iris$Petal.Width ~ iris$Petal.Length))

[1] "lm’’

> class(hist(iris$Petal.Width))

[1] "histogram"

> class(table(iris$Species))

[1] "table"

The letters built-in constant in this example is a convenient way to
get the 26 lower-case Roman letters; for upper-case use LETTERS.

As the last three examples show, many S methods create their own
classes. These then can be used by generic methods such as summary
to determine appropriate behaviour:

> summary(iris$Petal.Length)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 1.60 4.35 3.76 5.10 6.90

> summary(iris$Species)

setosa versicolor virginica

50 50 50

> summary(lm(iris$Petal.Width ~ iris$Petal.Length))

Call:

lm(formula = iris$Petal.Width ~ iris$Petal.Length)

Residuals:

Min 1Q Median 3Q Max

-0.565 -0.124 -0.019 0.133 0.643

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.36308 0.03976 -9.13 4.7e-16

iris$Petal.Length 0.41576 0.00958 43.39 < 2e-16

Residual standard error: 0.206 on 148 degrees of freedom

Multiple R-Squared: 0.927,Adjusted R-squared: 0.927

40

F-statistic: 1.88e+03 on 1 and 148 DF, p-value: <2e-16

> summary(table(iris$Species))

Number of cases in table: 150

Number of factors: 1

S has methods for testing if an object is in a specific class or mode, and
for converting modes or classes, as long as such a conversion makes
sense. These have the form is. (test) or as. (convert), followed by
the class name. For example:

> is.factor(iris$Petal.Width)

[1] FALSE

> is.factor(iris$Species)

[1] TRUE

> as.factor(iris$Petal.Width)

[1] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.1

...

[145] 2.5 2.3 1.9 2 2.3 1.8

22 Levels: 0.1 0.2 0.3 0.4 0.5 0.6 1 1.1 1.2 1.3 1.4 ... 2.5

> as.numeric(iris$Species)

[1] 1

...

[149] 3 3

The is.factor and is.numeric class test methods return a logical
value (TRUE or FALSE) depending on the class their argument. The
as.factor class conversion method determined the unique values of
petal length (22) and then coded each observation; this is not too use-
ful here; in practice you would use the cut method. The as.numeric
conversion method extracts the level number of the factor for each ob-
ject; this can be useful if we want to give a numeric argument derived
from the factor

4.15 Descriptive statistics

Numeric vectors can be described by a set of methods with self-evident
names, e.g. min, max, median, mean, length:

> data(trees); attach(trees)

> min(Volume); max(Volume); median(Volume);

+ mean(Volume); length(Volume)

[1] 10.2

[1] 77

[1] 24.2

[1] 30.17097

[1] 31

41

Another descriptive method is quantile:

> quantile(Volume)

0% 25% 50% 75% 100%

10.2 19.4 24.2 37.3 77.0

> quantile(Volume, .1)

10%

15.6

> quantile(Volume, seq(0,1,by=.1))

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10.2 15.6 18.8 19.9 21.4 24.2 27.4 34.5 42.6 55.4 77.0

The summarymethod applied to data frames combines several of these
descriptive methods:

> summary(Volume)

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.20 19.40 24.20 30.17 37.30 77.00

Some summary methods are vectorized and can be applied to an entire
data frame:

> mean(trees)

Girth Height Volume

13.24839 76.00000 30.17097

> summary(trees)

Girth Height Volume

Min. : 8.30 Min. :63 Min. :10.20

1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40

Median :12.90 Median :76 Median :24.20

Mean :13.25 Mean :76 Mean :30.17

3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30

Max. :20.60 Max. :87 Max. :77.00

Others are not, but can be applied to margins of a matrix or data frame
with the apply method:

> apply(trees, 2, median)

Girth Height Volume

12.9 76.0 24.2

The margin is specified in the second argument: 1 for rows, 2 for
columns (fields in the case of data frames).

4.16 Classification tables

For data items that are classified by one or more factors, the table

method counts the number of observations at each factor level or com-
bination of levels. We illustrate this with the meuse dataset included
with the gstat and sp packages, which includes four factors:

42

> library(gstat); data(meuse); str(meuse)

‘data.frame’: 155 obs. of 14 variables:

...

$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...

$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...

$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...

$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 ...

...

> attach(meuse)

> table(ffreq)

ffreq

1 2 3

84 48 23

> round(100*table(ffreq)/length(ffreq), 1)

ffreq

1 2 3

54.2 31.0 14.8

> table(ffreq, landuse)

landuse

ffreq Aa Ab Ag Ah Am B Bw DEN Fh Fw Ga SPO STA Tv W

1 0 8 5 19 6 3 3 0 1 5 3 0 0 0 30

2 1 0 0 14 11 0 1 1 0 4 0 1 2 1 12

3 1 0 0 6 5 0 2 0 0 1 0 0 0 0 8

The last example is the cross-classification or contingency table showing
which land uses are associated with which flood frequency classes.

The χ2 test for conditional independence may be performed with the
chisq.test method:

> chisq.test(ffreq, lime)

Pearson’s Chi-squared test

data: ffreq and lime

X-squared = 26.81, df = 2, p-value = 1.508e-06

Note that both the χ2 statistic and the probability that it could occur by
chance (the “p-value”) are given; the second is from the χ2 table with
the appropriate degrees of freedom (“df”). Here it is highly unlikely,
meaning the flood frequency and liming are not independent factors.

4.17 Sets

S has several commands for working with lists (including vectors)
as sets, i.e. a collection of elements; these include the is.element,
union, intersect, setdiff, setequal methods. See the on-line
help for details and example(union) for a demonstration.

43

The uniquemethod removes duplicate elements from a list; the duplicated
method returns the indices of the duplicate elements in the original
list.

4.18 Statistical models in S

S specifies statistical models in symbolic form with model formulae. These
formulae are arguments to many statistical methods, most notably the
lm (linear models) and glm (generalized linear models) methods, but
also in base graphics (§5.1) methods such as plot and boxplot and
trellis graphics (§5.4) methods such as levelplot.

The simplest form is where a (mathematically) dependent variable is
(mathematically) explained by one (mathematically) independent vari-
able; like all model formulae this uses the ~ formula operator to separate
the left (dependent) from the right (independent) sides of the expres-
sion:

> (model <- lm(trees$Volume ~ trees$Height))

Call:

lm(formula = trees$Volume ~ trees$Height)

Coefficients:

(Intercept) trees$Height

-87.12 1.54

This is to be read like a mathematical function, where the left-hand
side is the result (“dependent”) and the right-hand side is the expres-
sion (“independent”). In other words, a formula is read as:

• a response variable (left-hand side) . . .

• . . . is explained by (the ~ symbol) . . .

• . . . a formula including one or more predictor variables

In this example, the tree volume is to be explained as a linear function
of its height; this is just a first-order linear regression, with the best-fit
least-squares line y = −87.12+1.54x: for every foot increase in height,
the volume increases by 1.54 ft3; also, a zero-height tree would have a
negative volume23.

If the data frame has been attached, this can be written more simply:

23 Nicely illustrating the risks of extrapolating outside the range of calibration; this
data set only has trees from 63 to 87 feet tall, so the fitted relation says nothing
about shorter trees

44

> attach(trees)

> model <- lm(Volume ~ Height)

but even if not, the variable names can be referred to a frame with the
data= named argument:

> model <- lm(Volume ~ Height, data=trees)

Additive effects More complicated models include additive effects,
using the + formula operator:

> model <- lm(Volume ~ Height + Girth, data=trees)

Note this is not an arithmetic addition, but rather a special use in the
model notation. Here the tree volume is explained by by both its
height and girth, considered as independent predictors.

Interactions The : formula operator is used to indicate interactions;
usually these are used in addition to additive terms:

> model <- lm(Volume ~ Height + Girth + Height:Girth, data=trees)

Here the tree volume is explained by both its height and girth, as well
as their interaction, i.e. that the effect of girth is different at different
heights.

The * formula operator is shorthand for all linear terms and interac-
tions of the named independent variables, so that the previous exam-
ple could have been more simply written as:

> model <- lm(Volume ~ Height * Girth, data=trees)

The ^ formula operator is used to indicate predictor crossing to the
specified degree:

> model <- lm(Volume ~ (Height + Girth)^2, data=trees)

Here the ^2 expands to all interactions between the named predic-
tors, since there are only two; this is equivlent to Height + Girth

+ Height:Girth, which in this two-predictor case is also the same
as Height * Girth.

Removing terms Sometimes it is convenient to specify a model and
then remove a term from it with the - formula operator. As a some-
what artificial example, to model tree volume by only tree girth and
its interaction with height:

45

> model <- lm(Volume ~ Height * Girth - Height, data=trees)

This is equivalent to:

> model <- lm(Volume ~ Girth + Girth:Height, data=trees)

This formula operator is often used to remove the intercept; see below.

Nested models The / operator is used to specify that the second-
named predictor is nested within the first-named predictor. This is of-
ten used in designed experiments such as split-plot designs or repli-
cated measurements within an experimental unit.

No intercept The intercept term (e.g. the mean) is implicit in model
formulas. For regression through the origin, it must be explicitly re-
moved with the - formula operator, in this case the implied intercept,
with the expression -1. Or, the origin can be named explicitly with the
+ formula operator, with the expression +0. For example, it’s certainly
true that a tree with no girth has no height, so if we want to force the
regression of height on girth to go through (0, 0):

> model <- lm(Height ~ Girth - 1, data=trees)

> model <- lm(Height ~ 0 + Girth, data=trees)

Arithmetic operations in formulas Since the characters +, *, ^, and
/ have special meaning in formulas, they must be “quoted” with the I
operator if they are to interpreted as arithmetic operators. For exam-
ple, to model tree volume from the height-to-girth ratio:

> model <- lm(Volume ~ I(Height / Girth), data=trees)

To model volume as the square of girth:

> model <- lm(Volume ~ I(Girth^2), data=trees)

This is only needed if there is a danger of mis-interpretation; most
methods can be used directly in formulas, e.g. the log method to com-
pute natural logarithms. For example, to fit a log-log regression of tree
height by width:

> model <- lm(log(Height) ~ log(Girth))

For further description of model formulae, see the help topic:

> ?formula

46

The design matrix For full control of linear modelling, R offers the
ability to extract or build design matrices of linear models; this is dis-
cussed in most regression texts, for example Christensen [1].

The design matrix of a model is extracted with the model.matrix

method:

> model <- lm(Volume ~ Height + Girth, data=trees)

> (X <- model.matrix(model))

(Intercept) Height Girth

1 1 70 8.3

2 1 65 8.6

...

30 1 80 18.0

31 1 87 20.6

This matrix contains the values of the predictor variables for each ob-
servation. This provides a good check on your understanding of the
model structure. The matrix can be used to directly compute the least-
squares linear solution:

β = (X ′X)−1X ′Y

using the t (matrix transpose) and solve (matrix inversion) method,
and the %*% (matrix multiplication) operator. For example, to directly
compute the regression coefficients for the model of tree volume pre-
dicted by height and girth in the trees dataset:

> Y <- trees$Volume

> (beta <- solve(t(X) %*% X) %*% t(X) %*% Y)

[,1]

(Intercept) -57.98766

Height 0.33925

Girth 4.70816

> # check this is the same result as from lm()

> lm(trees$Volume ~ trees$Height + trees$Girth)

Coefficients:

(Intercept) trees$Height trees$Girth

-57.988 0.339 4.708

The direct computation may be numerically unstable and is certainly
slow; lm uses more sophisticated numerical methods.

4.19 Models with categorical predictors

The lm and glm methods are also used for models with categorical
predictors and for mixed models, as well as for models using only

47

continuous predictors. The categorical variables must be ordered or
unordered S factors; this can be checked with the is.factor method
or examined directly with the str method.

Factors are included in the design matrix as contrasts which divide the
observations according to the classifying factors. This is quite a techni-
cal subject, treated thoroughly in standard linear modelling texts such
as those by Venables & Ripley [29], Fox [9], Christensen [1] and Draper
& Smith [7]. The practical importance of contrasts is mainly the in-
terpretation of the results that is possible with a given contrast, and
secondly in the computational stability.

One of R’s environment options is the default contrast type for un-
ordered and ordered factors; these can be viewed and changed with
the options method. Contrasts for specific factors can be viewed
and set with the contrasts method, using the contr.helmert,
contr.poly, contr.sum, and contr.treatmentmethods to build
contrast matrices.

> options("contrasts")

$contrasts

unordered ordered

"contr.treatment" "contr.poly"

Polynomial contrasts assume equal feature-space distance between lev-
els of the ordered predictor; this may not be justified and so you may
want to change the contrast type.

For example, the meuse soil pollution dataset includes a factor for
flooding frequency; this is an unordered factor but the three levels are
naturally ordered from least to most flooding. So we might want to
change the data type.

> data(meuse)

> str(meuse$ffreq)

Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 ...

> contrasts(meuse$ffreq)

2 3

1 0 0

2 1 0

3 0 1

> lm(log(meuse$lead) ~ meuse$ffreq))

Coefficients:

(Intercept) ffreq2 ffreq3

5.106 -0.666 -0.626

> meuse$ffreq <- as.ordered(meuse$ffreq)

> str(meuse$ffreq)

Ord.factor w/ 3 levels "1"<"2"<"3": 1 1 1 1 1 1 1 1 1 1 ...

48

> contrasts(meuse$ffreq)

.L .Q

1 -7.0711e-01 0.40825

2 -9.0738e-17 -0.81650

3 7.0711e-01 0.40825

> lm(log(meuse$lead) ~ meuse$ffreq))

Coefficients:

(Intercept) meuse$ffreq.L meuse$ffreq.Q

4.675 -0.443 0.288

The unordered factor has treatments contrasts (sometimes called “dummy
variables”) whereas the ordered factor has orthogonal polynomial con-
trasts. These result in different model factors.

4.20 Analysis of Variance (ANOVA)

The results of linear models can be expressed in the traditional lan-
guage of ANOVA (as found in many textbooks) with the aov method;
this calls lm and formats its results in a traditional ANOVA table:

> model <- aov(Volume ~ Height + Girth, data=trees)

> class(model)

[1] "aov" "lm"

> summary(model)

Df Sum Sq Mean Sq F value Pr(>F)

Height 1 2901 2901 193 4.5e-14

Girth 1 4783 4783 317 < 2e-16

Residuals 28 422 15

Two models on the same dataset may be compared with the anova

method; this is one way to test if the more complicated model is sig-
nificantly better than the simpler one:

> model.1 <- aov(Volume ~ Height + Girth, data=trees)

> model.2 <- aov(Volume ~ Height * Girth, data=trees)

> anova(model.1, model.2)

Analysis of Variance Table

Model 1: Volume ~ Height + Girth

Model 2: Volume ~ Height * Girth

Res.Df RSS Df Sum of Sq F Pr(>F)

1 28 422

2 27 198 1 224 30.5 7.5e-06

In this case the interaction term of the more complicated model is
highly significant.

49

4.21 Model output

The result of a lm (linear models) method is a complicated data struc-
ture with detailed information about the model, how it was fitted, and
its results. It can be viewed directly with the str method, but it is bet-
ter to access the model with a set of extractor methods: coefficients
to extract a list with the model coefficients, fitted to extract a vector
of the fitted values (what the model predicts for each observation),
residuals to extract a vector of the residuals at each observation,
and formula to extract the model formula:

> model <- lm(Volume ~ Height * Girth, data=trees)

> coefficients(model)

(Intercept) Height Girth Height:Girth

69.39632 -1.29708 -5.85585 0.13465

> fitted(model)

1 2 3 4 5 ...

8.2311 9.9974 10.8010 16.3186 18.3800 ...

> residuals(model)

1 2 3 4 5 ...

2.068855 0.302589 -0.600998 0.081368 0.420047 ...

> formula(model)

Volume ~ Height * Girth

The results are best reviewed with the summary generic method, which
for linear models is specialized into summary.lm:

> summary(model)

Call:

lm(formula = Volume ~ Height * Girth, data = trees)

Residuals:

Min 1Q Median 3Q Max

-6.582 -1.067 0.303 1.564 4.665

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 69.3963 23.8358 2.91 0.00713

Height -1.2971 0.3098 -4.19 0.00027

Girth -5.8558 1.9213 -3.05 0.00511

Height:Girth 0.1347 0.0244 5.52 7.5e-06

Residual standard error: 2.71 on 27 degrees of freedom

Multiple R-Squared: 0.976,Adjusted R-squared: 0.973

F-statistic: 359 on 3 and 27 DF, p-value: <2e-16

This provides the most important information about the model; for
more insight consult textbooks which explain linear modelling, e.g.
Venables & Ripley [29], Fox [9], Christensen [1] or Draper & Smith [7]:

50

• The model formula with which lm was called;

• A summary of the residuals; by definition the mean is zero so is
not reported;

• The model coefficients (first column);

• The standard error associated with each coefficient (second col-
umn); these can be used to construct confidence intervals;

• The significance level of each coefficient (third column); this is the
probability rejecting the null hypothesis for the listed coefficient
would be a mistake;

• The residual standard error, which is defined as the square root of
the estimated variance of the random error: σ2 = (1/(n − p)) ∗∑

(ri
2) where ri is one of the n residuals and p is the number of

coefficients.

• The coefficient of determination R2, both the unadjusted fraction of
variance explained by the model R2 = 1−(Residual SS/Total SS)

and the coefficient adjusted for the number of parameters in the
model, 1 − [(n − 1)/(n − p) ∗ (1 − R2)].

The AIC (Akaike’s An Information Criterion) method is often used to
compare models; the lower AIC is better:

> AIC(lm(Volume ~ Height * Girth))

[1] 155.47

> AIC(lm(Volume ~ Height + Girth))

[1] 176.91

> AIC(lm(Volume ~ Girth))

[1] 181.64

> AIC(lm(Volume ~ 1))

[1] 264.53

In this example the successively more complicated models have lower
AIC, i.e. provide more information.

Using the model to predict The fitted method only gives valuesPrediction
for the observations; often we want to predict at other values. For this
the predict generic method is used; in the case of linear models this
specialises to the predict.lmmethod. The first argument is the fitted
model and the second is a data frame in which to look for variables with
which to predict; these must have the same names as in the model
formula. Both confidence and prediction intervals may be requested,
with a user-specified confidence level.

51

For example, to predict tree volumes for all combinations of heights
(in 10 cm increments) and girths (in 5 cm increments)24 , along with
the 99% confidence intervals of this prediction:

> model <- lm(Volume ~ Height * Girth, data=trees)

> new.data <- data.frame(expand.grid(Height = seq(50, 100, by=10),

Girth = seq(5, 25, by=5)))

> pred <- predict(model, new.data, interval="prediction",

level=0.99)

> # add the predictor values for easy interpretation

> pred <- cbind(new.data, pred)

> str(pred)

‘data.frame’: 30 obs. of 5 variables:

$ Height: num 50 60 70 80 90 100 50 60 70 80 ...

$ Girth : num 5 5 5 5 5 5 10 10 10 10 ...

$ fit : num 8.93 2.69 -3.55 -9.79 -16.03 ...

$ lwr : num -7.37 -9.37 -12.74 -18.89 -27.88 ...

$ upr : num 25.222 14.743 5.639 -0.685 -4.167 ...

> # fits for trees 50 feet tall

> pred[pred$Height==50,]

fit lwr upr Height Girth

1 8.9265 -7.3694 25.222 50 5

7 13.3109 3.0322 23.590 50 10

13 17.6952 5.7180 29.672 50 15

19 22.0796 2.6126 41.547 50 20

25 26.4639 -2.0348 54.963 50 25

4.22 Advanced statistical modelling

The lm method is the workhorse of modelling in S, because of the im-
portance of linear models and its versatility. However, R has other
interesting methods, including glm for generalized linear models, rlm
for robust fitting of linear models, nls for non-linear least squares fit-
ting. The lm method itself can use weighted least squares if the weights
are specified as an optional argument.

Stepwise regression is a dangerous procedure when applied blindly;
the step method can be used to select the best model, based on AIC,
using forward or backward selection and a user-specified stopping
and starting points.

Principal components of multivariate matrices are computed by the prcomp
method; the results can be visualized with the biplot and screeplot
methods.

Bootstrapping methods are provided in the boot package.

24 There would be some strange looking trees with some of these combinations!

52

There are many, many other modelling methods; see §10.3 for some
ideas on how to find the one you want. Especially recommended is
the advanced text of Venables & Ripley [29] which has chapters on
many sophisticated methods, all with both theory, references, and S
code.

4.23 Missing values

A common problem in a statistical dataset is that not all variables are
recorded for all records. R uses a special missing value value for all data
types, represented as NA, which stands for ‘not available’. Within R, it
may be assigned to a variable.

For example, suppose the volume of the first tree in the trees dataset
is unknown:

> trees$Volume[1] <- NA

> str(trees)

‘data.frame’: 31 obs. of 3 variables:

$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 ...

$ Height: num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume: num NA 10.3 10.2 16.4 18.8 19.7 15.6 ...

> summary(trees$Volume)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

10.2 19.8 24.5 30.8 37.8 77.0 1.0

As the example shows, some methods (like summary()) can deal with
NA’s, but others can’t. For example, if we try to compute the Pearson’s
correlation between tree volume and girth, using the cor method,
with the missing value included:

> attach(trees)

> cor(trees$Volume, trees$Girth)

Error in cor(trees$Volume, trees$Girth) :

missing observations in cov/cor

This somewhat cryptic message is explained in the help for cov, where
several options are given for dealing with missing values, the most
common of which is to include a case in the computation only if no
variables are missing:

> cor(trees$Volume, trees$Girth, use="complete.obs")

[1] 0.967397

S provides a method for removing all cases from a data frame where
any of the variables are missing:

53

> trees.allvars<-na.omit(trees)

> str(trees.allvars)

‘data.frame’: 30 obs. of 3 variables:

$ Girth : num 8.6 8.8 10.5 10.7 10.8 11 11 ...

$ Height: num 65 63 72 81 83 66 75 80 75 79 ...

$ Volume: num 10.3 10.2 16.4 18.8 19.7 15.6 ...

The first observation, with the missing volume, was removed.

4.24 Control structures and looping

S is a powerful programming language with Algol-like syntax25 and
control structures.

Single statements may be grouped between the braces { and }, sepa-
rated either by new lines or the command separator ;. The if ...else

command allows conditional execution, and the for, while, and repeat
commands allow looping. Note however that because of R’s many vec-
torized methods looping is much less common in R than in compiled
languages such as C.

For example, to convert the sample confusion matrix from counts to
proportions, you might be tempted to try this:

> cmp <- cm

> for (i in 1:length(cm)) cmp[i] <- cm[i]/sum(cm)

> cmp

[,1] [,2] [,3] [,4]

[1,] 0.21472393 0.08588957 0.06748466 0.006134969

[2,] 0.02453988 0.06748466 0.01840491 0.000000000

[3,] 0.07361963 0.05521472 0.23312883 0.024539877

[4,] 0.01226994 0.03067485 0.07361963 0.012269939

But you can get the same result with a vectorized operation:

> (cmp <- cm/sum(cm))

[,1] [,2] [,3] [,4]

[1,] 0.21472393 0.08588957 0.06748466 0.006134969

[2,] 0.02453988 0.06748466 0.01840491 0.000000000

[3,] 0.07361963 0.05521472 0.23312883 0.024539877

[4,] 0.01226994 0.03067485 0.07361963 0.012269939

See Chapters 9 of [17] for more details.

25 also used in C and its derivatives such as C++ and Java; of Algol it has been aptly
said that it was a great improvement over its succcessors.

54

4.25 User-defined functions

An R user can use the function method to define functions with ar-
guments, including optional arguments with default values. See the ex-
ample in §C and a good introduction in Chapter 10 of [17]. These then
are objects in the workspace which can be called.

For example, here’s a function to compute the harmonic mean of a vec-
tor; this is defined as

v̄h = (
∏

i=1...n

vi)
1/n

where n is the length of the vector v, but is more reliably computed by
taking logarithms, dividing by the length, and exponentiating:

> hm <- function(v) exp(sum(log(v))/length(v))

> hm(1:99)

[1] 37.6231

> mean(1:99)

[1] 50

As it stands, this function does not check its arguments; it only makes
sense for a vector of positive numbers:

> hm(c(-1, -2, 1, 2))

[1] NaN

Warning message:

NaNs produced in: log(x)

To correct this behaviour we write a multi-line function with a condi-
tional statement and the return method to leave the function:

> hm <- function(v) {

if (!is.numeric(v)) {

print("Argument must be numeric"); return(NULL)

}

else if (sum(v <= 0)) {

print("All elements must be positive"); return(NULL)

}

else return(exp(sum(log(v))/length(v)))

}

> class(hm)

[1] "function"

> hm

function(v) {

...

}

> hm(letters)

[1] "Argument must be numeric"

NULL

55

> hm(c(-1, -2, 1, 2))

[1] "All elements must be positive"

NULL

> hm(1:99)

[1] 37.6231

Note how simply typing the function name lists the function object; to
call the function you must supply the argument list.

4.26 Computing on the language

As explained in the R Language Definition:

“R belongs to a class of programming languages in which
subroutines have the ability to modify or construct other
subroutines and evaluate the result as an integral part of
the language itself.” [18, Ch. 6]

This may seem quite exotic, but it has some practical applications even
for the non-programmer R user, in addition to the deeper applications
explained in the Definition.

For example, consider the problem of summarizing a set of variables
that are named B1, B2, . . .B256. 26 To avoid writing m[1] <- mean(B1),
m[2] <- mean(B2) etc. we’d like to loop through the numbers and
form the variable name (with the B prefix and a number) and perform
the operation. We do this in three steps:

1. Build up a syntactically-correct string to be evaluated, using the
paste method;

2. Parse this into an R language object with the parse method;

3. Evaluate it with the eval method.

> # demonstrate how the string is built up

> paste("m[", b, "] <- mean(B", b, ")", sep="")

Error in paste("m[", b, "] <- mean(B", b, ")", sep = "") :

object "b" not found

> # must define a value for b to see how this works

> b <- 4

> paste("m[", b, "] <- mean(B", b, ")", sep="")

[1] "m[4] <- mean(B4)"

> # what does this look like as a parse language object?

> parse(text=paste("m[", b, "] <- mean(B", b, ")", sep=""))

expression(m[4] <- mean(B4))

> # initialize the results vector

26 Perhaps reflectances from a hyperspectral sensor

56

> m <- NULL

> # evaluate this one expression

> eval(parse(text=paste("m[", b, "] <- mean(B", b, ")", sep="")))

Error in mean(B4) : object "B4" not found

> # must define this variable to compute its mean

> B4 <- 0:100

> eval(parse(text=paste("m[", b, "] <- mean(B", b, ")", sep="")))

> # result so far

> m

[1] NA NA NA 50

> # apply to all 256 variables; need B1 .. B256 defined

> for (b in 1:256)

eval(

parse(

text =

paste("m[", b, "] <- mean(B", b, ")", sep="")

)

)

57

5 R graphics

R provides a rich environment for statistical visualisation. There are
two graphics systems: the base system (in the graphics package,
loaded by default when R starts) and the trellis system (in the lattice
package).

R graphics are highly customizable; see each method’s help page for
details and (for base graphics) the help page for graphics parameters:
?par. Except for casual use, it’s best to create a script (§3.9) with the
graphics commands; this can then be edited, and it also provides a
way to produce the exact same graph later.

Multiple graphs can be placed in the same window for display or
printing; see §5.8, and several graphics windows can be opened at the
same time; see §5.7.

To get a quick appreciation of R graphics, run the demostration pro-
grams:

> demo(graphics)

> demo(image)

> demo(lattice)

5.1 Base graphics

A technical introduction to base graphics is given in Chapter 12 of [17].
Here we give an example of building up a sophisticated plot step-by-
step, starting with the defaults and customizing.

The example is a scatter plot of petal length vs. width from the iris
data set. A default scatterplot of two variables is produced by the
plot.default method, which is automatically used by the generic
plot command if two equal-length vectors are given as arguments:

> data(iris)

> str(iris)

‘data.frame’: 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

> attach(iris)

> plot(Petal.Length, Petal.Width)

In this form, the x- and y-axes are given by the first and second argu-
ments, respectively. The same plot can be produced using a formula

58

§4.18 showing the dependence, in which case the y-axis is given as the
dependent variable on the left-hand side of the formula:

> plot(Petal.Width ~ Petal.Length)

●●● ●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

●●●●

●

● ●

●●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

P
et

al
.W

id
th

Figure 2: Default scatterplot

This default plot is shown in Figure 2. It is informative but not so
attractive. We can customize the plotting symbol (pch argument), its
colour and size (col and cex arguments), the axis labels (xlab and
ylab arguments), and graph title (main argument).

Plotting symbols can be specified either by a single character (e.g. "*"
for an asterisk) or an integer code for one of a set of graphics symbols.
Figure 3 shows the symbols and their codes. Note that symbols 21–26
also have a fill (background) colour, specified by the bg argument; the
main colour specified by the col argument specifies the border.

See §5.9 for details on how to specify colours.

We now produce a customized plot, showing the species:

plot(Petal.Length, Petal.Width, pch=20, cex=1.2,

xlab="Petal length (cm)", ylab="Petal width (cm)",

main="Anderson Iris data",

col=c("slateblue", "firebrick", "darkolivegreen")[as.numeric(Species)]

)

59

●1

2

3

4

5

6

7

8

9

●10

11

12

●13

14

15

●16

17

18

●19

●20

●21

22

23

24

25

Figure 3: Plotting symbols

It’s clear that the species are of different sizes (Setosa smallest, Versicolor
in the middle, Virginica largest) but that the ratio of petal length to
width is about the same in all three.

Note the use of the as.numericmethod to coerce the Species, which
is a factor, to the corresponding level number (here, 1, 2 and 3), and
then the use of this number to index a list of colours.

The plot generic method is an example of a high-level plotting method
which begins a new graph. Once the coördinate system is set up by
plot, several mid-level plotting methods are available to add elements
to the graph, such as lines, points, and text; Table 1 lists the principal
methods; see the help for each one for more details.

For example, to add horizontal and vertical lines at the mean and me-
dian centroids, use the abline method:

abline(v=mean(Petal.Length), lty=2, col="red")

abline(h=mean(Petal.Width), lty=2, col="red")

abline(v=median(Petal.Length), lty=2, col="blue")

abline(h=median(Petal.Width), lty=2, col="blue")

The lty argument specifies the line type (style). These can be specified
as a code (0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=long-
dash, 6=twodash) or as a descriptive name "blank", "solid", "dashed",
"dotted", "dotdash", "longdash", or "twodash").

To add light gray dotted grid lines at the axis ticks, use the grid

method:

60

abline Add a Straight Line
arrows Add Arrows
axis Add an Axis
box Draw a framing Box
grid Add a Grid
legend Add Legends
lines Add Connected Line Segments
mtext Write Text into the Margins
points Add Points
polygon Draw Polygons
rect Draw Rectangles
rug Add a Rug
segments Add Line Segments
symbols Draw Symbols
text Add Text
title Plot Annotation

Table 1: Methods for adding to an existing base graphics plot

grid()

To add the mean and median centroids as large filled diamonds, use
the points method:

points(mean(Petal.Length), mean(Petal.Width),

cex=2, pch=23, col="black", bg="red")

points(median(Petal.Length), median(Petal.Width),

cex=2, pch=23, col="black", bg="blue")

Titles and axis labels can be added with the title method, if they
were not already specified as arguments to the plot method:

title(sub="Centroids: mean (green) and median (gray)")

Text can be added anywhere in the plot with the text method; the
first two arguments are the coördinates as shown on the axes, the third
argument is the text, and optional arguments specify the position of
the text relative to the coördinates, the colour, text size, and font:

text(1, 2.4, "Three species of Iris", pos=4, col="navyblue")

A special kind of text is the legend, added with the legend method;

legend(1, 2.4, levels(Species), pch=20, bty="n",

col=c("slateblue", "firebrick", "darkolivegreen"))

61

The abline method can also add lines computed from a model, for
example the least-squares regression (using the lm method) and a ro-
bust regression (using the lqs method of the MASS package):

abline(lm(Petal.Width ~ Petal.Length), lty="longdash", col="red")

abline(lqs(Petal.Width ~ Petal.Length), lty=2, col="blue")

This customized plot is shown in Figure 4.

●●● ●●

●

●

●●

●

● ●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

● ●● ●

●

● ●

●●

●

●

●

●

●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Anderson Iris data

Petal length (cm)

P
et

al
 w

id
th

 (
cm

)

Centroids: mean (red) and median (blue)

Three species of Iris:
●

●

●

setosa
versicolor
virginica

Figure 4: Custom scatterplot

Returning results from graphics methods Many high-level graphics
methods return results, which may be assigned to an S object or used
directly in an expression. For example, the hist method returns the
break and mid points, counts and densities:

> data(trees)

> h <- hist(trees$Volume)

> str(h)

List of 7

$ breaks : num [1:8] 10 20 30 40 50 60 70 80

62

$ counts : int [1:7] 10 9 5 1 5 0 1

$ intensities: num [1:7] 0.03226 0.02903 0.01613 0.00323 0.01613 ...

$ density : num [1:7] 0.03226 0.02903 0.01613 0.00323 0.01613 ...

$ mids : num [1:7] 15 25 35 45 55 65 75

$ xname : chr "trees$Volume"

$ equidist : logi TRUE

- attr(*, "class")= chr "histogram"

> (hist(trees$Volume))$mids

[1] 15 25 35 45 55 65 75

5.2 Types of base graphics plots

Table 2 lists the principal plot types; see the help for each one for more
details.

assocplot Association Plots
barplot Bar Plots
boxplot Box Plots
contour Contour Plots
coplot Conditioning Plots
dotchart Cleveland Dot Plots
filled.contour Level (Contour) Plots
fourfoldplot Fourfold Plots
hist Histograms
image Display a Colour Image
matplot Plot Columns of Matrices
mosaicplot Mosaic Plots
pairs Scatterplot Matrices
persp Perspective Plots
plot Generic X-Y Plotting
stars Star (Spider/Radar) Plots
stem Stem-and-Leaf Plots
stripchart 1-D Scatter Plots
sunflowerplot Sunflower Scatter Plots

Table 2: Base graphics plot types

Figure 5 shows examples of a boxplot, a conditioning plot, a pairwise
scatterplot, and a star plot, all applied to the Anderson iris dataset.

boxplot(Petal.Length ~ Species, horizontal=T,

col="lightblue", boxwex=.5,

xlab="Petal length (cm)", ylab="Species",

main="Grouped box plot")

coplot(Petal.Width ~ Petal.Length | Species,

col=as.numeric(Species), pch=as.numeric(Species))

63

pairs(iris[,1:4], col=as.numeric(Species),

main="Pairwise scatterplot")

stars(iris[,1:4], key.loc=c(2,35), mar=c(2, 2, 10, 2),

main="Star plot of individuals", frame=T)

●

●

se
to

sa
ve

rs
ic

ol
or

vi
rg

in
ic

a

1 2 3 4 5 6 7

Grouped box plot

Petal length (cm)

S
pe

ci
es

●●● ●●

●
●

●●
●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●● ●●

●

●
●●●●
●

● ●
●●
●

●

●
●

●●●●

0.
5

1.
0

1.
5

2.
0

2.
5

1 2 3 4 5 6 7

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

P
et

al
.W

id
th

setosa

versicolor

virginica

Given : Species

Sepal.Length

2.0 2.5 3.0 3.5 4.0

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

0.5 1.0 1.5 2.0 2.5

4.
5

5.
5

6.
5

7.
5

●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●
●●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●
●

●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

2.
0

2.
5

3.
0

3.
5

4.
0

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

Sepal.Width
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●●●
● ●

●
● ●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

●● ●●
●● ●● ●●

● ●●●
●

●●●
●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●
●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●● ●
● ●

●
●●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

● ●●●
●● ● ●●●
● ●●●

●
●● ●
●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

Petal.Length

1
2

3
4

5
6

7

●●●
●●

●
●●●●●●●

●●
●
●●

●
●

●
●

●

●
●
● ●●●
●● ●●●●
●●

●●
●

●●●
●

●

●
●
●●●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●
●●

●

●

●●
●

●
●●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

4.5 5.5 6.5 7.5

0.
5

1.
0

1.
5

2.
0

2.
5

●●●● ●

●
●

●●
●

●●
●●

●

●●
● ●●

●

●

●

●

● ●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●
●

●

●
●

●
●

●●●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●● ●● ●

●
●
●●

●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●
●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

1 2 3 4 5 6 7

●●●●●

●
●
●●
●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●●●
●

●●
●●
●

●

●
●

●●●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●

●

●

●
●

●

●

●
●
●

●

●●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

Petal.Width

Pairwise scatterplot

Star plot of individuals

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81 82 83 84

85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108

109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132

133 134 135 136 137 138 139 140 141 142 143 144

145 146 147 148 149 150

Sepal.Length

Sepal.Width

Petal.Length

Petal.Width

Figure 5: Some interesting base graphics plots

Some packages have implemented their own variations of these and
other plots, for example scatterplot and scatterplot.matrix

in the car package and truehist in the MASS package.

64

5.3 Interacting with base graphics plots

If the output graphics device is a screen, e.g. as initialised with the
windows method, it is possible to query the graph with the identify
method for scatterplots. This reads the position of the graphics pointer
when the left mouse button is pressed, and searches the coordinates
given as its for the closest point in the plot. If this point is close enough
to the pointer, its index is added to a list to be returned, once the right
mouse button is pressed.

The coördinate pairs for identify is normally the same as the scat-
terplot:

> plot(Petal.Length, Petal.Width)

> (p <- identify(Petal.Length, Petal.Width))

[1] 44 65 99

> iris[p,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

44 5.0 3.5 1.6 0.6 setosa

65 5.6 2.9 3.6 1.3 versicolor

99 5.1 2.5 3.0 1.1 versicolor

This is quite useful for identifying unusual points in the plot.

5.4 Trellis graphics

The Trellis graphics system is framework for data visualization devel-
oped at Bell Labs (where S originated) based on the ideas in Cleveland
[2]. It was implemented in S-PLUS and then in R with the lattice
package; its design and basic use are well-explained by its author Sarkar
[26] in the R Newsletter. It is harder to learn than R base graphics, but
can produce higher-quality graphics, especially for multivariate visu-
alisation when the relationship between variables changes with some
grouping factor; this is called conditioning the graph on the factor. It
uses formulae similar to the statistical formulae introduced in §4.18 to
specify the variables to be plotted and their relation in the plot. Cus-
tomization of Trellis graphics parameters (for example, default back-
ground and symbol colours) is explained in §5.6.

Univariate plots As a simple example, consider the iris dataset. To
produce a kernel density plot (a sophisticated histogram) on the whole
dataset, use the densityplot method:

densityplot(~ Petal.Length, data=iris)

65

The ˜ operator here has no left-hand side, since there is no dependent
variable in the plot; it is univariate. The petal length is the independent
variable, and we get one plot; this is shown shown on the left side of
Figure 6.

All species

Petal.Length

D
en

si
ty

0 2 4 6 8

0.00

0.05

0.10

0.15

0.20

0.25

●●● ●● ●●●●●●●●●● ●●● ●● ●●● ● ●●●●● ●●●●●●●●●● ●●●● ● ●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●●● ● ●●● ●● ● ●●● ●●●● ● ●●● ●●●●● ● ●● ●● ● ●● ●● ●● ● ●●● ● ● ● ●● ●● ●● ● ●●● ● ● ● ●●● ● ●●●● ● ●●● ●●●● ● ●●

Split by species

Petal.Length

D
en

si
ty

2 4 6

0.0

0.5

1.0

1.5

2.0

2.5

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

setosa

2 4 6

●●●● ●●●● ●●● ●● ●● ●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●

versicolor

2 4 6

●● ●●● ●● ●●●●●●●●●● ●●● ●● ●● ●●●● ●●●●●● ● ●●●● ●●●● ●●●●●●●

virginica

Figure 6: Trellis density plots, without and with a conditioning factor

To add conditioning, we use the | operator, which can be read as “con-
ditioned on” the variable(s) named on its right side:

densityplot(~ Petal.Length | Species, data=iris)

Here there is one panel per species; this is shown shown on the right
side of Figure 6. We can clearly see that the multi-modal distribution of
the entire data set is due to the different distributions for each species.

Bivariate plots The workhorse here is the xyplotmethod, now with
a dependent (y-axis) and independent (x-axis) variable; this can also be
conditioned on one or more grouping factors:

xyplot(Petal.Width ~ Petal.Length, data=iris,

groups=Species, auto.key=T)

xyplot(Petal.Width ~ Petal.Length | Species, data=iris,

groups=Species)

These are shown in Figure 7. Note the use of the groups argument
to specify a different graphic treatment (in this case colour) for each

66

species, and the auto.key argument to get a simple key to the colours
used for each species.

All species

Petal.Length

P
et

al
.W

id
th

1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

●●● ●●

●

●

●●

●

● ●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

● ●● ●

●

● ●

●●

●

●

●

●

●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

setosa
versicolor
virginica

●

●

●

Split by species

Petal.Length

P
et

al
.W

id
th

1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

●●●●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●●●●

●

●

●●●●

●

●●

●●

●

●

●

●

●●●●

setosa

1 2 3 4 5 6 7

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

versicolor

1 2 3 4 5 6 7

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

virginica

Figure 7: Trellis scatter plots, without and with a conditioning factor

Triivariate plots The most useful plots here are the levelplot and
contourplot methods for 2D plotting of one response variable on
two continuous dependent variables (for example, elevation vs. two
coördinates), the wireframe method for a 3D version of this, and the
cloud method for a 3D scatterplot of three variables. All can be con-
ditioned on a factor. Figure 8 shows some examples, produced by the
following code:

pl1 <- cloud(Sepal.Length ~ Petal.Length * Petal.Width,

groups=Species,

data=iris, pch=20, main="Anderson Iris data, all species",

screen=list(z=30, x=-60))

data(volcano)

pl2 <- wireframe(volcano,

shade = TRUE, aspect = c(61/87, 0.4),

light.source = c(10, 0, 10), zoom=1.1, box=F,

scales=list(draw=F), xlab="", ylab="", zlab="",

main="Wireframe plot, Maunga Whau Volcano, Auckland")

pl3 <- levelplot(volcano,

col.regions=gray(0:16/16),

main="Levelplot, Maunga Whau Volcano, Auckland")

67

pl4 <- contourplot(volcano, at=seq(floor(min(volcano)/10)*10,

ceiling(max(volcano)/10)*10, by=10),

main="Contourplot, Maunga Whau Volcano, Auckland",

sub="contour interval 10 m",

region=T,

col.regions=terrain.colors(100))

print(pl1, split=c(1,1,2,2), more=T)

print(pl2, split=c(2,1,2,2), more=T)

print(pl3, split=c(1,2,2,2), more=T)

print(pl4, split=c(2,2,2,2), more=F)

rm(pl1, pl2, pl3, pl4)

Note that the volcano data set is just a matrix of elevations:

> str(volcano)

num [1:87, 1:61] 100 101 102 103 104 105 105 106 107 108 ...

The levelplot method converts this into one response variable (the
z values) and two predictors, i.e. the row and column of the matrix.
(the x and y values).

This example shows that high-level lattice methods do not them-
selves draw a graph; they return an object of class trellis which can
be printed with the print method. R’s default behaviour when work-
ing interactively (at the console) is to print the results of any expression
except an assignment, so the casual user doesn’t see this behaviour. It
is however quite useful to place multiple graphs on the same page as
illustrated here and explained in more detail in §5.8.

Panel functions A Trellis plot must be constructed in one go, unlike
in the base graphics package, where elements can be added later. Each
additional element beyond the default is specified by a so-called panel
function. For example, suppose we want to add a least-squares regres-
sion line as well as regression lines for each species to the scatterplot
of petal width and length:

xyplot(Petal.Width ~ Petal.Length, data=iris,

col=c("darkgreen", "navyblue", "firebrick")

[as.numeric(iris$Species)], pch=20,

xlab="Petal length", ylab="Petal width",

main="Anderson Iris data",

panel = function(x, y, ...) {

panel.fill(col="antiquewhite3")

panel.xyplot(x, y, ...);

panel.abline(lm(y ~ x), col="black");

for (lvl in 1:length(levels(Species))) {

panel.abline(lm(y ~ x,

subset=(Species==levels(Species)[lvl])),

68

Anderson Iris data, all species

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

Petal.Length

Petal.Width

Sepal.Length

Wireframe plot, Maunga Whau Volcano, Auckland

Levelplot, Maunga Whau Volcano, Auckland

row

co
lu

m
n

20 40 60 80

10

20

30

40

50

60

100

120

140

160

180

200

Contourplot, Maunga Whau Volcano, Auckland

contour interval 10 m

row

co
lu

m
n

20 40 60 80

10

20

30

40

50

60

100

10
0

10
0

110

110

110

110

120
130
140

150
150

160

160

170

170

180

180

190

100

120

140

160

180

200

Figure 8: Examples of Trellis trivariate plots

col=c("darkgreen", "navyblue", "firebrick")[lvl],

lty=2)

}

})

This plot is shown in Figure 9.

69

Anderson Iris data

Petal length

P
et

al
 w

id
th

1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

●●● ●●

●

●

●●

●

● ●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

● ●● ●

●

● ●

●●

●

●

●

●

●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

Figure 9: Trellis scatter plot with some added elements

The panel argument is used whenever we want to control the appear-
ance of the panel beyond the default plot. Here it is a function, which
takes as arguments the dummy variables x and y, which represent the
two variables of the x-y plot. The ... argument to the panel passes
through all the extra arguments specified previously, e.g. data=iris.
Within the un-named panel function, several pre-defined panel func-
tions are called to add graphic elements. These all have names begin-
ning with panel.. First we use panel.fill to change the main plot
background, then panel.xyplot to draw the points; note that this
must be called explicitly if there is a panel function. Then we add the
regression lines with panel.abline. Note the use of the for loop to
add one line for each species.

See ?panel.functions and the explanation of the panel parameter
in ?xyplot for details.

70

5.5 Types of Trellis graphics plots

Table 3 lists the principal plot types; see the help for each one for more
details.

Univariate
assocplot Association Plots
barchart bar plots
bwplot box and whisker plots
densityplot kernel density plots
dotplot dot plots
histogram histograms
qqmath quantile plots against mathematical

distributions
stripplot 1-dimensional scatterplot
Bivariate
qq q-q plot for comparing two distribu-

tions
xyplot scatter plots
Trivariate
levelplot level plots
contourplot contour plots
cloud 3-D scatter plots
wireframe 3-D surfaces (similar to persp plots in

R)
Hypervariate
splom scatterplot matrix
parallel parallel coordinate plots
Miscellaneous
rfs residual and fitted value plot
tmd Tukey Mean-Difference plot

Table 3: Trellis graphics plot types

5.6 Adjusting Trellis graphics parameters

The Trellis graphics environment as implemented in the lattice pack-
age sets reasonable defaults for its graphics parameters, based on the
output device (screen, PDF file . . .). Changing these requires three
steps: (1) retrieve the parameters into a data structure in memory; (2)
modify them; (3) write the modified parameters back as permanent
options.

71

Parameters are retrieved with the trellis.par.get method and
set with the trellis.par.set method. In the following example
we change the ‘superposition’ symbol which is used in the xyplot

method to show groups of points, as in the example just above.

The current settings are shown graphically by the show.settings

method.

> show.settings()

> options <- trellis.par.get()

> names(options)

[1] "fontsize" "background" "clip"

[4] "add.line" "add.text" "bar.fill"

[7] "box.dot" "box.rectangle" "box.umbrella"

[10] "dot.line" "dot.symbol" "plot.line"

[13] "plot.symbol" "reference.line" "strip.background"

[16] "strip.shingle" "superpose.line" "regions"

[19] "shade.colors" "superpose.symbol" "axis.line"

[22] "axis.text" "box.3d" "par.xlab.text"

[25] "par.ylab.text" "par.zlab.text" "par.main.text"

[28] "par.sub.text"

> options$superpose.symbol

$cex

[1] 0.8

$col

[1] "#00ffff" "#ff00ff" "#00ff00" "#ff7f00" "#007eff"

[6] "#ffff00" "#ff0000"

$font

[1] 1 1 1 1 1 1 1

$pch

[1] 1

> options$superpose.symbol$pch

[1] 1

> options$superpose.symbol$pch <- 20

> options$superpose.symbol$col <- c("blue","green","red","magenta",

+ "cyan","black","grey")

> options$superpose.symbol$cex <- 1.4

> trellis.par.set("superpose.symbol", options$superpose.symbol)

> xyplot(Sepal.Width ~ Sepal.Length, group=Species, iris)

There are a large number of options, each with sub-options. For ex-
ample, the superposition symbol has a character code (pch), a vector
of colours (col), a vector of fonts (font), and a character expansion
fraction (cex). These can all be set and then written back as shown.
Subsequent graphs use the changed parameters.

72

5.7 Multiple graphics windows

To open several graphics windows at the same time, use the windows
method. R opens the first graphics window automatically in response
to the first graphics method such as plot or hist; in the following
example we assume no such commands have yet been given.

> dev.list()

NULL

> windows()

> dev.list()

windows

2

> dev.cur()

windows

2

At this point, there is only one window and it is, of course, the current
graphics device, i.e. number 2 (for some reason, 1 is not used). The
results of any plotting commands will be displayed in this window.

Now we open another window; it becomes the current window:

> windows()

> dev.list()

windows windows

2 3

> dev.cur()

windows

3

At this point, any plot commands will go to the most recently-opened
window, i.e. number 3.

Switching between windows The dev.set method specifies which
graphics device to use for the next graphics output. For example, to
compare scatterplots of tree volume vs. two possible predictors (height
and girth) in adjacent windows:

> dev.set(2)

> plot(Height, Volume)

> dev.set(3)

> plot(Girth, Volume)

5.8 Multiple graphs in the same window

This depends on the graphics system: base or trellis (§5.4), as imple-
mented in the lattice R package. You can determine which system

73

is used by a given graphics command at the top of its help page. For
example:

?boxplot

shows the page title as boxplot (graphics) indicating that it’s in
the base graphics package, whereas

?xyplot

shows the page title as xyplot (lattice) indicating that it’s a trel-
lis plot.

Base graphics The parameters of the active graphics device are set
with the par method. One of these parameters is the number of rows
and columns of indivual plots in the device. By default this is (1, 1),
i.e. one plot per device. You can set up a matrix of any size with the
par(mfrow= ...) or par(mfcol= ...) commands. The differ-
ence is the order in which figures will be drawn, either row- or column-
wise.

For example, to set up a two-by-two matrix of four histograms, and fill
them from left-to-right, top-to-bottom:

the ‘par’ method refers to the active device

par(mfrow=c(2, 2))

hist(rnorm(100)); hist(rbinom(100, 20, .5)

hist(rpois(100, 1)); hist(runif(100)

par(mfrow=c(1,1))

next plot will fill the window

Trellis graphics A trellis (§5.4) graphics window can also be split,
but in this case the print method of the lattice package must be
used on an object of class trellis (which might be built in the same
command), using the split = optional argument to specify the po-
sition (x and y) within a matrix of plots. For all but the last plot the
more=T argument must be specified.

Repeating the previous example:

print(histogram(rnorm(100)), split=c(1,1,2,2), more=T);

print(histogram(rbinom(100, 20, .5)), split=c(2,1,2,2), more=T);

print(histogram(rpois(100, 1)), split=c(1,2,2,2), more=T);

print(histogram(runif(100)), split=c(2,2,2,2), more=F)

A more elegant way to do this is to create plots with any lattice

method, including levelplot, xyplot, and histogram, but instead

74

of displaying them directly, saving them (using the assignment oper-
ator <-) as trellis objects (this is the object type created by lattice

graphics methods), and then print them with lattice’s printmethod.
The advantage is that the same plot can be printed in a group of several
plots, alone, or on different devices, without having to be recomputed.

For example:

h1 <- histogram(rnorm(100), col="lightblue");

h2 <- histogram(rbinom(100, 20, .5), col="snow3");

h3 <- histogram(rpois(100, 1), col="springgreen1");

h4 <- histogram(runif(100), col="red4");

print(h1, split=c(1,1,2,2), more=T);

print(h2, split=c(2,1,2,2), more=T);

print(h3, split=c(1,2,2,2), more=T);

print(h4, split=c(2,2,2,2), more=F);

rm(h1, h2, h3, h4)

5.9 Colours

Both base (§5.1) and Trellis (§5.4) graphics have many places where
colours can be specified, often with the col (foreground colour) or bg
(background colour) optional arguments to graphics methods such as
plot.

Colours may be specified either by name, by code (colour specifica-
tion), or by their numeric position in the active colour palette. There are
a large number of named colours, but only eight of these in the default
palette.

To get a list of possible colour names use the colours method; to see
the numeric colours in the active palette use the palette method:

> colours()

[1] "white" "aliceblue" "antiquewhite"

[4] "antiquewhite1" "antiquewhite2" "antiquewhite3"

...

[655] "yellow3" "yellow4" "yellowgreen"

> colours()[655]

[1] "yellow3"

> palette()

[1] "black" "red" "green3" "blue" "cyan" "magenta"

[7] "yellow" "gray"

> palette()[4]

[1] "blue"

The Red, Green, Blue of any colour can be examined with the col2rgb
method:

75

> col2rgb("yellow3")

[,1]

red 205

green 205

blue 0

Single colours can be created with the rgb method, specifying Red,
Green and Blue contributions each in the range 0 . . . 1 (completely ab-
sent . . . saturated):

> rgb(0.25 0.5, 0)

[1] "#408000"

There are several built-in colour ramps (sequences of colours that give a
pleasing visual impression); these are returned by the heat.colors,
terrain.colors, topo.colors, and cm.colorsmethods; another
palette is provided by the bpy.colors method of th gstat pack-
age.27 These all return a vector of colours from defined endpoints,
according to the number of levels requested:

> terrain.colors(5)

[1] "#00A600" "#E6E600" "#EAB64E" "#EEB99F" "#F2F2F2"

> terrain.colors(10)

[1] "#00A600" "#2DB600" "#63C600" "#A0D600" "#E6E600" "#E8C32E"

[7] "#EBB25E" "#EDB48E" "#F0C9C0" "#F2F2F2"

> terrain.colors(10)[1]

[1] "#00A600"

The hexidecimal codes here represent Red, Green, and Blue; from 00

(no colour) to FF (full colour); thus there are 2563 = 16 777 216 possible
colours.

Grey scales use the slightly different gray method; its argument is a
vector of values between 0 . . . 1 giving the gray level:

> gray(seq(0, 1, by=.125))

[1] "#000000" "#202020" "#404040" "#606060" "#808080" "#9F9F9F"

[7] "#BFBFBF" "#DFDFDF" "#FFFFFF"

> gray(0:8 / 8)

[1] "#000000" "#202020" "#404040" "#606060" "#808080" "#9F9F9F"

[7] "#BFBFBF" "#DFDFDF" "#FFFFFF"

> gray(c(0, .2, .3, 1))

[1] "#000000" "#333333" "#4D4D4D" "#FFFFFF"

> col2rgb(gray(0.4))

[,1]

red 102

green 102

blue 102

27 Note the American spelling of ‘colour’.

76

Custom colour ramps can be produced with the hsv and rainbow

methods; see their help for details.

All of these ramps can be indexed to get individual colours. They are
most useful, however, when these colours are linked to data values.
For example, to plot soil sample points in the meuse soil pollution
data set, with the points coloured in order of their rank (from least to
most polluted by cadmium):

> library(gstat)

> data(meuse)

> attach(meuse)

> xyplot(y ~ x , data=meuse, asp=mapasp(meuse), pch=20,cex=2,

col=topo.colors(length(cadmium))[rank(cadmium)])

This plot is shown in Figure 10.

Soil samples, Meuse; colour ramp by Cd value

x

y

330000

331000

332000

333000

178500 179000 179500 180000 180500 181000 181500

●
● ●

●

●
●

●●

●
●

●
●

●
●
●

●

●

●

●

●●●
●

●
●●●

●
●

●

●
●●

●
●●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●
●●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●
●

●

●
●

●●
●

●

Figure 10: Example of a colour ramp

The key methods here are topo.colors to return a range of colours
from dark blue through light pink, length to find the number of
points and from this set the length of the colour ramp, and rank to

77

return the rank of each sample, based on its cadmium content: the
lowest pollution is rank 1, and so on to the most polluted with rank
equal to the number of samples. Then the correct colour for each sam-
ple is extracted from the vector with the [] (subscript) operator.

78

6 Preparing your own data for R

R comes with many interesting example datasets (§3.12), but of course
you are most interested in your own data. There are many ways to
prepare this for R; a comprehensive guide is given in the R Data Im-
port/Export manual provided as a PDF file.28

6.1 Preparing data directly

A small dataset may be entered directly in R in several ways. Here
we illustrate this with the winning times from the 100 m footrace in
the modern Olympic games [28], which we will assemble into a data
frame, with the cases being each year and the fields being the year
number, the men’s winning time, and the women’s winning time.

One method is to assign a vector directly to a variable. In the case
of regular data, this can be easily accomplished with the seq or rep
methods. For irregular data, the c method must be used to create a
list.

> yr <- seq(1900,2004,4) # produces 1900, 1904, 1908, ... 2004

> men <- c(11, 11, 10.8, 10.8, NA, 10.8, 10.6, 10.8, 10.3,

+ 10.3, NA, NA,

+ 10.3, 10.4, 10.5, 10.2, 10, 9.95, 10.14, 10.06,

+ 10.25, 9.99, 9.92, 9.96, 9.84, 9.87, 9.85)

Note the + continuation prompt from R; as long as the list was not com-
pleted (not enough) to match the open (), R could determine that the
expression was not complete, and prompted for more input.

Also note the use of the special NA value to indicate a missing value; no
Olympic games were held in 1916, 1940 or 1944, so there is no time for
those years.

Vectors can also be entered with the scan method. This waits for you
to type at the console, until a blank line is entered. It shows the number
of the next data item as a continuation prompt:

> women <- scan()

1: NA NA NA NA NA NA NA

8: 12.2 11.9 11.5 NA NA

13: 11.9 11.5 11.5 11 11.4 11.08 11.07 11.08 11.06 10.97

23: 10.54 10.82 10.94 10.75 10.93

28:

28 In RGui, select menu command Help | Manuals | R Data

Import/Export

79

When the 28 was displayed, the user pressed the “Enter” key, and R
realised the list was complete.

The three vectors are then gathered a data frame, and the local copies
are discarded. By default the fields in the frame are named from the
local variables, but new names can be given with the fieldname =

variable syntax. For example:

> oly.100 <- data.frame(year=yr, men, women)

> str(oly.100)

‘data.frame’: 27 obs. of 3 variables:

$ year : num 1900 1904 1908 1912 1916 ...

$ men : num 11 11 10.8 10.8 NA 10.8 10.6 10.8 10.3 10.3 ...

$ women: num NA NA NA NA NA NA NA 12.2 11.9 11.5 ...

> rm(yr, men, women)

To enter a matrix, first enter the data with the scan method or as
a list with the c method, and then place it in matrix form with the
matrix (“create a matrix”) method. We illustrate this with the sam-
ple confusion matrix of Congalton et al. [3], also used as an example
by Skidmore [27] and Rossiter [21].29 This example also illustrates the
rownames and colnames methods to assign (or read) the row and
column names of a matrix.

> cm <- scan()

1 : 35 14 11 1 4 11 3 0 12 9 38 4 2 5 12 2

17:

> cm <- matrix(cm, 4, 4, byrow=T)

> cm

[,1] [,2] [,3] [,4]

[1,] 35 14 11 1

[2,] 4 11 3 0

[3,] 12 9 38 4

[4,] 2 5 12 2

> colnames(cm) <- c ("A", "B", "C", "D")

> rownames(cm) <- LETTERS[1:4]

> cm

A B C D

A 35 14 11 1

B 4 11 3 0

C 12 9 38 4

D 2 5 12 2

> cm[1,]

A B C D

35 14 11 1

> cm["A", "C"]

[1] 11

29 This matrix is also used as an example in §4.6

80

Note the use of the byrow optional argument to the matrix method,
to indicate that we entered the data by row, also the use of the rownames
and colnames methods to label the matrix with upper-case letters
supplied conveniently by the LETTERS built-in constant.

6.2 Importing data from a CSV file

The Comma-Separated Values or “CSV” file is a common interchange
format which can be prepared in many ways. For example, a CSV
file can be created directly as a text file, using Notepad or some other
plain-text editor. However, it is common to have data already in a
spreadsheet such as Excel. In this case the procedure is as follows:

1. Prepare the data as an Excel spreadsheet with named columns;

2. Export from Excel to a (CSV) file, using Excel’s File | Save

As ... menu item;

3. Import into R with the read.csv method;

4. Adjust data types in R if necessary.

We illustrate this with a simplified version of the meuse dataset from
the gstat and sp packages, which has been prepared to illustrate
some issues with import.

Here is a small CSV file written by Excel and viewed in a plain text
editor such as Notepad:

x,y,cadmium,elev,dist,om,ffreq,soil,lime,landuse

181072,333611,11.7,7.909,0.00135803,13.6,1,1,1,Ah

181025,333558,8.6,6.983,0.0122243,14,1,1,1,Ah

181165,333537,6.5,7.8,0.103029,13,1,1,1,Ah

181298,333484,2.6,7.655,0.190094,8,1,2,0,Ga

181307,333330,2.8,7.48,0.27709,8.7,1,2,0,Ah

181390,333260,3,7.791,0.364067,7.8,1,2,0,Ga

Note that:

• There is one line per observation (record);

• Each record consists of the same number of fields, which are sep-
arated by commas;

• The first line has the same number of fields as the others but con-
sists of the field names.

Suppose this file is named example.csv. To read into R, we first
change to the directory where the file is stored and then read into an R

81

object with the read.csv method30.

> ds <- read.csv("example.csv")

> str(ds)

‘data.frame’: 6 obs. of 10 variables:

$ x : int 181072 181025 181165 181298 ...

$ y : int 333611 333558 333537 333484 ...

$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3

$ elev : num 7.91 6.98 7.80 7.66 7.48 ...

$ dist : num 0.00136 0.01222 0.10303 0.19009 ...

$ om : num 13.6 14 13 8 8.7 7.8

$ ffreq : int 1 1 1 1 1 1

$ soil : int 1 1 1 2 2 2

$ lime : int 1 1 1 0 0 0

$ landuse: Factor w/ 2 levels "Ah","Ga": 1 1 1 2 1 2

Notice that R could determine that landuse is a factor (categorical
variable), because it was non-numeric. It could also determine the
variable names from the first row. The other factors were not recog-
nized, and in fact they have different R data types, which we now
assign, using the as.* methods to change data types:

> ds$soil <- as.factor(ds$soil)

> ds$ffreq <- as.ordered(ds$ffreq)

> ds$lime <- as.logical(ds$lime)

> str(ds)

‘data.frame’: 6 obs. of 10 variables:

$ x : int 181072 181025 181165 181298 ...

$ y : int 333611 333558 333537 333484 ...

$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3

$ elev : num 7.91 6.98 7.80 7.66 7.48 ...

$ dist : num 0.00136 0.01222 0.10303 0.19009 ...

$ om : num 13.6 14 13 8 8.7 7.8

$ ffreq : Ord.factor w/ 3 levels "1"<"2"<"3": 1 ...

$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 ...

$ lime : logi TRUE TRUE TRUE FALSE FALSE FALSE

$ landuse: Factor w/ 2 levels "Ah","Ga": 1 1 1 2 1 2

Using the correct data type is important for many modelling methods;
here we inform R that lime was either applied (logical TRUE, associ-
ated by R with the number 1) or not (logical FALSE, associated by R
with the number 0); that there are three soil types arbitrarily named
“1”, “2” and “3”31 (not in any order); and that there are three flood
frequency classes named “1”, “2” and “3”, and these are in this order.

30 read.csv is just a special case of the very general read.table method which
can deal with tables in many other formats

31 These are not the numbers 1, 2, and 3.

82

Missing values Missing values are expressed in CSV files by the two
letters NA (without quotes). For example:

x,y,cadmium,elev,dist,om,ffreq,soil,lime,landuse

181072,333611,NA,7.909,0.00135803,NA,1,1,1,Ah

181025,333558,8.6,6.983,0.0122243,14,1,1,1,Ah

In the first record neither the cadmium concentration nor organic mat-
ter proportion are known; these will be imported as missing values,
symbolized in R by NA.

7 Exporting from R

Data frames are easily exported from R. For all the possibilities, see the
R Data Import/Export manual. Here we explain the most common
operation: exporting a data frame to a CSV file. This format can be
read into Excel, ILWIS, and many other programs.

A common reason for exporting is that you have computed some result
in R which you want to use in another program. For example, suppose
you’ve computed a kriging interpolation with the krige method of
the gstat package:

> library(gstat); data(meuse); data(meuse.grid)

> kxy <- krige(log(lead)~x+y, loc=~x+y, data=meuse,

+ newdata=meuse.grid,

+ model=vgm(0.34, "Sph", 1140, 0.08))

[using universal kriging]

> str(kxy)

‘data.frame’: 3103 obs. of 4 variables:

$ x : num 181180 181140 181180 181220 181100 ...

$ y : num 333740 333700 333700 333700 333660 ...

$ var1.pred: num 5.45 5.50 5.42 5.35 5.55 ...

$ var1.var : num 0.230 0.194 0.204 0.215 0.159 ...

To export this data frame use the write.table method:

> write.table(round(kxy, 4), file="KrigeResult.csv",

+ sep=",", quote=T, row.names=F,

+ col.names=c("E", "N", "LPb", "LPb.var"))

Here are the first few lines of the file KrigeResult.csv viewed in a
plain-text editor such as Notepad:

"E","N","LPb","LPb.var"

181180,333740,5.4451,0.2304

181140,333700,5.4955,0.1943

181180,333700,5.424,0.2037

We limited the precision of the output with the round method, and
named the fields with the row.names= optional argument.

83

8 Miscellaneous R tricks

In this section I’ve collected tips for some tasks which have puzzled
ITC users.

8.1 Setting up a regular grid

This is done with the expand.grid method. First a step-by-step ap-
proach, also using the seq and names methods:

> utm.n.min <- 210000; utm.n.max <- 216000

> utm.e.min <- 620000; utm.e.max <- 628000

> spacing <- 500

> xseq <- seq(utm.e.min, utm.e.max, by=spacing)

> yseq <- seq(utm.n.min, utm.n.max, by=spacing)

> sample.pts <- expand.grid(xseq, yseq)

> names(sample.pts) <- c("x", "y")

The same result can be achieved with one command:

> sample.pts <- expand.grid(x=seq(210000, 216000, by=500),

+ y=seq(620000, 628000, by=500))

> plot(sample.pts$x, sample.pts$y)

You can add a small random “jitter” to each coördinate to avoid unde-
tected periodic effects in the field, using the rnorm method:

> jitter.sd <- 50

> sample.pts$x <- sample.pts$x + rnorm(length(sample.pts$x),

+ 0, jitter.sd)

> sample.pts$y <- sample.pts$y + rnorm(length(sample.pts$y),

+ 0, jitter.sd)

> plot(sample.pts$x, sample.pts$y)

This scheme is illustrated on the left side of Figure 11.

(See also the spsample method in the sp package.)

8.2 Setting up a random sampling scheme

A common problem is to draw a completely random sample in some
geographic space, where the two coordinates are independent and
both on a uniform distribution. This is easily done with the runif

(random uniform) method to draw samples for each coördinate and
the data.frame method to put the two coördinates together.

> n.pt <- ((utm.e.max-utm.e.min)*(utm.n.max-utm.n.min))/spacing^2

> x <- runif(n.pt, utm.e.min, utm.e.max)

> y <- runif(n.pt, utm.n.min, utm.n.max)

84

> sample.pts <- data.frame(id = 1:n.pt, x, y)

> str(sample.pts)

‘data.frame’: 192 obs. of 3 variables:

$ id: int 1 2 3 4 5 6 7 8 9 10 ...

$ x : num 625215 627837 623322 620016 620142 ...

$ y : num 214168 212769 211254 212812 214317 ..

> attach(sample.pts); plot(x,y, type="n"); text(x, y, id)

This scheme is illustrated on the right side of Figure 11.

(See also the spsample method in the sp package.)

● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

620000 622000 624000 626000 628000

21
00

00
21

20
00

21
40

00
21

60
00

Systematic with jitter

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

620000 622000 624000 626000 628000

21
00

00
21

20
00

21
40

00
21

60
00

Simple random

x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4647

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
76

77

78

79
80

81

82

83

84

85

86

87
88

89

90

91

92

9394

95

96

97

98

99

100101

102

103

104

105

106

107

108

109

110

111
112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134
135

136

137

138

139

140

141
142

143

144

145

146

147

148

149

150

151

152

153

154155

156

157

158

159 160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

Figure 11: Two sampling schemes

85

9 Learning R

The present manual explains the basics of using R (§3), the S language
(§4), and R graphics (§5). The on-line help system is explained in §3.6.

Some applications are covered in so-called Task Views, on-line at http:Task Views
//cran.r-project.org/src/contrib/Views/. These are a sum-
mary by a task maintainer of the facilities in R to accomplish certain
tasks. For example, Roger Bivand maintains an excellent task view
“Analysis of Spatial Data” (http://cran.r-project.org/src/
contrib/Views/Spatial.html) which discusses how to represent
spatial data in R, how to read and write it, how to analyze point pat-
terns, and geostatistical analysis. Another useful task view is “Multi-
variate Statistics” (http://cran.r-project.org/src/contrib/
Views/Multivariate.html) maintained by Paul Hewson.

9.1 R tutorials and introductions

A good introduction to R concepts is the 100-page “R for Beginners”
by Emmanuel Paradis of the University of Montpellier (F) [12]. This is
also availble in his native French [14] and in a Spanish translation [13];
Correa & González [4]. is a Spanish-language introduction to R graph-
ics. Dalgaard [5] is a clearly-written introduction to statistics, using
R in all examples. Another useful introduction is “simpleR” by John
Verzani of the City University of New York [30], also available as a set
of web pages (§9.4). This shows how to use R for the usual univariate
and bivariate statistics and tests, linear regression, and ANOVA.

Within R itself, you can access the introductory course “An Introduc-
tion to R” as follows.

1. Select menu command Help | Html help; a web page will
appear in your browser.

2. In this web page, select the link “An Introduction to R”; another
web page will appear.

You will probably want to start with the section “A sample session”
(scroll down on the web page to find this in the table of contents). This
will give you some familiarity with the style of R sessions and more
importantly some instant feedback on what actually happens. Don’t
worry if you don’t understand everything; this is just to give you a
feel for how R works and what it can do. For individual commands, it
is always best to look at its help topic.

86

http://cran.r-project.org/src/contrib/Views/
http://cran.r-project.org/src/contrib/Views/
http://cran.r-project.org/src/contrib/Views/
http://cran.r-project.org/src/contrib/Views/
http://cran.r-project.org/src/contrib/Views/Spatial.html
http://cran.r-project.org/src/contrib/Views/Spatial.html
http://cran.r-project.org/src/contrib/Views/Multivariate.html
http://cran.r-project.org/src/contrib/Views/Multivariate.html

9.2 Textbooks using R

Dalgaard [5] was mentioned above. Venables & Ripley [29] present a
wide variety of up-to-date statistical methods (including spatial statis-
tics) with algorithms coded in S-PLUS. Most of these will run un-
changed in R. There are a variety of other texts using S or S-PLUS,
which are mostly applicable to R. Fox [10] explains how to use R for
regression analysis, including advanced techniques; this is a compan-
ion to his text [9]. A more mathematically-sophisticated approach, but
with a heavy emphasis on R techniques, is the text by Faraway [8],
which is freely-available for download as a PDF.

9.3 Technical notes using R

I have written several technical notes on statistical topics, using R to
compute and graph; these are all available as indexed PDF files on-
line, from which code can be cut and then pasted into R. If you work
through these and use them as starting points for your own analysis,
you will have a good basis in R.

One note [22] is designed specificially to show as many R techniques
as possible: exploratory data analysis, univariate statistics, bivariate
correlation and regression, multivariate analysis including PCA, and
some geostatistics.

Others are more specialised: land cover change with logistic regres-
sion [25], assessing map accuracy [21], co-kriging [23], fitting rational
functions to time series [24], and optimal partitioning of soil transects
[20].

These technical notes, their sample data sets and R code are stored at
http://www.itc.nl/personal/rossiter/pubs/list.html#pubs_m_R.

9.4 Web Pages to learn R

• http://www.math.csi.cuny.edu/Statistics/R/simpleR/index.html

“simpleR: Using R for Introductory Statistics”. This is an excel-
lent and well-paced tutorial from simple to complex techniques;
also available as a single document (§9.1).

• http://wwwmaths.anu.edu.au/˜johnm/r/

“Data Analysis and Graphics Using R: An Introduction” by John
Maindonald (Australian National University)

87

• http://www.stat.lsa.umich.edu/˜faraway/book/

“Practical Regression and Anova in R” by Julian Faraway (Uni-
versity of Michigan)

9.5 Keeping up with developments in R

R is a dynamic environment, with a large number of dedicated scien-
tists working to make it both a rich statistical computing environment
and a modern computing platform. Almost every day there are new
and modified packages added to CRAN, and new versions of the R
base appear regularly. But that means you need to invest some time to
keep up with developments:

• Read the R Newsletter: follow the “Newsletter” link on the R
Project home page (http://www.r-project.org/. This is is-
sued from two to four times a year, and is announced on R home
page. It is an attractive PDF document with news, announce-
ments, tutorials, programmer’s tips, bibliographies and much
more.

• Subscribe to one or more mailing lists: follow the “Mailing Lists”
link on the R Project home page (http://www.r-project.
org/. The most relevant for most ITC users are:

– R-announce: major announcements, e.g. new versions

– R-packages: announcements of new or updated packages

– R-help: discussion about problems using R, and their solu-
tions. The R gurus monitor this list and reply as necessary.
A search through the archives is a good way to see if your
problem was already discussed.

• Attend the useR! user’s conference every two years; the next one
is in June 2006; follow the link on the R home page. The pa-
pers from the 2004 meeting are available at http://www.ci.
tuwien.ac.at/Conferences/useR-2004/.

88

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.ci.tuwien.ac.at/Conferences/useR-2004/
http://www.ci.tuwien.ac.at/Conferences/useR-2004/

10 Frequently-asked questions

10.1 Help! I got an error, what did I do wrong?

1. Read the error message carefully. Often it says exactly what is
wrong. For example:

> x <- rnorm(100)

> summary(X)

Error in summary(X) : Object "X" not found

This means exactly what it says: there is no object named X in
the workspace nor in attached data frames, so R could not find
it when it tried to execute the summary method. In this case the
solution is clear: the variable is a lower-case x, not an upper-case
X:

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.750 -0.561 -0.070 -0.014 0.745 2.350

2. If the command involves an external file, make sure your R ses-
sion is in the right directory, or else use the full path name. For
example, the read.csv method requires a file name:

> dlv <- read.csv("dlv.csv")

Error in file(file, "r") : unable to open connection

In addition: Warning message:

cannot open file ’dlv.csv’

The “unable to open connection” message means that the file
could not be found.

Check the current working directory with the getwd method,
and see if the file is there with the list.files method (or, you
could look for the file in Windows Explorer):

> getwd()

[1] "/Users/rossiter/ds/DavisGeostats"

> list.files(pattern="dlv.csv")

character(0)

In fact this file is in another directory. One way is to give the
full path name; note the use of the front slash / as in Unix; R
interprets this correctly for MS-Windows:

> dlv <- read.csv("/Users/rossiter/ds/DLV/dlv.csv")

> dim(dlv)

[1] 88 33

89

Another way is to change the working directory with the setwd
method:

> setwd("/Users/rossiter/ds/DLV")

> getwd()

[1] "/Users/rossiter/ds/DLV"

> dlv <- read.csv("dlv.csv")

> dim(dlv)

[1] 88 33

3. A common problem is the attempt to use a method that is in an
unloaded package:

Suppose we try to run a resistant regression with the lqsmethod:

> lqs(lead ~ om, data=meuse)

Error: couldn’t find function "lqs"

This error has two possible causes: either there is no such method
anywhere (for example, if it had been misspelled lqr), or the
method is available in an unloaded package.

To find out if the method is available in any package, search for
the topic with the help.search method:

> help.search("lqs")

In this case, the list of matches to the search term "lqs" shows
two, both associated with package MASS.

Once the required package is loaded, the method is available:

> library(MASS)

> lqs(lead ~ om, data=meuse)

Coefficients:

(Intercept) om

-19.9 15.4

Scale estimates 46.9 45.9

4. If the command which produced the error is compound, break it
down into small pieces, beginning with the innermost command
and then working outwards.

5. Review the documentation for the command; it may explain
situations in which an error will be produced. For example, if
we try to compute the non-parametric correlation between lead
and organic matter in the Meuse data set, we get an error:

> library(gstat); data(meuse)

> cor(meuse$lead, meuse$om, method="spearman")

Error in cor(lead, om) : missing observations in cov/cor

90

> ?cor

The help for cor says: “If use is "all.obs", then the presence of
missing observations will produce an error”; in the usage section
it shows that use = "all.obs" is the default; so we must have
some missing values. We can check for these with the is.na

method:

> sum(is.na(lead)); sum(is.na(om))

[1] 0

[1] 2

There are two missing values of organic matter (but none of lead).
Then we must decide how to deal with them; one way is to com-
pute the correlation without the missing cases:

> cor(lead, om, method="spearman", use="complete")

[1] 0.59759

10.2 Why didn’t my command(s) do what I expected?

Because R does what you said, not what you meant! Some ideas to
make the two match:

1. Review the on-line documentation for the command to see what
the command actually does.

2. Look for the command in a tutorial or text and follow the exam-
ples.

3. Break down the command into smaller parts; make sure each
part does what you think.

4. Experiment with test data or “toy” examples to understand how
the command really works.

5. Look at the data structures with the str and class: sometimes
it has a different structure than you thought.

6. A common problem occurs when a variable defined in the workspace,
also called a local variable, has the same name as a field in a data
frame. The local variable is found by R when it looks for the
name, and masks the field name.

> data(trees); str(trees)

‘data.frame’: 31 obs. of 3 variables:

$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 ...

$ Height: num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 ...

91

> (Volume <- sample(1:31))

[1] 6 7 3 21 22 1 24 9 11 14 19 13 20 8 5 30 29 31

[19] 18 10 23 15 12 27 16 2 26 17 28 4 25

> attach(trees)

> cor(Volume, Girth)

[1] 0.30725

This is not the expected value; it is very low, and we know that
a tree’s volume should be fairly well correlated with its girth.
What is wrong? Listing the workspace gives a clue:

> ls()

[1] "Volume" "trees"

The name Volume occurs twice: once as a local variable, visible
with ls(), and once as a field name, visible with str(trees).
Even though the trees frame is attached, the Volume field is
masked by the Volume local variable, which in this case is just
a random permutation of the integers from 1 to 31, so the cor

method gives an incorrect result.

One way around this problem is to name the field explicitly within
its frame using $, e.g. trees$Volume:

> cor(trees$Volume, Girth)

[1] 0.96712

Another way is to delete the workspace variable with rm(); this
makes the field name in the attached frame visible:

> rm(Volume)

> cor(Volume, Girth)

[1] 0.96712

Another way is to use names for local variables that do not con-
flict with field names in the attached data frames.

10.3 How do I find the method to do what I want?

R has a very rich set of methods, and there are often several ways to
accomplish the same thing, especially with contributed packages.

1. Look at the help pages for methods you do know; they often list
related methods. For example, the help page for the linear mod-
els method (?lm) gives related methods for prediction, summary,
regression diagnostics, analysis of variance, and generalised lin-
ear models, with hyperlinks (in the HTML help) to directly ac-
cess their help.

92

2. Search for keywords. For example help.search("sequence")
lists methods to generate sequences, vectors of sequences, and
sequences of dates for time-series analysis.

3. Look at the Task Views, on-line at http://cran.r-project.
org/src/contrib/Views/. These are a summary of the facil-
ities in R to accomplish certain tasks, including the names of the
applicable methods.

4. Review the tutorials; they cover many common methods.

5. Some textbooks use R to illustrate their discussions (e.g. [5, 10,
29, 8]); you can adapt their examples to your needs.

6. If you don’t find what you’re looking for, perhaps the method is
in a contributed package which has not yet been installed on
your system. You can search for it on CRAN (the R archive),
http://cran.r-project.org/.

For example, the von Mises distribution is the circular analogue
of the normal distribution [6, p. 322]. On R with the default in-
stallation, a search for this term with the help.search method
will give no results:

> help.search("von Mises")

No help files found with alias or concept or title

matching ’von Mises’

However, if the term “Von Mises” is entered at the “Search” field
on the CRAN web page, several matches are shown, including
two packages. A review of their contents shows that the circular
package for circular statistics is the more complete, so it should
be installed on your system (§A.1).

Once the new package is installed, its contents are available to be
searched, and this time the term “von Mises” is found. Several
methods in the circular package are relevant:

> help.search("von Mises")

dmixedvonmises(circular)

Mixture of von Mises Distributions

mle.vonmises(circular)

von Mises Maximum Likelihood Estimates

mle.vonmises.bootstrap.ci(circular)

Bootstrap Confidence Intervals

pp.plot(circular)

von Mises Probability-Probability Plot

dvonmises(circular)

93

http://cran.r-project.org/src/contrib/Views/
http://cran.r-project.org/src/contrib/Views/
http://cran.r-project.org/

von Mises Density Function

You can get help on any of these by loading the package and
viewing the help:

> library(circular)

> ?dvonmises

10.4 What statistical procedure should I use?

This of course depends on your application field, your research ques-
tions, and your dataset. You should always refer to textbooks and re-
search papers; R is only a computer program, not a statistical wizard.

Within R, each help page gives references to textbooks or articles which
you should consult if you are unsure about the theory behind the
method or its options. You can also look up technical terms in your
favourite statistics textbook.

94

A Obtaining your own copy of R

You may want your own copy of R for your portable computer, your
home computer, or your organisation’s computer or network. This is
free and legal! Everything R is found via the R Project Home Page:
http://www.r-project.org/

This has links to:

• Download from CRAN (The Comprehensive R Archive Network)
at http://cran.r-project.org/; you will be asked to se-
lect a mirror, i.e. a server near you.

• Installation instructions

• Manuals

• The R Newsletter, including innovative statistical applications,
clever uses of R, and R programming

• Frequently Asked Questions (FAQ)

Installing R for Windows To install R on Windows, download the
setup program from CRAN (follow the links for “Windows”, then the
“base” package, then select the setup program, which has a name like
R-2.2.0-win32.exe, the exact name depending on the version).
Download the file (about 25 Mb) and run it.

The following stable link will redirect to the current Windows binary
release:

http://mirrors.dotsrc.org/cran/bin/windows/base/release.htm.

Note for Windows system managers: the “R Windows FAQ”
in the same directory as the setup program has extensive
information on administering R for Windows.

The setup installs the base R system and some of the most common
libraries (Table 4).

It also installs six manuals in both PDF and HTML format: (1) An In-
troduction to R; (2) R Installation and Administration; (3) R Language
Definition; (4) Reference Index; (5) R Data Import/Export; (6) Writing
R Extensions.

95

http://www.r-project.org/
http://cran.r-project.org/
http://mirrors.dotsrc.org/cran/bin/windows/base/release.htm

base The R Base Package
chron Chronological objects which can handle dates and

times
class Functions for classification
cluster Functions for clustering
datasets The R Datasets Package
foreign Read data stored by Minitab, S, SAS, SPSS, Stata, . . .
graphics The R Graphics Package
grDevices The R graphics devices;s upport for colours and fonts
grid The Grid Graphics Package
KernSmooth Functions for kernel smoothing
lattice Lattice Graphics
MASS Main Library of Venables and Ripley’s MASS
methods Formal Methods and Classes
mle Maximum likelihood estimation
multcomp Multiple Tests and Simultaneous Confidence Intervals
mvtnorm Multivariate Normal and T Distribution
nlme Linear and nonlinear mixed effects models
nnet Feed-forward neural networks
rgl 3D visualization device system (OpenGL)
rpart Recursive partitioning
SparseM Sparse Linear Algebra
spatial Functions for Kriging and point pattern analysis
splines Regression Spline Functions and Classes
stats The R Stats Package (includes classical tests, ex-

ploratory data anlysis, smoothing and local methods
for regression, multivariate analysis, non-linear least
squares, time series analysis)

stepfun Step Functions, including Empirical Distributions
survival Survival analysis, including penalised likelihood.
utils R Utilities

Table 4: Most important packages in the base R 2.1 distribution for
Windows; libraries loaded when R starts are shown in boldface.

96

abind Combine multi-dimensional arrays
akima Interpolation of irregularly spaced data
car Companion to Applied Regression
effects Effect displays for linear and generalized linear models
gstat Geostatistical modelling, prediction and simulation
lmtest Testing linear regression models
Rcmdr R Commander GUI

Table 5: Extra packages installed at ITC; these are not loaded by default

Other operating systems For Mac OS X or a Unix-based system, fol-
low the appropriate links from the CRAN home page and read the
installation instructions.

Cross-platform The JGR project at the University of Augsburg (D)32

has developed a Java-based GUI which runs on any platform with
industry-standard Java Runtime Engine, including Mac OS X and most
Windows systems. This includes the iplots interactive graphics pack-
age.

A.1 Installing new packages

The ITC installation includes the most popular optional packages. If
you need to install packages on your own copy of R, use the Packages
| Install Package(s) from CRAN ... menu item while con-
nected to the Internet. A brief description and full documentation of
the available packages is available from the CRAN home page; click
on the link for “Packages”. Table 5 lists the extra packages installed on
the ITC network. New packages on the network must be installed by
the ITC computer department; you can install packages on your own
system if you were able to install the base program.

A.2 Customizing your installation

(This section is not necessary to get started with R.)

Many aspects of R’s interactive behaviour can be changed to suit your
preferences. For example, you can set up your own copy of R to load
libraries at startup, and you can also change many default options.
You do this by creating a file named .Rprofile either in your home

32 http://www.rosuda.org/

97

http://www.rosuda.org/

directory, or in a working directory from which you will start R, or both.
The second of these is used if it exists, otherwise the master copy in
the home directory.

To see the current options setings, use the options method without
any arguments; it’s easier to review these by viewing its structure. In-
dividual settings can then be viewed by their field name.

> str(options())

List of 45

$ prompt : chr "> "

$ continue : chr "+ "

...

$ htmlhelp : logi TRUE

> options()$digits

[1] 5

Here is an example .Rprofile which sets some options and loads
some libraries that will always be used in a project:

options(show.signif.stars = FALSE);

options(html.help=TRUE);

options(digits = 5);

options(prompt = "R> "); options(continue = "R+ ");

options(timeout = 20);

library(gstat); library(lattice);

optional: function to run at startup

.First <- function() {

print("Welcome to R, you’ve made a wise choice") };

optional: function to run at shutdown

.Last <- function() { graphics.off(); print("Get a life!") }

B An example script

This is an example of a moderately complicated script, which gives
both a numerical and a visual impression of the variability of small
random samples. The output is shown in Figure 12 on the following
page. If you want to experiment with the script, cut-and-paste it into a
text editor, modify it as you like (for example, change the sample size
n or the number of replications), save it as a command file, and run it
with the source method as explained in §3.9.

You prepare this with a plain-text editor like Notepad in a text file,
for example plot4.R and then “source” it into R, which executes the
commands immediately.

> source("plot4.R")

98

If you want to change the plotting parameters, you have to change the
script and re-source it. The next section offers a better solution.

A note on R style It is good practice to make all parameters into vari-
ables at the beginning of the script, so they can be easily adjusted. If
you find yourself repeating the same number in many expressions, it
probably should be converted to a variable. Examples here are the
sample size and parameters of the normal distribution. You could
write:

v <- rnorm(30, 180, 20)

hist(v, breaks = seq(800, 280, by=(20/3)))

points(x, dnorm(x, 180, 20)*(30*(20/3)))

but it is more elegant to write:

n <- 30; mu <- 180; sd <- 20; bin.width <- sd/3

v <- rnorm(n, mu, sd)

hist(v, breaks = seq(mu-5*sd, mu+5*sd, by=bin.width))

points(x, dnorm(x, mu, sd)*(n*bin.width))

99

visualise the variability of small random samples

sample size

n <- 30

number of plot rows, columns

rows <- 2; cols <- 2; reps <- rows*cols

parameters of the normal distribution

mu <- 180; sd <- 20

set up graphic display

par(mfrow=c(rows, cols))

number of s.d.’s for histogram display

sdd <- 3.5

compute bin width from s.d and

the number of bars for each

bin.width=sd/3

scale x-axis

x.min <- mu-(sdd*sd); x.max <- mu+(sdd*sd)

scale y-axis

y.max <- n*0.5*bin.width/sd

compute and display each graph

for (i in 1:reps) {

v <- rnorm(n, mu, sd)

hist(v, xlim=c(x.min,x.max), ylim=c(0, y.max),

breaks = seq(mu-5*sd, mu+5*sd, by=bin.width),

main="", xlab=paste("Sample",i)) ;

x <- seq(x.min, x.max, length=120)

true normal distribution

points(x,dnorm(x, mu, sd)*(n*bin.width),

type="l", col="blue", lty=1, lwd=1.8)

distribution estimated from sample

points(x,dnorm(x, mean(v), sd(v))*(n*bin.width),

type="l", col="red", lty=2, lwd=1.8)

print sample params.

and Pr(Type I error)

text(x.min, 0.9*y.max, paste("mean:", round(mean(v),2)),pos=4)

text(x.min, 0.8*y.max, paste("sdev:", round(sd(v),2)),pos=4)

text(x.min, 0.7*y.max,

paste("Pr(t):", round((t.test(v, mu=mu))$p.value,2)),pos=4)

}

clean up

par(mfrow=c(1,1))

rm(n, rows, cols, reps, mu, sd, v, i, sdd, bin.width, x.min, x.max, y.max, x)

100

mu = 180 , sigma = 20

Sample 1

F
re

qu
en

cy

120 140 160 180 200 220 240

0
2

4
6

mean: 177

sdev: 16.45

Pr(t): 0.33

mu = 180 , sigma = 20

Sample 2

F
re

qu
en

cy
120 140 160 180 200 220 240

0
2

4
6

mean: 184.31

sdev: 17.63

Pr(t): 0.19

mu = 180 , sigma = 20

Sample 3

F
re

qu
en

cy

120 140 160 180 200 220 240

0
2

4
6

mean: 180.66

sdev: 19.98

Pr(t): 0.86

mu = 180 , sigma = 20

Sample 4

F
re

qu
en

cy

120 140 160 180 200 220 240

0
2

4
6

mean: 181.4

sdev: 19.47

Pr(t): 0.7

Figure 12: A visualization of the variability of small random samples. Each sample of
30 has been divided into ten histogram bins on [130 . . . 230]. The blue (solid) normal
curves all have µ = 180 and σ = 20; the red (dashed) normal curves are estimated from
each sample. Note the bias (left or right of the blue curves) and variances (narrower
or wider than the blue curves).

101

C An example function

A more powerful approach than writing and sourcing a script is to
write a function which is loaded into the workspace with the source
method and then run as if it were a built-in R method. The main ad-
vantage is that you can make the function adaptable with a set of argu-
ments (parameters that can be sent to the function), so you don’t have
to edit the script.

Here we have converted the script of Appendix B into a function, with
only one required argument (the sample size) and six optional argu-
ments which control aspects of the display, for example the number of
samples to compare on one plot.

You prepare this with a plain-text editor like Notepad in a text file, for
example plot_normals.R and then read it into R. Once it is in the
workspace (which you can verify with the ls method), you run it just
like a built-in R method.

> source("plot_normals.R")

> ls()

plot.normals

> plot.normals(60)

> plot.normals(60, mu=100, sd=15)

> plot.normals(60, rows=3, cols=3, mu=100, sd=15)

102

function to visualise the variability of small random samples

required arguments:

n : sample size

arguments with reasonable defaults:

rows,cols : dimensions of display

mu, sd : mean, s.d. of normal distribution to sample

bsd : histogram bins to represent each s.d.

sdd : +/- number of s.d. to display

plot.normals <- function(n, rows=2, cols=2, mu=0, sd=1,

bsd = 2, sdd=3.5) {

set up graphic display

par(mfrow=c(rows, cols))

number of random samples

reps <- rows*cols

histogram bin width

bin.width=sd/bsd

scale x-axis

x.min <- mu-(sdd*sd); x.max <- mu+(sdd*sd)

scale y-axis; max. dnorm(1,0)=0.3989

adjust to sample and bin sizes

and normalize by s.d.

and leave room for higher bars

y.max <- n*0.5*bin.width/sd

compute and display each graph

for (i in 1:reps) {

v <- rnorm(n, mu, sd)

hist(v, xlim=c(x.min,x.max), ylim=c(0,y.max),

breaks = seq(mu-5*sd, mu+5*sd, by=bin.width),

main=paste("mu =", mu, ", sigma =", sd),

xlab=paste("Sample",i), col="lightblue", border="gray",

freq=TRUE)

x <- seq(x.min,x.max,length=120)

true normal distribution

points(x,dnorm(x, mu, sd)*(n*bin.width),

type="l", col="blue", lty=1, lwd=1.8)

normal dist. estimated from sample

points(x,dnorm(x, mean(v), sd(v))*(n*bin.width),

type="l", col="red", lty=2, lwd=1.8)

print sample params.

and Pr(Type I error)

text(x.min, 0.9*y.max, paste("mean:", round(mean(v),2)),pos=4)

text(x.min, 0.8*y.max, paste("sdev:", round(sd(v),2)),pos=4)

text(x.min, 0.7*y.max,

paste("Pr(t):", round((t.test(v, mu=mu))$p.value,2)),pos=4)

}

clean up

par(mfrow=c(1,1))

}

103

References

[1] Christensen, R. 1996. Plane answers to complex questions: the theory
of linear models. New York: Springer, 2nd edition

[2] Cleveland, W. S. 1993. Visualizing data. Murray Hill, N.J.: AT&T
Bell Laboratories; Hobart Press

[3] Congalton, R. G.; Oderwald, R. G.; & Mead, R. A. 1983. Assessing
landsat classification accuracy using discrete multivariate-analysis sta-
tistical techniques. Photogrammetric Engineering & Remote Sensing
49(12):1671–1678

[4] Correa, J. C. & González, N. 2002. Gráficos Estadísticos con R.
Medellín, Colombia: Universidad Nacional de Colombia, Sede
Medellín, Posgrado en Estadística

[5] Dalgaard, P. 2002. Introductory Statistics with R. Springer Verlag

[6] Davis, J. C. 2002. Statistics and data analysis in geology. New York:
John Wiley & Sons, 3rd edition

[7] Draper, N. & Smith, H. 1981. Applied regression analysis. New York:
John Wiley, 2nd edition

[8] Faraway, J. J. 2002. Practical Regression and Anova using R. Ann
Arbor, MI: self-published (web)
URL http://www.stat.lsa.umich.edu/~faraway/book/

[9] Fox, J. 1997. Applied regression, linear models, and related methods.
Newbury Park: Sage

[10] Fox, J. 2002. An R and S-PLUS Companion to Applied Regression.
Newbury Park: Sage

[11] Ihaka, R. & Gentleman, R. 1996. R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics 5(3):299–
314

[12] Paradis, E. 2002. R for Beginners. Montpellier (F): University of
Montpellier
URL http://cran.r-project.org/doc/contrib/

rdebuts_en.pdf

[13] Paradis, E. 2002. R para Principiantes. Montpellier (F): University
of Montpellier
URL http://cran.r-project.org/doc/contrib/

rdebuts_es.pdf

104

http://www.stat.lsa.umich.edu/~faraway/book/
http://cran.r-project.org/doc/contrib /rdebuts_en.pdf
http://cran.r-project.org/doc/contrib /rdebuts_en.pdf
http://cran.r-project.org/doc/contrib /rdebuts_es.pdf
http://cran.r-project.org/doc/contrib /rdebuts_es.pdf

[14] Paradis, E. 2002. R pour les débutants. Montpellier (F): University
of Montpellier
URL http://cran.r-project.org/doc/contrib/

rdebuts_fr.pdf

[15] Pebesma, E. J. 2004. Multivariable geostatistics in S: the gstat package.
Computers & Geosciences 30(7):683–691

[16] Pebesma, E. J. & Wesseling, C. G. 1998. Gstat: a program for geosta-
tistical modelling, prediction and simulation. Computers & Geosciences
24(1):17–31
URL http://www.gstat.org/

[17] R Development Core Team. 2004. An Introduction to R. Vienna:
The R Foundation for Statistical Computing, version 2.0.1 (2004-
11-15) edition

[18] R Development Core Team. 2004. R Language Definition. Vienna:
The R Foundation for Statistical Computing, version 2.0.1 (2004-
11-15) draft edition

[19] Ripley, B. D. 1981. Spatial statistics. New York: John Wiley and
Sons

[20] Rossiter, D. G. 2004. Technical Note: Optimal partitioning of soil tran-
sects with R. Enschede (NL): (unpublished, online)
URL http://www.itc.nl/personal/rossiter/teach/R/

R_OptPart.pdf

[21] Rossiter, D. G. 2004. Technical Note: Statistical methods for accuracy
assesment of classified thematic maps. Enschede (NL): International
Institute for Geo-information Science & Earth Observation (ITC)
URL http://www.itc.nl/personal/rossiter/teach/R/

R_ac.pdf

[22] Rossiter, D. G. 2005. Technical Note: An example of data analysis
using the R environment for statistical computing. Enschede (NL):
International Institute for Geo-information Science & Earth Ob-
servation (ITC), 1.7 edition
URL http://www.itc.nl/personal/rossiter/teach/R/

R_corregr.pdf

[23] Rossiter, D. G. 2005. Technical Note: Co-kriging with the gstat pack-
age of the R environment for statistical computing. Enschede (NL):
International Institute for Geo-information Science & Earth Ob-
servation (ITC)

105

http://cran.r-project.org/doc/contrib /rdebuts_fr.pdf
http://cran.r-project.org/doc/contrib /rdebuts_fr.pdf
http://www.gstat.org/
http://www.itc.nl/personal/rossiter/teach/R/R_OptPart.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_OptPart.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_ac.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_ac.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_corregr.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_corregr.pdf

URL http://www.itc.nl/personal/rossiter/teach/R/

R_ck.pdf

[24] Rossiter, D. G. 2005. Technical Note: Fitting rational functions to
time series in R. Enschede (NL): International Institute for Geo-
information Science & Earth Observation (ITC)
URL http://www.itc.nl/personal/rossiter/teach/R/

R_rat.pdf

[25] Rossiter, D. G. & Loza, A. 2004. Technical Note: Analyzing land
cover change with R. Enschede (NL): International Institute for
Geo-information Science & Earth Observation (ITC), 1.3 edition
URL http://www.itc.nl/personal/rossiter/teach/R/

R_LCC.pdf

[26] Sarkar, D. 2002. Lattice. R News 2(2):19–23
URL http://CRAN.R-project.org/doc/Rnews/

[27] Skidmore, A. K. 1999. Accuracy assessment of spatial information. In
Stein, A.; Meer, F. v. d.; & Gorte, B. G. F. (eds.), Spatial statistics for
remote sensing, pp. 197–209. Dordrecht: Kluwer Academic

[28] Tatem, A. J.; Guerra, C. A.; Atkinson, P. M.; & Hay, S. I. 2004.
Momentous sprint at the 2156 Olympics? Women sprinters are closing
the gap on men and may one day overtake them. Nature 431:525

[29] Venables, W. N. & Ripley, B. D. 2002. Modern applied statistics with
S. New York: Springer-Verlag, 4th edition
URL http://www.stats.ox.ac.uk/pub/MASS4/

[30] Verzani, J. 2002. simpleR : Using R for Introductory Statistics,
volume 2003. New York: CUNY, 0.4 edition
URL http://www.math.csi.cuny.edu/Statistics/R/

simpleR/index.html

106

http://www.itc.nl/personal/rossiter/teach/R/R_ck.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_ck.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_rat.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_rat.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_LCC.pdf
http://www.itc.nl/personal/rossiter/teach/R/R_LCC.pdf
http://CRAN.R-project.org/doc/Rnews/
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.math.csi.cuny.edu/ Statistics/R/ simpleR/index.html
http://www.math.csi.cuny.edu/ Statistics/R/ simpleR/index.html

Index of R methods, operators, packages and datasets
* formula operator, 45
* operator, 15, 24
+ formula operator, 45, 46
+ operator, 15
- formula operator, 45, 46
- operator, 15
/ formula operator, 46
/ operator, 15
: formula operator, 45
: operator, 19
;, 54
< operator, 33
<- operator, 16
= operator, 16
?, 9
?Devices, 10
[[]] operator, 26, 28
[] operator, 18, 32, 33, 78
$ operator, 20, 21, 28
%*% operator, 24, 47
%/% operator, 15
%% operator, 15
& operator, 33
^ formula operator, 45
^ operator, 15, 20
~ formula operator, 44
{, 54
}, 54
˜ formula operator, 66

abline, 60–62
abs, 16
AIC, 51
anova, 49
aov, 49
apply, 26, 42
arrows, 61
as.*, 82
as.character, 39
as.factor, 31, 41

as.numeric, 41, 60
as.ordered, 31
asin, 16
assocplot, 63, 71
attach, 28
attr, 23
attributes, 23
auto.key trellis graphics argument, 67
axis, 61

barchart (package:lattice), 71
barplot, 63
bg graphics argument, 59, 75
biplot, 52
boot package, 52
box, 61
boxplot, 44, 63
bpy.colors (package:gstat), 76
bwplot (package:lattice), 71
by, 35

c, 19, 79, 80
car package, 64
cbind, 30
ceiling, 16
cex graphics argument, 59
chisq.test, 43
chol, 26
circular package, 1, 93
class, 39
cloud (package:lattice), 67, 71
cm.colors, 76
coefficients, 50
col, 24
col graphics argument, 59, 75
col2rgb, 75
colnames, 80, 81
colours, 75
contour, 63
contourplot (package:lattice),

67, 71

107

contr.helmert, 48
contr.poly, 48
contr.sum, 48
contr.treatment, 48
contrasts, 48
coplot, 63
cor, 53, 91, 92
cut, 41

data, 14
data.frame, 28, 84
datasets package, 14
densityplot (package:lattice),

65, 71
det, 26
detach, 30
dev.set, 73
diag, 24, 26
dim, 22, 23, 34
dnorm, 37, 38
dotchart, 63
dotplot (package:lattice), 71
duplicated, 44
dvonmises (package:circular), 93

eigen, 26
eval, 56
exp, 15
expand.grid, 84

factor, 31
filled.contour, 63
fitted, 50, 51
floor, 16
for, 54, 70
formula, 50
fourfoldplot, 63
function, 55

getwd, 89
glm, 44, 47, 52
graphics package, 58
gray, 76

grid, 60, 61
groups trellis graphics argument, 66
gstat package, 1, 5, 12, 14, 42, 76, 81,

83

heat.colors, 76
help, 9
help.search, 9, 90, 93
hist, 62, 63, 73
histogram (package:lattice), 71,

74
hsv, 77

I, 46
identify, 65
if ...else, 54
image, 63
intersect, 43
iplots package, 97
iris dataset, 14, 34, 35, 58, 63, 65
is.element, 43
is.factor, 41, 48
is.na, 91
is.numeric, 41

krige (package:gstat), 83

lattice package, 12, 58, 65, 68, 71, 73,
74

legend, 61
length, 20, 21, 41, 77
LETTERS constant, 40, 81
letters constant, 40
levelplot (package:lattice), 44,

67, 71, 74
levelplot, 68
levels, 31
library, 12–14
lines, 61
list.files, 89
lm, 31, 44, 47, 49, 50, 52, 62
log, 15, 46
log10, 15

108

log2, 15
lqs (package:mass), 90
lqs, 62
ls, 17
lty graphics argument, 60

main graphics argument, 59
MASS package, 12, 62, 64, 90
matplot, 63
matrix, 23, 80, 81
max, 22, 41
mean, 41
median, 41
meuse dataset, 42, 48, 77, 81
min, 41
mle.vonmises (package:circular),

93
model.matrix, 47
mosaicplot, 63
mtext, 61

names, 27, 37, 84
nlme package, 1
nls, 52
nnet package, 1

options, 48, 98
order, 30
ordered, 31

pairs, 63
palette, 75
panel trellis graphics argument, 70
panel.abline (package:lattice),

70
panel.fill (package:lattice), 70
panel.xyplot (package:lattice),

70
par, 74
parallel (package:lattice), 71
parse, 56
paste, 27, 39, 56
pch graphics argument, 59

pdf, 10
persp, 63
pi constant, 15
plot, 44, 58, 60, 61, 63, 73, 75
plot.default, 58
pnorm, 37, 38
points, 61
polygon, 61
prcomp, 52
predict, 51
print (package:lattice), 74, 75
print, 68

q, 6
qnorm, 37, 38
qq (package:lattice), 71
qqmath (package:lattice), 71
qr, 26
quantile, 42

rainbow, 77
rank, 20, 77
rbind, 29
rbinom, 8
Rcmdr package, 12
read.csv, 81, 82, 89
read.table, 31, 82
rect, 61
rep, 29, 79
repeat, 54
reshape, 37
residuals, 50
return, 55
rfs (package:lattice), 71
rgb, 76
rgdal package, 1
rlm (package:mass), 52
rm, 17, 27
rnorm, 19, 38, 84
round, 16, 25, 38, 83
row, 24
rownames, 80, 81

109

rpart package, 1
rug, 61
runif, 84

sample, 33
scan, 79, 80
scatterplot (package:car), 64
scatterplot.matrix (package:car),

64
screeplot, 52
segments, 61
seq, 17, 18, 79, 84
set.seed, 38
setdiff, 43
setequal, 43
setwd, 90
show.settings (package:lattice),

72
sin, 16
solve, 25, 47
sort, 20, 32
source, 98, 102
sp package, 1, 42, 81, 84, 85
spatial package, 1
spatstat package, 1
splines package, 1
split, 34
splom (package:lattice), 71
spsample (package:sp), 84, 85
sqrt, 16
stack, 37
stars, 63
stem, 63
step, 52
str, 21, 48, 50
stripchart, 63
stripplot (package:lattice), 71
strsplit, 39
subset, 33
substring, 39
sum, 20, 26
summary, 8, 40, 42, 50, 89

sunflowerplot, 63
svd, 26
symbols, 61

t, 4, 23, 47
table, 31, 42
terrain.colors, 76
text, 61
title, 61
tmd (package:lattice), 71
topo.colors, 76, 77
trees dataset, 26, 30, 32, 47, 53
trellis.par.get (package:lattice),

72
trellis.par.set (package:lattice),

72
truehist (package:mass), 64
trunc, 16

union, 43
unique, 44
unlist, 39
unstack, 36

var, 19
variogram (package:gstat), 14
vegan package, 1, 5
vignette, 10
volcano dataset, 68

while, 54
windows, 65, 73
wireframe (package:lattice), 67,

71
write.table, 83

xlab graphics argument, 59
xyplot (package:lattice), 66, 71,

72, 74

ylab graphics argument, 59

110

111

	1 What is R?
	2 Why R for ITC?
	2.1 Advantages
	2.2 Disadvantages
	2.3 Alternatives

	3 Using R for Windows
	3.1 R on the ITC network
	3.2 Starting R
	3.3 Stopping R
	3.4 Setting up a workspace
	3.5 The command prompt
	3.6 On-line help
	3.7 Saving your analysis steps
	3.8 Saving your graphs
	3.9 Writing and running scripts
	3.10 Using the Rcmdr GUI
	3.11 Loading optional packages
	3.12 Sample datasets

	4 The S language
	4.1 Command-line calculator and mathematical operators
	4.2 Creating new objects: the assignment operator
	4.3 Methods and their arguments
	4.4 Vectorized operations and re-cycling
	4.5 Vector and list data structures
	4.6 Arrays and matrices
	4.7 Data frames
	4.8 Factors
	4.9 Selecting subsets
	4.10 Simultaneous operations on subsets
	4.11 Rearranging data
	4.12 Random numbers and simulation
	4.13 Character strings
	4.14 Objects and classes
	4.15 Descriptive statistics
	4.16 Classification tables
	4.17 Sets
	4.18 Statistical models in S
	4.19 Models with categorical predictors
	4.20 Analysis of Variance (ANOVA)
	4.21 Model output
	4.22 Advanced statistical modelling
	4.23 Missing values
	4.24 Control structures and looping
	4.25 User-defined functions
	4.26 Computing on the language

	5 R graphics
	5.1 Base graphics
	5.2 Types of base graphics plots
	5.3 Interacting with base graphics plots
	5.4 Trellis graphics
	5.5 Types of Trellis graphics plots
	5.6 Adjusting Trellis graphics parameters
	5.7 Multiple graphics windows
	5.8 Multiple graphs in the same window
	5.9 Colours

	6 Preparing your own data for R
	6.1 Preparing data directly
	6.2 Importing data from a CSV file

	7 Exporting from R
	8 Miscellaneous R tricks
	8.1 Setting up a regular grid
	8.2 Setting up a random sampling scheme

	9 Learning R
	9.1 R tutorials and introductions
	9.2 Textbooks using R
	9.3 Technical notes using R
	9.4 Web Pages to learn R
	9.5 Keeping up with developments in R

	10 Frequently-asked questions
	10.1 Help! I got an error, what did I do wrong?
	10.2 Why didn't my command(s) do what I expected?
	10.3 How do I find the method to do what I want?
	10.4 What statistical procedure should I use?

	A Obtaining your own copy of R
	A.1 Installing new packages
	A.2 Customizing your installation

	B An example script
	C An example function
	References
	Index of R concepts

