On the Application of the χ^{2} Method to Association and Contingency Tables, with Experimental Illustrations
Author(s): G. Udny Yule
Source: Journal of the Royal Statistical Society, Vol. 85, No. 1 (Jan., 1922), pp. 95-104
Published by: Wiley for the Royal Statistical Society
Stable URL: https://www.jstor.org/stable/2340522
Accessed: 20-04-2020 16:28 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

Royal Statistical Society, Wiley are collaborating with JSTOR to digitize, preserve and extend access to Journal of the Royal Statistical Society

On the Application of the χ^{2} Method to Association and Contingency Tables, with Experimental Illustrations.

By G. Udny Yule, C.B.E., M.A., F.R.S.

In a paper* published in the Proceedings of the Royal Society of Medicine in 1915, Dr. Greenwood and I directed attention to the discrepancy between the results given by the χ^{2} method, as ordinarily applied to the fourfold table for estimating the probability that any given divergence from independence might have arisen by random sampling, and the results given by the more elementary test afforded by comparing $p_{1}-p_{2}$ with its probable error, where in my notation for the cell-frequencies

$$
\begin{equation*}
p_{1}=(\mathrm{AB}) /(\mathrm{B}) \quad p_{2}=(\mathrm{A} \beta) /(\beta) \tag{1}
\end{equation*}
$$

Invariably the probability of any arrangement, or of any less probable arrangement, having arisen by random sampling was greater when estimated by the χ^{2} method than when the other test was applied. At the time of publication we were unable to clear up the source of the discrepancy, and as it was evident that, in judging data by the χ^{2} test, we should certainly not attach importance to results which might be the mere effect of random sampling and were thus erring on the side of caution, we passed over the difficulty for the time. Later work carried us, however, towards the result given in the preceding note by Mr. Fisher. Dr. Greenwood and I were in correspondence on the general question, and on points arising out of it, for many months afterwards, and while I am alone responsible for the present note, having carried out the bulk of the experiments described, it was prompted entirely by our joint work.

Let δ denote the difference between the frequency (AB) and its independence-value (A)(B)/N. Then, as I showed in a former paper, the standard error of $\delta, \epsilon_{\delta}$, is given in general by the equation \dagger

$$
\begin{equation*}
\epsilon_{\delta}^{2}=\frac{1}{\mathrm{~N}^{3}}\left\{(\mathrm{~A})(\alpha)(\mathrm{B})(\beta)+\mathrm{N} \delta[(\mathrm{~A})-(\alpha)][(\mathrm{B})-(\beta)]-\mathrm{N}^{2} \delta^{2}\right\} \tag{2}
\end{equation*}
$$

[^0]If in this equation we make δ zero, so as to obtain the standard error of δ for sampling from a universe in which A and B are independent, we have the simplified form-

$$
\begin{equation*}
{ }_{0} \varepsilon_{8}^{2}=\frac{1}{\mathbf{N}^{3}}\{(\mathrm{~A})(\alpha)(\mathrm{B})(\beta)\} \tag{3}
\end{equation*}
$$

But

$$
\begin{align*}
\chi^{2} & =\mathrm{N} \delta^{2}\left\{\frac{1}{(\mathrm{~A})(\mathrm{B})}+\frac{1}{(\mathrm{~A})(\beta)}+\frac{1}{(\alpha)(\mathrm{B})}+\frac{1}{(\alpha)(\beta)}\right\} \\
& =\frac{\mathrm{N}^{3} \delta^{2}}{(\mathrm{~A})(\alpha)(\mathrm{B})(\beta)} \tag{4}
\end{align*}
$$

Therefore we may write

$$
{ }_{0} \delta_{\delta}^{2}=\frac{\delta^{2}}{\chi^{2}}
$$

And therefore, if the number of observations is sufficiently large to enable us to regard the distribution of errors as normal, the frequency distribution of δ is given by

$$
\begin{equation*}
y=y_{0} e^{-\frac{1}{2} x^{2}} \tag{5}
\end{equation*}
$$

Hence the probability of obtaining a value of δ exceeding, without respect to sign, the value corresponding to any assigned value of χ is

$$
\begin{equation*}
\mathbf{P}=\sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-i \frac{1}{2}} d x \tag{6}
\end{equation*}
$$

But this is the expression for P corresponding to $n^{\prime}=2$, $\operatorname{not} n^{\prime}=4$, in Professor Pearson's notation ; the value 4 is right when divergence is measured from a set of frequencies given a priori, but when divergence is measured from independence-values determined from the observations themselves it must be taken as 2. And the reason is fairly obvious. For a given number of observations N the number of algebraically independent cell-frequencies that can be given a priori is 3 (three cells of the table can be filled with any arbitrary figures, of which the total is not greater than N , and the fourth is then determined by N) ; but only one arbitrary value can be assigned to δ and the frequencies are then determined. The value of n^{\prime} in each case exceeds by unity the number of algebraically independent data. Entering the tables with argument $n^{\prime}=4$ appears to represent an attempt to answer a different question, the value (A) (B)/N of the sample being taken as an approximation to the "independence value" in the universe. But in my view (see below) the approximation is biassed, and the results, consequently, more or less misleading.

This stage in the argument was reached not long after the publication of the paper of 1915, and Dr. Greenwood and I proceeded
to check the result by a short series of experiments. Thirty fourfold tables of a hundred observations each were made by him by dicethrowing ; ignoring 5 's and 6 's, throws of 1 's, 2 's, 3 's and 4 's were assigned to the compartments of the table so numbered. Another hundred tables of a hundred observations each were made by me by constructing a rough circular tray of millboard, with partitions dividing it into quadrants, mounting it on a vertical axis so that it could be rapidly spun, throwing a hundred counters into it while spinning, and then counting up the number in each quadrant. For each of these tables the value of χ^{2} could then be computed : (a) from the a priori expectation of equal distribution, (b) from the independence-values given by the totals of rows and columns. The results were in very good consonance with theory. For the divergence from expectation the distribution was given by the values of P corresponding to $n^{\prime}=4$; for the divergence from independence, by the values of P corresponding to $n^{\prime}=2$. The two distributions were entirely different.

But this soon suggested the general result. For a table with r rows and c columns n^{\prime} should be taken as $r c$ only for judging the probability of a given divergence from a priori frequencies. When it is desired to determine the probability of a given divergence from the independence-values calculated from the totals of rows and columns the number of algebraically independent values of δ is only $(r-1)(c-1)$ and n^{\prime} should be taken as given by

$$
n^{\prime}=(r-1)(c-1)+1 .
$$

But I failed to get any proof of this result, reasonable though it seemed ; the most I succeeded in doing was to reduce the general expression for χ^{2} in terms of the correlations and standard deviations, in the case of a table with three rows and three columns. A full proof seems, in fact, still to be lacking. It is not clear that the expression for χ^{2} in terms of the standard deviations and correlations of errors must, in the more general case, reduce to the simple form-the sum of the squares of the differences from independencevalues each divided by the independence-value. I am glad, however, that Mr. Fisher has now entered the field, as, failing proof, the matter might have stood over for some time. The conjecture and the result of the first experiments had stimulated my curiosity so much that a further series of experiments was devised and carried out during 1916 and 1917. A friend kindly constructed for me a slightly more elaborate apparatus, consisting of a circular wooden tray divided into sixteen sectors by tinplate divisions, spinning on a vertical pivot. A hundred beans were thrown into this while it was
spinning, and the numbers counted in each sector. For a large number of the later experiments a simple addition was employed to avoid any risk of regularity in throwing or other formations of habit having any influence on the results, an addition which may be regarded as a spatial-generalization of Galton's apparatus for illustrating the formation of the normal curve. A number of wedges were formed by folding some strips of stiff paper, 6 or 8 inches long (the apparatus has been lost during post-war removals, so that actual dimensions cannot be given). These were laid parallel to each other on a table, some half inch or so apart. Another series of strips was then cemented on top of them, at right angles to the first set, another on top of this, and so on ; and on top of the whole pyramid of six or eight layers of wedges a short tube of millboard formed the summit. This apparatus could then be held in one hand over the spinning tray, and the beans dropped through the tube. They scattered through the layers of wedges as they fell, and the result could hardly be other than random.

The frequencies thus obtained could be grouped in a number of different ways:-(a) Into the sixteen compartments of a table with four rows and four columns; (b) into the sixteen compartments of a table with two rows and eight columns ; (c) into further tables with only two rows and two columns, for adding to the earlier series-or, of course, into other forms, which, however, I did not attempt. The results completely confirmed, it may be said at once, what was at the time little more than a happy and reasonable guess. The results obtained will now be given.

A.-Fourfold Tables.

Two hundred and twenty tables were made from the frequencies given by the later apparatus which, with the 130 tables of the earlier experiments, gave 350 tables altogether, each table having 100 observations. For each table the value of χ^{2} was computed (a) from the expected distribution given by uniformity, i.e. 25 observations to each compartment; (b) from the independence-values given by the row and column totals, i.e. equation (4). The theoretical distribution of χ^{2} is given by differencing the table showing P in terms of χ^{2}; for example, in the case of $n^{\prime}=4$ we can turn up Table XII on p. 26 of Tables for Statisticians and Biometricians, and find the values of P for the first few values of χ^{2} as below. The differences are as shown. We should then expect the fraction $0 \cdot 198 \ldots$ of all observed values of χ^{2} (calculated for divergence from uniformity) to lie between 0 and 1:0.228 . . . of all values between 1 and 2 : $0 \cdot 180$. . between 2 and 3 , and so on.

χ^{2}.	P.	Δ.
0	$1 \cdot$	$0 \cdot 198747$
1	$0 \cdot 801253$	$0 \cdot 228846$
2	$0 \cdot 572407$	$0 \cdot 180782$
3	$0 \cdot 391625$	$0 \cdot 130161$
4	$0 \cdot 261464$	

A column showing the values of P corresponding to assigned values of χ^{2} for $n^{\prime}=2$ is not given in Table XII of Tables for Statisticians, that table not being carried below $n^{\prime}=3$. The necessary function, equation (6), will, however, be found tabulated for values of χ^{2} proceeding by units in Table XV, p. 30, of the same volume. Unfortunately this table is not sufficiently detailed for present purposes, as regards the earlier part of the range, and I have calculated a more detailed table which is given in the Appendix. A description of the calculation of this table will be found below.

The following table summarizes the results for the case when χ^{2} is calculated from the expectation of uniform distribution, and consequently n^{\prime} is 4 .

Table I.-The theoretical frequency distribution of values of χ^{2} for a fourfold table, when χ^{2} is calculated from the a priori expectation of uniformly distributed frequency, compared with the actual results for 350 experimental tables.

Value of x^{2}.	Number of tables giving a value of χ^{2} between the limits on the left.	
	Expected.	Observed.
0-1	$69 \cdot 56$	62
1-2	$80 \cdot 10$	75
2-3	$63 \cdot 27$	72
3-4	$45 \cdot 56$	$47 \cdot 5$
4-5	31.38	$27 \cdot 5$
5-6	21.07	23
6-7	$13 \cdot 90$	19
7-8	$9 \cdot 06$	9
8-9	$5 \cdot 85$	6
9-10	$3 \cdot 75$	$2 \cdot 5$
10-	$6 \cdot 50$	6.5
Total	$350 \cdot 00$	350

The agreement is on the whole very satisfactory. Taking the table as it stands and testing the agreement between theory and observation by the χ^{2} method, n^{\prime} is $11, \chi^{2}$ works out at $5 \cdot 32$, and H 2

P is 0.867 , so that we might expect a worse fit eight or nine times in ten.

When we pass to the case where χ^{2} is calculated for divergence from the independence-values and n^{\prime} has to be taken as 2 , the distribution is very different. As nearly 70 per cent. of the values of χ^{2} so calculated should be less than unity, it is desirable to break up the distribution at the lower end of the scale. I have therefore divided the first unit into fourths. Table II shows the results.

Table II.-The theoretical distribution of values of χ^{2} for a fourfold table, when χ^{2} is calculated from the independence-values, compared with the actual results for 350 experimental tables.

Value of χ^{2}.	Number of tables giving a value of χ^{2} between the limits on the left.	
	Expected.	Observed.
0. -0.25	$134 \cdot 02$	122
0.25-0.50	$48 \cdot 15$	54
0.50-0.75	$32 \cdot 56$	41
0.75-1.00	$24 \cdot 21$	24
1.00-2.00	$56 \cdot 00$	62
$2-3$	$25 \cdot 91$	18
3 -4	$13 \cdot 22$	13
$4-5$	7.05	6
$5-6$	$3 \cdot 86$	5
6 -	$5 \cdot 01$	5
Total	349-99	350

Again the agreement with theory is excellent. Taking the table as it stands, n^{\prime} is $10,{ }^{2}$ works out at $7 \cdot 53$, and P is therefore 0.583 ; we would expect a worse agreement nearly six times in ten. It is worth noting how clearly, even if we had no theory to guide us, the experiment alone would exhibit the incorrectness of applying the same law in both cases. Table I shows that, when χ^{2} was calculated from uniform distribution, only 62 tables gave a value of χ^{2} less than unity, and 43 a value greater than 6. For the case of divergence from independence-values, on the other hand, Table II shows that there were no less than 241 tables with a value of χ^{2} less than unity, and only five tables with a value greater than 6. A little consideration shows at once, moreover, the simple reason why the second case tends to give much lower values of χ^{2} than the first. If, owing to the chances of sampling, (AB) has too high a value, the frequencies (A) and (B) will also tend to be high, consequently (A) (B)/N will also tend to be high, and this compensates in some degree for the excess in (AB). The experimental tables illustrate the point very well.

B.-Tables with Sixteen Compartments.

Utilizing all the frequencies in the 16 sectors of the later apparatus, (1) we can calculate the value of χ^{2} for divergence from the expectation of uniform distribution, (2) we can arrange the frequencies in the compartments of a table with four rows and four columns and calculate χ^{2} for the divergence from the independence-values given by the totals of rows and columns, (3) we can arrange the frequencies in the compartments of a table with two rows and eight columns and again calculate χ^{2} for the divergence from the independencevalues given by the totals of rows and columns. According to the extended theory, the distribution of χ^{2} should be given in the first case by taking n^{\prime} as 16 , in the second case by taking n^{\prime} as 10 $(3 \times 3+1)$, in the third case by taking n^{\prime} as $8(7 \times 1+1)$. These were the three cases tested by the experimental results. As the theory assumes that normal distribution can be predicated for the deviations, I judged it hardly fair to deal with tables of only 100 observations, which would give an expectation of only $100 / 16$, or $6 \cdot 25$ observations to each compartment. The original tables were therefore superposed in pairs, so as to give tables of 200 observations each with an expectation of 12.5 observations to the compartmenteven so, a figure so small that the assumption of normality can hardly be justified except as the roughest of approximations. Only the first 200 single tables were thus dealt with, giving the round number of 100 tables of 200 observations each. Table III compares the actual distribution in each case with the theoretical distribution.
Table III.-The theoretical distributions of χ^{2} in tables with 16 compartments compared with the actual distributions given by 100 experimental tables in three different cases.

χ^{2}	From uniform distribution : $n^{\prime}=16$.		From independence : 4×4 table, $n^{\prime}=10$.		From independence : 8×2 table, $n^{\prime}=8$.	
	Expectation.	Observation.	Expectation.	Observation.	Expectation.	Observation.
0-5	$0 \cdot 8$	- $\}$	$16 \cdot 6$	17	$34 \cdot 0$	$29 \cdot 5$
5-10	$17 \cdot 2$	20 \}	$48 \cdot 4$	44	$47 \cdot 1$	$56 \cdot 5$
10-15	$36 \cdot 8$	36	$26 \cdot 0$	32	$15 \cdot 3$	10
15-20	$27 \cdot 9$	$30 \cdot 5$	$7 \cdot 3$	$6\}$	$3 \cdot 0$	
20-	$17 \cdot 2$	$13 \cdot 5$	$1 \cdot 8$	1\}	$0 \cdot 6$	
	$99 \cdot 9$	100	$100 \cdot 1$	100	$100 \cdot 0$	100
$\begin{aligned} & \chi^{2} \\ & \mathbf{P} \end{aligned}$	For 4 groups as shown by brackets	$\begin{aligned} & 1 \cdot 28 \\ & 0 \cdot 74 \end{aligned}$	-	$\begin{aligned} & 2 \cdot 27 \\ & 0 \cdot 52 \end{aligned}$	-	$\begin{aligned} & 4 \cdot 36 \\ & 0 \cdot 22 \end{aligned}$

Again, the agreement with the extended theory is very satisfactory as shown by the values of χ^{2} and \mathbf{P} for testing this agreement in the last line of the table. The third case gives the poorest agreement, and even here \mathbf{P} for four groups is $0 \cdot 22$, so that we might expect a worse agreement once in some five trials. It is again worth while to emphasise how the experiment alone would clearly indicate the difference between the three cases. The first case yielded no values of χ^{2} under 5; the second case yielded 17 tables with a value of χ^{2} less than that limit; the third case $29 \cdot 5$ such tables. Again, the first case yielded 80 tables giving a value of χ^{2} exceeding 10 ; the second case 39 ; the third case only 14.

Having regard to Mr. Fisher's note and the experimental tests here given, there can be little doubt as to the correctness of the present theory. Table XII of Tables for Statisticians and Biometricians accordingly requires supplementing by a column for $n^{\prime}=2$ for use with fourfold tables. It is true that values of P can fairly readily be obtained from χ by Sheppard's table of the normal integral, but a table in the standard form is a great convenience. As already mentioned, the necessary function is already tabulated for values of χ^{2} proceeding by steps of a unit in Table XV, p. 30, of that volume, but that table is insufficiently detailed for practical use. As P varies very rapidly with χ^{2} at the commencement of the table, I have broken it up into two parts. For values of χ^{2} under unity the interval has been taken as 0.01 ; for values of χ^{2} between 1 and 10 the interval has been taken as $0 \cdot 1$. For values of χ^{2} over 10, Table XV in Tables for Statisticians is quite sufficient. The table has been calculated (1) by taking the square root of χ^{2} so as to obtain χ, and then (2) interpolating for the value of the integral of equation (6) in Mr. Sheppard's table of the normal integral, Table II of Tables for Statisticians. Seven digits were retained in the work, but since the last digit, as calculated, may have an error of at least 2 , these have been reduced to five for tabulation, a number which is more than sufficient for practical purposes. The original values as calculated to seven decimal places were tested by differencing, and although some small unexplained irregularities remained, the five digits finally retained should be accurate. At the commencement of the table even differencing is inadequate as a test. I have to thank Miss Allen and Miss Newbold, of the Medical Research Council's staff, for further checking over parts of the table.

Appendix.
T Table of the values of P for divergence from independence in the fourfold table.
A. $-\chi^{2}=0$ to $\chi^{2}=1$ by steps of $0 \cdot 01$.

χ^{2}	\mathbf{P}	Δ	χ^{2}	\mathbf{P}	Δ
0	$1 \cdot 00000$	7966	$0 \cdot 50$	$0 \cdot 47950$	436
$0 \cdot 01$	$0 \cdot 92034$	3280	$0 \cdot 51$	$0 \cdot 47514$	430
$0 \cdot 02$	$0 \cdot 88754$	2505	$0 \cdot 52$	$0 \cdot 47084$	423
$0 \cdot 03$	$0 \cdot 86249$	2101	$0 \cdot 53$	$0 \cdot 46661$	418
$0 \cdot 04$	$0 \cdot 84148$	1842	$0 \cdot 54$	$0 \cdot 46243$	411.
$0 \cdot 05$	$0 \cdot 82306$	1656	$0 \cdot 55$	$0 \cdot 45832$	406
0.06	$0 \cdot 80650$	1516	$0 \cdot 56$	$0 \cdot 45426$	400
0.07	0.79134	1404	$0 \cdot 57$	$0 \cdot 45026$	395
$0 \cdot 08$	$0 \cdot 77730$	1312	$0 \cdot 58$	$0 \cdot 44631$	389
0.09	$0 \cdot 76418$	1235	$0 \cdot 59$	$0 \cdot 44242$	384
$0 \cdot 10$	$0 \cdot 75183$	1169	$0 \cdot 60$	$0 \cdot 43858$	379
$0 \cdot 11$	$0 \cdot 74014$	1111	$0 \cdot 61$	$0 \cdot 43479$	374
$0 \cdot 12$	$0 \cdot 72903$	1060	$0 \cdot 62$	$0 \cdot 43105$	369
$0 \cdot 13$	$0 \cdot 71843$	1015	$0 \cdot 63$	$0 \cdot 42736$	365
$0 \cdot 14$	$0 \cdot 70828$	974	$0 \cdot 64$	$0 \cdot 42371$	360
$0 \cdot 15$	$0 \cdot 69854$	938	$0 \cdot 65$	$0 \cdot 42011$	355
$0 \cdot 16$	$0 \cdot 68916$	905	$0 \cdot 66$	$0 \cdot 41656$	351
$0 \cdot 17$	$0 \cdot 68011$	874	$0 \cdot 67$	$0 \cdot 41305$	346
$0 \cdot 18$	$0 \cdot 67137$	845	$0 \cdot 68$	$0 \cdot 40959$	343
$0 \cdot 19$	$0 \cdot 66292$	820	$0 \cdot 69$	$0 \cdot 40616$	338
$0 \cdot 20$	$0 \cdot 65472$	795	$0 \cdot 70$	$0 \cdot 40278$	334
$0 \cdot 21$	$0 \cdot 64677$	773	$0 \cdot 71$	$0 \cdot 39944$	330
$0 \cdot 22$	$0 \cdot 63904$	752	$0 \cdot 72$	$0 \cdot 39614$	326
$0 \cdot 23$	$0 \cdot 63152$	731	$0 \cdot 73$	$0 \cdot 39288$	322
$0 \cdot 24$	$0 \cdot 62421$	713	$0 \cdot 74$	$0 \cdot 38966$	318
$0 \cdot 25$	$0 \cdot 61708$	696	$0 \cdot 75$	0-38648	315
$0 \cdot 26$	$0 \cdot 61012$	679	$0 \cdot 76$	$0 \cdot 38333$	311
$0 \cdot 27$	$0 \cdot 60333$	663	$0 \cdot 77$	$0 \cdot 38022$	308
$0 \cdot 28$	$0 \cdot 59670$	648	$0 \cdot 78$	$0 \cdot 37714$	304
$0 \cdot 29$	0.59022	634	$0 \cdot 79$	$0 \cdot 37410$	301
$0 \cdot 30$	$0 \cdot 58388$	620	$0 \cdot 80$	$0 \cdot 37109$	297
$0 \cdot 31$	$0 \cdot 57768$	607	0.81	$0 \cdot 36812$	294
$0 \cdot 32$	$0 \cdot 57161$	595	$0 \cdot 82$	$0 \cdot 36518$	291
$0 \cdot 33$	$0 \cdot 56566$	583	0.83	$0 \cdot 36227$	287
$0 \cdot 34$	$0 \cdot 55983$	572	0.84	$0 \cdot 35940$	285
$0 \cdot 35$	$0 \cdot 55411$	560	0.85	$0 \cdot 35655$	281
$0 \cdot 36$	$0 \cdot 54851$	551	0.86	$0 \cdot 35374$	278
$0 \cdot 37$	$0 \cdot 54300$	540	0.87	0.35096	276
$0 \cdot 38$	$0 \cdot 53760$	530	0.88	$0 \cdot 34820$	272
$0 \cdot 39$	$0 \cdot 53230$	521	$0 \cdot 89$	$0 \cdot 34548$	270
$0 \cdot 40$	$0 \cdot 52709$	512	0.90	$0 \cdot 34278$	267
$0 \cdot 41$	$0 \cdot 52197$	503	0.91	$0 \cdot 34011$	264
$0 \cdot 42$	$0 \cdot 51694$	495	0.92	$0 \cdot 33747$	261
$0 \cdot 43$	$0 \cdot 51199$	487	0.93	$0 \cdot 33486$	258
0.44	0.50712	479	0.94	$0 \cdot 33228$	256
0.45	$0 \cdot 50233$	471	0.95	$0 \cdot 32972$	253
0.46	$0 \cdot 49762$	463	0.96	$0 \cdot 32719$	251
$0 \cdot 47$	$0 \cdot 49299$	457	0.97	0-32468	248
0.48	$0 \cdot 48842$	449	0.98	$0 \cdot 32220$	246
$0 \cdot 49$	$0 \cdot 48393$	443	0.99	0.31974	243
$0 \cdot 50$	$0 \cdot 47950$	436	1.00	$0 \cdot 31731$	241

B. $-\chi^{2}=1$ to $\chi^{2}=10$ by steps of $0 \cdot 1$.

χ^{2}	P	Δ	χ^{2}	P	Δ
$1 \cdot 0$	$0 \cdot 31731$	2304	$5 \cdot 5$	$0 \cdot 01902$	106
$1 \cdot 1$	$0 \cdot 29427$	2095	$5 \cdot 6$	0.01796	99
1.2	$0 \cdot 27332$	1911	$5 \cdot 7$	$0 \cdot 01697$	94
$1 \cdot 3$	$0 \cdot 25421$	1749	$5 \cdot 8$	0.01603	89
$1 \cdot 4$	$0 \cdot 23672$	1605	$5 \cdot 9$	0.01514	83
1.5	$0 \cdot 22067$	1477	$6 \cdot 0$	0.01431	79
$1 \cdot 6$	$0 \cdot 20590$	1361	$6 \cdot 1$	0.01352	74
1.7	$0 \cdot 19229$	1258	$6 \cdot 2$	$0 \cdot 01278$	71
1.8	$0 \cdot 17971$	1163	$6 \cdot 3$	$0 \cdot 01207$	66
$1 \cdot 9$	$0 \cdot 16808$	1078	$6 \cdot 4$	0.01141	62
$2 \cdot 0$	$0 \cdot 15730$	1000	$6 \cdot 5$	$0 \cdot 01079$	59
$2 \cdot 1$	$0 \cdot 14730$	929	$6 \cdot 6$	$0 \cdot 01020$	56
$2 \cdot 2$	$0 \cdot 13801$	864	$6 \cdot 7$	$0 \cdot 00964$	52
$2 \cdot 3$	0.12937	803	$6 \cdot 8$	$0 \cdot 00912$	50
$2 \cdot 4$	$0 \cdot 12134$	749	$6 \cdot 9$	$0 \cdot 00862$	47
2.5	$0 \cdot 11385$	699	$7 \cdot 0$	$0 \cdot 00815$	44
$2 \cdot 6$	$0 \cdot 10686$	651	$7 \cdot 1$	0.00771	42
$2 \cdot 7$	$0 \cdot 10035$	609	$7 \cdot 2$	$0 \cdot 00729$	39
$2 \cdot 8$	$0 \cdot 09426$	568	$7 \cdot 3$	$0 \cdot 00690$	38
$2 \cdot 9$	0.08858	532	$7 \cdot 4$	$0 \cdot 00652$	35
$3 \cdot 0$	$0 \cdot 08326$	497	$7 \cdot 5$	$0 \cdot 00617$	33
3.1	0.07829	465	$7 \cdot 6$	$0 \cdot 00584$	32
3.2	0.07364	436	$7 \cdot 7$	0.00552	30
3.3	$0 \cdot 06928$	408	$7 \cdot 8$	$0 \cdot 00522$	28
3.4	0.06520	383	$7 \cdot 9$	0.00494	26
$3 \cdot 5$	0.06137	359	$8 \cdot 0$	$0 \cdot 00468$	25
3.6	0.05778	337	$8 \cdot 1$	0.00443	24
$3 \cdot 7$	0.05441	316	$8 \cdot 2$	$0 \cdot 00419$	23
$3 \cdot 8$	0.05125	296	$8 \cdot 3$	$0 \cdot 00396$	21
$3 \cdot 9$	$0 \cdot 04829$	279	$8 \cdot 4$	0.00375	20
$4 \cdot 0$	0.04550	262	$8 \cdot 5$	0.00355	19
$4 \cdot 1$	$0 \cdot 04288$	246	$8 \cdot 6$	0.00336	18
$4 \cdot 2$	$0 \cdot 04042$	231	$8 \cdot 7$	0.00318	17
$4 \cdot 3$	0.03811	217	$8 \cdot 8$	$0 \cdot 00301$	16
$4 \cdot 4$	0.03594	205	$8 \cdot 9$	0.00285	15
4.5	0.03389	192	$9 \cdot 0$	0.00270	14
$4 \cdot 6$	$0 \cdot 03197$	181	$9 \cdot 1$	$0 \cdot 00256$	14
$4 \cdot 7$	$0 \cdot 03016$	170	$9 \cdot 2$	$0 \cdot 00242$	13
$4 \cdot 8$	$0 \cdot 02846$	160	$9 \cdot 3$	$0 \cdot 00229$	12
$4 \cdot 9$	$0 \cdot 02686$	151	$9 \cdot 4$	$0 \cdot 00217$	12
$5 \cdot 0$	0.02535	142	$9 \cdot 5$	0.00205	10
$5 \cdot 1$	$0 \cdot 02393$	134	$9 \cdot 6$	$0 \cdot 00195$	11
$5 \cdot 2$	$0 \cdot 02259$	126	$9 \cdot 7$	0.00184	10
$5 \cdot 3$	$0 \cdot 02133$	119	$9 \cdot 8$	0.00174	9
$5 \cdot 4$	$0 \cdot 02014$	112	$9 \cdot 9$	0.00165	
$5 \cdot 5$	0.01902	106	$10 \cdot 0$	$0 \cdot 00157$	8

[^0]: * "The Statistics of Anti-typhoid and Anti-cholera Inoculations, etc.," Proc. Roy. Soc. Medicine, vol viii, 1915, pp. 113-190.
 \dagger "On the Methods of Measuring Association between Two Attributes," J.S.S., vol. lxxv, 1912, equation (39), p. 602.

