
In the days following its historic landing on Comet 67P/TG on 12 November 2014, the

Philae module – dropped by Europe’s Rosetta probe1 – sent numerous images and data that

will ultimately help scientists to better understand the genesis of the solar system.

Christian Genest* and James Hanley** 2 use the planning of this 10-year mission to connect several statistical distributions. 3

This scientific feat, achieved 500 million kilometers from Earth,

was the culmination of a perilous journey undertaken by the

Rosetta probe on 2 March 2004. The mission, which took 10

years of preparation and investments valued at over 1 billion

euros, also represented a major technical challenge.

In its journey of more than 6.5 billion kilometers, which

lasted 10 years, the probe had to withstand the thermal and

energy plans large amplitude variations of solar lighting im-

posed by its trajectory. Electronic components have also been

exposed to high doses of radiation due to solar flares.

The question of the reliability of equipment and optimiza-

tion of relief materials arises in any mission where re-stocking

is not possible. It is even more crucial in cosmic journeys, sub-

ject to strong constraints of weight and space. We must avoid

unnecessary duplicate systems but if we ‘go too close to the

edge,’ we risk failure.

Since failures are unpredictable - and therefore stochastic -

optimizing the number of spare parts to be carried is based on

probability calculations. While taking some poetic licence, we

illustrate some of these, using the ambitious Rosetta project

of the European Space Agency.

If resources are limited

Imagine that a certain piece of electronic equipment essential

to the proper functioning of Rosetta wears out so slowly that,

in practice, only the plasma stream of solar wind can affect it.

When this piece fails, it is immediately replaced by an identi-

cal piece, and so on, while stocks last. If the mission carries k

identical pieces, the system can operate continuously until the

occurrence of the kth failure.

Specifically, suppose a burst of solar wind shakes the probe

on average once every 16 months (4/3 years), at random (un-

predictable) times that are independent of each other. Thus,

one would expect to have an average of λ = 3/4 failures per

year, or λ × 10 = 7.5 failures in 10 years. If the probe car-

ries only k = 3 pieces, then there would be little chance that

it is still operational at the rendezvous with comet 67P/TG

(“Tchouri” for short).

More generally, what are Rosetta’s chances of success if it

carried 6, 9, 12 or 18 identical pieces? To quantify the risk

as a function of the total number of pieces carried, we must

make assumptions, about either the distribution of the number

of failures, or the distribution of the life of each piece. This

is where the theory of probability and statistics comes to the

rescue of the decision maker.

Two complementary stochastic models

Let N be the unknown number of failures that occur during

a mission of t years. It is reasonable to assume that this vari-

able (roughly) follows a Poisson distribution, named after the

French mathematician Siméon Denis Poisson (1781-1840) who

proposed it. This model states that if µN = λt is the average

1See http://www.esa.int/Our Activities/Space Science/Rosetta for more details on this mission. Under the headline “Mission complete:
Rosetta’s journey ends in daring descent to comet” the website announced: ‘On 30 September 2016 ESA’s historic Rosetta mission has concluded as
planned, with the controlled impact onto the comet it had been investigating for more than two years.’

2 * Mathematics & Statistics, ** Epidemiology, Biostatistics & Occupational Health, McGill University
3 This piece is adapted from the Acromath article by Genest and Hanley - see Resources
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number of outages during a mission of t years (i.e. λ per year

of operation), then for each n ∈ {0, 1, . . . }, the probability (Pr)

that N = n, i.e., the probability that one observes n failures

during t full years of operation, is given by

Pr(N = n) =
µnN e−µN

n!

where n! = 1 × 2 × · · · × n for n ∈ {1, 2, . . . } and 0! = 1 by

convention.

If the mission carries k identical pieces, a t-year mission

will be completed successfully if at most k − 1 pieces fail.

The probability of this event is Pr(N ≤ k − 1) = Pr(N =

0) + Pr(N = 1) + . . . + Pr(N = k − 1). If λ = 3/4 and

t = 10, and if k = 12, this probability is approximately 0.921

(or 92.1%), as can be calculated with the Excel spreadsheet us-

ing the command POISSON (11; 7.5 ; cumulative = TRUE).

Another, equivalent, way to proceed would be to consider

the total life of the system. If the module is equipped with k

pieces and Li denotes the lifetime of the i-th piece, then the

total lifetime is given by

L = L1 + ...+ Lk

and the mission will be a success if L > t years. The identity

Pr(L > t) = Pr(N ≤ k − 1) represents a perfect link between

the discrete distribution of the number N of failures and the

continuous distribution of the lifetime, L, of the system.

Since the pieces are identical, it is reasonable to assume

that their lives L1, . . . , Lk are mutually independent and iden-

tically distributed. If the number N of failures in t years of

operation is a Poisson variable whose average value is λt, we

then have

Pr(Li > t) = e−λt,

for all all i ∈ {1, ..., k} and t > 0. In effect, with 0! = 1, we see

that

Pr(Li > t) = Pr(L1 > t) = Pr(N = 0) = e−λt.

We say that the variables L1, . . . , Lk are exponentially dis-

tributed random variables, each with failure rate λ/year. Thus

the average lifespan of each piece is (1/λ) years. Since they are

k in number, the life expectancy of the system is k/λ years of

operation. This is good to know, but what interests especially

the mission planners is Pr(L > t).

The Danish mathematician Agner Krarup Erlang (1878-

1929), who was very interested in the theory of queues and

management of telephone systems, determined the probability

distribution of the sum L = L1+· · ·+Lk of k mutually indepen-

dent exponentially distributed random variables each having

a rate parameter λ. He showed that if one could observe an

infinite number of values of L, the shape the histogram would

be given by the formula

fL(l) =
λ(λl)k−1 e−λl

(k − 1)!
.

The probability that L > t is then given by the area under the

curve between the points t and infinity, namely

Pr(L > t) =

∫ ∞
t

f(l)dl.

The law of Erlang being a special case of the gamma distri-

bution, the complement of this integral can be evaluated with

the command of Excel:

GAMMADIST (t; 12; 4/3; cumulative = TRUE)

When we put t = 10, the Excel result is 0.079; its complement

is 1− 0.079 = 0.921, or 92.1%.

The link between the discrete and continuous

Performing the change of variable w = λl in the above integral,
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and taking into account that dw = λ dl, we find that

Pr(L > t) =

∫ ∞
t

wk−1e−w

(k − 1)!
dw.

Since Pr(L > t) = Pr(N ≤ k − 1), we deduce that

k−1∑
0

µne−µ

n!
=

∫ ∞
t

wk−1e−w

(k − 1)!
dw.

This remarkable identity, valid for any integer k in {1, 2, ...},
can also be demonstrated by recursion (see Appendix 1). It es-

tablishes a direct and precise link between the upper tail area

of the (continuous) gamma distribution and a finite sum rep-

resenting the corresponding lower tail of the (discrete) Poisson

distribution. Thus, one can evaluate one or the other, accord-

ing to the calculation means at hand.

In the early 20th century, there were no electronic com-

puters let alone Excel spreadsheets. In his seminal 1900 work

on a statistical goodness-of-fit test for frequency data, the En-

glish mathematician Karl Pearson (1857-1936) showed several

examples, and for each one calculated the upper tail area of

(what we now know as) the chi-squared distribution by com-

puting a finite sum. If one examines the sum carefully (see

example) one will immediately recognize that this upper tail

is also a sum of Poisson probabilities for the integers 0 to some

(k − 1). His 1900 paper provided tables for df. With time,

tables of values of Erlang integral were constructed for various

values of k and µ.

Another founding father of modern statistics, the English-

man Sir Ronald Fisher (1890-1962), often exploited the iden-

tity shown in the box to avoid tedious calculations, and his

1934 article connected many of the common distributions.

Even today, Excel and many other statistical software im-

plicitly make use of this identity. The current methods of nu-

merical calculation allow integrals to be evaluated with great

precision, even when the rounding errors involved in the evalu-

ation of the different terms of a sum are cumulative; if the sum

includes many terms, the accumulated error can be significant

even if each of them is very small, so care is needed.

Other applications and generalizations

The Poisson-exponential model presented here has many ap-

plications, not only in aerospace and theory of queues, but in

many areas, such as insurance, biochemistry or the study of

disease. The requirements for applying the model are those

of a “Poisson process.” Even though they are relatively few

contra-indications, these are not always checked in practice.

One may observe an abnormally high number of zeros. Or, it

may happen that the life spans of successive parts are neither

exponentially distributed nor independent of each other. In

our example, a particularly violent solar storm would likely

damage all Rosetta spare parts simultaneously. In such con-

texts, the probability calculations presented here are no longer

valid. Various generalizations and variants of the Poisson-

exponential model are used to account for such situations.

A telling figure

All the concepts presented in the article can be illustrated

nicely by the figure below, produced using the statistical free-

ware R [see Appendix 2]. The figure is an assembly of five

panels labeled A, A’, B, C and D. We now explain what each

one represents.

Panel A contains 25 lines composed of coloured segments.

Every line represents a possible realization of the journey un-

dertaken by the Rosetta spacecraft over a period of 10 years.

The lengths of the coloured segments show the successive lives

of the pieces, assuming that initially the probe has on board

12 pieces (numbered 1 to 12), and that pieces have mutually

independent lives and exponential distributions with λ = 3/4

failures per year. The number that appears at the end of the

line indicates which piece is operating when, after 10 years,

Rosetta released the Philae module that landed on the Tchouri

comet.
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In this simulation with R, the mission proved successful in

22 of 25 cases, or in 88% of the simulated instances. Missions 8,

18 and 24 (counting from the bottom) ended in failure. This

proportion of observed successes is quite close to the 92.1%

predicted by the theory.

Panel B shows, on the same time scale as panel A, when

each of the 25 simulated Rosetta missions would eventually fail

for lack of spare pieces. The first three points are those that

lead to the failure of simulated missions 8, 18 and 24. In the

best scenario, Rosetta would become dysfunctional at the end

of 24 years.

While 25 simulated scenarios were enough to get a rea-

sonably acceptable estimate of the probability of failure for a

mission of 10 years, the dispersion of the points along the right

side of panel B gives only a rough idea of the distribution of the

variable L, the total life of the system. Obviously, it is more

difficult to estimate an entire curve than to estimate a num-

ber! To better understand the distribution of L, we would need

to have thousands of repetitions and then to smooth the his-

togram of the values we obtained. This is often the approach

used by the statisticians in very complex situations, involving

many variables. In our case, as we have already explained, an

exact calculation of the L distribution was possible.

The idealized histogram (the f(l) of the Erlang law) is

drawn in panel C for k = 3, 6, 9, 12 and 18 pieces, when the

rate is λ = 3/4 failures per year. The curve corresponding to

the case of k = 12 pieces is shaded. The dark grey part, which

corresponds to cases where l > 10 years, represents 92.1% of

the area under the curve; the complement, 7.9%, is the theo-

retical probability that the mission fails. Obviously if we were

limited to k = 3 or 6 pieces, the chances of success would

be small (2% and 24.1%). In contrast, some 99.9% of missions

would be successful, if the mission carried k = 18 pieces. Thus,

the calculation of probabilities enables us to quantify the risk

and find a good compromise given the constraints of weight,

space as well as cost.

Panel D illustrates the relationship Pr(L > t) = Pr(N ≤
k − 1). This can be read in two complementary ways. The

x-axis runs from 0 to 10 years; the ordinate represents prob-

ability, expressed in percentages. The colour ranges identified

as 1 to 12 are associated with the lives of the parts; the visible

white part in the upper right corner represents a failure of the

mission (the colour code is the same as in panel A).

To read panel D, let us establish a vertical line, say at time

t = 1 year. The length of the green vertical segment then rep-

resents the probability that piece number 1 is still operational

at time t. The length of the next segment is the probability

that piece number 2 is the one in operation at that moment,

and so on for the other segments. If we now slide t to the right,

to say t = 2 years, we see that the green segment is smaller.

This corresponds to the fact that as time passes, the chances of

survival of the first piece are dwindling; in fact, they decrease

at an exponential rate, as we have seen previously.

Similarly, the upper boundary of zone i ∈ {1, ..., 12} repre-

sents the survival function of the variable L1 + · · ·+Li, that is

to say the curve Pr(L1 + · · ·+Li > t) drawn as a function of t.

As we have seen, this probability is also the probability of ob-

serving N ≤ i− 1 failures in the time interval [0, t]. When i =

12, the probability represents the probability that the mission

is successful up to then (i.e., up to t); as might be expected, it

decreases over time and is 92.1% after 10 years.

Panels C and D are based on theoretical calculations, while

panels A and B are the result of a simulation, repeated 25

times. If the assumptions underlying the theory are valid, the

resulting formulas predict the portrait that would be realized if

one had carried out a very large number of independent trials.

Thus, for example, the distribution of colours along the verti-

cal line at t = 10 years give the chances that a particular piece

is in use at the time the probe reaches the comet. Meanwhile,

panel A’ shows the empirically observed distribution (we sim-
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ply reordered the results already reported on panel A). Given

the small number of repetitions, the correspondence is quite

good!

Box 1: Demonstration of the Identity

The proof is by induction on the number of pieces, k.

Note first that the identity is true when k = 1 since 0! =

1, so that∫ ∞
µ

w0e−w

0!
dw = e−µ = Pr(N = 0) = Pr(N ≤ 0).

Suppose then that the relation holds for any integer k.

To show that it remains true for k + 1, you only have to

integrate by parts. Knowing that −e−w is the derivative

of e−w and that d
dw (wk) = kwk−1, one has

∫ ∞
µ

wke−w

k!
dw =

µke−µ

k!
+

∫ ∞
µ

kw(k − 1)e−w

k!
dw.

The first term of the sum is Pr(N = k) and the sec-

ond is Pr(N ≤ k − 1) by the induction hypothesis. The

integral is therefore equal to

Pr(N = k) + Pr(N ≤ k − 1) = Pr(N ≤ k),

as stated. This proves that the result is valid for any

integer k ∈ {1, 2, . . . }.

Box 2: The freeware R

R is a programming language and software environ-

ment for statistical computing and data analysis. With

excellent graphics capabilities in 2 and 3 dimensions, this

software is royalty free and may be downloaded from the

following site:

http://www.r-project.org/

It is compatible with UNIX operating systems, Windows

and MacOS.

The R software is the collective work of the interna-

tional statistical community. It is changing, thanks to

the hundreds of statisticians and programmers who con-

tribute constantly and on a voluntary basis to improve its

content, including the addition of new modules that re-

flect the latest advances in statistical planning and data

analysis. This software is widely used both for teaching

and for research.

The code needed to produce the figure below is too

complex to be reproduced here (we will provide it on re-

quest), but if you type ppois (11,7.5) or pgamma (10.12,

scale = 4/3, lower. tail = FALSE) on the command line,

the software gives 0.9207587 in both cases. Upon reading

the article, can you say why?

For more information about the freeware R and its

multiple uses, see for example the book entitled Le logi-

ciel R : Mâıtriser le langage ? Effectuer des analyses

statistiques, published in 2011 by Springer France (ISBN

978-2-8178-0114-8). This beautiful book, a finalist for the

Roberval Prize, is the work of three professors of statistics,

Pierre Lafaye Micheaux (Université de Montréal), Rémy

Drouilhet (Université Pierre Mendès France, Grenoble)

and Benôıt Liquet (The University of Queensland, Aus-

tralia).
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170 Prof.  Ka r l  Pearson on Deviation.qfrom the 
fi'om the most probable 

P='5586.  
I n  56 cases out of a hundred such trials we should on a 
random selection get more improbable results than we have 
done. Thus we may consider the fit r emarkab ly  good. 

Illustration V. 
The following table gives the frequencies observed in  a 

system recorded by Thiele in his Forelaesinger over almlndel:g 
lagttagelsedaere, 1889, together with the results obtained by 
fi t t ing a curve of my Type 1. The rough  values of the 
moments  only were, however, used, and as well ordinates used 
neasure  areas : ~  

Observed Groups. m'. 

1 . . . . . . . . .  0 
2 ........ 3 
3 7 
4 35 
5 lOt 
6 89 
7 94 
8 70 
9 46 

i0 30 
11  ......... 15 
12 4 
13 5 
14 1 
15 0 
16 ......... 0 
17 ......... 0 

- - - ; o o  ' 

C u r v e  m t .  

"18 
"68 

13'48 
45"19 
79"36 
96"10 
90"90 
"71 "41 
48"25 
28"53 
14"94 
6"96 
2-88 
1 0 6  
"34 
"10 
"00 

500"36~ 

- -  '18 
-- 2"32 
+ 6"48 
-~ 10'19 

21 "64 
-~ 7-10 

3"10 
i 1-41 2"25 
- 147 

"06 
A 2"96 

2-12 
4 .06 
4 '34 
+ -10 
+ 0 

+ -36 

"0324 
5"3824 

419904 
103-8361 
468 '2896 
50-4[00 
9.6100 
1 ~ 8 8 1  
5-0625 
"2-1609 

"0036 
8"7616 
4-4944 
-0036 
"1156 
~)092 
"0 

e 2 / : ~ ,  o 

"18 
7"9153 
3'1150 
2'2977 
5'9008 

.5")_45 
"1058 
"0278 
"1049 
"0757 
"0(_)02 

1"2523 
1 "5605 
"0035 
"3400 
"0960 
'0 

Thus gives  89 ~ = 11" 75 = ~/~ say. 
Then 

( V v~ ~fl V~ n'5 v6 *i 7) 

Subs t i tu t ing  and working out we find 
P = ' 1 0 1 = ' I ,  say. 

Or, in one out of every ten trials we should expect to differ 
from the frequencies given by the curve by  a set of devia- 
tions as improbable  or more improbable.  Consider ing that we 
should get a better  fit of our  observed and calculated fre-  
quencies by  (i.) reducing  the moments ,  and (it.) actual ly  

+ Due to taking ordinates ibr areas and fewer figures than were really 
requirad in the calculations. 
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The material on the previous page is taken from the 1900 ar-

ticle ‘On the criterion that a given system of deviations from

the probable in the case of a correlated system of variables is

such that it can be reasonably supposed to have arisen from

random sampling’ in Philosophical Magazine Series 5.

To Pearson, the n′ = 17 groups implied a χ2 distribution with

what today we would call 16 ‘degrees of freedom.’ So, he is

interested in the quantityP (χ2
16 > 23.5). And, it seems he is

not bothered by the fact that some of the expected (fitted)

frequencies are quite small.

A normal approximation, with µ = 16 and σ = 321/2 yields P

= 0.092. A better one, due to Fisher, is that (2χ2)1/2 is ap-

proximately normal with mean (2df − 1)1/2 and unit variance.

Pearson’s exact calculation of the upper tail, which is obvious

now as equivalent to the lower tail of a Poisson distribution,

yields P=0.101. The pchisq(23.5,16,lower.tail=FALSE)

statement in R yields 0.1010081.

The tabulated P’s have columns for n′ values from 3 to 20.

Here n′ is the number of categories or ‘groups.’ Today we

would call them 3 - 1 = 2 to 20 - 1 = 19 ‘degrees of freedom.’

Incidentally, in his paper he makes a distinction between fits

to models with known parameter values (such as in gambling)

and ones where, as in Illustration V, the parameters were es-

timated from the data. But he argued the correction for the

altter would be small. The need to adjust the degrees of free-

dom to account for the number of fitting parameters became a

cause célèbre between Pearson and Fisher (Fisher was correct).

As for the table of P values, the following R code gives the ‘to

6 digits’ P values we would obtain today.

n.prime = 3:20 ; length(n.prime)

chi.sq = c(1:10,seq(15,30,5),seq(40,70,10))

P = matrix(NA,length(chi.sq),length(n.prime))

for(row in 1:length(chi.sq) ){

for(col in 1:length(n.prime) ){

P[row,col] = pchisq(

chi.sq[row], n.prime[col]-1,

lower.tail = FALSE )

}

}

cbind(chi.sq,round(P[,1:10],6))

cbind(chi.sq, round( P[,(14:18)] ,6) )

You can check whether Pearson and Lee made any errors.

In the Accromath article, we worked with the gamma rather

than the χ2 distribution, but Pearson’s worked out P value

shows the identity between the mass of the χ2
16 distribution to

the right of the calculated statistic 23.5, and the sum of the

first 8 terms (0 to 7) of the Poisson distribution with expecta-

tion µ = 23.5/2. How is this?

Today, we know the link between the sum of the (0 to 7) prob-

abilities of the Poisson distribution and the upper tail of the

gamma(8) or Erlang(8) distribution. But at that time, even

though the gamma function goes back to Euler, the gamma

distributions had not been tabulated, and so for most of the

20th century statisticians relied instead on the exact link be-

tween the Poisson and the χ2 distribution.

With tabulated distributions no longer critical, and where each

distribution is covered in R, we tend not to rely on links. But,

in any case let’s complete these specific links.
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A χ2
16 random variable is a sum of the squares of 16 indepen-

dent Gaussian (Normal) random variables, each with mean 0

and standard deviation 1, i.e., χ2
16 = Z2

1 + . . . + Z2
16. The

distribution of each Z2 can easily be worked out from first

principles. Ignoring the constant (2π)1/2, the random variable

Z has pdf

pdfZ(z) ∝ e−(1/2)z
2

Ignoring the factor of 2 that reflects values coming from the

squares of both negative and positive values of Z, we have

pdfY (y) ∝ pdfZ(z-equivalent of y)× J(y),

where J is the Jacobian, d y1/2

dy , evaluated at y. The

pdfZ(z-equivalent of y) is proportional to e−(1/2)y and J(y) =

(1/2)y−1/2 is the scaling factor.

So,

pdfY (y) ∝ e−(1/2)y y−1/2 = e−(1/2)y y1/2−1

and we recognize this as the pdf of a gamma distribution

with shape parameter 1/2 and ‘scale’ parameter 2, or ‘rate’

parameter 1/2. [Check: we know that E(χ2
1) = E(Z2) = 1,

and that Var(χ2
1) = 2. This fits with our knowledge that if G

is a gamma random variable, then E(G) = shape × scale

and Var(G) = shape × scale2 = (1/2)× 22 = 2.]

We also know that the gamma family is closed under the addi-

tion of independent random variables with the same scale/rate,

but possible different shapes. So the sum of two independent

χ2
1 distributions is a gamma random variable with shape pa-

rameter 2×1/2 = 1 and ‘scale’ parameter 2, or ‘rate’ parameter

1/2. In other words, the sum of the squares of 2 in-

dependent standardized Normal random variables has

an exponential distribution with mean 2.

So, the sum of the squares of 16 independent standardized

Normal random variables has an gamma distribution with

shape parameter 8 and scale 2. Thus, half the sum of the

squares of 16 independent standardized Normal ran-

dom variables has an gamma distribution with shape

parameter 8 and scale 1. Thus, the fact that Pearson’s

calculation of the upper tail of the χ2
16 distribution looks iden-

tical to the calculation of the (0-7) lower tail area of a Poisson

random variable is no longer a surprize.

For most of the 20th century, before R, but after the χ2 dis-

tributions had been tabulated, epidemiologists used the upper

tail of the χ2 to calculate the lower tail of the Poisson dis-

tribution, and to calculate exact confidence intervals for the

expected value of a Poisson random variable. (See Fisher’s

example below) In effect, they were using the following links

between these 3 random variables

• Poisson[µ = λt]

• Gamma[shape, rate λ]

• χ2
df

Pr( Poisson[µ] ≤ k − 1 ) = Pr( Gamma[k, λ] > t ),

and

Pr(Gamma[k, λ] > t) = Pr
(λ

2
χ2
2k > t

)
= Pr

(
χ2
2k >

2

λ
t
)
.
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This article connected many distributions. And in section 5

(next page) it gave a way to use the χ2 tables to obtain (with-

out any trial and error) an exact confidence interval for the

expectation of a Poisson random variable. Section 6 gives a

similar CI, based on what we now call the F table, for the

expectation of a Binomial random variable.

Fisher could think geometrically in n dimensions, and shorten

some derivations to a few lines. just as he did when, still a

student in 1912, he wrote to Pearson with one for of the dis-

tribution of the sample variance s2 when y1, . . . , yn ∼ N(µ, 1),

with µ unknown (thus n−1 df). His ‘alternative proof’ in this

column (µ known, thus n df) uses the same insights.
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The sums at the top of this column are the same ones Pearson

had to wade through in 1900. The sum is messier when the

df. is an odd number. Section 5 shows the link between the

Poisson and χ2 tail areas.

He obtains (without trial and error) an exact CI for the ex-

pectation of a Poisson random variable based on a count of 3.

Today, trial and error is easy with the R ppois function. But

the principle behind the exact CI remains unchanged.
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