
Course BIOS601: Mean/quartile of a quantitative variable:- models / inference / planning

1 First: Overview of Sampling Distributions

1.1 Examples of Sampling Distributions

Distribution Statistic whose sampling variability it describes

Binomial(n, π) no. (or prop’n, p) of 1’s in s.r.s. of n from infinite-sized
universe containing proportion π of 1’s & (1− π) of 0’s.
— can think of p as a mean of n 1’s and 0’s.

Hypergeometric no. (or prop’n, p) of 1’s in s.r.s. of size n from universe
(N1 1′s, N0 0′s) of 1’s and 0’s, but where size (N) of universe is finite.

Poisson(µ) no. of 1’s in s.r.s. of n from infinite-sized universe of 0’s
and 1’s, but where π is small, and n is large, so that
np(1− p) ≈ np = µ [limiting case of Binomial].

No. of ‘events’ in a sampled volume of experience
(conditions apply ! – see later).

Gaussian mean, proportion, count, difference, etc. (n large)

Student’s t (ȳ − µ) / (sy/
√

n ); y ∼ N(µ, σ); s2
y =

∑
(y − ȳ)2/(n− 1).

F ratio of sample variances (used for ANOVA)

??? order statistic as estimate of quantile

1.2 Three ways of calculating sampling variability

1. directly from the relevant discrete distribution, by adding probabilities
of the variations in question, e.g. :

• 0.010+0.001 = 0.011 Binomial prob. of ≥ 9 1’s in n = 10 if π = 0.5.

• 2.5% probability of (Poisson) count ≥ 5 if µ = 1.624

• 2.5% probability of (Poisson) count ≤ 5 if µ = 11.668

2. from specially-worked out distributions for more complex statistics cal-
culated from continuous or rank data –

• Student’s t, F ratio, χ2, distribution of Wilcoxon statistic.

3. (very common) from the Gaussian approximation to the relevant
discrete or continuous distribution – by using (an estimate of) the stan-
dard deviation of the sampling variation in question and assuming the
variation is reasonably symmetric and bell-shaped [every sampling dis-
tribution has a standard deviation – its just that it isn’t very useful if
the distribution is quite skewed or heavy-tailed]. We give a special name
(standard error1) to the standard deviation of a sampling distribution in
order to distinguish it from the measure of variability of individuals. In-
terestingly, we haven’t given a special name to the square of the SD of a
statistic – we use Variance to denote both SE2 and SD2.

1.3 Standard Error (SE) of a sample statistic

What it is

An estimate of the SD of the different values of the sample statistic one would
obtain in different random samples of a given size n.

Since we observe only one of the many possible different random samples of
a given size, the SD of the sample statistic is not directly measurable.

In this course, in computer simulations, and in mathematical statistics courses,
we have the luxury of knowing the relevant information about each element in
the population and thus the probabilities of all the possible sample statistics.
Thus, for example, we can say that if individual Y ’s are such that Y ∼
N(µ, σ), then the different possible ȳ’s will vary from µ in a certain known
way. In real life, we don’t know the value of µ and are interested in estimating
it using the one sample we are allowed to observe. Thus the SE is usually an
estimate or a projection of the variation in a conceptual distribution i.e. the
SD of all the “might-have-been” statistics.

Use

If n large enough, the different possible values of the statistic would have a
Gaussian distribution with a spread of 2-3 SE’s on each side of the “true”

1Note: Up to Ch 5, M&M use the same notation for the SD of a mean or a difference of
means as they do for the SD of individuals – they use ‘SD’ for both. Many texts distinguish
the two by using SE (Standard Error) when dealing with the SD of a mean or proportion or
other statistic, and SD when dealing with individual variation. M&M in page 500 of Ch 7
say “when the SD of a statistic is estimated from the data, the result is called the SE of the
statistic.” This is a more restricted definition than many authors use. JH’s advice: always
say what SD or SE one is referring to: the SD or SE of a mean, SD or SE of a median, the
SD or SE of a proportion, the SD or SE of a slope, the SD of individual measurements etc.
If one sees a SD on its own i.e., without reference to a specific statistic, one would suspect
(but cannot be sure) that it is the SD of individuals. However a SE is never in relation to
individuals; it is always in relation to a statistic.
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parameter value [note the “would have”]

So, one can calculate the chance of various deviations from the true value.

Can determine under what range of parameter values the observed statistic
would/would be an extreme observation.

e.g.

if statistic is ȳ, we talk of SE of the mean (SEM)

SE(ȳ) describes variation of ȳ from µ;

SD(y) describes variation of y from µ (or from ȳ).

2 Sampling Distribution of ȳ:
Expectation / SD / Shape

• Quantitative variable (characteristic) of interest : Y

• N (effectively) infinite (or sampling with replacement)

• Mean of all Y values in population: µ

• Variance of all Y values in population: σ2

• Shape of distribution of Y ’s: Unknown/Unspecified

• Sample of size n; ( i.i.d.) observations y1, . . . , yn

• Sample mean: ȳ = (1/n)
∑

yi

Statistic E(Statistic) SD(Statistic)

ȳ µy σy/
√

n

2.1 ?? Shape of the sampling distribution of ȳ ??

The sampling distribution is the frequency distribution (e.g. in form of his-
togram or other depiction) we would get if we could observe the mean (or any
other calculated statistic) of each of the (infinite number of) different possible

random samples of a given size. It quantifies probabilistically how the differ-
ent possible values of the statistic would vary around some central value. The
sampling distribution is strictly conceptual (except, for illustration purposes,
in toy classroom exercises where we can actually do the ‘what if’ exercise for
all possible samples from some made-up universe of known values).

Relevance of knowing shape of a sampling distribution:

We will only observe the mean in the one sample we chose; however we can,
with certain assumptions, mathematically (beforehand) calculate how far the
mean (ȳ) of a randomly selected sample is likely to be from the mean (µ)
of the population. Thus we can say with a specified probability (95% for
example) that the ȳ that we are about to observe will be no more than Q (some
constant, depending on whether we use 90%, 95%, 99%, ... ) units from µ. In
‘frequentist’ inference, we say that in 95% of applications of our procedure,
our estimate will come within the stated distance of the target, and so we
can have this much ‘confidence’ in the procedure. The probability statement
associated with the confidence interval for µ is really about the stochastic
behaviour of ȳ in relation to µ.2. We also use the sampling distribution to
assess the (probabilistic) distance of a sample mean from some “test” or “Null
Hypothesis” value in statistical tests.

2.1.1 Example of the distribution of a sample mean:

When summing (or averaging) n 0’s and 1’s (i.e numbers measured on a 2-
point scale), there are only n+1 unique possibilities for the result (0, 1, . . . , n).
However, if we were studying a variable, e.g. cholesterol or income, that was
measured on a continuous scale, the numbers of possible sample means would
be very large and not easy to enumerate. For the sake of illustration, we
instead take a simpler variable, that is measured on a discrete integer scale

2Ideally any description of the CI should involve sentences in which ȳ is the subject;
µ should not be the subject of the sentence. In the ‘frequentist’ approach, we are not
allowed to say before (or after) the fact that there is a 95% probability that the target
will be (is) within the stated distance of where the estimate lands. If one is pretty sure
that a particular location is within 15 Km of downtown Montreal, then it is mathematically
correct to say that one is pretty sure that downtown Montreal is within 15 Km of the
location in question. In the frequentist approach, however, it is not ‘statistically correct ’ to
turn this type of statement around and to say that there therefore is a 95% chance that the
population mean (µ, the quantity we would like to make inferences about) will not be more
than Q units away from the sample mean (ȳ) we (are about to) observe. The reason has to
do with the differeny (asymmetric) logical status of each of the 2 quantities: even though it
is unknown, µ is treated as a fixed point, while ȳ is treated as the stochastic element. Thus,
for example, if µ were the speed of light, and ȳ was a future estimate of it, we cannot speak
of µ ‘falling’ randomly somewhere near ȳ: instead. In Bayesian inference, it is permitted to
speak of the pre-sample and thus the post-sample uncertainty concerning µ.
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with a very limited range. However, the principle is the same as for a truly
continuous variable.

Imagine we are interested in the average number of cars per household µ in
a city area with a large number (N) of households. With an estimate of the
average number per household and the total number of households we can
then estimate the total number of cars N × µ. It is not easy to get data on
every single one of the N , so we draw a random sample, with replacement, of
size n. [The sampling with replacement is simply for the sake of simplicity in
this example – we would use sampling without replacement in practice].

How much sampling variation can there be in the estimates we might obtain
from the sample? What will the degree of “error” or “noise” depend on? Can
we anticipate the magnitude of possible error and the pattern of the errors in
estimation caused by use of a finite sample?

Suppose that:

• 50% have 0 cars,

• 30% have 1 car,

• 20% have 2 cars.

i.e. in all, there are 0.5×N 0’s, 0.30×N 1’s, and 0.20×N 2’s.

You would be correct to object “but how can we know this - this is the point
of sampling”; however, this is a purely conceptual or “what if” exercise; the
relevance will become clear later.

The mean of the entire set of Y ’s is

µY = 0× 0.5 + 1× 0.3 + 2× 0.2 = 0.7

The variance of the Y ’s is

σ2
Y = (0− 0.7)2 × 0.5 + (1− 0.7)2 × 0.3 + (2− 0.7)2 × 0.2

= 0.49× 0.5 + 0.09× 0.3 + 1.69× 0.2
= 0.61

[Thus, the SD, σ =
√

0.61 = 0.78 is slightly larger than µ].

We take a s.r.s. of n = 2 houses, obtain y1 and y2, and use ȳ = (y1 + y2)/2 as
µ̂Y . What estimates might we obtain?

The distribution of all possible ȳ’s when n = 2 is:

Probability µ̂ error % error
(frequency) [i.e., ȳ] [ȳ − µ] [% of µ]

25% 0
2 = 0.0 -0.7 -100

30% 1
2 = 0.5 -0.2 -29

29% 2
2 = 1.0 +0.3 +43

12% 3
2 = 1.5 +0.8 +114

4% 4
2 = 2.0 +1.3 +186

Most of the possible estimates of µ from samples of size 2 will be “off the
target” by quite serious amounts. It’s not much good saying that “on average,
over all possible samples” the sample will produce the correct estimate.

Check:

Average[ȳ]
= 0× 0.25 + 0.5× 0.30 + 1.0× 0.29 + 1.5× 0.12 + 2.0× 0.04
= 0.7
= µ

V ariance[ȳ]
= (−0.7)2 × 0.25 + . . . (1.3)2 × 0.04
= 0.305
= σ2/2
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A sample of size n = 4 would give less variable estimates. The distribution of
the 3n = 81 possible sample configurations, and their corresponding estimates
of µ can be enumerated manually as:

Distribution of all possible ȳ’s when n = 4:

Probability µ̂ error % error
(frequency) [i.e., ȳ] [ȳ − µ] [% of µ]

6.25% 0
4 = 0.00 -0.70 -100

15.00% 1
4 = 0.25 -0.45 -64

23.50% 2
4 = 0.50 -0.20 -29

23.4% 3
4 = 0.75 +0.05 +7

17.61% 4
4 = 1.00 +0.30 +43

9.36% 5
4 = 1.25 +0.55 +79

3.76% 6
4 = 1.50 +0.80 +114

0.96% 7
4 = 1.75 +1.05 +150

0.16% 8
4 = 2.00 +1.30 +186

Of course, there is still a good chance that the estimate will be a long way
from the correct value of µ = 0.7. But the variance or scatter of the possible
estimates is less than it would have been had one used n = 2.

Check:

Average[ȳ]
= 0× 0.0625 + 0.25× 0.15 + ... + 2.0× 0.0016
= 0.7
= µ

V ariance[ȳ]
= (−0.7)2 × 0.0625 + (−0.45)2 × 0.15 + . . .

= 0.1525
= σ2/4

If we are happy with an estimate that is not more than 50% in error, then the
above table says that with a sample of n = 4, there is a 23.50 + 23.40 + 17.61
or ≈ 65% chance that our sample will result in an “acceptable” estimate (i.e.
within ±50% of µ). In other words, we can be 65% confident that our sample
will yield an estimate within 50% of the population parameter µ.

For a given n, we can trade a larger % error for a larger degree of confidence
and vice versa e.g. if n = 4, we can be 89% confident that our sample will
result in an estimate within 80% of or be 25% confident that our sample will
result in an estimate within 10% of µ.

If we use a bigger n, we can increase the degree of confidence, or narrow the
margin of error (or a mix of the two), since with a larger sample size, the
distribution of possible estimates is tighter around µ. With n = 100, we can
associate a 20% error with a statement of 90% confidence or a 10% error with
a statement of 65% confidence.

But one could argue that there are two problems with these calculations:
first, they assumed that we knew both µ and the distribution of the
individual Y ’s before we start; second, they used manual enumeration of
the possible configurations for a small n and Y ’s with a small number (3) of
possible integer values.

2.1.2 What about real situations with a sample of 10 or 100 from
an unknown distributions of Y on a continuous scale?

The answer can be seen by examining the sampling distributions as a function
of n in the ‘cars per household’ example, and in other examples dealing with
Y ’s with a more continuous distribution (see Colton p103-108, A&B p80-83
and M&M 403-404). All the examples show the following:
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1. As expected, the variation of possible sample means about the (in
practice, unknown) target µ is less in larger samples. We can use the
variance or SD of ȳ to measure this scatter. The SD (scatter) in the
possible ȳ’s from samples of size n is σ/

√
n, where σ is the SD of the

individual Y ’s.

This is true no matter what the shape of the distribution of the
individual Y’s.

2. If the individual Y ’s DO HAVE a Gaussian distribution, then the
distribution of all possible ȳ’s will be Gaussian.

BUT...

even if the individual Y ’s DO NOT a Gaussian distribution...

the larger the n [and the more symmetric and unimodal the distribution
of the individual Y’s], the more the distribution of possible ȳ’s resembles
a Gaussian distribution. And for many distributions, this approximation
is already quite good for samples of n = 30 or fewer.

The sampling distribution of ȳ [or of a sample proportion, or slope or
correlation, or other statistic created by aggregation of individual
observations ..] is, for a large enough n [and under other condi-
tions3], close to Gaussian in shape no matter what the shape of the
distribution of individual Y values. This phenomenon is referred to
as the CENTRAL LIMIT THEOREM.

We use the notation Y ∼ Distribution(µy, σy) as shorthand to say that “Y
has a certain type of distribution with mean µy and standard deviation σy”.

In this notation, the Central Limit Theorem says that

if Y ∼???(µY , σY ), then

ȳ ∼ N(µY , σY /
√

n), if n is large enough and ...

The Gaussian approximation to certain Binomial distributions is an example
of the Central Limit Theorem in action: Individual (Bernoulli) Y ’s have a

3On the degree of symmetry and dispersion of the distribution of the individual Y ’s.

2-point distribution: a proportion (1 - π) have the value Y = 0 and the
remaining proportion π have Y = 1.

The mean (µ) of all (0, 1) Y values in population is π.

The variance (σ2) of all Y values in population

σ2 = (0− π)2 × (1− π) + (1− π)2 × π = π(1− π)

From a sample of size n:

observations y1, y2, ..., yn (sequence of n 0’s and 1’s)

sample mean ȳ =
P

yi

n = number of 1′s
n = p.

CLT ...

If Y ∼ Bernoulli(µ = π, σ =
√

π[1− π]), then

p = ȳ ∼ N(π,
√

π[1− π]/
√

n) if n is sufficiently ‘large’ and π is not ex-
treme.4

Returning to example on estimating µcars/household.

If n = 100, then the SD of possible ȳ’s from samples of size n = 100 is
σ/
√

100 = 0.78/10 = 0.078. Thus, we can approximate the distribution of
possible ȳ’s by a Gaussian distribution with a mean of 0.7 and a standard
deviation of 0.078, to get ...

Interval Prob. % Error
µ± 1.00SD(ȳ) 0.7± 0.078 0.62 to 0.77 68% ±11%
µ± 1.50SD(ȳ) 0.7± 0.117 0.58 to 0.81 87% ±17%
µ± 1.96SD(ȳ) 0.7± 0.143 0.55 to 0.84 95% ±20%
µ± 3.00SD(ȳ) 0.7± 0.234 0.46 to 0.93 99.7% ±33%

[The Gaussian-based intervals are only slightly different from the results of a
computer simulation in which we drew samples of size 100 from the above Y
distribution]

If this variability in the possible estimates is still not acceptable and we use
a sample size of n = 200, the standard deviation of the possible ȳ’s is not

4E[no. ‘positive’ = numerator =
P

yi] needs to be sufficiently far ‘inland’ from 0 and
from 1, and n needs to be large enough that Binomial(n, π) distribution does not have much
probability mass on 0 or n,, i.e., so that the Gaussian approximation to it does not spill
over onto, and thus place substantial probability mass on, sillyvalues such as · · ·−3,−2,−1
or on n + 1, n + 2, . . . . One Rule of Thumb for when the Gaussian approximation provides
a reasobable accurate approximation is that both n × π ≥ 5 and n × (1 − π) ≥ 5, i.e. the
expected number of ‘positives’ should be ‘inland’ by at least 5 from both boundaries.
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halved (divided by 2) but rather divided by
√

2 = 1.4. We would need to go
to n = 400 to cut the s.d. down to half of what it is with n = 100.

[Notice that in all of this (as long as we sample with replacement, so that the
n members are drawn independently of each other), the size of the population
(N) didn’t enter into the calculations at all. The errors of our estimates
(i.e. how different we are from µ on randomly selected samples) vary directly
with σ and inversely with

√
n. However, if we were interested in estimating

Nµ rather than µ, the absolute error would be N times larger, although the
relative error would be the same in the two scales.]

Message from diagram opposite:

The variation of means is closer to Gaussian than the variation of the indi-
vidual observations (the panel where we have a mean of n = 1 values can
be taken as the distribution of individual Y ’s), and the bigger the sample
size, the closer to Gaussian: with large enough n, you could not tell from
the sampling distribution of the means what the shape of the distribution of
the individual ‘parent’ observations was. Averages of n = 16 are “effectively”
Gaussian in this example. How ‘fast’ the CLT will ‘kick in’ is a function of
how asymmetric the distribution of Y is.

2.1.3 Annother example of central limit theorem at work: word
lengths

The distribution of the lengths of words has a long right tail (see ‘n = 1′ panel
in Fig 2), but the (sampling) distribution of the possible values of the sample
mean when n = 2 has less of a long right tail, and the distribution of ȳn=4 is
less asymmetric and closer to Gaussian, and that of ȳn=16 even more so.

You can think of the effects of increasing n as two-fold:

• It makes for a ‘finer’ measuring scale (just as with a ruler with finer
gradations). For example, if the Y ’s are recorded with a ‘bin-width’ of
δY (integers in our two examples), then the sample mean has a ‘bin-
width’ of δY ÷ n.

• Extreme sums, and thus extreme means, are less likely: with large enough
n, there are enough extremes from each end of the distribution that they
will tend to cancel each other.

mean no. of cars in sample of size n
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Figure 1: Illustration of Central Limit Theorem
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mean no. letters/word in sample of size n
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Figure 2: Illustration of Central Limit Theorem

2.1.4 Other examples of central limit theorem in action work:

• Lengths of n-th generation copies of the 1-metre bar:

Suppose we use a piece of string (or a large photocopier) to make 2 copies
of the 1-metre prototype bar http://en.wikipedia.org/wiki/Metre.
But suppose that in doing so, we make independent errors of either
+1cm or -1cm. From each of these 2, we we 2 second generation copies,
again with independent +/- errors of 1mm, and from these 8 third
generation copies, etc.. What would be the distribution of the lengths
of the 216 16-th generation copies? They will have a binomial-shape
distribution, ranging from 84cm to 116cm, and centered on 100cm. A
plot this (using
plot(100+seq(0,16),dbinom(seq(0,16),16,0.5),type="h")
say, in R) you will see that it has the shape of what Gauss called the
Law or Errors. If you make the errors smaller, but have more of them,
the variation will be effectively on a continuous scale. One way to
establish the Normal density φ(y, µ, σ) is to apply Stirling’s formula
(http://en.wikipedia.org/wiki/Stirling’s approximation) to the
Binomial probabilities in the case of a large n and “success” probability
π = 0.5.

• Generating random numbers from a Gaussian distribution:

Since Φ−1, the inverse of the cdf of a N(0,1) random variable does
not have a closed form, the inverse cdf method of obtaining Gaussian
random numbers has to rely on an approximation involving powers.5

Another way to produce values that have close to a N(0,1) distribution
is by summing n = 12 realizations from a Uniform(0,1) distribution and
subtracting 6 from the sum.

# sum of 12 random numbers from U(0,1)

r = function(dummy) sum(runif(12))-6 ;
sum.12.uniforms = sapply(1:50000,r);
hist(sum.12.uniforms,breaks=50)

• There is also a CTL that applies to sums of independent but not identi-
cally distributed random variables. The key element is the independence.
See the cartoon “The Central Limit Theorem in Action (courtesy
Lawrence Joseph)” in the Resources page. If the components were

5For an exact method, see http://en.wikipedia.org/wiki/Box-Muller transform
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correlated, say because of weather, then it would impede the cancellation
of extremes.

days=2000;

walk.to.bus = rnorm(days,mean=4,sd=1);
wait.for.bus = runif(days,4,16);
bus.ride = rnorm(days,mean=20,sd=2);
walk.up.hill = rgamma(days,scale=2,shape=3/2);

hist(walk.to.bus); summary(walk.to.bus);
hist(wait.for.bus); summary(wait.for.bus);
hist(bus.ride); summary(bus.ride);
hist(walk.up.hill); summary(walk.up.hill);

total.time = walk.to.bus + wait.for.bus + bus.ride +
walk.up.hill;

summary(total.time);
c(mean(total.time),sd(total.time),var(total.time))
hist(total.time)
boxplot(total.time)

3 Standard Error (SE) of combination or
weighted average of estimates

SE(
∑

estimates) =
√∑

([SE of each estimate]2)

SE(constant× estimate) = constant× SE(estimate)
SE(constant + estimate) = SE(estimate)

SE(
∑

wi × estimatei) =
√∑

(w2
i × [SE estimatei]2) (1)

This last one is important for combining estimates from stratified
samples, and for meta-analysis:

In an estimate for the overall population, derived from a stratified sample, the
weights are chosen so that the overall estimate is unbiased for the weighted
average of the stratum-specific parameters i.e. the w’s are the relative sizes

of the segments (strata) of the overall population (see “combining estimates
... entire population” below). The parameter values usually differ between
strata: this is why stratified sampling helps. The estimate for this weighted
avearge of the stratum-specific parameters is formed as a weighted average of
the age-specific parameter estimates, and so one has no choice in the choise of
weights: they must reflect the proportions of population in the various strata.

If instead, one had several estimates of a single parameter value (a big as-
sumption in the ‘usual’ approach to meta-analyses), but each estimate had a
different uncertainty (precision), one should take a weighted average of them,
but with the weights inversely proportional to the amount of uncertainty in
each. From the formula above one can verify by algebra or trial and error that
the smallest variance for the weighted average is obtained by using weights
proportional to the inverse of the variance (squared standard error) of each
estimate. If there is variation in the parameter value, a ‘fixed effects’ SE is too
small. The ‘random effects’ approach to meta-analyses weights each estimate
in inverse relation to an amalgam of (i) each SE and (ii) the ‘greater-than-
random’ variation between estimates [it allows for the possibility that the
parameter estimates from each study would not be the same, even if each
study used huge n’s). The SE of this weighted average is larger than that
using the simpler (called fixed effects) model; as a result, CI’s are also wider.

3.1 Combining Estimates from Subpopulations to form
an Estimate for the Entire Population

Suppose several (say k) sub-populations or “strata” of sizes N1, N2, ... Nk,
form one entire population of size

∑
Nk = N . Suppose we are interested

in the average level of a quantitative characteristic, or the prevalence of a
qualitative characteristic in the entire population. Denote this numerical or
binary characteristic in each individual by Y , and an average or proportion (or
total) across all individuals in the population by θ. It could stand for a mean
(µ), a total (Tamount = N ×µ), a proportion (π), a percentage (% = 100π) or
a total count (Tc = N × π).

Examples:

If Y is a measured variable (i.e. “numerical”)
µ: the annual (per capita) consumption of cigarettes
Tamount: the total undeclared yearly income

(Tamount = N × µ and conversely µ = Tamount/N)
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If Y is a binary variable (i.e. “yes / no”)
π: the proportion of persons who exercise regularly
100π%: the percentage of children who have been fully vaccinated
Nπ: the total number of persons who need Rx for hypertension

(Tc = Nπ; π = Tc/N)

The sub-populations might be age groups, the 2 sexes, occupations, provinces,
etc. There is a corresponding θi for the i-th of the k sub-populations. Rather
than study every individual each each stratum, one might instead measure Y
in a sample from each stratum.

3.2 Estimate of overall µ, π, or π%, by combining esti-
mates:

Sub Relative Size Sample Estimate SE of
Popln Size Wi = Ni/N Size of θi estimate

1 N1 W1 n1 e1 SE(e1)
... ... ... ... ... ...
... ... ... ... ... ...
k Nk Wk nk ek SE(ek)

Total
∑

Ni = N
∑

Wi = 1
∑

ni = n
∑

Wiei

∑
W 2

i [SE(ei)]2

Note 1 To estimate Tamount or Tc, use weights Wi = Ni;

Note 2 If any sampling fraction fi = ni/Ni is substantial, the SE of the ei

should be scaled down i.e. it should be multiplied by
√

(1− fi).

Note 3 If variability in Y within a stratum is smaller than across strata,
the smaller SE obtained from the SE’s of the individual stratum specific
estimates more accurately reflects the uncertainty in the overall estimate.
Largest gain over SRS is when large inter-stratum variability.

4 (FREQUENTIST) Inference for µ – small n:
Student’s t distribution

Use: when we replace σ by s (an estimate of σ) when forming CI’s, or carrying
out statistics tests, using the sample mean and the standard error of the
mean.6 We proceed in the usual way – expressing the distance of ȳ from µ in
terms of multiples of SEȳ = s/

√
n – except that we use a different ‘reference’

distribution than the usual Z (Gaussian)one. The percentiles of this new
distribution are further from 0 than the familiar 0.84, 1.28, 1.645, 1.96, etc,of
the Z distribution: how much further depends on the amount of data (i.e.,
the (n− 1) used to estimate σ2.

To paraphrase, and quote from, Student’s 1908 paper... (italics by JH)

(Until now) “the usual method of calculating the probability that “µ
is within a given distance of x̄ 7 is to assume µ ∼ N(x̄, s/

√
n), where

s is the standard deviation of the sample, and to use the tables of
the (Normal) probability integral.” But, with smaller n, the value
of s “becomes itself subject to increasing error.” In some instances,
we can use a more reliable value of s from earlier experiments, but
“in some chemical, many biological, and most agricultural and large
scale experiments,” we are forced to “judge of the uncertainty of the
results from a small sample, which itself affords the only indication of
the variability.” Inferential methods for such small-scale experiments
had “hitherto been outside the range of statistical enquiry.”

Rather than merely complain, Gosset did something about it.

Although it is well known that the method of using the normal curve
is only trustworthy when the sample is “large”, no one has yet told us
very clearly where the limit between “large” and “small” samples is
to be drawn. The aim of the present paper is to determine the point
at which we may use the tables of the (Normal) probability integral in
judging of the significance of the mean of a series of experiments, and
to furnish alternative tables for use when the number of experiments
is too few.

6it is also used in a wider context, where we have a ratio of a Gaussian random variable,
and the square root of an independent random variable that has a chi-squared distribution.

7This way of writing, i.e., of making µ the subject of the sentence, was commonplace
in 1908; it is not politically or statistically correct today, unless one adopts a Bayesian
viewpoint, where the focus is directly on the pre- and post-data uncertainty concerning µ.
[JH]
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Student assumed that the Y values are normally distributed, so that ȳ has a
Gaussian sampling distribution.8

“Student’s” t distribution is the (conceptual) distribution one would get if
one...

• took (an infinite number of) samples, of a given size n, from a
Normal(µ, σ) distribution

• formed the ratio t = (ȳ − µ) / (s/
√

n) from each sample

• compiled a histogram of the ratios.

In fact, to check that his derivation was correct, Gosset9 actually performed
a simulation in which he followed the above process:

Before I had succeeded in solving my problem analytically, I had
endeavored to do so empirically. The material I used was a ... table
containing the height and left middle finger measurements of 3000
criminals.... The measurements were written out on 3000 pieces of
cardboard, which were then very thoroughly shuffled and drawn at
random... each consecutive set of 4 was taken as a sample... [i.e.
n = 4 above]... and the mean [and] standard deviation of each sample
determined.... This provides us with two sets of... 750 (ratios) on
which to test the theoretical results arrived at. The height and left
middle finger... table was chosen because the distribution of both
was approximately normal...”

Sampling distribution of t

• is symmetric around 0 (just like Z distribution)

• has shape like that of the Z distribution, but with SD slightly larger than
unity i.e. slightly flatter & more wide-tailed; V ar[t] = df/(df − 2).

• its shape becomes indistinguishable from that of Z distribution as n →∞
(in fact as n goes much beyond 30.)

8even if the Y ’s were not normally distributed, but n was sufficiently large, the Central
Limit Theorem would guarantee that the distribution of all possible ȳ’s is close to a Gaussian
distribution – but with large enough n, one would have sufficient degrees of freedom to
estimate σ quite precisely, and so the problem would disappear.

9Student. The probable error of a mean, Biometrika 1908.

• Instead of ±1.96σ/
√

n for 95% confidence, we need

Multiple n Degrees of freedom (‘df’)

±3.182 4 3
... ... ...

±2.228 11 10
... ... ...

±2.086 21 20
... ... ...

±2.042 31 30
... ... ...

±1.980 121 120
... ... ...

±1.960 ∞ ∞

•

Test of µ = µ0 Confidence Interval (CI) for µ

t ratio = (ȳ − µ0/(s/
√

n) ȳ ± t× s/
√

n

4.1 WORKED EXAMPLE: CI and Test of Significance

Response of interest: D: Increase (D) in hours of sleep with a test medication.

Test:
µD = 0 H0

6= 0 Halt

α = 0.05 2 sided

10
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Data:10

Hours of Sleep † Difference:
Subject Drug Placebo Drug minus Placebo

d

1 6.1 5.2 0.9
2 7.0 7.9 -0.9
3 8.2 3.9 4.3
4 • • 2.9
5 • • 1.2
6 • • 3.0
7 • • 2.7
8 • • 0.6
9 • • 3.6
10 • • -0.5

d̄ = 1.78

SD[d] = 1.77

Test statistic: t = (1.78− 0)/(1.77/
√

10 = 3.18.

Critical Value: |t9| = 2.26

Since 3.18 > |t9|, we “reject” H0.

95% CI for µD: 1.78± t9 × SEd̄

1.78± 2.26× (1.77/
√

10)
1.78± 1.26
0.5 to 3.0 hours

10table deliberately omits the full data on the drug and placebo conditions: this is to
emphasize that all we need for the analysis are the 10 differences.

4.2 Another worked Example, with graphic:

Posture, blood flow, and prophylaxis of venous thromboembolism.
CPG Barker, The Lancet Vol 345. Aprill 22, 1995, p. 1047.

Sir–Ashby and colleagues (Feb 18, p 419) report adverse effects of posture on
femoral venous blood flow. They noted a moderate reduction velocity when a
patient was sitting propped up at 35◦ in a hospital bed posture and a further
pronounced reduction when the patient was sitting with legs dependent. Pa-
tients recovering from operations are often asked to sit in a chair with their
feet elevated on a footrest. The footrests used in most hospitals, while raising
the feet, compress the posterior aspect of the calf. Such compression may be
important in the aetiology of venous thrombo-embolism. We investigated the
effect of a footrest on blood flow in the deep veins of the calf by dynamic
radionuclide venography.

Calf venous blood flow was measured in fifteen young (18-31 years) healthy
male volunteers. 88 MBq technetium-99m-labelled pertechnetate in 1 mL
saline was injected into the lateral dorsal vein of each foot, with ankle tourni-
quets inflated to 40 mm Hg, and the time the bolus took to reach the lower
border of the patella was measured (Sophy DSX Rectangular Gamma Cam-
era). Each subject had one foot elevated with the calf resting on the footrest
and the other plantigrade on the floor as a control. The mean transit time of
the bolus to the knee was 24.6 s (SE 2.2) for elevated feet and 14.8 s (SE 2.2)
for control feet [see figure 3]. The mean delay was 9.9 s (95% CI 7.8-12.0).

Simple leg elevation without hip flexion increases leg venous drainage and
femoral venous blood flow. The footrest used in this study raises the foot
by extension at the knee with no change in the hip position. Ashby and
colleagues’ findings suggest that such elevation without calf compression would
produce an increase in blood flow. Direct pressure of the posterior aspect of
the calf therefore seems to be the most likely reason for the reduction in flow we
observed. Sitting cross-legged also reduced calf venous blood flow, probably
by a similar mechanism. If venous stasis is important in the aetiology of
venous thrombosis, the practice of nursing patients with their feet elevated on
footrests may need to be reviewed.

[Data abstracted from diagram; calculations won’t match exactly those in text ]

d̄(SD) = 9.8(4.1); t = (9.8− 0)/(4.1/
√

15) = 9.8/1.0 = 9.8

Critical ratio: t14,0.05 = 2.145. So, the observed difference is ‘off the t-scale’.
This corroborates the impression gained from visual display of the data.

95% CI for µD : 9.8± 2.145× 1.0 i.e., 7.7s to 11.9s.
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mean 14.8 24.6 9.8
SD 8.5 8.7 4.1
SEM 2.2 2.2 1.0

No FootRest FootRest Delay

No FootRest

Figure 3: Raw data, and summary statistics

Remarks:

Whereas the mean, 9.8, of the 15 within-person between-conditionc differences
is arithmetically equal to the difference of the 2 means of 15, the SE of the
mean of these 15 differences is not the same as the SE of the difference of two
independent means. In general...

V ar(ȳ1 − ȳ2) = V ar(ȳ1) + V ar(ȳ2)− 2× Covariance(ȳ1, ȳ2)

Double-check that one can arrive at the SE of 1.1 for the mean delay by
subtracting twice the covariance from the sum of the two variances, and then
taking the square root of this.

Indeed, the effect of pairing is to remove the intrinsic between-person variance,
and focus the within-person differences. Applying an inefficient statisti-
cal analysis to data collected by an efficient statistical design is a
common ‘Type III’ error!

Authors continue to report the SE of each of the 2 means, but the
2 separate SEs are of little use here, since we are not interested in
the difference of means, but in the mean difference.

Calculating

V ar(ȳ1 − ȳ2) = V ar(ȳ1) + V ar(ȳ2) = 2.22 + 2.22 = 9.7

so that the SEdiff. in means is
√

9.7 =
√

2 × 2.2 = 3.1 assumes that we used
one set of 15 subjects for the No FootRest condition, and a different set of 15
for the FootRest condition, a much noisier contrast.

Fortunately, it turned out that in this study the signal is much greater than
the ’noise’. Thus, even the inefficient (2-independent samples) analysis, based
on a SEȳ1−ȳ0 = 3.1, would have produced a statistically significant 2-sample
t-ratio of 9.8/3.1 = 3.2.

See article (in jh’s catalogued collection) on display of data from pairs.
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4.3 Sample Size for CI’s and test involving µ

4.3.1 n required for a (2 sided) CI with margin of error (ME) at
confidence level 1− α

<-- Margin of Error(ME) -- • -- Margin of Error(ME) -->
<------------------------- • ------------------------->

• large-sample CI: • ±ME = ȳ ± Zα/2SE(ȳ)

• SE(ȳ) = σ/
√

n, so solving for n...

• n = (σ2 × Z2
α/2) / ME2.

• If n small, replace Zα/2 by tα/2

Typically we do not know σ, so we use use a pre-study estimate of it.

In planning n for example just discussed, authors might have had pilot data
on inter leg differences in transit time – with both legs in the No FootRest
position. Sometimes, one has to ‘ask around’ as to what the SD of the d’s will
be. Always safer to assume a higher SD than might turn out to be the case.

4.3.2 n required to have power 1− β when testing H0 : µ = µ0,
if unknown mean, µ, is ∆ units from µ0, i.e., if µalt − µ0 = ∆,
and if test is carried out with Probability[type I error] = α.

[cf. Fig 4, as well as Colton p. 142, and CRC table on next page.]

• Assume that the ‘unit variability’, σY , is the same under H0 and Halt,
so that

SE0[ȳ] = SEalt[ȳ] = σY /
√

n.

• Need
Zα/2 × SE0[ȳ] + Zβ × SEa;lt[ȳ] ≥ ∆.

• Substitute SE[ȳ] = σY /
√

n.

• Solve for n:

n ≥ [Zα/2 + Zβ ]2 × [σY /∆]2 σY /∆ is the “noise-to-signal” ratio.

α/2
µ

Z      SE[ybar]

µ

Z  SE[ybar]

β

 ∆ = µ    − µ

alt

0

0alt

α/2
β

Figure 4: Link between test size (α), sample size, n, power (1− β) and ∆.

Notes:

• To make life simpler, JH has made the diagram and formula in terms of
the absolute values of Zα/2 and Zβ . Thus, be careful with the sign of Zβ :
If µalt > µ, then the alternative distribution of ȳ is to the right of µ0 (as
in diagram), so that a power of more than 50% means that technically,
Zβ is negative. e.g. :

α = 0.05 & β = 0.2 ⇒ Zα/2 = 1.96 & Zβ = −0.84.

If back-solving for Zβ (and thus β) in terms of n, ∆ and σY , be especially
careful as to the sign of Zβ : always draw a diagram.

• While it can be α or α/2, its always 1− β, never 1− β/2 !

• Technically, if n is small, should use the more conservative tα/2 and tβ :
see table on the following page. Since the required n is a function of tα/2

and tβ and vice versa, arriving at this table takes some iteration.

• The question of what ∆ to use is not a matter of statistics or samples,
or what the last researcher found in a study, but rather the “difference
that would make a difference” i.e., it is a clinical judgement, and includes
the impact, cost, alternatives, etc... JH thinks of it as the ∆ that IF IT
WERE TRUE would lead to a difference in management or a substantial
risk, or ...

13
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4.4 Sign Test for median

Test:
MedianD = 0 H0

6= 0 Halt

α = 0.05 2 sided

Reference: Binomial [n = 10; π(+) = 0.5]. See also Sign Test Table which I
have provided in Chapter on Distribution-free Methods.

Data:

DIFFERENCE SIGN
Drug-Placebo

0.9 +
-0.9 -
4.3 +
2.9 +
1.2 +
3.0 +
2.7 +
0.6 +
3.6 +
-0.5 -∑

8+, 2-

Upper-tail: Prob[≥ 8 + | π = 0.5] = 0.0439 + 0.0098 + 0.0010 = 0.0547.
2-tails: P = 0.0547 + 0.0547 = 0.1094. P > 0.05 (2-sided) ...less powerful
than t-test.

In above example on Blood Flow, fact that all 15/15 had delays makes any
formal test unnecessary... the “Intra-Ocular Traumatic Test” says it all.

[Q: could it be that always raised the left leg, and blood flow is less in left leg?
Doubt it but ask the question just to point out that just because we find a
numerical difference doesn’t necessarily mean that we know what caused the
difference

Famous scientist, begins by removing one leg from an insect and, in an accent
I cannot reproduce on paper, says “quick march”. The insect walks briskly.
The scientist removes another leg, and again on being told “quick march” the
insect walks along... This continues until the last leg has been removed, and
the insect no longer walks. Whereupon the Scientist, again in an accent I
cannot convey here, pronounces “There! it goes to prove my theory: when
you remove the legs from an insect, it cannot hear you anymore!”.

4.4.1 Number of Observations to ensure specified power β if use
1-sample or paired t-test concerning µY or µd

Required n for test where α = 0.005 (1-sided) or α = 0.01 (2-sided)

β 0.01 0.05 0.10 0.20 0.50
Power 99% 95% 90% 80% 50%

∆/σ
0.2
0.3 134 78
0.4 115 97 77 45
0.5 100 75 63 51 30

0.6 71 53 45 36 22
0.7 53 40 34 28 17
0.8 41 32 27 22 14
0.9 34 26 22 18 12
1.0 28 22 19 16 10

1.2 21 16 14 12 8
1.4 16 13 12 10 7
1.6 13 11 10 8 6
1.8 12 10 9 8 6
2.0 10 8 8 7 5

2.5 8 7 6 6

3.0 7 6 6 5

Notes:

• ∆/σ = (µ− µ0)/σ = “Signal” / “Noise”

• Table entries transcribed from Table IV.3 of CRC Tables of Prob-
ability and Statistics. Table IV.3 tabulates the n’s for the Sig-
nal/Noise ratio increments of 0.1, and also includes entries for
α = 0.01 (1sided) / 0.02 (2-sided). See also Colton, page 142.

• Sample sizes based on t-distribution, and so slightly larger (and more
realistic, when n small) than those given by Z-based formula:
n = (Zα + Zβ)2 × (σ/∆)2.
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Required n for test where α = 0.025 (1-sided) or α = 0.05 (2-sided)

β 0.01 0.05 0.10 0.20 0.50
Power 99% 95% 90% 80% 50%

∆/σ
0.2 99
0.3 119 90 45
0.4 117 84 68 51 26
0.5 76 54 44 34 18
0.6 53 38 32 24 13
0.7 40 29 24 19 10
0.8 31 22 19 15 9
0.9 25 19 16 12 7
1.0 21 16 13 10 6
1.2 15 12 10 8 5
1.4 12 9 8 7
1.6 10 8 7 6
1.8 8 7 6
2.0 7 6 5
2.5 6
3.0 5

Required n for test where α = 0.05 (1-sided) or α = 0.1 (2-sided)

β 0.01 0.05 0.10 0.20 0.50
Power 99% 95% 90% 80% 50%

∆/σ
0.2 70
0.3 122 97 71 32
0.4 101 70 55 40 19
0.5 65 45 36 27 13
0.6 46 32 26 19 9
0.7 34 24 19 15 8
0.8 27 19 15 12 6
0.9 21 15 13 10 5
1.0 18 13 11 8 5
1.2 13 10 8 6
1.4 10 8 7 5
1.6 8 6 6
1.8 7 6
2.0 6
2.5
3.0

4.5 “Definitive Negative” Studies: Starch Blockers –
their effect on calorie absorbtion from a high-starch
meal.

Abstract: It has been known for more than 25 years that certain plant foods,
such as kidney beans and wheat, contain a substance that inhibits the activ-
ity of salivary and pancreatic amylase. More recently, this antiamylase has
been purified and marketed for use in weight control under the generic name
“starch blockers.” Although this approach to weight control is highly popu-
lar, it has never been shown whether starch-blocker tablets actually reduce
the absorption of calories from starch. Using a one-day calorie-balance tech-
nique and a high-starch (100 g) meal (spaghetti, tomato sauce, and bread), we
measured the excretion of fecal calories after normal subjects had taken either
placebo or starch-blocker tablets. If the starch-blocker tablets had prevented
the digestion of starch, fecal calorie excretion should have increased by 400
kcal. However, fecal reduce the absorption of calories from starch. Using a
one-day calorie-balance technique and a high-starch (100 g) meal (spaghetti,
tomato sauce, and bread), we measured the excretion of fecal calories after
normal subjects had taken either placebo or starch-blocker tablets. If the
starch-blocker tablets had prevented the digestion of starch, fecal
calorie excretion should have increased by 400 kcal. However, fecal
calorie excretion was the same on the two test days (mean ± S.E.M.,
80 ± 4 as compared with 78 ± 2). We conclude that starch-blocker
tablets do not inhibit the digestion and absorption of starch calories
in human beings.
Bo-Linn GW. et al New England J of Medicine. 307(23):1413-6, 1982 Dec 2.

Overview of Methods: The one-day calorie-balance technique begins with
a preparatory washout in which the entire gastrointestinal tract is cleansed
of all food and fecal material by lavage with a special calorie-free, electrolyte-
containing solution. The subject then eats the test meal, which includes
51CrCl3 as a non absorbable marker. After 14 hours, the intestine is cleansed
again by a final washout. The rectal effluent is combined with any stool
(usually none) that has been excreted since the meal was eaten. The energy
content of the ingested meal and of the rectal effluent is determined by bomb
calorimetry. The completeness of stool collection is evaluated by recovery of
the non absorbable marker.]

——-
See Powell-Tuck J. “A defence of the small clinical trial: evaluation of three
gastroenterological studies.” Br Med J Clinical Research Ed..292(6520): 599-
602, 1986 Mar 1. (under Resources on webpage). for a good paper on ‘nega-
tive’ studies,
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Table 1: Standard Test Meal
Ingredients Dietary constituents*
Spaghetti (dry weight)** 100 g Protein 19 g
Tomato sauce 112 g Fat 14 g
White bread 50 g Carbohydrate (starch) 108 g (97 g)
Margarine 10 g
Water 250 g
51CrCl3 4µCi

*Determined by adding food-table contents of each item.
**Boiled for seven minutes in 1 liter of water.

Table 2. Results in Five Normal Subjects on Days of Placebo and Starch-
Blocker Tests.

Placebo Test Day Starch-Blocker Test Day
Duplicate Rectal Marker Duplicate Rectal Marker
Test Meal* Effluent Recovery Test Meal* Effluent Recovery

subject kcal kcal % kcal kcal %

1 664 81 97.8 665 76 96.6
2 675 84 95.2 672 84 98.3
3 682 80 97.4 681 73 94.4
4 686 67 95.5 675 75 103.6
5 676 89 96.3 687 83 106.9

Means 677 80 96.4 676 78 100
± S.E.M. ±4 ±4 ±0.5 ±4 ±2 ±2

Does not include calories contained in three placebo tablets (each tablet,
1.2±0.1 kcal) or in three Carbo-Lite tablets (each tablet, 2.8±0.1 kcal) that
were ingested with each test meal.

Is this a Definitive Negative Study?

---0-----100-----200-----300----- | <- Company’s Claim: 400 kcal
--***----100-----200-----300----- |

---0-----100-----200-----300-----400-- kcal blocked

*** 95% CI estimate from study
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