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a b s t r a c t

An inductive procedure is used to obtain distributions and probability densities for the sum
Sn of independent, non-equally uniform random variables. Some known results are then
shown to follow immediately as special cases. Under the assumption of equally uniform
random variables some new formulas are obtained for probabilities and means related to
Sn. Finally, some new recursive formulas involving distributions are derived.
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1. Introduction

The problem of calculating the distribution of the sum Sn of n uniform random variables has been the object of
considerable attention even in recent times. The motivation can be ascribed to various reasons such as the necessity
of handling data drawn from measurements characterized by different levels of precision (Bradley and Gupta, 2002), or
questions appearing in change point analysis (Sadooghi-Alvandi et al., 2009), or, more in general, the need of aggregating
scaled values with differing numbers of significant figures (Potuschak and Müller, 2009). It appears that this problem has
been taken up first in Olds (1952), where by somewhat obscure procedures formulas for the probability density function
of Sn and its distribution function are derived. An accurate bibliography of articles published in the last century is found
in Bradley and Gupta (2002), where the authors also obtain the probability density function of Sn by non-probabilistic
arguments, namely via a complicated analytical inversion of the characteristic function. Such a procedure was successively
and successfully simplified in Potuschak and Müller (2009), where again no trace of probabilistic arguments is present.
An attempt to achieve the same results by a simpler procedure appears in Sadooghi-Alvandi et al. (2009) where a given
function is assumed to be the unknown probability density function, the proof of the correctness of such an ansatz being
that its Laplace transform coincides with the moment generating function of Sn. Quite differently, the present note includes
a novel proof of the above cited results (Proposition 2.1). This is based on an inductive procedure, suitably adapted to our
general instance, used by Feller (1966) for the case of identically distributed variables, that further pinpoints the usefulness
of induction procedures in the probability context. (See also Hardy et al. (1978) for some more illuminating examples.) In
the case of identically distributed random variables, some results concerning certain probabilities and means of random
variables related to Sn are obtained (Lemma 3.1, Theorem 3.1, Corollaries 3.1 and 3.2, Proposition 3.4), as well as certain
recurrence relations that are reminiscent of those holding for Stirling numbers (Propositions 3.5–3.7).

2. The general case

Let {Xn}n∈N denote a sequence of uniform distributed independent random variables and denote Sn =
∑n
i=1 Xi. Without

loss of generality we assume that Xn ∼ U(0, an) with an positive real numbers. By adopting a suitably modified procedure
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due to Feller (1966) we shall obtain the probability density function fn(x) and the distribution function Fn(x) of Sn for all
n ∈ N. The starting point is to write

FXn(x) =
x+ − (x− an)+

an
, ∀n ∈ N, ∀x ∈ R, (1)

where (x− c)+ = max{x− c, 0}, ∀c ∈ R. Next we shall make use of∫ x

−∞

[
(y− c)+

]n−1 dy = 1
n

[
(x− c)+

]n
, ∀n ∈ N,∀c ∈ R+. (2)

In addition we note that, by convolution, probability density functions and distribution functions are related as follows:

fn+1(x) =
∫ an+1

0
fn(x− y)fXn+1(y) dy =

Fn(x)− Fn(x− an+1)
an+1

, ∀n ∈ N,∀x ∈ R. (3)

Claim 2.1. One has

F1(x) =
x+ − (x− a1)+

a1
, ∀x ∈ R (4)

and

f2(x) =
x+ − (x− a1)+ − (x− a2)+ + [x− (a1 + a2)]+

a1a2
, ∀x ∈ R. (5)

Proof. It follows from (1) written for S1 ≡ X1, and from (3). �

Claim 2.2. One has

F2(x) =
(x+)2 − [(x− a1)+]2 − [(x− a2)+]2 +

{
[x− (a1 + a2)]+

}2
2a1a2

, ∀x ∈ R (6)

and

f3(x) =
{
(x+)2 −

[
(x− a1)+

]2
−
[
(x− a2)+

]2
−
[
(x− a3)+

]2
+
{
[x− (a1 + a2)]+

}2
+
{
[x− (a1 + a3)]+

}2
+
{
[x− (a2 + a3)]+

}2
−
{
[x− (a1 + a2 + a3)]+

}2}
(2a1a2a3)−1, ∀x ∈ R. (7)

Proof. Eq. (6) follows from (5) and (2). From (6) and (3) one then obtains Eq. (7). �

Claims 2.1 and 2.2 lead us to infer a possible general forms of the distribution function of Sn and of the probability density
function of Sn+1, as specified in the following proposition.

Proposition 2.1. The distribution function Fn(x) of Sn and the probability density function fn+1(x) of Sn+1 are given by,
respectively:

Fn(x) =
1
n! An

{
(x+)n +

n∑
ν=1

(−1)ν
n∑
j1=1

n∑
j2=j1+1

· · ·

n∑
jν=jν−1+1

{[
x− (aj1 + aj2 + · · · + ajν )

]+}n}
, ∀n ∈ N,∀x ∈ R (8)

and

fn+1(x) =
1

n! An+1

{
(x+)n +

n+1∑
ν=1

(−1)ν
n+1∑
j1=1

n+1∑
j2=j1+1

· · ·

n+1∑
jν=jν−1+1

{[
x− (aj1 + aj2 + · · · + ajν )

]+}n}
,

∀n ∈ N,∀x ∈ R. (9)

Proof. We proceed by induction. Claims 2.1 and 2.2 show that Eqs. (8) and (9) hold for n = 1 and n = 2. Let us now assume
that they hold for n = r − 1 and prove that they also hold for n = r . To this purpose, we re-write Eq. (9) for n = r − 1 and
x = y and then integrate both sides over (−∞, x). By virtue of Eq. (2), Eq. (8) with n = r then follows. To obtain Eq. (9) for



2094 A. Buonocore et al. / Statistics and Probability Letters 79 (2009) 2092–2097

n = r we make use of (3) and of the just obtained expression of Fr(x). Hence,

fr+1(x) =
1

r! Ar+1

(x+)r + r∑
ν=1

(−1)ν
r∑
j1=1

r∑
j2=j1+1

· · ·

r∑
jν=jν−1+1

{[
x− (aj1 + aj2 + · · · + ajν )

]+}r
+−

[
(x− ar+1)+

]r
+

−

r∑
ν=1

(−1)ν
r∑
j1=1

r∑
j2=j1+1

· · ·

r∑
jν=jν−1+1

{[
x− (aj1 + aj2 + · · · + ajν + ar+1)

]+}r. (10)

Eq. (10) identifies with Eq. (9) written for n = r since the curly brackets contains all and only all the following terms:
1. [(x)+]r ;
2.
[
(x− a1)+

]r
,
[
(x− a2)+

]r
, . . . ,

[
(x− ar+1)+

]r ;
3. for 1 < ν ≤ r

(−1)ν
r∑
j1=1

r∑
j2=j1+1

· · ·

r∑
jν=jν−1+1

{[
x− (aj1 + aj2 + · · · + ajν )

]+}r
+

− (−1)ν−1
r∑
j1=1

r∑
j2=j1+1

· · ·

r∑
jν−1=jν−2+1

{[
x− (aj1 + aj2 + · · · + ajν−1 + ar+1)

]+}r
≡ (−1)ν

r+1∑
j1=1

r+1∑
j2=j1+1

· · ·

r+1∑
jν=jν−1+1

{[
x− (aj1 + aj2 + · · · + ajν )

]+}r
;

4. (−1)r+1
{
[x− (a1 + a2 + · · · + ar+1)]+

}r
.

This complete the induction. �

3. A special case

Let us assume that the random variables in {Xn}n∈N are identically distributed.

Proposition 3.1. When an = a > 0 for all n ∈ N then

Fn(x) =
1
n! an

n∑
ν=0

(−1)ν
(n
ν

) [
(x− νa)+

]n
, ∀n ∈ N,∀x ∈ R (11)

and

fn+1(x) =
1

n! an+1

n+1∑
ν=0

(−1)ν
(
n+ 1
ν

) [
(x− νa)+

]n
, ∀n ∈ N,∀x ∈ R. (12)

Proof. Eq. (11) follows from Eq. (8) after noting that now An = an and that

aj1 + aj2 + · · · + ajν = νa

for ν = 0, 1, . . . , n. Indeed, in the sum on ν in Eq. (8), the term in curly bracket becomes
[
(x− νa)+

]n, so that
n∑
j1=1

n∑
j2=j1+1

· · ·

n∑
jν=jν−1+1

{[
x− (aj1 + aj2 + · · · + ajν )

]+}n
=

(n
ν

)
·
[
(x− νa)+

]n
.

Eq. (12) follows from (9) by a similar argument.1 �

Hereafter, for simplicity we shall take an = a = 1 for all n ∈ N. Then, from Eq. (3) there follows
fn+1(x) = Fn(x)− Fn(x− 1), ∀n ∈ N,∀x ∈ R (13)

so that
fn+1(k) = Fn(k)− Fn(k− 1), ∀n ∈ N, k ∈ {0, 1, . . . , n+ 1}, (14)

whereas from Eqs. (11) and (12) one obtains

Fn(k) =
1
n!

k∑
ν=0

(−1)ν
(n
ν

) [
(k− ν)+

]n
, ∀n ∈ N, k ∈ {0, 1, . . . , n} (15)

1 Note that Eqs. (11) and (12) obtained by us as a special case of (8) and (9) are in agreement with a result due to Feller (1966).
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and

fn(k) =
1

(n− 1)!

k∑
ν=0

(−1)ν
(n
ν

) [
(k− ν)+

]n−1
, ∀n ∈ N, k ∈ {0, 1, . . . , n}. (16)

Proposition 3.2. When an = a = 1 for all n ∈ N then

Fn(x) =
k∑
j=1

fn+1(x+ j− k), ∀n ∈ N, k ∈ {1, 2, . . . , n}, k− 1 ≤ x ≤ k. (17)

Proof. Starting from (13), by iteration it follows that

Fn(x) = fn+1(x)+ Fn(x− 1) = fn+1(x)+ fn+1(x− 1)+ Fn(x− 2)

= · · · =

k∑
j=1

fn+1(x+ j− k)+ Fn(x− k).

Since x− k ≤ 0, one has Fn(x− k) = 0, which completes the proof. �

Proposition 3.3. When an = a = 1 for all n ∈ N then∫ k

k−1
Fn(x) dx = Fn+1(k), ∀n ∈ N, k ∈ {1, 2, . . . , n}. (18)

Proof. Making use of (17) one obtains∫ k

k−1
Fn(x) dx =

k∑
j=1

∫ k

k−1
fn+1(x+ j− k) dx =

k∑
j=1

Fn+1(x+ j− k)

∣∣∣∣∣
k

k−1

=

k∑
j=1

[Fn+1(j)− Fn+1(j− 1)] = Fn+1(k)− Fn+1(0).

The proof is then a consequence of Fn(0) = 0 for all n ∈ N. �

Consider now the event Sn,k = {k− 1 ≤ Sn ≤ k} and let Pn,k := P
(
Sn,k
)
. From (14) it follows that

Pn,k = Fn(k)− Fn(k− 1) = fn+1(k), ∀n ∈ N, k ∈ {1, 2, . . . , n}. (19)

Lemma 3.1. When an = a = 1 for all n ∈ N then

P
(
Sn+1 ≤ k, Sn,k

)
= Fn+1(k)− Fn(k− 1), ∀n ∈ N, k ∈ {1, 2, . . . , n}. (20)

Proof. Let n ∈ N and 1 ≤ k ≤ n. Then,

P
(
Sn+1 ≤ k, Sn,k

)
= P

(
Xn+1 ≤ k− Sn, Sn,k

)
=

∫∫
T
fXn+1(x)fn(y) dx dy

where T denotes the domain in the x–y plane defined by 0 < x < 1 and k− 1 < y < k− x. Hence, by integration along the
y-axis from k− 1 to k− x, for all x ∈ (0, 1)we obtain

P
(
Sn+1 ≤ k, Sn,k

)
=

∫ 1

0
dx
∫ k−x

k−1
fn(y) dy =

∫ 1

0
Fn(k− x) dx− Fn(k− 1)

=

∫ k

k−1
Fn(x) dx− Fn(k− 1). (21)

Eq. (20) follows from (21) and (18). �

Lemma 3.1 will be used to prove the following theorem.

Theorem 3.1. When an = a = 1 for all n ∈ N then

P
(
Sn+1 ≤ k|Sn,k

)
=

k
n+ 1

, ∀n ∈ N, k ∈ {1, 2, . . . , n}. (22)
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Proof. Let k = 1. ∀n ∈ N, from (15) there follows Fn(1) = 1/n!, whereas Fn(0) = 0. Hence, making use of (19) one obtains

P
(
Sn+1 ≤ 1|Sn,1

)
=

P
(
Sn+1 ≤ 1, Sn,1

)
Pn,1

=
Fn+1(1)− Fn(0)
Fn(1)− Fn(0)

=
n!

(n+ 1)!
=

1
n+ 1

. (23)

This proves (22) for k = 1. From (23) it follows that

1
n+ 1

≡ P
(
Sn+1 ≤ 1|Sn,1

)
= E

[
P
(
Xn+1 ≤ 1− y|Sn,1, Sn = y

)]
= 1− E

[
Sn|Sn,1

]
which ultimately implies

E
[
Sn|Sn,1

]
=

n
n+ 1

.

Since X1, X2, . . . , Xn are uniform iid random variables, the mean of each of them conditional on Sn,1 is 1/(n + 1). Hence,
given that Sn,1 occurs, the means of S1, S2, . . . , Sn partition [0, 1] into n+ 1 equally wide intervals. Therefore, for 1 < k ≤ n,
if Sn,k occurs, the interval that is partitioned into n + 1 equally wide intervals is now [0, k]. This implies that Xn+1 cannot
exceed k/(n+ 1) to insure that Sn+1 remains below k. �

Corollary 3.1. When an = a = 1 for all n ∈ N then

E
[
Sn|Sn,k

]
=

n
n+ 1

k, ∀n ∈ N, k ∈ {1, 2, . . . , n}. (24)

Proof. Due to Theorem 3.1 one has
k

n+ 1
≡ P

(
Sn+1 ≤ k|Sn,k

)
= E

[
P
(
Xn+1 ≤ k− y|Sn,k, Sn = y

)]
= k− E

[
Sn|Sn,k

]
which ultimately yields Eq. (24). �

Corollary 3.2. When an = a = 1 for all n ∈ N then

E
[
Sn1Sn,k

]
=

n
n+ 1

kPn,k, ∀n ∈ N, k ∈ {1, 2, . . . , n}. (25)

Proof. Since

E
[
Sn|Sn,k

]
=

E
[
Sn1Sn,k

]
Pn,k

,

Eq. (25) follows from (24). �

Proposition 3.4. When an = a = 1 for all n ∈ N then

n
n∑
k=1

kfn+1(k) = (n+ 1)
n∑
k=1

Fn+1(k), ∀n ∈ N, k ∈ {1, 2, . . . , n}. (26)

Proof. Let n ∈ N. From (19) and (25) we obtain

n
2
= E [Sn] =

n∑
k=1

E
[
Sn1Sn,k

]
=

n
n+ 1

n∑
k=1

kfn+1(k). (27)

Making use of (18), we are easily led to

E [Sn] ≡
∫ n

0
xfn(x) dx = xFn(x)

∣∣∣∣n
0
−

∫ n

0
Fn(x) dx = n−

n∑
k=1

∫ k

k−1
Fn(x) dx = n−

n∑
k=1

Fn+1(k).

Hence,

n
2
=

n∑
k=1

Fn+1(k). (28)

Eq. (26) finally follows by equating the right-hand sides of (27) and (28). �
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The forthcoming recursive formulas are a consequence of Theorem 3.1.

Proposition 3.5. When an = a = 1 for all n ∈ N then

Fn+1(k) = Fn(k)
k

n+ 1
+ Fn(k− 1)

n+ 1− k
n+ 1

, ∀n ∈ N, k ∈ {1, 2, . . . , n+ 1}. (29)

Proof. Let n ∈ N and 1 ≤ k ≤ n+ 1. From (19) and (20) one obtains

P
(
Sn+1 ≥ k, Sn,k

)
= Pn,k − P

(
Sn+1 ≤ k, Sn,k

)
= Fn(k)− Fn(k− 1)− Fn+1(k)+ Fn(k− 1),

or

P
(
Sn+1 ≥ k, Sn,k

)
= Fn(k)− Fn+1(k). (30)

On the other hand,

P
(
Sn+1 ≥ k, Sn,k

)
= P

(
Sn+1 ≥ k|Sn,k

)
Pn,k =

[
1− P

(
Sn+1 ≤ k|Sn,k

)]
Pn,k.

Hence, from (19) and (22) one derives

P
(
Sn+1 ≥ k, Sn,k

)
= Fn(k)− Fn(k− 1)−

k
n+ 1

Fn(k)+
k

n+ 1
Fn(k− 1). (31)

Eq. (29) then immediately follows after equating the right-hand sides of (30) and (31). �

Note that (29) trivially holds also for k = 0, yielding 0 = 0.

Remark 3.1. Since

E
[
Sn1Sn,k

]
=

∫ k

k−1
xfn(x) dx = xFn(x)

∣∣∣∣k
k−1
−

∫ k

k−1
Fn(x) dx

= kFn(k)− (k− 1)Fn(k− 1)− Fn+1(k).

Eq. (25) can be alternatively obtained via (29).

Proposition 3.6. When an = a = 1 for all n ∈ N then

Pn+1,k = Pn,k
k

n+ 1
+ Pn,k−1

n+ 2− k
n+ 1

, ∀n ∈ N, k ∈ {1, 2, . . . , n+ 1}. (32)

Proof. Let n ∈ N and 1 ≤ k ≤ n+ 1. By the difference of Eq. (29) written for k and for k− 1, one obtains

Pn+1,k = Pn,k
k

n+ 1
+ Fn(k− 1)

1
n+ 1

+ Pn,k−1
n+ 1− k
n+ 1

− Fn(k− 2)
1
n+ 1

,

whence (32) follows after noting that Fn(k− 1)− Fn(k− 2) = Pn,k−1. �

Proposition 3.7. When an = a = 1 for all n ∈ N then

fn+1(k) = fn(k)
k
n
+ fn(k− 1)

n+ 1− k
n

, ∀n ∈ N, k ∈ {1, 2, . . . , n+ 1}. (33)

Proof. Let n ∈ N and 1 ≤ k ≤ n+ 1. From (19) and (32) it follows that

fn+1(k) = Pn,k = Pn−1,k
k
n
+ Pn−1,k−1

n+ 1− k
n

.

By making again use of (19), Eq. (33) is finally obtained. �
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