BIOS 601 Exercise: Measurement Error

Time: 2 - 3 pm on Friday, Sept 2, 2011 **Place**: Computer Lab at Purvis Hall Basement

Purpose:

The data generated by this exercise will be used in class to illustrate the concepts of intraand inter-observer variation, to quantify the magnitude of this variation, and to study its effect on other quantities derived from these measurements.

Instructions:

- 1. Save Exemestane.png and CRP.png¹ on your Desktop.
- 2. Open http://sourceforge.net/projects/digitizer/files/
- 3. Click Download digit-exe-windows-4_1.zip (7.3 MB) and save it on your Desktop.
- 4. Extract it and double click engauge.exe.
- 5. Go to File \rightarrow Import and open Exemestane.png.
- 6. Click on the Axis Point icon (or Go to Digitize \rightarrow Axis Point) and define three axis points where you know their (x, y) coordinates. You will see 3 red crosses.
- 7. Click on the Curve Point icon (or Go to Digitize \rightarrow Curve Point) and digitize the 'Placebo' arm by clicking on one point on each horizontal line (see diagram next page: we are interested in how well people can measure on the vertical scale, so don't fuss about where on the x axis the point is.) Zoom in as much as you like when you do this. You will see blue crosses and a curve joining them. Measure at least 20 points.
- 8. Go to File \rightarrow Export As... and save it as Exemestane_LastName1.csv.
- 9. Go to Edit \rightarrow Paste As New to reload Exemestane.png, repeat Steps 5 8 and save your output as Exemestane_LastName2.csv.
- 10. Repeat Steps 5 9 for CRP.png, digitize the lowest curve (green in Fig 2 A) and save your output as CRP_LastName1.csv and CRP_LastName1.csv.
- 11. E-mail these 4 files to james.hanley@mcgill.ca under the subject BIOS601 measurement exercise. Also retain the 4 files for yourself for analysis at a later date.

 $^{^{1}2}$ files available under Resources on bios601 site.

Manually Digitizing A Line Graph Image

The following steps manually digitize a linear cartesian graph with one curve. These steps are essentially the same as the steps involved in <u>manually digitizing</u> <u>a point graph</u>.

• Import the testcase.png case from the Samples directory, using File/Import as shown. Not shown are the other methods of importing : using the <u>"-import"</u> command line option, by copying and pasting, and by dragging and dropping

• Click on the Axes Point button before entering axes points. These will define the coordinate system

• Click on one of the axes to add the first axes point, then enter its graph coordinates

• Click on one of the axes to add the second axes point, then enter its graph coordinates

• Click on one of the axes to add the third axes point, then enter its graph coordinates

• Click on the Curve Points button before entering curve points. These will contain the digitized graph data

• Click on the curve to add a curve point. Repeat until the graph is covered with a sufficient number of curve points. If this step is too slow and tedious, you can first automatically digitize entire segments at a time using segment fill

• Export the curve points into a tabular text file using the File/Export As menu option as shown. Not shown are the other methods of exporting the curve points from the <u>curve geometry window</u>: copying and pasting, and dragging and dropping

