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THE MATHEMATICAL DISTRIBUTIONS USED IN
IN THE COMMON TESTS OF SIGNIFICANCE

By R. A. FisHER

Introduction.—The three frequency distributions which provide the
greatest number of tests of significance in common use are all closely
related. The main types of application will be found illustrated arith-
metically in the author’s book Statistical Methods for Research Workers
and in other publications in which extensive use is made of the arith-
metical arrangement known as the Analysis of Variance. Some need
has, however, been felt by mathematicians for a concise account of the
algebraic properties and relationships of these distributions, and the
following are essentially lecture notes designed to give a mathematical
student a clear account of their properties.

1. The frequency distribution of x2.—If z1, 23, - * + , s, are independ-
ent values of a variate distributed normally about zero, with unit
variance, then the quantity

x: = S(xz):

where S, as usual, stands for summation over the sample, has a dis-
tribution given by :—

df =

—— (e ().

2

This may be proved in several ways, two of which deserve notice.
(a) By induction, for n =1, the expression reduces to

2
V — e ¥y,
™

which is clearly the distribution of z? for a single observation. If, now,
2u is the sum of the squares of n independent values of the variate,
and has the distribution,

df = ubn—De—udy ,

n —

-

2
and 7 is an additional observation independent of the others, then
Xt = 2u + 22,
and its distribution is to be inferred from the simultaneous distribution
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1 2 ,
df = A/ — uir Do dyde .
n—2 | T

2

If we now substitute
u =30 — 2, du = d(3x?,

1 /2 X2 — 2\ D)
o= ——p/= e () e,
n— 2 T 2

!
2
in which z takes all values from 0 to x. Integration with respect to x
will, therefore, yield a factor x** or (3x) ¥~V (with a constant which

need not be determined, but which may be obtained from the Eulerian
integral of the first kind), giving the distribution

we have

Gx)¥Ved(5x7)

d\=
f n—1

B

2

in accordance with the general formula.

Although the proof by induction is an attractive exercise in Eulerian
integrals, many students find an alternative proof based on Euclidean
hyperspace more simple and direct.

If 2, - - - z, are the co-ordinates of a point in such space, the fre-
quency density at any point is proportional to ¢ ¥ and depends only
on the distance of the sample point from the origin. The region in
which this density exceeds any specified value is, therefore, a hyper-
sphere in n dimensions having volume proportional to x". The volume
in which x lies within any elementary range dx is, therefore, propor-
tional to

X"_ldX)
and the element of frequency in this range is proportional to
x”_le_%"zdx .

The Eulerian integral of the second kind,

f tre~tdt = p!,
0

then supplies the required constant factor and establishes the distribu-
tion of x or x2.!
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2. The distribution of Student’s t.—If we have a value of x* derived
from n independent values, and an additional value z independent of
the others, “Student’s £’ may be defined as

/n
t =",

X

for n degrees of freedom. Writing down the simultaneous distribution
of x and x, as above, and substituting for z in terms of ¢, we obtain

1
n—2
!
2

af = 4/ —z (Ax2) (=D g—x2a+e2in)g (1 2) L_ di;
™ \/n

t2
or, putting u for %x2 (1 + —),
n

1 2 2\~ +D
—_— 1+ — utr—De=duydt.
n—2 \ V4 mr( + n)

2

Integration with respect to w from 0 to infinity, recollecting that ¢
must be equally frequently positive or negative, yields the distribution
found by “Student’’ in 1908 :— :

n—1
!
2 dt

n—92 _ £2 \3(ntD)
W (l + —->
2 n

3. The distribution of z.—In the most general case arising in the
analysis of variance, we consider two quantities, x:?, and x.?, based
respectively on n; and n, values of the variate, all of which are inde-
pendent. We may then define z so that

e = q =
nixe?
and proceed to find the distribution of z. This is carried out, as in the
previous cases, by writing down a simultaneous distribution of x;
and x; and making the substitution

1 This distribution was first given by Helmert in 1875; it was later found in-
dependently by Pearson, ‘“Student,” and others, in the examination of vari-
ous special problems belonging to the wide class in which it occurs.



356 ECONOMETRICA

ny .
x? = —xu.
ng

The integration proceeds as before, yielding the general distribution

for z,

n1+n2—2'

eridz

df =2 nﬁ"lnz%"z 3
mo— 2 g — 2' (122 + mg)¥(nitny

2 2

which is evidently that of the natural logarithm of the ratio between
two independent estimates of the same standard deviation based on
n1 and ny degrees of freedom, respectively. The wide class of prob-
lem for which z provides the appropriate test of significance is most
easily recognized from this property.

4. The Probability integral of x2. The probability integral of the x?
distribution,

() De¥d(3x7),

is
)

P =

tin=De=td

$x2 n_’2'
2 .

which represents the probability of exceeding a given value of x%.
Now, integrating by parts,

f°° lt tdt I: lt ‘:lw =+ ) ! tr—le—tdt
—tevtdt = | — —lre” ' — {7l
1x2 r! rl ix2 1x2 (7' - 1)!

1 ® 1
= — (3xP)re ¥ 4 ——— gt
o1 @) pa (0 — D!

When 7 is even, this process terminates, yielding the formula
1 1
P=e®14+52+ -G+ +——=Gx) "
2! n—2 |

2
Thus, for

n=2, P =¥
n=4, P=e(1+ o),
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. ,
n =6, P = 6_*"2{1 + ix* + a1 (%X2)2} )

1 1
=8, Poe{i4be+ o () + o (),
all of which are easily calculated for a given value of 3x2

When n is odd, the same process may be applied, terminating at
r=%; we then have the formula,

® 1
r-f %%Hwh?—mm+—@w*
b

X2 (’— 7)'

—

2

+ ... 1 (3x2)3—>
n—2 | .

2

In the integral, write 3«2 for ¢, and substitute for the fractlonal fac-
torials using (—1)#= \/_ and we find

2 e 2 1
= 1/—f e~i#dr + ,‘/—e-*"*{x + I+ %
™ X ™ ’ 35

1
n—2
t S oy ” }

The integral is the familiar probability integral of the normal curve,
the contribution to P being the total frequency outside the limits +x
times the standard deviation. The series is easily evaluated as before.

5. Relation of the x? distribution fo the Poisson series.—It will be
noticed that, when n is even, the probability of the variate $x? ex-
ceeding any specified value m is '

m? mie—2
e-m(1+m+5+-~+ )

n—2
!
2
which is the sum of the first in terms of the Poisson series, having the
parameter m, or, in other Words, the probability that a variate dis-

tributed in such a series is less than $n. This identity is expressed
in the formula,

©] » 1
f —tre~tdt = », — mre™,
m P! !

=0 L1
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where p, which takes the place of 3(n—2), is a positive integer or zero.

Thus, a table of x? can be used as a table of the partial sum of the
Poisson series; in particular, the 5 per cent value of x?, which is the
value exceeded once in 20 trials, gives (on halving) the value of m,
the “expectation’’ of the Poisson series of which the first 3n terms oc-
cupy 5 per cent of the frequency.

For example, if n is 8, the 5 per cent value of x* is 15.507; conse-
quently, we may infer that, if a rare event has been observed only
3[=1(n—2)] times, the observation has departed significantly from
any expectation exceeding 7.754 occurrences and, consequently, its
real frequency of occurrence probably does not exceed that which
would give this number in our body of observations. Again, if n is 6,
the 95 per cent point is 1.635, so that, if 3 cases have certainly been ob-
served, the expectation probably exceeds 0.817, since for thisvalue
95 per cent of the observed numbers will be 0, 1, or 2. We may thus use
the table very simply to show just how much information about the
frequency of rare events is contained in a record of only a few such
oceurrences.

6. The probablity integral of “Student’s” t distribution.—It has al-
ready been shown that the ratio ¢ of a deviation to its standard error
as estimated from n degrees of freedom is

n—1 "
2 {2\~ +D)
df = ——-—(1 + —> dt;
n — 2'\/__ n
Wn
2 ™
or, if tan 6 is written for ¢//n,
n—1
—
2
af = cos™! 0-df
n — 2'\/_
2 N

Then the probability of exceeding a given value of ¢ is
n—1
1

ir 2
f —_ cos™ 1 60-df,
a N —
W7

2
where t=+/7 tan a.
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Now, integrating by parts, it appears that

i (r £ $)! r+ ! ir
f @ cos?rtl g.do = [S—ii cos?r @ sin 0]
@ r \/71' . T!\/‘ﬂ'

%r
+ f o+ ! —————— cos?1 0 sin? 6d6.

a

(r— DW=
which, so long as r is positive, is equal to
(7’ + ! (r— 9!
cos” sinae+ (2r+1 f —————— cos*1 §-df
7"\/11' * @r+1) « C—1DW7
ir r !
— 2r f ( + 7) ————=—cos ™1 §.d4.
Hence,
i 1)1 1 — )
f (T+Z? os?t1 §.df = — — (r 7_) cos? a sin «
« 7T 2 W7
+f it ) cos? 1 6-df
« (r— 1)v\/;

when r is positive; but, when r =0,

ir H1
f k)L 5—) cos¥*1 0-df = §(1 — sin a).
« TWT ’

Hence,

1-3
P=%—%sina{1+—§—cos a+2—;cos4a

1-3-5---(n—3) ‘}
cos" % ay,
246---(n—2

when 7 is even. When 7 is odd, we proceed in the same way until » =3,
and obtain

a sine
P=%——————{cosa+§-cos3a
™ ™
24 - (n—3)
+ e COS"_za}.
35---(n—2)

As in the case of x?, when n is odd a transcendental function is re-
quired, in this case an inverse circular function, whereas when = is
even, P is expressed as a function algebraic in £.
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“Student”’ has given (1) four-figure tables of P up to n=20; beyond
this value a good asymptotic expansion is available (3). “Student’s”
tables are for 1 — P in the notation used above, and represent the prob-
ability of a value less than any given positive value of ¢. Since the
distribution is symmetrical about zero, this probability is never less
than %. For tests of significance, we often require the probability, 2P,
that the observed ratio of a deviation to its estimated standard error
shall lie outside the limits +¢, or the complementary probability,
1—2P, that it shall lie within these limits.

It will help to make clear the analogy with the more general test of
significance given by z, of which the x? and £ tests are special cases, to
observe that, when 7 is even, the expansion for 1 —2P is

1-3
sina{1+%cos2a+2—zcos4a+~--

L1358 nd 2}
- cos™™ ;
246 --n—2 N

or, in terms of ~ = cos? o = g,

n

1-3 ' 1-3-5---n—3
Vv1—gl1 4. HCR
q{ tigto ¢t L Wirsase—. }
in which the expression within the bracket is the first §n terms of the
binomial expansion

(1 -9

Just as the probability integral of x* gives the partial sum of a
Poisson series, so, therefore, does the probability integral of ¢ give the
partial sum of a special type of binomial expansion; in each case the
external factor is the inverse of the sum of the complete series, and the
identity holds for all even values of n.

7. The probability integral of the distribution of z.—The distribution
of z involves two whole numbers, n; and n,, which are the numbers of
degrees of freedom in the two lines of the analysis of variance to be
compared, and is given by the general formula,

n1+n2—2'

e 2 ey endz
= N1 1Ng3"2 .
m—2 ng— 2 v (m162% + ng)¥(mutno

=

2 2
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Writing
_ nlezz
B n1e2% + ng ’
this becomes
ny + Ng — 2
—————2 !
df = q%("1—2)(1 — q)i(ﬂg—ﬂ)dq.
ny — 2' Nneg — 2
2 2
Now,
Lir 4 s 4 1)! r4+ s+ 1!
f .(___-l;_._-l___)_xr(l — x)’dx - [_(_______)__ xr(l — x)s+1:|
rls! ri(s + 1! g

(r+ s+ 1)! » ,
+f =D+ T LTI

B (r+ s+ 1)!
Tl + D!

(r+s+ D! 2] — g)s
+f oGRS U e

1 .
N f rt+s+ D! (1 — x)dx.
s+1 rls!

qr(l —_ q)a+1

This establishes the recurrence relation

1 ! !
f E”_’_‘I_'_'S;_;‘l:j_)_: r(]_ —_ x)sdx = (7‘ ‘l"S) qr(l —_ q)a+1

G ) L ,
+f (r—l)" 211 — z)dx.

Hence, when n, is even, the probability of

nle2z
nie?* + ny
exceeding any fractional value ¢ is

e ne(ng + 2)
P = 1 —_ in, J— —_— 2
(1 -0 {1 gt

. na(ne +i2) - - - (e +m — 4) }(n1—2)}

A
24 .- (g — 2) (4)
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of which the terms in the second component are the first 37, terms of

the binomial expansion
(1 = g7t

From this expansion, when 7, is even and not too large, the probability
may be easily calculated.

Alternatively, using the direct result of integration by parts, we
shall find the alternative expression

mtn—2 gq
2 1—gq
MR (NS AR .
2-4 1—g¢q
(m+mn—2) - -(m+2)/ ¢ \?
+ = : ( ) } (B)
2:4---(m—2) 1—g¢
involving the first 3n; terms of the expansion of the positive binomial

q $(n+ng—2)
e L)
< 1—g¢q

(- q)*‘"-+""2>{1 +

The probability integral of z, when 7 is even, is thus equivalent to
the sum of 17, terms of a negative binomial in form (A), or of a positive
binomial in form (B). It is of some historical interest that the proba-
bility integral of the normal distribution was first introduced by De
Moivre as an approximation to the sum of a terminating series of
binomial terms. Indeed, had the eighteenth century mathematicians
possessed greater analytic power, the distribution of z, which was un-
known to statisticians up to about 10 years ago, might have been
studied before the normal distribution.

If n, tends to infinity and nsq to the limiting value x?, both the forms
(A) and (B) tend to the form

1
e (14 gt o (B 4

ny —

2

!

(%xz)*‘”‘“”} ,

which we obtained for the distribution of x%, if we identify n of the

general case with n of the x? distribution. The distribution of x? is,

thus, as is obvious from its statistical derivation, the limiting case,

when n, is infinite, of the general distribution, the substitution being
X

— = ¢, n = n.
n
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Again, if ny=1, the expression is evidently equivalent to that ob-
tained for the probability that ‘“Student’s” test of significance ¢ shall
lie within the limits

1 —
s
q

1—-q n

—— = — 6—22 —_— e—2z

q m ny

but

’

hence the probability that z shall exceed a given value is the proba-
bility that ¢ shall lie within the limits +e¢~%, when n,=1, n,=n.

Since z is the logarithm of the ratio of the estimates of the standard
deviation derived respectively from n; and n, degrees of freedom, it
follows that, if we interchange n; and 7n, and change the sign of z, the
expression for the distribution is the same as before. Consequently,
when 7, is even, the probability integral may be expressed as the sum
of in, terms of a binomial expansion. The expression corresponding to
(A) is, writing p for 1 —gq,

nl(nl + 2)
2-4

2

m
1-P=a-pm i+ o+

4+ .. nl(nl + 2) - (nl +m— 4) pi(ne—2)}’ (AI)
24 (ng—2)
illustrating that, for n;=1, ny=n, the probability that z exceeds any
given value is the probability that ¢ will fall ouiside the limits +e?,
and that, when n, is infinite, the x2? distribution is given by the trans-
formation

x2 —22z
— =€ ) n = Ng.
n

Corresponding to expression (B), we have
m+n—21—gq

2 q
(m4+n—2)-:- (4 2) /1 — q\¥eD
. 2. (m—2) <q) }

When both 7n; and n, are even, it appears that P and 1—P are the
first 7, terms and the remaining %n, terms of the expansion of

(p + @¥ritr?,

1—P = q%(n1+n,—2){1 +

+ (B)
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where
g _
p N2

m
J— 62',

the ratio of the sums of squares in the analysis of variances.

In cases where either n; or n. is even, the probability integral can
be expressed as the incomplete sum of a binomial series, either with
positive or negative exponent, the exponent being the half of an odd
integer if either n; or n. is odd. The case remains to be considered in
which both n; and 7, are odd.

For this case we apply the recurrence solution as far as r =3, obtain-
ing :

1 2
P= f ——2—x—i(1 — )M ndg
n —
i 5 W
ng — 1 |
2 ne + 1
+2—»1 - q)*"’q*{l 42

ng — 2
22 W7

(n2 + 1) R (n2 + ny — 4) X _3)}
ghn e b
3. . (ns—2)

q+...

The numerical coefficient of the second term, when 7, is odd, is
2 24---(ne—1)
r 13- (n—2)

and the integral remaining at this stage is just double the one which
has been already evaluated for the ¢ distribution; so, putting

t2
t2+’"/z,

z = sin? 9, g =sin?a =

we find, since 7, is odd,

{cosa+%cos3a+---

™ ™
2:4---(ny — 3)
Jr3-5~--(nz—2)

cos™ =—2a}
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n2+1

3

2 24---(ng—1)
m 1:3--:(ng — 2)
(D)t m—4) }
sin™—° o

3-5---(n— 2)

in terms of «, where « is connected with 2z by the equation

sin a cos™: « {1'+ sin%a 4+ - - -

I
tan a = — €.
e

Tables for z for the 5 per cent and the 1 per cent points of the dis-
tribution have been given for n;=1, 2, 3, 4, 5, 6, 8, 12, 24, o ; the last
five values are in harmonic progression and enable the table to be in-
terpolated in the manner which I have called asymptotic interpolation.
For n,, I have given values from 1 to 30, together with 60 and oo ;
in this case again the series of values for 20, 30, 60, and o, may be
used for asymptotic interpolation and the table thus gives four-figure
values of 2z, an accuracy fully sufficient for all common purposes for all
combinations of n; and 7, except the region in which n, exceeds 24 and
ny exceeds 30.

R. A. FisHER

University College, London
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