
Course BIOS601: proportion:- models / inference / planning Fall 2009

1 (Binomial) Model for (Sampling)Variability
of Proportion/Count in a Sample

The Binomial Distribution: what it is

• The n+1 probabilities p0, p1, ..., py, ..., pn of observing 0, 1, 2, . . . , n “pos-
itives” in n independent binary trials (such as in s.r.s of n individuals)

• Each of the n observed elements is binary (0 or 1)

• There are 2n possible sequences ... but only n + 1 possible values, i.e.
0/n, 1/n, . . . , n/n (can think of y as sum of n Bernoulli r. v.’s)

• Apart from sample size (n), the probabilities p0 to pn depend on only 1
parameter:

– the probability that a selected individual will be ‘+ve” i.e.,
– the proportion of “+ve” individuals in sampled population

• Usually denote this (un-knowable) proportion by π (sometimes θ)1

Author Parameter Statistic
Hanley et al. π p = y/n

M&M p p̂ = y/n

Miettinen P p = y/n

• Shorthand: y ∼ Binomial(n, π).

How it arises

• Sample Surveys

• Clinical Trials

• Pilot studies

• Genetics

• Epidemiology ...

1M & M use p for population proportion and p̂ or “p-hat” for observed proportion in a
sample. Others use Greek letter π for population value (parameter) and p for the sample
proportion. Greek letters make the distinction clearer, some textbooks do not use them
consistently: e.g., for the population proportion and population mean respectively, M & M
use the Arabic letter p and the Greek letter µ (mu)! Some authors (e.g., Miettinen) use
UPPER-CASE letters, [e.g. P , OR] for PARAMETERS and lower-case letters [e.g., p, or]
for statistics (estimates of parameters).

Use

• to make inferences about π from observed proportion p = y/n.

• to make inferences in more complex situations, e.g. ...

– Prevalence Difference: π1 − π0

– Risk Difference (RD): π1 − π0

– Risk Ratio, or its synonym Relative Risk (RR): π1 / π0

– Odds Ratio (OR): [ π1/(1− π1) ] / [ π0 / (1− π0) ]

– Trend in several π’s

Requirements for y to have a Binomial (n, π) distribution

• Each element in“population” is 0 or 1, but we are only interested in
estimating proportion (π) of 1’s; we are not interested in individuals.

• Fixed sample size n.

• Elements selected at random and independent of each other; each element
in population has same probability of being sampled.

• Denote by yi the value of the i-th sampled element. Prob[yi = 1] is
constant (it is π) across i. It helps to distinguish the N population values
Y1 to YN from the n sampled values y1 to yn. In the ‘What proportion of
our time do we spend indoors?’ example (in Resources), it is the random
sampling of the temporal and spatial patterns of 0s and 1s that makes y1
to yn independent of each other. The Y s, the elements in the population
can be related to each other [e.g. spatial distribution of persons] but
if elements are chosen at random, the chance that the value of the i-th
element chosen is a 1 cannot depend on the value of yi−1: the sampling
is ‘blind’ to the spatial location of the 1’s and 0s.

Binomial Tree (overleaf): Even though there are 2n possible sequences of
0s and 1s, each with its probability, the calculation of the probability that
the sequence in the selected sample contains y 1’s and (n − y) 0’s is greatly
simplified by the fact that Prob[y1 = 1] = Prob[y2 = 1] = · · · = Prob[yn =
1] = π. Thus we can calculate prob. of any one sequence that contains y
1’s and (n − y) 0’s. Since all the sequences have same probability, namely
πy(1−π)n−y, we can, in lieu of adding all such probabilities, simply multiply
this one probability by the number, nCy, of unique paths to terminal node.
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Figure 1: Binomial(n = 3, π = 0.5)

1.1 Does the Binomial Distribution Apply if... ?

Interested in π the proportion of 16 year old girls
in Québec protected against rubella

Choose n = 100 girls: 20 at random from each of 5 randomly
selected schools [‘cluster’ sample]

Count y how many of the n = 100 are protected

• Is y ∼ Binomial(n = 100, π)?

“SMAC” π Prob[“abn’l” |Healthy] =0.03 for each chemistry
in Auto-analyzer with n = 18 channels

Count y How many of n = 18 give abnormal result.

• Is y ∼ Binomial(n = 18, π = 0.03)? (cf. Ingelfinger: Clin. Biostatistics)
Interested in πu proportion in ‘usual’ exercise classes and in

πe expt’l. exercise classes who ’stay the course’

Randomly 4 classes of
Allocate 25 students each to usual course

nu = 100
4 classes of

25 students each to experimental course
ne = 100

Count yu how many of the nu = 100 complete course
ye how many of the ne = 100 complete course

• Is yu ∼ Binomial(nu = 100, πu) ? Is ye ∼ Binomial(ne = 100, πe) ?

Sex Ratio n = 4 children in each family
y number of girls in family

• Is variation of y across families Binomial (n = 4, π = 0.49)?
Pilot To estimate proportion π of population that
Study is eligible & willing to participate in long-term

research study, keep recruiting until obtain
y = 5 who are. Have to approach n to get y.

• Can we treat y ∼ Binomial(n, π)?
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1.2 Calculating Binomial probabilities:

Exactly

• pdf: formula Prob[y] = nCy π
y (1− π)n−y.

• cdf:

– direct summation of terms in pdf

– Using link between this sum and the cdf of the F distribution2.

• Tables: CRC; Fisher and Yates; Biometrika Tables; Documenta Geigy

• Spreadsheet — Excel function BINOMDIST(y, n, π, cumulative)

• Statistical Packages:

– SAS PROBBNML(p, n, y) function

– Stata function Binomial(n,k,p)

– R functions dbinom(), pbinom(), qbinom():
probability, distri’n, and quantile functions.

Using an approximation

• Poisson Distribution (n large; small π)

• Normal (Gaussian) Distribution (n large or midrange π)

– Have to specify scale i.e., if say n = 10, whether summary is a

r.v. e.g. E SD
count: y 2 n× π {n× π × (1− π)}1/2

n1/2 × σBernoulli

proportion: p = y/n 0.2 π {π × (1− π)/n}1/2

σBernoulli/n
1/2

percentage: 100p% 20% 100× π 100× SD[p]

– same core calculation for all 3 [only the scale changes]

2Fisher 1935: see Resources

2 Inference concerning a proportion π, based
on s.r.s. of size n

The Parameter π of interest: the proportion, e.g., ...

• with undiagnosed hypertension / seeing MD during a 1-year span

• who would respond to a specific therapy

• still breast-feeding at 6 months

• of pairs where response on treatment > response on placebo

• of US presidential elections where taller candidate expected to win

• of twin pairs where left-handed twin dies first

• able to tell imported from domestic beer in a “triangle taste test”

• who get a headache after drinking red wine

• of all who would become HPV-infected, where seroconversion was in a
vaccinated subject:

e.g. in RCT of HPV16 Vaccine, NEJM Nov 21, 2002: 0 serocon-
versions in 11084.0 W-Y in vaccinated group vs. 41 in 11076.9 W-Y in
placebo group.

[this proportion is a function of the parameter of interest, the effi-
cacy of the vaccination]

Inference via Statistic: the number (y) or proportion p = y/n ‘positive’ in
an s.r.s. of size n.
Frequentist Bayesian

- based on prob[ data |θ ], i.e. - based on prob[ θ|data ], i.e.,
- probability statements about data - probability statements about π

Evidence (P-value) against H0: π = π0 - point estimate: e.g. mean / mode
Test of H0: Is P-value < (preset) α? of posterior distribution of π
CI: interval estmate - (credible) interval

See “Bayesian Inference for a Proportion (Excel)” under Resources Ch 8
cf also A&B §4.7; Colton §4.
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2.1 (Frequentist) Confidence Interval for π, based on an
observed proportion p = y/n

2.1.1 “Exact”, first-principles, Confidence Interval

This is not as “awkward to work with” as M & M p. 586 imply.

Example 1

Q: What fraction π of a population would return a 4-page questionnaire?

Data: In a pilot test, (y =) 11 of (n = ) 20 return it, i.e. p = π̂ = 11/20 = 0.55

Logic behind the exact Clopper-Pearson 100(1− α)% CI:

Limits are calculated so that Binomial Prob [≥ y | πlower] = Prob [≤
y | πupper] = α/2, exactly. [See Biometrika Tables for Statisticians]

How one can obtain exact CI:

• Tables [Homegrown table3, Documenta Geigy, Biometrika Tables]

• Nomograms4

Read horizontally, nomogram shows the variability of proportions from
s.r.s samples of size n. Read vertically, it shows: (i) CI → symmetry
as p → 0.5 or n → ∞ [in fact, as n × p & n(1 − p) → ∞] (ii) widest
uncertainty at π = 0.5⇒ can use as a ’worst case scenario’

• software

– by trial and error, via the Binomial cdf in Excel, R, SAS, ...

3To save space, table gives CI’s only for p ≤ 0.5, so get CI for π of non-returns: point
estimate is 9/20 or 45%, CI is 23% to 68% (1st row, middle column of the X = 9 block.
Turn this back to 100− 68 = 32% to 100− 23 = 77% returns]

495% CI (Biometrika nomogram) 32% to 77%. Nomogram uses c for numerator; enter
through lower x-axis if p ≤ 0.5; in our case p = 0.55 so enter nomogram from the top at
c
n

= 0.55 near upper right corner; travel downwards until you hit bowed line marked 20
(the 5th line from the top) and exit towards the rightmost border at πlower ≈ 0.32; go
back and travel downward until hit the companion bowed line marked 20 (the 5th line from
bottom) and exit towards the rightmost border at πupper ≈ 0.77.
Notice link between 100(1 − α)% CI and two-sided test of significance with a preset α. If
true π were < πlower, there would only be less than a 2.5% probability of obtaining, in a
sample of 20, this many (11) or more respondents; likewise, if true π were > πlower, there
would be less than a 2.5% probability of obtaining, in a sample of 20, this many (11) or
fewer respondents. The 100(1−α)% CI for π includes all those parameter values such that
if the oberved data were tested against them, the p-value (2-sided) would not be < α.
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Notice that Prob[4] is counted twice,  once in each tail .

The use of CI's based on Mid-P values, where Prob[4] is counted only
once, is discussed in Miettinen's Theoretical Epidemiology and in §4.7
of Armitage and Berry's text.

See similar graph in Fig
4.5 p 120 of A&B
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Figure 2: Logic behind Clopper-Pearson CI for proportion π
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Figure 3: Logic behind Clopper-Pearson CI for proportion π

– using function that gives the inverse of the cdf of the F distribution.5

– directly in R, Stata etc

Example 2

Experimental drug gives y = 0 successes in n = 14 patients6;⇒ π =??

2.1.2 “Approximate”, first-principles, Confidence Interval

π =
1− n

n+z2 + 2np
n+z2 ±

z
√

4np−4np2+z2

n+z2

2

This asymmetric CI (see later) was used to create CI’s in nomogram below.

2.1.3 CI based on Gaussian approximation to sampling distribu-
tion of p, or function of p

• CI: p± z × SE[p] = p± z × {p(1− p)}1/2

• e.g. p = y/n = 300/1000 = 0.3

• 95% CI: 0.30± 1.96× {0.3× 0.7/1000}1/2 = 0.30± 0.03 = 30%± 3.0%

• NB: The ±3.0% is pronounced and written as “± 3 percentage points”
to avoid giving the impression that it is 3% of 30%.

• “Large-n”: How Large is large?

– A rule of thumb: when the expected no. of positives, n×π, and the
expected no. of negatives, n × (1 − π), are both bigger than 5 (or
10 if you read M & M).

– JH’s rule: when you can’t find the CI tabulated anywhere!

– if the distribution is not ‘crowded’ into one corner (cf. the shapes of
binomial distributions in the Binomial spreadsheet – in Resources),
i.e., if, with the symmetric Gaussian approximation, neither of the
tails of the distribution spills over a boundary (0 or 1 if proportions,

5See spreadsheet “Cl for a Proportion (Excel spreadsheet, based on exact Binomial
model)” under Resources. In this sheet one can obtain the direct solution, or get there by
trial and error. Inputs in bold may be changed.

695% CI for π (from table) 0% to 23. CI “rules out” (with 95% confidence) possibility
that π > 23%. [might use a 1-sided CI if one is interested in putting just an upper bound on
risk: e.g. what is upper bound on π = probability of getting HIV from HIV-infected dentist?
see JAMA article on “zero numerators” by Hanley and Lippman-Hand (in Resources).
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or beyond 0 or n if on the count scale), See M & M p383 and A&B
§2.7 on Gaussian approximation to Binomial.

• SE-based (sometimes referrred to in texts and software output as “Wald”)
CI’s use the same SE for the upper and lower limits – they calculate one
SE at the point estimate, rather than two separate SE’s, calculated at
each of the two limits.

• In SAS

DATA CI_propn;
INPUT n_pos n;
LINES;
300 1000;
PROC genmod data = CI_propn; model n_pos/n = /
dist = binomial link = identity waldci; RUN;

• In Stata

immediate command: cii 1000 300
clear *Using datafile
input n_pos n
140 500 * glm doesn’t like file with 1 ’observation’
160 500 *so ............ split across 2 ’observations’
end
glm n_pos , family (binomial n) link (identity)

2.1.4 Other, more accurate and more theoretically correct, large-
sample (Gaussian-based constructions)

The “usual” approach is to form a symmetric CI as

point estimate ± a multiple of SE

This is technically incorrect in the case of a distribution, such as the bino-
mial, with a variance that changes with the parameter being measured. In
construction of CI’s [see diagram on page 1 of material on Ch 6.1] there are
two distributions involved: the binomial at πupper and the binomial at πlower.
They have different shapes and different SD’s in general. Approaches A andB
(below) take this into account.

(observed) proportion p

π
upper

π
lower

0.30

0.27

0.33

0 . 0 2 5

0 . 0 2 5

SD, calculated at 0.30, rather 
than at lower limit

SD, calculated at 0.30, rather 
than at upper limit

Figure 4: Closer to a ‘first-principles’ CI

Method A. Based on Gaussian approximation to binomial distribution, but
with SD’s calculated separately at the lower limit πLOWER and upper
limit πUPPER of π.

The “usual” (not-a-first-principles) CI uses a common SD = {p[1− p]/n}1/2,
i.e. the one calculated at the point estimate, i.e., at π = p.

Define CI for π as the pair of π values {πLOWER, πUPPER} such that,

Prob[p ≥ pobs | πLOWER] = α/2 & Prob[p ≤ p− obs | πUPPER] = α/2.

Use Gaussian approximations to Binomial(n, πLOWER) and
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Binomial(n, πUPPER), and solve

p = πLOWER + zα/2{πLOWER × [1− πLOWER]/n}1/2

for πLOWER and

p = πUPPER + zα/2{πUPPER × [1− πUPPER]/n}1/2

for πUPPER.

This leads to asymmetric 100(1− α)% limits of the form7

{πLOWER, πUPPER} =
1− n

n+z2 + 2np
n+z2 ∓

z
√

4np−4np2+z2

n+z2

2

Rothman (2002 - p.132) attributes this method ?? to Wilson 1907

Method B: Based on Gaussian distribution of a variance-stabilizing
transformation of the binomial, again with SD’s calculated at the limits
rather than at the point estimate itself.

sin[sin−1[
√
p]− z

2
√
n

]]2,

sin[sin−1[
√
p] +

z

2
√
n

]]2

as in most calculators, sin−1 & the * in sin[∗] measured in radians.

E.g. with α = 0.05, so that z = 1.96, we get:

Method n = 10 n = 10 n = 20 n = 40
p = 0.0 p = 0.3 p = 0.15 p = 0.075

1 [0.00, 0.28] [0.11, 0.60] [0.05, 0.36] [0.03, 0.20]

2 [0.09, 0.09] [0.07, 0.60] [0.03, 0.33] [0.01, 0.18]

“usual” [0.00, 0.00] [0.02, 0.58] [-0.01, 0.31] [-0.01, 0.16]

Binomial* [0.00, 0.31] [0.07, 0.65] [0.03, 0.38] [0.02, 0.20]

* from Mainland
7References: Fleiss, Statistical Methods for Rates & Proportions; Miettinen, Theoretical

Epidemiology, Ch 10. See also binconf function in (downloadable) Hmisc library in R.

Method C: Based on Gaussian distribution of the logit transforma-
tion of the estimate (p, the observed proportion) and of the parameter π.

Parameter: 8

logit{π} = log{ODDS} 9 = log
{

π
(1−π)

}
= log

{
PROPORTION “Positive”
PROPORTION “Negative”

}
Statistic: logit{p} = log{odds} = log

{
proportion “Positive”
proportion “Negative”

}
.

Reverse transformation (to get back from LOGIT to π) ...

π =
ODDS

1 + ODDS
=

exp[LOGIT ]
1 + exp[LOGIT ]

.

likewise...

p =
odds

1 + odds
=

exp[logit]
1 + exp[logit]

.

πLOWER = exp{LOWER limit of LOGIT}
1+exp{LOWER limit of LOGIT} = exp{logit−zα/2SE[logit]}

1+exp{logit−zα/2SE[logit]}

πUPPER likewise.

SE[logit] =
{

1
# positive + 1

# negative

}1/2

e.g. p = 3/10⇒ odds = 3/7⇒ logit = log[3/7] = −0.85.

SE[logit] = {1/3 + 1/7}1/2 = 0.69

⇒ 95% CI in LOGIT[π] scale: − 0.85± 1.96× 0.69 = {−2.2, 0.5}

⇒ CI in π scale: {exp(−2.2)/(1 + exp(), exp(0.5)/(1 + exp(0.5)}
SAS Strata
DATA CI propn; clear
INPUT n pos n; input n pos n
LINES; 1 5
3 10 2 5
; end
PROC genmod; glm n pos,
model n pos/n = / family (binomial n) link (logit)
dist = binomial
link = logit waldci;

Anti-logit[logit] = exp[logit]
1 + exp[logit] Greenland calls it the “expit function”.

Method D: Based on Gaussian distribution of estimate of log [π]
8UPPER CASE / Greek = parameter; lower case / Roman = statistic.
9Here, log = ‘natural′ log, i.e. to base e, which some write as ln .
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Parameter: log[π]

Statistic: log[p]

Reverse transformation π = antilog[log[π]] = exp[log[π]]

Likewise p← log[p]

πLOWER/UPPER = exp{LOWER/UPPER limit of log[π]}.

SE[logit] =
{

1
# positive −

1
n

}1/2

Limits for π from p = 3/10 : exp[log[3/10]± z × {1/3− 1/10}1/2]

Exercises:

1. Verify that you get same answer by calculator and by software

2. even with these logit and log transformations, the Gaussian distribution
is not accurate at such small sample sizes as 3

10 . Compare their perfor-
mance (against the exact methods) for various sample sizes and numbers
positive.

SAS Stata
DATA CI propn; input n pos n
INPUT n pos n; 1 5
LINES; 2 5
3 10; end
;
PROC genmod; glm n pos,
model n pos/n = / family (binomial n) link (logit)
dist = binomial
link = log waldci;

3 Applications, and notes

3.1 95% CI? IC? ... Comment dit on... ?

[La Presse, Montréal, 1993] L’Institut Gallup a demandé récemment à un
échantillon représentatif de la population canadienne d′évaluer la manière
dont le gouvernement fédéral faisait face à divers problèmes économiques et
général. Pour 59 pour cent des répondants, les libéraux n’accomplissent pas
un travail efficace dans ce domaine, tandis que 30 pour cent se déclarent de
l’avis contraire et que onze pour cent ne formulent aucune opinion.

La même question a été posée par Gallup à 16 reprises entre 1973 et 1990,
et ne n’est qu’une seule fois, en 1973, que la proportion des Canadiens qui se
disaient insatisfaits de la faon dont le gouvernement gérait l′économie a été
inf érieure à 50 pour cent.

Les conclusions du sondage se fondent sur 1009 interviews effectuées entre
le 2 et le 9 mai 1994 auprès de Canadiens âgés de 18 ans et plus. Un
échantillon de cette ampleur donne des résultats exacts à 3,1 p.c., près dans
19 cas sur 20. La marge d’erreur est plus forte pour les régions, par suite
de l’importance moidre de l′échantillonnage; par exemple, les 272 interviews
effectuées au Québec ont engendré une marge d’erreur de 6 p.c. dans 19
cas sur 20.

3.2 1200 are hardly representative of 80 million homes
/ 220 million people!

The Nielsen system for TV ratings in U.S.A.
(Excerpt from article on “Pollsters” from an airline magazine)

“...Nielsen uses a device that, at one minute intervals, checks to see if the
TV set is on or off and to which channel it is tuned. That information is
periodically retrieved via a special telephone line and fed into the Nielsen
computer center in Dunedin, Florida. With these two samplings, Nielsen can
provide a statistical estimate of the number of homes tuned in to a given
program. A rating of 20, for instance, means that 20 percent, or 16 million of
the 80 million households, were tuned in. To answer the criticism that 1,200
or 1,500 are hardly representative of 80 million homes or 220 million people,
Nielsen offers this analogy:

Mix together 70,000 white beans and 30,000 red beans and then scoop out a
sample of 1000. the mathematical odds are that the number of red beans will
be between 270 and 330 or 27 to 33 percent of the sample, which translates
to a ”rating” of 30, plus or minus three, with a 20-to-1 assurance of statistical
reliability. The basic statistical law wouldn’t change even if the sampling
came from 80 million beans rather than just 100,000.” ...

Why, if the U.S. has a 10 times bigger population than Canada, do
pollsters use the same size samples of approximately 1, 000 in

both countries?

Answer: it depends on WHAT IS IT THAT IS BEING ESTIMATED. With
n = 1,000, the SE or uncertainty of an estimated PROPORTION 0.30 is in-
deed 0.03 or 3 percentage points. However, if interested in the NUMBER of

8
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households tuned in to a given program, the best estimate is 0.3N, where N
is the number of units in the population (N=80 million in the U.S. or N=8
million in Canada). The uncertainty in the ’blown up’ estimate of the TO-
TAL NUMBER tuned in is blown up accordingly, so that e.g. the estimated
NUMBER of households is

U.S.A. 80, 000, 000 [0.3 ± 0.03] = 24, 000, 000 ± 2, 400, 000
Canada 8, 000, 000[0.3 ± 0.03] = 2, 400, 000 ± 240, 000

2.4 million is a 10 times bigger absolute uncertainty than 240,000. Our in-
tuition about needing a bigger sample for a bigger universe probably stems
from absolute errors rather than relative ones (which in our case remain at
0.03 in 0.3 or 240,000 in 2.4 million or 2.4million in 24 million i.e. at 10%
irrespective of the size of the universe. It may help to think of why we do
not take bigger blood samples from bigger persons: the reason is that we are
usually interested in concentrations rather than in absolute amounts and that
concentrations are like proportions.

3.3 The “Margin of Error blurb” introduced (legislated)
in the mid 1980’s

3.3.1 Number of Smokers rises by Four Points: Gallup Poll
The Gazette, Montreal, August 8, 1981

Compared with a year ago, there appears to be an increase in the number
of Canadians who smoked cigarettes in the past week - up from 41% in 1980
to 45% today. The question asked over the past few years was: “Have you
yourself smoked any cigarettes in the past week” Here is the national
trend:

Smoked cigarettes in the past week

Today ..................... 45%
1980 ..................... 41%
1979 ..................... 44%
1978 ..................... 47%
1977 ..................... 45%
1976 ..................... Not asked
1975 ..................... 47%
1974 ..................... 52%

Men (50% vs. 40% for women), young people (54% vs. 37% for those >
50) and Canadians of French origin (57% vs. 42% for English) are the most

likely smokers. Today’s results are based on 1,054 personal in-home
interviews with adults, 18 years and over, conducted in June.

Had the percentage in the population really risen? Without a SE (or
margin of Error, ME) for each percentage, we are unable to judge whether the
‘jump’ from 41% to 45% is real or maybe just sampling variation. By 1985,
margins of error in the reporting of polls had became mandatory...

3.3.2 39% of Canadians Smoked in Past Week: Gallup Poll
The Gazette, Montreal, Thursday, June 27, 1985

Almost two in every five Canadian adults (39 per cent) smoked at least one
cigarette in the past week - down significantly from the 47 percent who re-
ported this 10 years ago, but at the same level found a year ago. Here is the
question asked fairly regularly over the past decade: “Have you yourself
smoked any cigarettes in the past week?” The national trend shows:

Smoked cigarettes in the past week

1985 ..................... 39%
1984 ..................... 39%
1983 ..................... 41%
1982* ..................... 42%
1981 ..................... 45%
1980 ..................... 41
1979 ..................... 44%
1978 ..................... 47%
1977 ..................... 45%
1975 ..................... 47%

(* Smoked regularly or occasionally)

Those < 50 are more likely to smoke cigarettes (43%) than are those 50 years
or over (33%). Men (43%) are more likely to be smokers than women (36%).
Results are based on 1,047 personal, in-home interviews with adults, 18 years
and over, conducted between May 9 and 11. A sample of this size is
accurate within a 4-percentage-point margin, 19 in 20 times.
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4 Test of H0 : π = πNULL

4.1 n small enough → Use Exact Binomial probabilities

• Testing H0: π = π0 vs Ha: π 6= π0 [or Ha: π > π0 ]

• Observe p = y/n.

• Calculate Prob[observed y, or a y that is more extreme | π0] using Halt

to specify which y’s are more extreme i.e. provide even more evidence
for Ha and against H0.
or...
use correspondence between a 100(1 − α)% CI and a test which uses a
level of α i.e. check if CI obtained from CI table or nomogram includes
π value being tested

[there may be slight discrepancies between test and CI: the methods used
to construct CI’s don’t always correspond exactly to those used for tests]

Examples

1. A common question is whether there is evidence against the proposition
that a proportion π = 1/2 [Testing preferences and discrimination in psy-
chophysical matters e.g., therapeutic touch, McNemar’s test for discor-
dant pairs when comparing proportions in a paired-matched study, the
(non-parametric) Sign Test for assessing intra-pair differences in mea-
sured quantities, ...]. Because of the special place of the Binomial at
π = 1/2, the tail probabilities have been calculated and tabulated. See
the table entitled “Sign Test” in the chapter on Distribution-Free Meth-
ods.

M&M (2nd paragraph p 592) say that “we do not often use significance
tests for a single proportion, because it is uncommon to have a situation
where there is a precise proportion that we want to test”. But they
forget paired studies, and even the sign test for matched pairs, which
they themselves cover in section 7.1, page 521. They give just 1 exercise
(8.18) where they ask you to test π = 0.5 vs π > 0.5.

2. Another example, dealing with responses in a setup where the “null” is
π0 = 1/3, example 4.3 is described below.

3. The First Recorded P-Value??? (by a physician no less!) 10

10related by Stigler in his History of Statistics

“AN ARGUMENT FOR DIVINE PROVIDENCE, TAKEN FROM THE
CONSTANT REGULARITY OBSERVED IN THE BIRTHS OF BOTH
SEXES.”

John Arbuthnot, 1667-1735 physician to Queen Anne

Arbuthnot claimed to demonstrate that divine providence, not chance,
governed the sex ratio at birth.

To prove this point he represented a birth governed by chance as being like
the throw of a two-sided die, and he presented data on the christenings
in London for the 82-year period 1629-1710.

Under Arbuthnot’s hypothesis of chance, for any one year male births
will exceed female births with a probability slightly less than one-half.
(It would be less than one-half by just half the very small probability
that the two numbers are exactly equal.)

But even when taking it as one-half Arbuthnot found that a unit bet that
male births would exceed female births for eighty-two years running to
be worth only (1/2)82 units in expectation, or

1
4 8360 0000 0000 0000 0000 0000

a vanishingly small number.

”From whence it follows, that it is Art, not Chance, that governs.”

4.2 Large n: Gaussian Approximation

Test: π = π0

Test Statistic: (p− π0)/SE[p] = (p− π0)/{π0 × (1− π0)/n}1/2

Note:
- The test uses the NULL SE, based on the (specified) π0.
- The “usual” CI uses an SE based on the observed p.

4.2.1 (Dis)Continuity Correction

Because we approximate a discrete distribution [where p takes on the values 0
n ,

1
n , 2

n , ... n
n corresponding to the integer values (0,1,2, ..., n) in the numerator of

p] by a continuous Gaussian distribution, authors have suggested a ‘continuity
correction’ (or if you are more precise in your language, a ‘discontinuity’
correction). This is the same concept as we saw back in §5.1, where we said
that a binomial count of 8 became the interval (7.5, 8.5) in the interval scale.

10
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Binomial 
n=10,  = 0.5

rectangles on 
x-0.5 , x+0.5
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0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5-0.5 10.5

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5-0.5 10.5

X
 : integers 0–10

X : continuum 
– ∞ to + ∞

Integer 7 =>
Interval 6.5 
to 7.5

Figure 5: From discrete to continuous

Thus, e.g., if we want to calculate the probability that proportion out of 10 is
≥ 8, we need probability of ≥ 7.5 on the continuous scale.

If we work with the count itself in the numerator, this amounts to reducing
the absolute deviation y − n× π0 by 0.5 . If we work in the proportion scale,
the absolute deviation is reduced by 0.5

n viz.

zc =
|y − nπ0| − 0.5

SE[y]
=
|y − nπ0| − 0.5√
nπ0[1− π0]

or

zc =
|p− nπ0| − 0.5

n

SE[p]
=
|p− nπ0| − 0.5

n

π0[1− π0]/n

1/2

†Colton [who has a typo in the formula on p · · · ] and A&B deal with this;
M&M do not, except to say on p386-7 “because most statistical purposes do
not require extremely accurate probability calculations, we do not emphasize
use of the continuity correction”. There are some ‘fundamental’ problems
here that statisticians disagree on. The “Mid-P” material (below) gives some
of the flavour of the debate.

4.3 Example of Testing π: The Triangle Taste Test

As part of preparation for a double blind RCT of lactase-reduced infant for-
mula on infant crying behaviour, the experimental formulation was tested for
its similarity in taste to the regular infant formula. n mothers in the waiting
room at MCH were given the TRIANGLE TASTE TEST i.e. they were each
given 3 coded formula samples – 2 containing the regular formula and 1 the
experimental one. Told that “2 of these samples are the same and one sample
is different”, p = y/n correctly identify the odd sample. Should the researcher
be worried that the experimental formula does not taste the same? (assume
infants are no more or less taste-discriminating than their mothers) [study by

Ron Barr, Montreal Children’s Hospital]

The null hypothesis being tested is

H0: π(correctly identified samples) = 0.33 against Ha: π() > 0.33

[here, for once, it is difficult to imagine a 2-sided alternative – unless mothers
were very taste-discriminating but wished to confuse the investigator]

We consider two situations (the real study with n=12, and a hypothetical
larger sample of n=120 for illustration)

11
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Data: y = 5 of n = 12 mothers correctly identified the odd sample., i.e. p =
0.42.

Degree of evidence against H0 :

= Prob(5 or more correct| π = 0.33) ... (a
∑

of 8 probabilities)

= 1 − Prob(4 or fewercorrect| π = 0.33) ... (a shorter
∑

of only 5)

= 1 − [P (0) + P (1) + P (2) + P (3) + P (4)]
= 0.37∗

Using n = 12, and p = 0.30 in Table C gives 0.28; using p = 0.35 gives 0.42.
Interpolation gives 0.37 approx. ∗

Can also obtain the exact probability (0.03762) directly via Ex-
cel, using the function BINOMDIST(4, 12, 0.333, TRUE), or using
1-sum(dbinom(1:4,12,1/3)) in R.

So, by conventional criteria (Prob < 0.05 is considered a cutoff for evidence
against H0) there is not a lot of evidence to contradict the H0 of taste simi-
larity of the regular and experimental formulae.

With a sample size of only n = 12, we cannot rule out the possibility that a
sizable fraction of mothers could truly distinguish the two.

Our observed proportion of 5/12 projects to a one-sided 95% CI of “as many
as 65% in the population get it right”. In this worst-case scenario, assuming
that the percentage of right answers in the population is a mix of a proportion
πcan who can really tell and one third of the remaining (1− πcan) who get it
right by guessing, we equate 0.65 = πcan + (1 − πcan)/3, giving us an upper
bound πcan = (0.65− 0.33)/(2/3) = 0.48, or 48%.

*These calculations can be done easily on a calculator or spreadsheet without
any combinatorials:

P(0) = 0.6712 = 0.008

P(1) = 12×0.33×P (0)
[1×0.67] = 0.048

P(2) = 11×0.33×P (1)
[2×0.67] = 0.131

P(3) = 10×0.33×P (2)
[3×0.67] = 0.215

P(4) = 9×0.33×P (3)
[4×0.67] = 0.238∑

= 0.640

so Prob[5 or more correct | π = 0.33] = 1− 0.64 = 0.36.

%said that = 0.32 which is mathematically incorrect

What if 50 of 120 mothers identified odd sample?

Test π = 0.33 : z = (0.42∗ − 0.33)/{0.33× (1− 0.33)/20}1/2 = 2.1.

So P = Prob[≥ 50 | π = 0.33] = Prob[Z ≥ 2.1] = 0.018

* We treat the proportion 50/120 as a contimuous measurement; in fact it
is based on an integer numerator 50; we should treat 50 as 49.5 to 50.5 so
≥ 50 is really > 49.5, and we are dealing with the probability. of obtaining
49.5/120 or more. With n = 120, the continuity correction does not make a
large difference; however, with smaller n, and its coarser grain, the continuity
correction [which makes differences smaller] is more substantial.

12
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5 Planning: Sample Size for CI’s and Tests

5.1 n to yield (2-sided) CI with margin of error ME at
confidence level 1− α

(see M&M p. 593, Colton p. 161)

— margin of error —
(· · · · · · · · · · · · · · · · · · · · · • · · · · · · · · · · · · · · · · · · · · · ) CI

• see CI’s as function of n in tables and nomograms

• (or) large-sample CI: p± Zα/2SE(p) = p±ME

SE(p) = {p[1− p]/n}1/2,

so ...

n =
p[1− p]× Z2

α/2

ME2

If unsure, use largest SE i.e. when p = 0.5 i.e.

n =
0.25× Z2

α/2

ME2
(1)

5.2 n for power 1−β to “detect” a population proportion
π that is ∆ units from π0; type I error = α.

(Colton, p. 161)

n =

{
Zα/2

√
π0[1− π0]− Zβ

√
π1[1− π1]

}2

∆2

≈
{
Zα/2

}2
{√

π[1− π]
∆

}2

[∗]

=
{
Zα/2 − Zβ

}2
{
σ0,1

∆

}2

(2)

* where π is average of π0 and π1.

Notes: Zβ will be negative; formula is same as for testing µ

5.2.1 Worked Example 1: sample size to test for preferences
π = 0.5 vs. π 6= 0.5
or Sign Test that median difference = 0

Test:

H0: MedianD = 0 vs Halt: MedianD 6= 0; α = 0.05 (2-sided);

or

H0: π(+) = 0.5 vs Halt: π(+) > 0.5

For Power 1− β against: Halt: π(+) = 0.65 say.

At π = ave of 0.5 & 0.65,
√
π[1− π] = 0.494.

n ≈
{
Zα

2
− Zβ

}2
{

0.494
0.15

}2

α = 0.05 (2-sided) & β = 0.2⇒ Zα = 1.96; Zβ = −0.84

(Zα
2
− Zβ)2 = {1.96− (−0.84)}2 ≈ 8, i.e.

n ≈ 8
{

0.494
0.15

}2

= 87

5.2.2 Worked Example 2: sample size for ∆ Taste Test:
πcorrect = 1/3 vs. π > 1/3

If set α = 0.05 (hardliners might allow 1-sided test here), then Zα = 1.645; If
want 90% power, then Zβ = −1.28; Then using equation 2 above...

πcorrect : 0.4 0.5 0.6 0.7 0.8

n for 90 Power against this π 400 69 27 14 8
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